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Abstract

The paper studies a credit market model with endogenous credit
cost and debt constraints in which multiple candidates for steady state
equilibria arise. We use dynamic programming (DP) with flexible grid
size to locate thresholds that separate different domains of attraction.
More specifically, we employ DP to (1) compute present value bor-
rowing constraints and thus creditworthiness, (2) locate thresholds
where the dynamics separate to different domains of attraction, (3)
distinguish between optimal and non-optimal steady states and (5)
demonstrate how the thresholds change with change of the credit cost
function of the debtor and (6) explore the impact of debt ceilings and
consumption paths on creditworthiness. The analytics is provided for
a general model and some generic results are presented for a one state
variable problem.
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1 Introduction

Numerous examples of dynamic economic models with multiple equilibria ex-
ist in the economic literature. In earlier growth theory it has been shown that
a convex-concave production function leads to multiple equilibria.1 Multiple
equilibria have further been studied in modern growth theory.2 The litera-
ture on resource economics and ecological management problems show also
numerous examples of models with multiple equilibria. Multiple equilibria
are also important properties in trade models, in models of addiction and in
labor market search and monetary policy models.3 Yet, only recently it has
been discovered that the study of the local dynamics needs to be comple-
mented by the study of the global dynamics. In those models there is history
dependence in the sense that there are thresholds where the dynamics sep-
arate to different domains of attraction. These thresholds may or may not
coincide with the candidates for steady state equilibria. Since there do not
seem to exist equations to locate those thresholds, the thresholds need to
be detected by applying numerical methods. We propose a simple economic
model with borrower’s and lender’s relationship which gives rise to multiple
candidates of steady state equilibria and thresholds. Although our model
lends itself to a multi-variable interpretation to which our methods can be
applied to, for analytical purpose we restrict our study to a one control-one
state variable model.

In this simple variant capital stock is the state variable and investment
is the control variable. We take into account temporary and intertempo-
ral budget constraints of the agent who is allowed to finance investment
through credit market borrowing. We allow for adjustment cost of capi-
tal and state dependent credit cost which generate multiple candidates for

1Examples are given in the literature on development economics where a convex-concave
production function arises which leads to a threshold that separates paths to low per capita
income (poor) countries and high per capita income (rich) countries, see Skiba (1978) and
Azariadis and Drazen (1990).

2In endogenous growth models of Lucas and Romer type multiple equilibria may arise
by employing externalities or complementarities in the production function, for the Lucas
model, see Benhabib, Perli and Xie (1994) and for the Romer model see Benhabib and
Perli (1994) and Evans, Honkapohja and Romer (1997).

3On resources and the ecological management problem, see Brock and Starret (1999)
and Sieveking and Semmler (1997); on trade theory, see Krugman (1991); on addiction,
see Orphanides and Zervos (1998); on labor market search theory, see Mortensen (1989);
and on monetary policy, see Benhabib, Schmitt-Grohe and Uribe (1998) and Greiner and
Semmler (2000).
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steady state equilibria. The model resembles the dynamic models with credit
market borrowing such as employed in Blanchard (1983), Bhandari et al.
(1990), Kiyotaki and Moore (1997), Bernanke, Gertler and Gilchrist (1999)
and Miller and Stiglitz (1999). In these models the impact of credit market
borrowing and debt dynamics on economic activity is studied.4

Most literature on dynamic credit market models, by assuming perfect
credit markets, posits that, agents can borrow against future income as long
as the discounted future income, the wealth of the agents, is no smaller than
the debt that agents have incurred. There is no credit risk whenever the in-
tertemporal budget constraint holds. Formally, often the so called transver-
sality condition is invoked to provide a statement on the non-explosiveness of
the debt of the economic agents. Models of this type have been discussed in
the literature for households, firms, governments and countries (with access
to international capital markets).5 Here then, as long as the intertemporal
budget constraint holds, debt dynamics do not impact economic activity.

There are other studies that assume credit market imperfections so that
borrowing is constrained. Borrowing ceilings are assumed which are supposed
to prevent agents from borrowing an unlimited amount. Presuming that
agents’ assets serve as collateral a convenient way to define the debt ceiling
is then to assume the debt ceiling to be a fraction of the agents’ wealth. The
definition of debt ceilings have become standard, for example, in small scale
macro dynamic models.6

In other research, also building on imperfect capital markets it is posited
that borrowers face a risk dependent interest rate which is assumed to be
composed by a market interest rate (for example, risk-free interest rate) and
an idiosyncratic component determined by the individual degree of risk of the
borrower. Employing the theory of asymmetric information and costly state
verification in Bernanke et al. (1999), for example, credit cost is endogenous
by making it dependent on net worth of the borrower, as collateral for bor-
rowing.7 This gives rise to an external finance premium that entrepreneurs

4The above models usually do not admit multiple steady states except the model by
Miller and Stiglitz (1999). Yet, there is no study of thresholds. Note also that in contrast
to some of the other models, for example, the one by Bernanke et al.(2000) we, in order
to simplify matters, do not employ a stochastic version but rather employ a deterministic
framework. A stochastic version is discussed in Sieveking and Semmler (1999).

5For a brief survey of such models for households, firms and governments or countries,
see Blanchard and Fischer (1989, ch.2) and Turnovsky (1995).

6See, for example Barro, Mankiw and Sala-i-Martin (1995). It has also been pointed
out that banks (like the World Bank), often define debt ceilings for their borrowers, see
Bhandari, Haque and Turnovsky (1990).

7Recent work has been undertaken by nesting credit market imperfections and endoge-
nous borrowing cost more formally in intertemporal models such as the standard stochastic

3



have to pay contingent on their net worth.8

We restrict our study to a simple credit market model and explore global
dynamics of the model when agents, as in the latter case, face endogenous
credit cost. We also study the impact of debt constraints and debt ceilings
on the global dynamics. To study global dynamics we have to compute cred-
itworthiness. We show that debt ceilings should not be arbitrarily defined
but rather given by creditworthiness.9 We use dynamic programming with
flexible grid size to solve such type of models as well as to distinguish local
from global dynamics. After having obtained candidates for steady state
equilibria of the model we (1) compute the present value borrowing con-
straint and creditworthiness without and with endogenous credit cost, (2)
compute thresholds of those types of models (in the sense of Skiba 1978)
where the dynamics separate to different domains of attraction, (3) show
that the policy function may be discontinuous and compute the jumps in
the policy function, (4) distinguish between optimal and non-optimal steady
states and (6) demonstrate how the thresholds change with change of the
credit cost function and (7) compute creditworthiness curves and thresholds
for model variants with debt ceilings and given consumption paths.

We want to note that since in this paper we are concentrating on method-
ological issues such as history dependence, thresholds, domains of attraction,
suboptimal equilibria and jumps in the policy function we use a stylized
model which is nested in an intertemporal model with utility maximization
but can be studied independently of utility maximization. The relation of
our model to a model with a utility functional is shown in appendix I.

Finally we want to remark, that such problems of dynamic models arising
from multiple steady state equilibria have been studied also in earlier work,
such as Skiba (1978).10 Most researchers have employed the Hamiltonian
equation derived from Pontryagin’s maximum principle. As shown in Beyn,
Pampel and Semmler (2000) Pontryagin’s maximum principle and the as-
sociated Hamiltonian can also be applied to study the global dynamics of
such a model with multiple steady states in restricted cases. In the current
paper we propose the use of dynamic programming techniques on adaptively

growth model, see Carlstrom and Fuerst (1997), Cooley and Quadrini (1998) and Krieger
(1999). We restrict our study to a simple investment model.

