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Abstract'

An algorithm for determining all vertices of the set of incentive com-
patible and individually rational mechanisms corresponding to a specific
class of fee-games is presented. This method is based on the algorithm of
Chernikova, which allows to find all extreme points of a convex polyhedron.

1 Introduction.

This paper is devoted to the problem of finding all extreme points of the set of
incentive compatible and individually rational mechanisms corresponding to a
special version of an NTU—game with incomplefe information.

Harsanyi-and Selten {11] were the first who considered the cooperative games
with incomplefe information . The concept of the Bayesian incentive compatible
mechanism was proposed by Myerson [17, 18, 19] for the framework of NTU -
games with incomplete information. Rosenmiiller {20, 21] dealt with the fee-game
as a special form of the NTU-garﬁes with incomplete information and, particu-
larly, considered the set of the ‘feasible’ - incentive compatible and. individually
‘rational mechanisms. It turned out that these mechanisms form convex compact
polyhedral sets (see [20]) . Therefore, they can be described by their extreme
points. The problem of finding the extreme mechanisms was also discussed by
Rbsenmiille-r [21]. Our approach is based on the idea that the extremal mecha-

nisms can be viewed as vertices of some polyhedra.

*The author is grateful to the Institute of Mathematical Economics (IMW) University of
Bielefeld for the hospitality and thanks Prof. J. Rosenmiiller for helpful discussions.



There are several zﬂgorithms for obtaining all vertices of convex polyhedral
sets in the literature (e.g., see [22], p.p. 224 - 225, and [15]). A classification
of published methods and computional comparisons have been made in [15]. A
discussion of them has also appeared in [8]. All of the known algorithms fall

into two main classes: pivoting methods and nonpivoting methods. According to
* some criteria the algorithms of Balinski [1], Manas- Nedoma [13] and Mattheiss
- [14] are considered in [15] as representative of the pivoting methods and the
Chernikova’s algorithm (5, 6, 7} as representative of the nonpivoting methods.

For a specific class of fee-games we provide here a procedure for finding the
vertices of the set of feasible mechanisms which is based on the algorithm of

Chernikova.

2 Fee-games: Definitions and Denotations

This Section provides the basic definitions concerning the fee-games. As é,lrea,dy
mentioned, as a special form of a NTU-game which displays some side-paymex;t
properties fee game was discussed by Rosenmiiller in {20, 21]. 4
A cooperative game with incomplete information ( CII - Game) is said to be
an object of the form | |
| T =(Z,T,p; & 2U)

with the following components:

I ={1,...,n} is the set of players;

T = TLier 7%, where for ¢ € T the finite set T represents player i’s types;

pis a probability on T, the distribution of types, because we imagine that there
' is an abstract probability space (2, F,P) and a random variable 7 : @ — 7 with
distribution p = P o 771; 7 ‘chooses the typés’;_

X = {z € R": ez <1}, where e = (1,...,1) € R}, is the set of collective
decisions, or contracts the players can agree upon;
8X = {z € R™: ex = 1} represents the Pareto efficient frontier of X;

% = 0 - status quo parameter takes place if players fail to agree;

finally,the mapping

U IxTxX>R



reflects the utilities, if chance chooses ¢ € 7 and the players agree upon z €
X, then the utility of player ¢ is U!(z). It is assumed that U} satisfies certain
conditions (see [21]). |

A ClIi-Game T is said to be a fee-game if, for any ¢ € 7T, there is a
B cR® o<eb <1, such that '

Ul(z) =z — (ex)bt (z € X)

holds true; 4t is called a fee.
I is said to be a game with incomplete information on one side, if n = 2 and
|72| = 1, or, what is the same, 7 = T+ x {*}.

We use the denotation

1 :={I':T is a fee-game with incomplete

information on one side and |77| = 2}.

" Further we will write
T ={a,6} x {+}

for I' € £!, we also may omit the index =, thus, in particular we will use the next
denotations ) _ |
‘ ue = U@ Us = 8.

.b"' .= ple), b : BB,

It is clear, that the two fee-vectors  b*,%° € R? essentially describe " € .
We will suppose that
' <t (Temh),
what means that state « is more preferable to state 3 for the informed player 1,
because of the smaller fee. o _ '-
The rules of the game are specified by Rosenmiiller [20, 21] by the notation

of a mechanism.
Let I be a CII-Game, then:

e A mechanism is a mapping

T — A&,



o A mechanism g is called Bayesian- incentive compatible (BIC) if ..