8Another development of the analysis of credit risk employs less the ”ability to pay”
but rather the ”willingness to pay” approach to explain defaults. For the latter type of
literature, in particular on the problem of incentive compatible contracts, see Eaton and
Fernandez (1995).

9A more elaborate analysis of how credit ceilings affects welfare is given in Semmler
and Sieveking (1996).

10An extensive discussion of the earlier work on studying thresholds using the Hamil-
tonian is given in Brock and Malliaris (1996, ch. 6))
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refined grids which are well suited to study the above problems.
The remainder of the paper is organized as follows. Section 2 introduces

the basic dynamic model. Section 3 describes numerical methods, in par-
ticular dynamic programming with flexible grid size that are used to study
different variants of the dynamic model. Sections 4 reports the detailed re-
sults from our numerical study on the different variants of the model. In
appendix I we briefly summarize the separation theorem and appendix II
shows the relation of dynamic programming undertaken in discrete time11

to the HJB-optimality equation.

2 The Dynamic Model

Next we want to specify the dynamic model that we study analytically and
numerically. As above mentioned in the study of creditworthiness we can
by-pass utility theory though the model is nested in a more fully developed
model with utility theory. Economists have argued that analytical results in
intertemporal models frequently depend on the form of the utility function
employed. We show that we can study borrowing, lending and creditworthi-
ness, without the direct use of utility theory. Although our model can be
nested in utility theory, we use a separation theorem that permits us to sepa-
rate the present value problem from the consumption problem. In Sieveking
and Semmler (1998) an analytical treatment is given of why and under what
conditions the subsequent credit market model can be separated from the
consumption problem. A brief summary of the analytical result is given in
appendix I. Note that by focusing on the entrepreneurs intertemporal opti-
mal investment where debt can be continuously issued and retired we do not
have to consider that in each period the agent is constrained by financial con-
straints but there will be intertemporal debt constraints where debt capacity
will be defined by the agent’s creditworthiness and credit constraints.

As to the more specifics of the credit market features of our model we
presume credit market imperfections. Along the line of Bernanke, Gertler
and Gilchrist (1999), henceforth BGG, we assume asymmetric information
and agency costs in borrowing and lending relationships. BGG draw on
the insight of the literature on costly state verification12 in which lenders
must pay a cost in order to observe the borrower’s realized returns. This
motivates the use of collaterals in credit market models. Uncollateralized
borrowing is assumed to pay a larger finance premium than collateralized

11For the more extensive version of the generalized model, see Semmler and Sieveking
(1999) which is available for the reader upon request.

12This literature originates in the seminal work by Townsend (1979).
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borrowing or self-financing. The external finance premium is interpretable
as the cost of bankruptcy (for example constituted by auditing, accounting,
legal cost, as well as loss of assets arising from asset liquidation). Thus the
external finance premium drives a wedge between the expected return of the
borrower and the risk-free interest rate whereby the external finance premium
is positively related to the default cost and inversely related to the borrowers
net worth. Net worth is defined as the agents collateral value of the (illiquid)
capital stock less the agent’s outstanding obligations. Following BGG we can
measure the inverse relationship between the external cost of finance and net
worth in a function such as

H (k(t), B(t))) =
α1

(α2 + N(t)
k(t)

)µ
θB(t) (1)

with H (k(t), B(t))) the credit cost depending on net worth, N(t) =
k(t) − B(t), with k((t) as capital stock and B(t) as debt. The parameters
are α1, α2, µ > 0 and θ is the risk-free interest rate. In the analytical and
numerical study of the model below we presume that the external finance
premium will be zero for N(t) = k(t) and thus for B(t) = 013 so that in
the limit the borrowing rate is the risk-free rate. Note, however, that even if
the credit cost is endogenized we might want to define the agent’s financial
constraints which in our model will be given below by an upper bound of the
debt-capital ratio.

Building on the separation theorem as briefly summarized in appendix
I and employing the theory of asymmetric information and costly state
verification which posits an inverse relation of external finance premium and
net worth, we study the following intertemporal model with credit market
borrowing

V (k) = Max
j

∫ ∞
0

e−θtf (k(t), j(t))dt (2)

k̇(t) = j(t)− σk(t), k(0) = k. (3)

13Bernanke, Gertler and Gilchrist (1999) employ the same functional relationship as
above. They state that ”.. the external finance premium depends inversely on the share
of the firm’s capital investment that is financed by the entrepreneur’s own net worth”
(p.166).
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.

Ḃ(t) = H (k(t), B(t)))− (f (k(t), j(t))− c(t)), B(0) = B0 (4)

The model represents an optimal investment problem with adjustment
cost of capital and endogenous credit cost. In addition, debt constraints can
be imposed. The agent‘s net income

f(k, j) = akα − j − jβk−γ (5)

is generated from capital stock, through a production function, kα, and in-
vestment, j, is undertaken so as to maximize the present value of net income
in (5) given the adjustment cost of capital jβk−γ . Note that σ > 0, α > 0, β >
1, γ > 0, are constants.14 Equ. (3) represents capital accumulation and equ.
(4) the evolution of debt of the economic agent. We allow for negative in-
vestment rates j < 0, i.e. reversible investment for simplicity. Note that in
(4) c(t) is a consumption stream that is, in the context of our model, treated
as exogenous.15In the study of the next section the consumption stream will
be specified further. Since net income in (5) less the consumption stream
c(t) can be negative the temporary budget constraint of the agent requires
further borrowing from credit markets and if there is positive net income less
consumption debt can be retired.

As above shown, along the line of the theory of imperfect capital markets
we assume that the credit cost H (k,B) may be state dependent, depending
on the capital stock, k, and the level of debt B with Hk > 0 and HB < 0.
Note, however, that if we assume that credit cost depends inversely on net
worth as in equ. (1) we get a special case of our model when only the risk-
free interest rate is accounted for in the credit cost. We then have a constant
credit cost and a state equation for the evolution of debt such as

Ḃ(t) = θB(t)− f(k,B), B(0) = B (6)

In this case, we would only have to use the transversality condition lim
t→∞

e−θtB(t) =

0 as the non-explosiveness condition for debt to close the model.

14Note that the production function may kα may have to be multiplied by a scaling
factor. For the analytics we leave it aside. Other authors have used the simplification
H(k, B) = θB, β = 2, γ = 1 to study such a model, see Blanchard (1983).

15Note that in our model all variables are written in efficiency labor, therefore σ rep-
resents sum of the capital depreciation rate, population growth and rate of exogenous
technical change. Our model resembles the one by Blanchard (1983) but builds on imper-
fect capital markets and thus it endogenizes credit cost.
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In our more general model (2)-(4) we define the limit of B(t) equal to
B∗(t) which represents the present value borrowing constraint or the credit-
worthiness of the agent. Note that B∗(t) will be defined as curve and not as
a point since it needs to be known for each point in the state space. As debt
ceiling we take

sup
t≥0

B(t) <∞ (7)

Let us call an initial indebtedness B subcritical for an initial capital stock k if
there is an investment function j(·) such that the corresponding solution t→
(B(t), k(t)) of (2)- (4) satisfies (7). Let B∗(k) be the supremum of all initial
levels of debt which are subcritical for initial capital k. We call B∗(k) the
creditworthiness of the capital stock k, or the agent’s present value borrowing
constraint. The problem to be solved in this paper is how to compute B∗(k).