EU] o p(ny,... ,.‘T,', .- ,Tn)h’.,- =t) >
EU op(r,..., 8. T | i = 1)
holds true for every 1 € Z . and t,;., 5 €T,
o u is individually rational (IR) if
Eu; °#(T1,‘- cTa)|=1) 20

holds true forevery i€ Z and € 7°;

e The set of all mechanisms players can and will bargain about is denoted by

S :=9()={u:p isBIC and IR}

Notice. Later on we will use the next notations:

uri=por=p(m, i)y (Tis$i) = (TiaesSiy- -1 Ta)-

'3 The Set of In'centiv_é Compatible and
Individually Rational Mechanisms

Now we are going to describe the set & for the fee-game I' € £2, given b°, b e R?,
such that 0 < eb* <1, 0% e’ <1, K< ¥ . We also have B

il

Ut (z) = z — (ex)b® = U (z), Up(z))
(z) — (ex)b?, z2— (ex)b)  (z € X);
U (z) =z — (ex)t’ = U (z), Ua)
(z, — (ex)b?, x5 — (ex)b) (z € ).

H

"It is clear, that a mechanism p : {a, 8} x {¥} — & is BIC if

E(L{,—T © M(Tl,. Tz)]T,; = ti) Z
EU] o plr_i, 83)lmi = 1)
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holds true for i = 1,2 and ¢;,5;, € 7% (¢ =1,2).
This means that the next inequalities

P et W p(tl) >
3 A (el

et (D p(elt) >

3 e8P (o )p(tlt),

where p(-) = Plr = n = t), t,si € T (i = 1,2), define the BIC-
mechanisms. As for the second of these inequalities, it is easy to see that this
is an identity. From the first inequality it follows due to 7' = {a, 8}, |T?| =
1, to={x}, that '
U (u®) 2 U (W),
uf (1) = Uf (u).
Now we note that the IR-mechanisms satisfy the following system of inequal-
ities: '
3 e (W )p(eltn) > 0,
3 et (W p(tlta) > 0,
forall ;€T (i=1,2),

—

which in turn is tantamount to

U (W Np(tlt) 2 0,

U ()P (o, 5t = %) +
uéﬂ,*)(ﬂ(ﬂ,*))p((a, *)]te = %) > 0.
And, finally, it follows that for the IR-mechanisms next inequalities
Ur(p®) =z 0,
U (p) >0,
U (u*)po + Us (1F)ps > 0,



where  po = P{(a, %) |tz = %), D := P((B,*)|ta = *), hold true. It is clear,
that po 20, ps>0, patps=1. |
As already mentionedin [21}, a mechanism g : {a@, 8} x{*} ~ X is equivalent
to a pair g = (u®, pf) € X x X. This means, that '
ep® <1, pf 20, 420,
here e=(1,1) € RY.
Thus, the conditions defining the set 3 of BIC and IR mechanisms constitute

the following system of linear inequalities:

o

(45 — (en®)b$)pa + (45 — (ens®)¥E)ps > O,
U+ pp <1,
uh+ <1,

pr>0 (i=1,2),

Let us denote

gl = /-"’?5 62 = .u'ga 53 = ,U,'?, ‘54 = )ug-

Then the set & can be repfesented as
I={6:A(2>2B, {20},

where b-y.A is denoted the following 7 >< 4 -matrix

((1-w s -0-8) k)
—1-%) ¥ 1-tf —b)
o 1— 2 —be 0 0
A= 0 0 1—b —b
—b5pa (1 - bg)pa —bgpﬂ (l - bg)pﬁ
~1 -1 0 0
\ 0 0 -1 -1 /



and B denotes a vector-column such that
BT = 0, 0, 0, 0, 0, -1, -1).

To this end we note that & is a convex compact polyhedron (see [20]).

4 Extreme Points of a Convex Polyhedron

The problem we are addressing is to find all vertices of the convex pblyhedron
S(T'), described as the intersection of a finite number of hyperplanes and closed
half-spaces. More precisely, our $(I') is described by a system of seven linear

inequalities in four unknowns & (z =1,4):
AE~B>0, £>0.

In connection with this problem let us remind here that:

¢ A subsystem Af —~B =0 of equations, where A is a nonsingular square
submatrix consisting of n linearly independent rows of A , and B is the col-
umn of the corresponding elements of B, is called a fundamental subsystem

of the auxiliary system A — B = 0;
¢ A fundamental subsystem has a unique solution £ which is called a point,
e If the solution ¢ satisfies A{— B > 0, then £ is a vertez.