If the interest rate θ = H(k,B)
B

is constant16, then as is easy to see, B∗(k) is
the present value of k, exclusive of the initial value of debt

B∗(k) = Max
j

∫ ∞
0

e−θtf (k(t), j(t)) dt−B(0) (8)

s.t. k̇(t) = θB(t)− (f(k,B)− c(t)), t ≥ 0, k = k(0). (9)

with B(0) is the initial value of debt. The more general case is, however,
when the credit cost is endogenous. If we have H (k,B), then, as argued
above, not only the relation of the present value to creditworthiness but also
the notion of present value itself becomes difficult to treat. Pontryagin’s
maximum principle is not suitable to solve the problem with endogenous
credit cost and we thus prefer dynamic programming.

Below we will also presume a simplified credit cost function which has
been proposed in literature on imperfect capital markets. Bhandari et al
(1990), for example, propose a convex credit cost in the level debt. This
helps to simplify the analytical treatment of the model. We simplify equ. (1)
by assuming that H (k,B) = h(B) and that the latter is twice differentiable
h′(B) > 0, h(0) = 0, h′ ≥ θ for some constant θ > 0 and h′′ ≥ 0.

16As aforementioned in computing the present value of the future net income we do
not have to assume a particular fixed interest rate, as in Kiyotaki and Moore (1997) and
Miller and Stiglitz (1999), but the present value, defining debt capacity B∗(t), will, for the
optimal investment decision, enter as argument in the credit cost function H (k(t), B(t)∗) .
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In the context of the model (2)-(4) we also explore the use of ’ceilings’ in
debt contracts if they differ from creditworthiness B∗(k). Credit restrictions
may affect welfare. Suppose the ’ceiling’ is of the form B(t) < C, with C a
constant, for all t. Either C > B∗(k), then the ceiling is too high because the
debtor might be tempted to move close to the ceiling and then goes bankrupt
if B > B∗(k). Or C < B∗(k), then the agent may not be able to develop his
or her full potentials, and thus face a welfare loss17, or it may be the case
that the contract is not feasible whereas it would be feasible if B(t) ≤ C for
all t is replaced by

lim
t→∞

supB(t) ≤ C. (10)

On the other hand, the latter condition obviously is of no practical use if
we can not say when B(t) ≤ C. The major tasks of our methods will be to
compute the creditworthiness-curve B∗(k) even for the case of endogenous
credit cost as in equ. (1). We also will compute thresholds that separate
the optimal solution paths for B∗(k) to different domains of attraction. We
will presume different functional forms of the credit cost function and also
consider the case of debt a constrained agent for whom holds thatB(t)/k(t) ≤
c with c a constant then study the creditworthiness curve.18 Moreover, we
also will presume in our study various paths for the consumption stream,
c(t), and their impact on the creditworthiness curve.

Before further analyzing the model we make a remark on the general-
ization of the model. A generalized version of model (2) -(4) is studied in
appendix II where we state a theorem on B∗(k) in the multi-variable case
with capital stocks k = (k1, ...kn) and investment vector j = (j1........jn).
We show that our model with state dependent credit cost lends itself to an
iterative dynamic programming solution and that B∗(k) satisfies the HJB-
optimality equation. Since the latter is in continuous time and the former
in discrete time we demonstrate the relation of our above stated continu-
ous time model to a discrete time version used in dynamic programming.19

We state the HJB-equation for B∗(k) and show that B∗(k) is the limit of a
corresponding discrete time approximation.20

17In Semmler and Sieveking (1996) the welfare gains from borrowing are computed.
18Note that in the case of endogenous credit cost and/or debt ceilings the equity price

of the firm – if we consider the agent to be a firm – will be affected.
19In the extended version we also discuss discretization errors, see Semmler and Sieveking

(1999).
20It is worth noting that the model in this section has not quite the same mathematical

properties as considered in the general case discussed in appendix II, because first, the
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Next we want to give some economic intuition of the working of a uni-
variate version of the model (2)-(4) in the context of the use of the HJB-
equation. Presume the above suggested simplification of (1) with H (k,B) =
h(B), h(0) = 0, h′ ≥ θ for some constant θ > 0 and h′′ ≥ 0, and take
h(B) = θBκ for κ ≥ 1. For this case we easily can study the number of
candidates for equilibria of our model. The candidates for steady states can
be computed from Proposition 1 below.

Figure 1: Debt control with a unique steady state equilibrium

There may be a uniquely determined steady state or multiple steady
states. In the case of a unique steady state, as shown in Figure 1, there
is a unique common stationary capital k∗ for the investment j−(k,B) with
steepest descent as well as for the investment j+(k,B) with least steep ascent.
21 This solution path is shown in figure 1 where the set S in the (k,B)−space
is the set where investments j = σk decrease debt. As figure 1 shows if the
debt is above S we need to decrease debt most rapidly by decreasing capital
k while k > k∗ using j−(k,B) and increase debt least possible while k < k∗.
The investment that achieves this can be called extremal investment. For this

range of the control variable j is unbounded, second, the range of the state variable (k, B)
is unbounded, and third the net income function f(k, j) has a singularity at k = 0. Yet,
the present value for the above model can be approximated by one which belongs to the
class of models considered in appendix II (to do so we can reduce the ranges and smooth
f out at k = 0). For details, see Semmler and Sieveking (1999).

21The detection of the solution path is based on the observation that the solution k →
(k, B∗(k)) of our problem consists of solutions to a differential equation which (i) use either
steepest descent or the least steep ascent in the (k, B)−space and (ii) run into a stationary
state. This method has been applied in Semmler and Sieveking (1999, 2000).
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investment an unit of investment will give rise to the least increase of debt,
if investment rises and the greatest decrease of debt if investment falls.22

A more complicated situation is shown in figure 2.

Figure 2: Debt control with multiple steady state equilibria

In addition to the attractor equilibrium k∗∗ there is a threshold k+ where
the solution path changes direction. As discussed in the introduction such
thresholds turn up in many dynamic models. This generically happens if sev-
eral attractor equilibria exist and there is, in between, a repeller equilibrium.
In the current model, in the case of multiple equilibria, the threshold, the
Skiba point, k+, in figure 2, is economically significant: below k+ the debtor
has to reduce its capital to zero in order to keep debt bounded whereas above
k+ capital can be expanded.23 Note, however, that such a threshold does not
have to coincide with the candidate for the equilibrium k∗ which may be in
the neighborhood of k+. The threshold will be displaced from the neighboring
unstable steady state if the latter is a focus.24 Note also if B(k∗) is smaller
than the trajectories j− leading to k = 0 and j+ leading to k∗∗ either of the
latter two trajectories are better than staying at the steady state candidate
k∗, B(k∗). Thus, k∗ is not optimal and the vicinity of the unstable steady

22Of course, in order to ensure that our creditworthiness curve will contain the equilib-
rium candidate (k∗, B(k∗)), we might invert the time and solve the initial value problem
with (k∗, B(k∗)) as initial value (using j− for k > k∗ and j+ for k < k∗).

23In the development literature such a threshold – which has, however, been identified
with the middle unstable steady – has been called a development trap, see for example,
Azariadis and Drazen (1990).

24For details, see Deissenberg et al. (2000).
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state provides indeterminate solution.25 A case like this will be numerically
demonstrated below.26

The candidates for equilibria can be computed as follows. For our spec-
ification h(B) where the critical curve k → B∗(k) is tangent to the point
B(k∗), we consider the set S of states in the (k,B)−space where investments
j = σk decrease debt.27 Investment keeps capital constant precisely if

h(B) ≤ f(k, σk) or

B ≤ h−1 (f(k, σk)) =: ϕ(k).

Let

S = {(k,B) | 0 ≤ B ≤ ϕ(k), k ≥ 0}

S is bounded by the graph of the function ϕ, which we define only for k ≥ 0
with f(k, σk) ≥ 0.

Note that if h(B) = f(k, σk) that is at the boundary of S a trajectory
starting from a candidate of an equilibrium is tangent to S. We thus can
state a proposition for the candidates of steady state equilibria.
Proposition 1 The candidates of equilibria satisfy 1 + 2σk1−γ = ϕ‘(k).

For h(B) = rBκ this is equivalent to

1 + 2σk1−γ =
αkα−1 − σ − σ2(2− γ)k1−γ

r1/κκ(kα − σk − σ2k2−γ)(κ−1)/κ
(11)

For (11) there are likely to be multiple solutions depending on the para-
meters of the net income and credit cost functions. Thus, both the nonlinear
adjustment cost of capital as well as the state dependent credit cost con-
tribute to multiple candidates for steady state equilibria. Yet, one also may

25This type of indeterminacy in dynamic models is discussed in Benhabib and Gali
(1995).

26Note that for a constant interest rate we might apply the Hamiltonian from Pontrya-
gin’s maximum principle to determine the optimal investment. In the situation of figure
2, we obtain two positive candidates for an optimal stationary capital stock such as k∗,
k∗∗, but would, by local analysis, get no information that one of those (and which) is
non-optimal.

27Note that here, for easons of simplicity, we have set consumption equal to zero. If it
is positive it will move down the creditworthiness curve, see our results in section 4.
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obtain only one (strictly positive) steady state equilibrium candidate inspite
of both adjustment cost of capital and endogenous credit cost, see Semmler
and Sieveking (1999). In general, however, if there is a state dependent credit
cost and there is a change of the credit cost or net income28 functions this
will result in a change of the location of the thresholds. As above noted, for
a constant credit cost, we can also use the maximum principle to obtain the
candidates for equilibria. In fact the equilibria are the same as for κ = 1
in (11).29 Since, however, we do not want to restrict our model (2)-( 4) we
employ dynamic programming with flexible grid size to study the model and
its extensions.

3 Numerical Dynamic Programming

In the literature it has been shown that dynamic optimization models giving
rise to multiple steady state equilibria can be of concave30 or non-concave
type and yet generating multiple equilibria with thresholds. Although most
of the historical models as discussed in the introduction build on non-concave
models, yet recently examples have been given where such phenomena can
also arise in concave models.31 In the case of the existence of multiple steady
state equilibria of system (2)-(4) a rigorous study of the dynamics of the
model and the thresholds were the dynamics separate to different domains of
attraction would require locating the thresholds analytically. This appears
to be feasible only if the thresholds coincide with one of the steady state
equilibria. As has been shown this occurs if the relevant (unstable) equilibria
is a node. In the concave model the unstable equilibria is necessarily a node,
but a node can also occur in a non-concave model.32 Yet, it is impossible to
locate the threshold analytically if the threshold does not coincide with the
(unstable) equilibria. Thus, the thresholds that will exists in the vicinity of
the unstable steady state – and will render the neighboring unstable steady

28In an open economy model with flexible exchange rates, see Miller and Siglitz (1999),
net income can fall or endogenous credit cost rise with the devaluation of the currency
due to an increase in the local currency value of total debt (if there is significant external
borrowing in foreign currency). Thus the net income function– as well as the credit cost
function – may change. This might give rise to a change of the thresholds.

29For details of the computation of the equlibria and creditworthiness curve for the case
of a constant credit cost, θ, using Pontryagin’s maximum principle, see Beyn, Pample and
Semmler (2000).

30The problem is concave if, following the Mangasarian definition, the Hamiltonian for
the above problem P(a) is both concave in the state as well as control variables.

31See, for example, Hartl et al. (2000), and Deissenberg et al. (2000).
32See Hartl et al. (2000) and Deissenberg et al. (2000).
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state to be non-optimal– have to be located by numerical methods.
In this section we describe two dynamic programming algorithms which

enable us to compute the creditworthiness curve B∗(k) and the thresholds.
While the two algorithms presented here are of quite different nature, a
common feature of both is the adaptive discretization of the state space
which leads to high numerical accuracy with moderate use of memory.

3.1 The Discounted Infinite Horizon Problem

The first algorithm is applied to discounted infinite horizon optimal con-
trol problems of type (2)–(4) when, however, no restriction on the dynamics
is present. In our model, this applies if the credit cost is constant, i.e.,
H(k,B) = θB as in (6) and if in addition the constraint on B is given by
infj supt≥0B(t) <∞, since in this case it follows from (8) that B∗(k) is easily
obtained from V (k) in (2), namely from

V (k) = Max
j

∫ ∞
0

e−θtf (k(t), j(t))dt

We will briefly describe the algorithm which goes back to Capuzzo Dol-
cetta (1983), Falcone (1987) and Grüne (1997). For details and for a mathe-
matically rigorous convergence analysis we refer to these papers as well as to
Appendix A in the monograph by Bardi and Capuzzo Dolcetta (1997) and
to Grüne, Metscher and Ohlberger (1999).

In the first step, the continuous time optimal control problem is replaced
by a first order discrete time approximation given by

Vh(k) = Max
j
Jh(k, j), Jh(k, j) = h

∞∑
i=0

(1− θh)if(kh(i), ji) (12)

where kh is defined by the discrete dynamics

kh(0) = k, kh(i+ 1) = kh(i) + h(ji − σkh(i)) (13)

and h > 0 is the discretization time step. Note that j = (ji)i∈N0 here denotes
a discrete control sequence.

The optimal value function is the unique solution of the discrete Hamilton–
Jacobi–Bellman equation

Vh(k) = Max
j
{hf(k, j0) + (1− θh)Vh(kh(1))} , (14)
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where kh(1) denotes the discrete solution corresponding to the control j and
initial value k after one time step h. Abbreviating

Th(Vh)(k) = Max
j
{hf(k, j0) + (1− θh)Vh(kh(1))} (15)

the second step of the algorithm now approximates the solution on a grid Γ
covering a compact subset of the state space, i.e., a compact interval [0, K] in
our setup. Denoting the nodes of Γ by ki, i = 1, . . . , P , we are now looking
for an approximation V Γ

h satisfying

V Γ
h (ki) = Th(V

Γ
h )(ki) (16)

for each node ki of the grid, where the value of V Γ
h for points k which are

not grid points (these are needed for the evaluation of Th) is determined by
linear interpolation. We refer to the papers cited above for the description of
iterative methods for the solution of (16). Note that an approximately opti-
mal control law (in feedback form for the discrete dynamics) can be obtained
from this approximation by taking the value j∗(k) = j for j realizing the
maximum in (14), where Vh is replaced by V Γ

h . This procedure in particular
allows the numerical computation of approximately optimal trajectories.

In order to distribute the nodes of the grid efficiently, we make use of a
posteriori error estimation. For each cell Cl of the grid Γ we compute

ηl := Max
k∈Cl
|Th(V

Γ
h )(k)− V Γ

h (k)|

(more precisely we approximate this value by evaluating the right hand side
in a number of test points). It can be shown that the error estimators ηl
give upper and lower bounds for the real error (i.e., the difference between
Vh and V Γ

h ) and hence serve as an indicator for a possible local refinement
of the grid Γ. It should be noted that this adaptive refinement of the grid is
very effective33 for detecting thresholds, because the optimal value function
typically fails to be differentiable in these points, resulting in large local errors
and consequently in a fine grid, see Figure 4.