Hence the set of vertices of S consists of the solutions £ of all fundamental
sudsystéms of Af—-B > 0, £ > 0, which also satisfy the inequalities A(~B > 0. -

All methods for obtaining the vertices of convex polyhedral sets can be divided
into two groups: pivoting algorithms and nonpivoting algorithms. As for the non-
pivoting methods, they utilize the dual representation of a bounded polyhedron
by convex combinations of its extreme points to describe the set of solutions to
the inequalities. They can also be viewed a;s'versions of the Double Description
Method of Motzkin, Thompson, Raiffa, and Thrall [16] . The algebraic founda-
tions of those methods are disscused by Burger [2] for cones and by Galperin [9]



for polyhedrd. They also are geometrically motivated. The geometrical interpre-
tation essentially can be the following: Consider a convex bounded polyhedron
P, whose vertices are already known. Assume that P is the intersection of P and
a hyperplane H or a closed half space H*,.that means, P is obtained from P 'by
adding another constraint. Hence the vertices of P are of two kinds: these of P
which lie on H or in H and those which are convex combinations of vertices of
P in H* with other vertices of P in H™, where the weights of these combinations
are choosen so that the all new vertices lie on H. ,

The method of Balinski [1] belongs to the group of pivoting algorithms, and
it can be noted that this procedure is based on the basic iterative step of the sim-
plex method - the ‘pivotal operation’. We will not pursue here the details of the
pivoting algorithms,we note only that the main difference between the two groups
of methods is that the pivoting schemes have a ‘hyperplane - oriented’ bookkeep-
ing system, while the nonpivoting schemes have a ‘point - oriented’ bookkeeping
system. According to some criteria important from computional point of view,
Mattheiss and Rubin [15] considered the methods of Balinski [1], Manas- Ne-
doma [13], and Mattheiss [14] as representative of the pivoting algorithms and
the Chernikova’s method {5, 6, 7]- as representative of the nonpivoting algo-
rithms. The second group also contains methods of Burger [2], Chernikov 3],
Galperin [9], Greenberg [10], Kuznetsov -[12]. '

It should be mentioned, that many of nonpivoting methods are formulated
by their authors in terms of finding all extreme rays of convex polyhedral cones.

But it is easy to prove the next claim.

Proposition 1 Let A be a m x n -matriz, B € R™, denote (x,1) := {(Az, ) :
A>0}.- - ThenZ isa vertez of the polyhedron

P={zeR": Az < B}
if and only if (Z,1) is an extreme ray of the cone
C={(z,7):-Az+By >0,7 >0}

Proof: Assume (Z,1) is an extreme ray. Let us show that % is an extreme
point of the polyhedron P. Let Z = vz; 4+ (1 — ¥)z2, v > 0. Then we have

8



(z,1) = (vz, V) +{((1-v)x,1—v). Since Az <B wehave A(vr;)<vB.
Thus, (vzy, v) € C. Analogously, ((1—»)zs,1—v) € C. Since (%,1) is an
extreme ray of C and{(vz;,v), ((1-v)zs,1—v) € C it follows that there exist
£, >0 and % > 0such that (vzy,v) = #;(Z,1) and ((1—¥)z2,1—v) =
t5(Z,1). Thus, vz, =17, v =t and (1—-v)za =17, 1-v =1y, therefore
vr; =vi and (1-— 71/).’132 =(1-— v)i: This means that 7, = Z = T, O 7 is &
vertex of P.

Otherwise, let  be a vertex of P. Suppose, that (Z,1) is a nonextremal
ray of C, it means there are A > 0,z > 0, A+ = 1 such that (7,1) =
Mz, ) + u{ze,vs), where - (z1,11) # (z3,10). It follows that Z = Az, +

BT, A+ pvs =1, what contradicts to the fact that 7 is a vertex of P.

qed.

5 The Algorithm of Chernikova

Chernikova [5, 6, 7] has given an algorithm for ﬁnding the extreme rays of a
convex polyhedral cone. It can be adapted to deterlﬁine the vertices of a convex
polyhedron. The idea of this algorithm is similar to that of Motzkin et al. [16],
but it is presented in a some different framework. The work of Burger [2} has
served as algebraic foundation for this method. According to this algorithm, for
determining all vertices and extreme rays (unbounded edges) of & = {£ € R*:
A¢ > ‘B, £ > 0} we have to find all extrme rays of the corresponding cone
R:={(&k): AE—Bk>0, £>0, k=>0} Thosewith k> 0 correspond to
vertices_of &, those with k = 0 correspond to extreme rays of .-

Consider the matrix (I| A —B), where Iisa (n+1) x (n+1) = 5x5 - identity
‘matrix. We make a series of transformations of this matrix which generates the
solution. At any stage of the process we use the symbol Z := (M | L) to denote the
old matrix and Z for the new matrix being generated. The matrices M and L
will allways haven+1=5and m=7 columnns, respectively; however, they will in
generel not have n+1 =5 rows. In most cases they will have more than n+1 =15
rows, but if ® lies in some subspace of R® they may have fewer than 5 rows. For
the (£, k) € RS we use the symbol ((€, k)) to denote the ray {(6¢,6k) : 6 > 0}.

9



The computional scheme is as follows:

1. Consider the matrix Z.

(a) If any column of the matrix L has only negative elements, then (£, k) =

0 is the only solution.

(b) If all elements of L. are nonnegaive, then the process is finished, and

7 to define the vertices of & by the rows of M go o step 6.
(c) Otherwise, go to step 2. |

2. Take as leading column the first one of the matrix Z, with at least one

negative element.

3. Write down without change those rows of the matrix Z-which intersect the

leading column in nonnegative numbers.

(a) If Z has only two rows and the elements of the leading column are of
‘opposite signs, adjom a linear combination of the rows of this matrix
with positive coefficients, which are chosen by the same method as in

general case. Go to step 5.

4. Select in turn those pairs of rows in which the elements of the leading column
have opposite signs. For each such pair find all nonnegative columns of the
matrix Z such that their intersections with the rows of the pair in question

are zeros. The following cases may occur:

(a) There are no such columns, or there is still at least one other row
which intersects all such columns in zeros, then the pair in question

- does not contribute another row to the new matrix Z;

(b) Otherwise, form a linear combination of this pair with the positive
coefficients such that its element defined by the leading column is

zero. Add this row to the new matrix Z.

5. When all such pair of rows have been examined and the additional rows
(if any) have been adjoined then the leading column is said to be processed.
Denote by Z the matrix Z produced in processmg the leading column, and

return to the step 1 .

10



6. Divide the matriz Z into fwo parts

M |L
Z= . |.

in accordance with the rule: to the upper part denoted by Z = (M|L) belong

those rows of the matriz Z which have on their right -hand side ot least four

zéro columns, all other rows are in the lower part Z = (M|L) .
7. The rows of M represent the edges of the cone R, that means that the ray

() = (¥, k5)) = {dmi; : 6 > O}

is an edge of R, where 71; denotes the jth row of M, and
i) ) ) ,
(L8 & &) g0 )
k) B EG) kI

is a vetrex of the polyhedron S.

Note an important property of the matrices Z obtaired by the application of
the described above algorithm. -

Proposition 2 (see [5]) Let us denote
Z = (M|L) := ((m)|(Ls), G =T v;r =1,5,5 =1L7),

where v is the number of rows in Z, then
lis = my - (a5, —bs) = D EPas — kWb,
. r=1

" where a;, (s =1,7,7 =1,4) are the elements of the matriz A.

Proof: In other words, this means, that the scalar product of any vector-row of
the left-hand side of the matix Z with the vector '

(U»s, _bs) = (asl, Qs2, Us3, Qsyq, 455);

where a, (s = 1,7) are the rows of the matrix A and b, (s = 1,7) are the
elements of the vector-column B, is equal to the number at the intersection of
the corresponding row of the matrix Z and the sth column of its right-hand side.
This property is obvoius for the initial matrix, and for all sﬁbsequent matrices it

follows from the well-known properties of the scalar product.

11



- q.ed.

Now let an i € {I,7} be fixed and consider the ¢ th row of the matrix Z
denoted by {m;| ;). Consider the right-hand part of this row, namely, /;. The
set of zero-elements of this row denote by J; :== {j : lis,— = 0}. '

(1) {:(i)

ORI
a ,—f;;) 15 Not a vertex

Theorem 1 If |J;j <4 (i€ {1,....,v}H) then_(%ﬁ, %’
“of the polyhedron . |

-
|'£"

o
=
aH

Proof: First of all, assume J; =0 for some ¢ € {l,...,v}. It means that for
alls=T1,7
4
s = 3 05 P — bk >0 (ki > 0).

r=1
. . E(‘} g(i) E(‘) E(i) )
Then, obviously, the point (EJG7= 25 30 ﬁﬁ) can not be a vertex of the polyhe-
dron S. _
Now assume , there is an ¢ € {1,...,#} such that 0 < |[Jf| < 4. It implies
4 (3)

g = b (K9>0) Ged).

r=
Clearly, the system constituted by those equalities is not a fundamental one.

Hence its solution is not a vertex of the polyhedron 3.

q.e.d.

’Corolllary 1 If Z = (M|L) is-the last matriz produced by the application of the
Chernikova’s algorithm, then the vertices of the polyheder S are delivered only by
these rows m; (i € {1,...,v}) of the matric M which corresponding rows l; of

the matriz L contain at least four zero-elements, i.e. |J;| > 4.