3.2 Domains of Attraction

For the general model, i.e., with endogenous credit cost H(k,B) as defined
in (1) and/or restrictions of the type B/k ≤ c, this algorithm unfortunately

33Actually, for the one–dimensional problem at hand it is possible to compute rather
accurate approximations vΓ

h also with equidistributed grid points. In higher dimensions
the computational advantage of adaptive gridding is much more obvious, see, e.g., the
examples in Grüne (1997) or Grüne et al. (1999).
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is not applicable. Even though in certain cases a HJB equation for a dis-
crete time version of the problem is available, see appendix II, it is not clear
whether the full discretization procedure described above leads to a valid and
convergent approximation of B∗

Hence we propose a different approach for the solution of this problem,
based on a set oriented method for the computation of domains of attrac-
tion. The method relies on the following observation: For a given compact
interval34 [0, K] for the capital stock k one sees that there exists a constant
c∗ > 0 such that B∗(k) ≤ c∗ for all k ∈ [0, K]. Hence, for k ∈ [0, K] the
condition supt≥0B(t) <∞ can be replaced by

sup
t≥0

B(t) < c∗.

Hence both this constraint and the constraint B(t) ≤ ck(t) can be expressed
as

B(t) ≤ d(k(t)) for all t ≥ 0

for some suitable function d. In other words, the set of all initial values
(k0, B0) for which this constraint is violated is given by

D =

{
(k0, B0)

∣∣∣∣ there exists T > 0 such that B(t(j)) ≥ d(k(t(j)))
for all j and some t(j) ∈ [0, T ]

}

and the curve B∗(k) is exactly the lower boundary of D.
The set D is what is called a robust domain of attraction of the set

A = {(k,B) ∈ R2 |B ≥ d(k)} and we will now give a brief description of
an algorithm for the computation of such sets, for details we refer to Grüne
(2001) and Chapter 7 of Grüne (2002).

Again we consider a first order discrete time approximate model, now
both for k and B given by the Euler discretization35

kh(i+ 1) = kh(i) + h(ji − σkh(i))

Bh(i+ 1) = Bh(i) + hH(kh(i), Bh(i))− hf(kh(i), ji)

and abbreviate the right hand side by Ψ(k,B, j). Just as above, for the space
discretization we use a grid Γ, now covering a two–dimensional rectangular

34In any numerical method we must restrict ourselves to a compact computational do-
main, hence this restriction is natural in this context.

35We use the simple first order Euler scheme here in order to avoid too much technicality
in our presentation. For higher order discrete time approximations see, e.g., Chapter 5 of
Grüne (2002).
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domain [0, K] × [0, B]. For each cell Cl, l = 1, . . . , Q of the grid we use a
collection of test points xil = (kil , B

i
l ), i = 1, . . . , N in order to compute the

set image

Φ(Cl, ̄) =
⋃
m

Cm for all m ∈ {1, . . . , Q} with Ψ(kil , B
i
l , j

i) ∈ Cm

where ̄ = (j1, . . . , jN ) is a vector of N control values associated to the N
test points. For a sequence (̄i), i = 0, 1, 2, . . . of such control vectors we can
iterate the map Φ and we denote the resulting iterated map by Φi(Cl, (̄i)).
Now we can define the following three sets

DΓ =
⋃
m

Cm for all m with Φi(Cm, (̄i)) ⊆ A for all (̄i) and some i

BΓ =
⋃
m

Cm for all m with Φi(Cm, (̄i)) ∩ A = ∅ for some (̄i) and some i

EΓ =
⋃
m

Cm for all m with Cm 6⊆ DΓ and Cm 6⊆ EΓ

These sets are easily computed by a dynamic programming type iteration
and under appropriate conditions it can be shown that the set DΓ approx-
imates D, the set BΓ approximates Dc (the complement of D) and the set
EΓ approximates ∂D (the boundary of D), which in our case is exactly the
curve B∗(k). It turns out that for obtaining more and more accurate approx-
imations (with respect to the space discretizations) it is sufficient to increase
the accuracy on the set EΓ, i.e., to refine the cells Cm ⊆ EΓ.

While the convergence analysis in the general case is rather complicated
and depends on certain properties of D, for our problem we can use the
fact that the boundary ∂D is given by the curve B∗(k) which is monotone
increasing in k. Hence, if we use a rectangular grid, and choose the test
points in each cell to be the 4 corners of this rectangular cell, we obtain that
if a cell Cm intersects both D and Dc, then there exist test points xk1

m and
xk2
m in this set such that xk1

m ∈ D and xk2
m 6∈ D. Consequently, the iterated

cell image Φi cannot be contained in A for all (̄i) (implying that Cm 6⊆ DΓ)
but it intersects A for each (̄i) (implying that Cm 6⊆ BΓ). Thus, if a cell
Cm intersects both D and Dc then we obtain that Cm ⊆ EΓ which finally
yields that the set EΓ always covers the boundary ∂D and hence gives an
approximation of the curve B∗(k) whose accuracy is equal to the width of
the set EΓ.36

36Of course, this discussion concerns the spatial discretization error only. For the analy-
sis of the full error we refer to the cited references.
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Since the problem which is solved by this algorithm is not a classical
optimal control problem (though it can be interpreted as an optimal control
problem for the set valued dynamics) it is not possible to obtain optimal
trajectories with respect to some given functional. However, it is not too
difficult to prove that the boundary of a domain of attraction D is weakly
invariant (i.e., for an initial value on the boundary ∂D we can always find
trajectories that remain on ∂D for all future times), provided it is a “proper”
domain of attraction, i.e., its boundary does not intersect with the boundary
of A. Due to this fact, for each initial value (k,B) ∈ BΓ (recall that this
set forms our numerical approximation of the set {(k,B)|B ≤ B∗(k)} of
subcritical initial values) we can compute a control sequence ji realizing a
(discrete time) trajectory for whichBh(i) remains bounded for all times i ≥ 0
and for initial values on the upper part of the boundary ∂BΓ we can even
expect to find trajectories that stay on this upper part of ∂BΓ for all future
times, i.e., they are (up to the numerical error) of the form (k(t), B∗(k(t)).
The limiting behavior of these trajectories can then be used for the detection
of the thresholds and it turns out that this procedure yields very good results.

4 The Numerical Study

In this section we present numerical results obtained for our model for dif-
ferent choices of H(k,B). Throughout this section we specify the model
parameters as σ = 0.15, a = 0.29, α = 1.1, β = 2, γ = 0.3 and θ = 0.1.
The remaining parameters are specified below. Unless otherwise noted we
use c(t) ≡ 0 in our experiments.

As for the numerical parameters, all examples were computed for k in the
compact interval [0, 2] with control range j ∈ [0, 0.25].37 For the algorithm
from Section 3.1 we have used the numerical time step h = 0.05 and an
initial grid with 39 nodes. The final adapted grid consisted of 130 nodes.
The range of control values was discretized using 101 equidistributed values.
For the algorithm from Section 3.2 we used the time step h = 0.5, in order to
generate the discrete time model Ψ we used a highly accurate extrapolation
method. For this algorithm the range of control values was discretized using
51 equidistributed values. The domain covered by the grid was chosen to be
[0, 2] × [0, 3] where the upper value B = 3 coincides with the value c∗ = 3
used in order to implement the restriction supt≥0 B(t) <∞, cf. the discussion
at the beginning of Section 3.2. The initial grid was chosen with 1024 cells,
while the final adapted grids consisted of about 100000 up to 500000 cells,
depending on the example. For this algorithm the figures below always show

37In all our experiments larger control ranges did not yield different results.
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the set EΓ which approximates the creditworthiness curve B∗(k). Recall that
the width of this set gives an estimate for the spatial discretization error.

4.1 H(k,B) = θB

In this case we can use the optimal control algorithm from Section 3.1 in order
to solve the discounted infinite horizon problem (2)–(4). Figure 3 shows the
corresponding optimal value function representing the creditworthiness curve
(upper graph) and the related optimal control in feedback form (lower graph).

Figure 3: Optimal value function and optimal feedback law

The threshold k+ = 0.267 is clearly visible in the optimal control law,
which is discontinuous at this point. For initial values k(0) < k+ the op-
timal trajectories tend to k∗ = 0, for initial values k(0) > k+ the optimal
trajectories tend to the stable equilibrium k∗∗ = 0.996.

Figure 4 shows the optimal feedback control in a neighborhood of the
threshold. The discontinuity in the control variable is clearly observable.
Investment to the left of k+ is lower than σk and makes the capital stock
shrinking whereas investment to the right of k+ is larger than σk and in-
creases the capital stock. At k+ investment jumps.

In addition, in this figure the adaptively distributed grid points are shown.
As mentioned in Section 3.1, the grid is in particular refined around the
threshold, the reason for this is the (barely visible) kink in the optimal value
function at this point, resulting in a non–differentiable value function and
hence in large local errors.
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Figure 4: Optimal feedback law and distribution of grid points at threshold

4.2 H(k,B) from (1)

For the more general model with

H (k(t), B(t))) =
α1

(α2 + N(t)
k(t)

)µ
θB(t)

it is not possible to transform the problem into a standard infinite horizon
optimal control problem, hence we will use the algorithm for the computation
of domains of attractions from Section 3.2 and undertake experiments for
different shapes of the credit cost function.

In this formula we specify µ = 2. Taking into account that we want θ to
be the risk–free interest rate, we obtain the condition α1/(α2 + 1)2 = 1 and
thus α1 = (α2 + 1)2. Note that for α2 → ∞ and 0 ≤ B ≤ k one obtains
H(k,B) = θB, i.e., the model from the previous section. In order to compare
these two models we use the formula H(k,B) = α1

α2
2
θB for B > k.38

Figure 5 shows the respective creditworthiness curves B∗ under the con-
dition supt≥0B(t) < ∞ for α2 = 100, 10, 1,

√
2 − 1 (from top to bottom)

and the corresponding α1 = (α2 + 1)2.
For α2 = 100 the trajectories on the curve B∗ show almost the same

behavior as the optimal trajectories in the previous section: There exists
a threshold (now at k+ = 0.32) and two stable equilibria at k∗ = 0 and
k∗∗ = 0.99. For the smaller values of α2 there is no threshold observable

38For small values of α2 it turns out that the creditworthiness curve satisfies B∗(k) < k,
hence this change of the formula has no effect on B∗.
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Figure 5: Creditworthiness curve B∗ for different α2

and there exists only one equilibrium at k∗ = 0 which is stable. Further
simulations have revealed that for decreasing values of α2 ≤ 100 the threshold
value k+ increases (i.e., moves to the right) and the stable equilibrium k∗∗

decreases (i.e., moves to the left), until they meet at about α2 = 31. For
all smaller values of α2 there exists just one equilibrium at k∗ = 0 which is
stable. The reason for this behavior lies in the fact that for decreasing α2

credit becomes more expensive, hence for small α2 it is no longer optimal to
borrow large amounts and to increase the capital stock, instead it is optimal
to shrink the capital stock and to reduce the stock of debt B(t) to 0. Thus,
with small α2 and thus large borrowing cost it is for any initial capital stock
optimal to shrink the capital stock.

4.3 H(k,B) = θBκ

In this section we use the algorithm from Section 3.2 and repeat the computa-
tions from the previous section for the credit cost function H(k,B) = θBκ.39

Figure 6 shows the respective curves for κ = 1, 1.05, 1.25, 2 (from top to
bottom at the right boundary of the diagram).

For κ = 1 this is exactly the optimal value function from Figure 3, while
for increasing κ the values of B∗(k) increase for small k and decrease for
larger k. This is due to the fact that for increasing κ and B > 1 the credit
cost increases whereas for increasing κ and B < 1 the credit cost decreases,

39Note that this type of interest cost where the interest payment is convex in the
agent’s debt is frequently posited in the literature, see for example Bhandary, Haque
and Turnovsky (1990)
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Figure 6: Creditworthiness curve B∗ for different κ

hence it is becomes possible to borrow larger amounts with small capital
stock. It should also be noted that in all cases we have B∗(0) = 0, how-
ever, for larger κ the creditworthiness curve becomes discontinuous at 0, i.e.,
limk→0,k>0 B

∗(k) > 0. Again, this is due to the fact that for larger κ the
credit cost is small for small B.

This behavior of the creditworthiness is also reflected in the thresholds.
For κ = 1.05 the qualitative behavior of the trajectories is just as in the case
κ = 1: there exists a threshold k+ > 0 in where the control is discontinuous
and two stable equilibria k∗ = 0 and k∗∗ > k+. For increasing values of κ the
threshold k+ moves to the left until it hits 0 and vanishes; for κ = 1.25 and
κ = 2 it has already vanished, implying that all trajectories with initial values
on the B∗(k) curve converge to a strictly positive stable equilibrium k∗∗. Note
that this behavior is just the opposite to what happens forH(k,B) from (1) in
Section 4.2 for decreasing α2, which is due to the fact that the credit cost for
small B behaves the opposite way. We can thus observe that for both type of
credit cost functions the asset price and thus the creditworthiness is affected,
yet for the convex credit cost the asset price decreases (relative to the a credit
cost with risk-free rate) only for large capital stock and borrowing. This
rather unexpected behavior of the convex credit cost function – increasing
creditworthiness with small capital stock and borrowing – makes the first
formulation of endogenous credit cost, through equ. (1), a more reasonable
approach to pursue.
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4.4 Debt Ceilings

For H(k,B) from (1) with α2 = 100 and for H(k,B) = θBκ with κ = 2 we
now test a different criterion for the debt ceiling: instead of supt≥0B(t) <∞
we impose the restriction B(t)/k(t) ≤ c for some constant c. Again we use
the algorithm from Section 3.2. Figure 7 shows the respective curves for the
restriction supt≥0B(t) < ∞ and for the ratio–restriction with c = 1.2 and
c = 0.6 (from top to bottom). In addition, the restriction curves B = ck are
shown with dots for c = 1.2 and c = 0.6.
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Figure 7: Creditworthiness curve B∗ for different ceilings, H(k,B) from (1)

For c = 0.6 the creditworthiness curve B∗(k) coincides with the “restric-
tion curve” B(k) = ck; in this case the curve (k,B∗(k)) is no longer invariant
for the dynamics,40 i.e., each trajectory B(t) with B(t) ≤ B∗(k(t)) leaves the
curve (k,B∗(k)) and eventually B(t) tends to −∞. For c = 1.241 the curves
B∗(k) and B = ck coincide only for k ≥ 1.46. Here one observes the same
equilibria k∗ and k∗∗ and threshold k+ as for the sup–restriction (cf. Sec-
tion 4.2), however, in addition to these here a new threshold appears at
k++ = 1.54. For initial values (k,B∗(k)) with k+ < k < k++ the trajectory
tends to the stable equilibrium k∗∗, while for k > k++ the behavior is the
same as for c = 0.6, i.e., the corresponding trajectories leave the curve B∗(k)

40As mentioned in Section 3.2 the boundary of the domain of attraction D =
{(k, B) |B > B∗(k)} of the set A = {(k, B) |B ≥ ck} is invariant for the trajectories,
provided ∂D and ∂A do not intersect. Here we have B∗(k) = ck, i.e., the boundaries ∂D
and ∂A do intersect (they even coincide) and consequently we cannot expect invariance.

41This curve is difficult to see because it coincides with the curve for supt≥0B(t) < ∞
for small k and with the restriction curve B = ck for large k.
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and eventually B(t) tends to zero.42

We have repeated these computations for H(k,B) = θBκ and κ = 2.
Figure 8 shows the respective curves for the restriction supt≥0 B(t) <∞ and
for the ratio–restriction with c = 1.2 and c = 0.6 (from top to bottom). In
addition, the restriction curves B = ck are shown with dots for c = 1.2 and
c = 0.6.
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Figure 8: Creditworthiness curve B∗ for different ceilings, H(k,B) = θB2

Again, for the sup–restriction the curve is discontinuous at k = 0. Just as
for H(k,B) from (1), for c = 0.6 the creditworthiness curve B∗(k) coincides
with the “restriction curve” B(k) = ck and the curve (k,B∗(k)) is no longer
invariant for the dynamics and for each trajectory with B(t) ≤ B∗(k(t)) the
second component B(t) diverges to −∞. For c = 1.2 the curves B∗(k) and
B(k) = ck coincide for k ∈ [0, k∗∗], where k∗∗ = 0.8 is exactly the stable
equilibrium for all trajectories starting on the curve B∗(k).

4.5 Consumption

We finally investigate—again for H(k,B) from (1) with α2 = 100 and for
H(k,B) = θBκ with κ = 2—the case when the agent’s net income f is
reduced by a constant consumption c(t) ≡ η. In this case the creditworthiness
curve B∗ may become negative. This means that there is an initial level of
capital stock required—the level of capital stock where the creditworthiness
curve becomes positive—that supports the consumption path c(t) = η. All
levels of capital stock below this point do not support the consumption path

42The simulation are halted at zero, but we would like to report if continued the B(t)
curve becomes negative and tends to −∞.
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c(t) = η. We have to specify the dynamics for B(t) < 0 which we choose to
be Ḃ(t) = θB(t)− f .

Note that for the linear model from Section 4.1 subtracting a constant η
from f simply results in an optimal value function Vη = V − θη. Since for
α2 = 100 the creditworthiness B∗ for H(k,B) from (1) is very close to the
model from Section 4.1 we would expect much the same behavior. Figure 9
shows that this is exactly what happens here.
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Figure 9: Creditworthiness curve B∗ for different η, H(k,B) from (1)

The fact that the curves here are just shifted is also reflected in the
stable equilibria and the threshold, which do not change their positions.
In particular, the dynamical behavior does not depend on the consumption
rate.43

Again, we have repeated our computations with H(k,B) = θBκ and
κ = 2. Figure 10 shows the respective curves for η = 0, 0.04, 0.07, again
from top to bottom.

In this nonlinear model here with κ = 2 the effect of η is truly nonlinear, as
it is easily seen from the figure, because the difference between the curves at
the right boundary of the diagram is much smaller than on the left boundary.
However, again dynamical behavior does not change: just as for η = 0, for
both considered positive values of η the resulting trajectories converge to a
stable equilibrium k∗∗ > 0 and no thresholds could be observed. The position
of the equilibria k∗∗ depends on η, more precisely k∗∗ increases, i.e., moves
to the right as η increases. As concerns the behavior of the creditworthiness
curve for our two different credit cost functions we here also might conclude
that the equ. (1) represents a more reasonable approach.

43Note that this is an obvious case where our separation theorem of appendix I is valid.
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Figure 10: Creditworthiness curve B∗ for different η, H(k,B) = θB2

5 Conclusions

We know that for a large number of dynamic models there may exist multiple
equilibria and thresholds separating the global dynamics. These models give
rise to history dependence and indeterminacy. Indeterminacy occurs if in
the neighborhood of a steady state equilibrium it is preferable to move either
to the higher or lower equilibria. In the literature mostly the thresholds
separating the different domains of attraction have not been located. In this
paper we apply dynamic programming with flexible grid size that proves to
be useful to compute thresholds and global dynamics in models with multiple
steady state equilibria. We study a credit market model where the agents
can borrow from credit market for investment and where the credit cost
may be state dependent and the agents may face debt ceilings. Using those
methods we can compute the present value borrowing constraint and thus
the region in which the borrower remains creditworthy. We apply dynamic
programming to detect thresholds, domains of attraction, jumps in the policy
function and suboptimal equilibria in a stylized model which is nested in
utility maximization but can be studied independently. We also explore the
impact of different shapes of the credit cost function, debt ceilings and given
consumption paths on the equity price and creditworthiness, thresholds and
domains of attraction. If the interest rate is a constant the Hamiltonian
equation can be applied as well.
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6 Appendices

6.1 Appendix I: The Optimal Consumption of Value.

In this appendix we briefly want to demonstrate of how our model of section
2 is nested in a more general model with utility functional. The essential
feature of the more general model is that the study of the problem of cred-
itworthiness and the present value borrowing constraints can be separated
from the consumption problem. Here it is shown for a simple model.

We start with the more general problem where both c and j are control
variables.44 In order to optimize the utility functional Û (c) :=

∫∞
0
e−θtU(c(t))dt

we have to solve


maxc,j

∫∞
0
e−θtU(c(t))dt,

k̇ = i(k, j); k(0) = k0
.

B = θB + c− f(k, j); B(0) = B0, (PF (k0, B0))

lim
t→∞

e−θtB(t) = 0

where j and c are control variables and where U is a strictly monotone
increasing instantaneous utility function.

This problem can be separated into two optimization problems.
1) Solve the investment problem for k0 ∈ R+

{
maxj

∫∞
0
e−θsf(k(s), j(s))ds,

k̇ = i(k, j); k(0) = k0. (PI(k0))

By using an optimal solution (k∗(t), j∗(t)) of (PI(k0)) we define the wealth
of the economy at time t = 0 by ω∗ :=

∫∞
0
eθsf(k∗(s), j∗(s))ds−B0.

2) Solve the problem of optimal consumption for given (k, j, B0), and ω ∈ R+


maxc,c≤ω

∫∞
0
U(c(s))e−θsds,

.

B = θB + c− f(k, j), B(0) = B0, (PC(ω, k, j, B0))

lim
t→∞

e−θtB(t) = 0

where c :=
∫∞

0
e−θsc(s)ds. We denote a solution of (PC(ω, k, j, B0)) by

(B∗(t), c∗(t)).

44Note that this allows the use of external resources.
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In Sieveking and Semmler (1998) it is shown that (
∼

k,
∼

B,
∼
j,
∼
c) is an op-

timal solution of (PF (k0, B0)) if and only if (k̂, j) is an optimal solution

of (PI(k0)) and (
∼

B, c) is an optimal solution of (PC((
∼
ω, k, j, B0)), where

ω :=
∫∞

0
e−θsf((

∼

k(s), (
∼
j (s))ds− b0.

A further analytical treatment why and under what conditions such problems
can be separated as well as an example for the case of a utility function of
CRRA type are given in Sieveking and Semmler (1998).

6.2 Appendix II: The Generalized Model and the HJB-

Equation

Here we study a more general version of the credit market model discussed
in section 2 in the sense that we refer to a multi-variable version of the
model as well as to the relationship between discrete time and continuous
time models.45 We show in the general case that B∗(k) fulfills the HJB-
optimality equation.
Suppose capital k(t + 1) at time t + 1 and debt B(t + 1) at time t + 1 are
determined by k(t) and B(t) and investment rate j(t) through

k(t+ 1) = g (k(t), j(t)) , k(0) = k (A7)

B(t+ 1) = H (k(t), B(t))− f (k(t), j(t)) , B(0) = B (A8)

H(k,B) is the credit cost which we allow to depend on capital k, and B,
g(k, j) is the growth of capital due to investment j and f(k, j) the net income
from capital stock k and investment rate j.

More precise assumptions on g,H, f and there domains of definition will
be given below. We ask, if for a given pair (k,B) is it possible to choose
a sequence of investments j(0), j(i), in such a way that the corresponding
solution t→ (k(t), B(t)) of (A7) and (A8) satisfies

sup
t≥0

B(t) <∞

45This relation is only sketched here. A detailed study of it can be found in Semmler
and Sieveking (1999) where also an estimate of error bounds of the discretized version of
the continuous time model is given.
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If so we call B subcritical for k. The supremum of all those B which are sub-
critical for k is denoted by B∗(k). We propose to call B∗(k) creditworthiness
of k. The function k → v(k) = B∗(k) will be shown to satisfy the following
HJB-equation or optimality equation.46

H (k, v(k)) = sup
j

[f(k, j) + v (g(k, j))] , k ∈ K (A9)

Our assumptions below imply that the equation

H(k, C) = sup
j

[f(k, j) + v (g(k, j))]

has a unique solution C = C(v, k) for every capital stock k and every con-
tinuous real valued function v on capital stock k. Define the operator T by

Tv(k) := C(v, k)

The assumptions stated below permit to demonstrate:

Theorem 1

(i) The HJB-equation (A9) admits a unique bounded continuous solution
B∗, called creditworthiness.

(ii) If v0 = 0 and vn is defined recursively by vn+1 = Tvn then for all n,
vn ≤ vn+1 and lim

n
vn = B∗.

(iii) Suppose inf
k∈K

H(k,B)
B

> c for some c > 1. Then for every solution

(k(t), B(t), j(t)) (t = 0, 1, 2, ...) if initially B(0) > B∗(k) then for large t,
B(t) > ct; if, however, B(0) < B∗(k) then B(t) < −ct for large t.
Assumptions on g,H, f

A1: K and J are compact spaces and g : K × J → K is contin-
uous;
A2: f : K ×J → R is continuous, sup

j
f(k, j) ≥ 0 for all k ∈ K;

A3: H : R ×K → R is continuous, B → H(k,B) is differen-

tiable and∂H(k,B)
∂B

> 1, H(k, 0) = 0 for all k ∈ K.

46Note that the subsequent equ. (A9) can be used as the basis for a dynamic pro-
gramming algorithm to solve our debt control problem. If we take our simplifiction
H(k, B) = h(B) then we can invert the function h(B) and obtain a dynamic programming
algorithm in B∗.
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Remark The state space K of possible capital (resource) stocks, k, as well as
the space J of admissible investment rates is not bounded (or compact)
in many models - such as the one treated in section 3. It makes sense
however to assume that for a given initial state (k,B) and with respect
to a specific problem like debt control (HJB-equation) there is no loss in
generality to restrict k and j respectively to some compact subspace.
It is plausible that with a bounded investment rate:‖j‖ ≤ c only a
bounded set of stocks k is reachable from some initial stock. In our
continuous time model (in sections 3) we impose restriction ‖j‖ ≤ c =
const.

Proof of theorem 1 (i and ii) Investment j ∈ J applied in state (k,B)
produces a subsequent state

{g(k, j), H(k,B)− f(k, j)} .

The debt level B is subcritical for k iff for some j ∈ J

B∗ (g(k, j)) + f(k, j) ≥ H(k,B))

which implies

sup
j

[B∗(g(k, j)) + f(k, j)] ≥ H (k,B∗(k))

If on the other hand in the above equation would hold, then for some B >
B∗(k) and some j ∈ J

B∗ (g(k, j)) + f(k, j) ≥ H(k,B)

This, however, implies B < B∗(k), a contradiction. Therefore, B∗ satisfies
the HJB-equation.

B∗ also is bounded. Let F = sup {f(k, j) |k, j ∈ K × J } . Since K × J is
compact and f is continuous, F is finite. By assumption A3

H(k,B)− f(k, j) ≥ H(k,B)− F ≥ cB

for sufficiently large B and some constant c > 1. Hence if B(0) is large
enough any solution t→ (k(t), B(t)) of (A7), (A8) satisfies
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B(t) ≥ ctB(0)

which shows that B∗ is bounded. We now check that T is a Lipschitz operator
on the space of bounded functions v : K → R with

‖v‖ = sup {|v(k)| | k ∈ K}

To do so let v1, v2 : K → R be bounded and

sup
j

[f(k, j) + v1 (g(k, j))] ≤ f (k, j(k)) + v1 (g (k, j(k))) + ε

for some ε > 0. Then

H (Tv1(k), k)−H (Tv2(k), k) ≤ v1 (g(k, j(k)))− v2 (g(k, j(k))) + ε ≤ ‖v1−v2‖+ ε

Due to A3 |H(k,B1)−H(k,B2)| ≥ 1
l
|B1 −B2| for some constant l ∈

(0, 1) independently of k and therefore

Tv1(k)− Tv2(k) ≤ l ‖v1−v2‖+ lε

Since ε > 0 and k was arbitrary ‖Tv1− Tv2‖ ≤ l ‖v1 − v2‖ . This shows that
T is a Lipschitz transformation of the space of bounded functions K → R .
Now if v0 = 0, then since sup

j
f(k, j) ≥ 0

v0 = Tv0 ≥ v0 and therefore

vn+1 = Tvn ≥ vn for all n

Also, if v is continuous, then so is Tv since K × J is compact. Therefore
B∗ = lim

n
vn is continuous, this proves (ii).

Proof of Theorem 1 (iii) Suppose B > B1 > B∗(k) and let t →
(k(t), B(t), j(t)) solve (A7) and (A8) with B = B(0), k = k(0). Compare
this to the solution t → (k1(t), B1(t), j(t)) of (A7) and (A8) with k1(0) =
k, B1(0) = B1 and the same investment.
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B(t)−B1(t) ≥ c (B(t− 1)−B1(t− 1)) ≥ ... ≥ ct (B(0)−B1(0))
B(t) ≥ ct (B(0)−B1(0)) +B1(t) ≥ ct (B(0)−B1(0))

Similarly, if B∗(k) > B1 > B we find

B1(t)−B(t) ≥ ct (B1(0) −B(0))

and

−ct (B1(0) −B(0)) +B1(t) ≥ B(t)

As B1(·) is bounded this proves 1 (iii), that is

B(t) ≥ ct1 for large t, c1 < c

in the first case and

B(t) ≤ −ct1 for large t, c1 < c

in the second case.
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