Remark 1 It was due to this fact that the step 6 has been added to the com-
putional scheme. Note that the Chernikova’s description of the algorithm did not
contain this step. Note also, that the computional programm of this algorithm,

which was developed by Mattheis and Rubin [15], implements a simalar test. - '

Corollary 2 Let the matriz Z be smh thatli;, 20 forall i=1,...,v and
k =1,...,6. There is a pair (i,7) (1 £ i< vy, Y <r <v), such that
Lisy by < 0. If | iNJr| < 3, then the corresponding pair of rows (m;{l;) and

(m,|l;) do not contribute a new row to the next matriz Z.
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6 The Vertices of the Polyhedron S(T) . -
The Extreme BIC and IR Mechanisms

Here we will consider a fee-game I' € &' with the fee-vectors 4%, b2, such that
0<eb* <1,0<ebl <land b < b’f . We also will assume, that p, >
0, ps >0 (po+ps=1). The following claims will be proved under these

assumptions.

Proposition 3 Let I' € &t be a fee - game. Then the vertices of the polyhedron

I can be found by processing the matriz Z* =

(0 0o o o0 1|00 00 0 + 1)
B2 1-b2 0 0 1{0 + 0 0 (1= eb®)p,q 01
1 0 1 0 1[0 0 4+ +  (=bp.—bips) 0 0
Wo1- 0 0 1|+ 0 + O (1— 8¢ — )p, 0
#1180 ¥ 1-8 110 0 + 0 (1-8 —tp.—tps) 0 0

Proof: It is not difficult to see that the initial matrix Z° = (I)A - B) corre-

sponding to the Chernikova’s computional scheme is the next one:

/1000 0]1—-b2 -1 1-3¢ 0 —bp, -1 0
01000]| - ¥ 8 0 (1-p. -1 0
00100 ]|8—-11-8 o0 1-80 -bps 0 -1
00010 s ¥ 0o B (1-¥p 0 -1
\0 0001 0 0 0 0 0 1 1)

- We trahsform this matrix according to the described algorithm taking as the
leading column the first one. The new matrix is constituted .by the first, the
fourth and the fifth rows of the initial matrix, and also by the rows which are
linear combinations of the first and the second, of the first and the third, of the
- second and-the fourth, of the third and the fourth rows respectively. So we get
the matrix Z* = (M'|L') with M! and L' as follows: '

13



[1 0 0 0 0)
0o 0 o 1 0
0O 0 0 0. 1
M'=| 3% 1-6¢ 0 0 O
1 0 1 0 0
o 1 0 1 0
L0 0 bk 1-80)
and
(+ -1 1-3¢ O —b¢Dq 1 0 )
|+ =¥ 0o -¥ (1-%)ps 0 1
| 0 0 0o 0 0 11
L'=| 0 ¥ —p2 0 0  (l-ef)pa -1 0
0 0 1-b 1-8 (-bgpa—bips) -1 -1
0 0 b —b (1-0pa—bips) -1 -1
Lo - 0 -8 (-b-8p 0 -1

Notice. The actual values of the positive elements of the processed columns
play no part in the solution of our problem and therefore do not be evaluated,
we denote them by the sign +. ‘

Now we take the second column of the matrix Z! as the leading one. The

transformed martix Z? has the next components:

{0 0 00 1)
be 1- b 000
M? = 1 0 100
0 1 010
\ BB(1-t2) (1-bp)(1-8) 0 0 0
and
12 =

14



0 0 0 1 1\

[0 0

0 + 0 - 0 (1 — eb*)pa -1 0

0 0 1-5 1-b0 (—bgp, — bipg) -1 -1

o0 @ —b b8 (1-bgp, —blps) -1 -1

L0 - -k 0 -k —tp. (5—1) 0 )

As we can see, the matrix Z? consists of four rows of the previous matrix and its
last row is a linear combination of the first and the fourth row of Z!. Note that',
for example, the second and the fourth roes of Z' are not combined, according
to the rule: their ‘common ’ zeros - in the third and the fifth columns - are also
‘zeros’ for the first row.

Let us denote
2 = b3Pa + 2P5, n: 2 TS 1 s Pa 2 Dg-

Further we process the third column of the matrix Z? and receive the compo-

nents of the next matrix Z3 :

([ o 0 6o 0 1)
Boo(1-b) 0 o 0|
M = 1 0 1 0 0
¥oa-¥) o 0 0
B (1-09) B (1-%f) 0
\ o) (L-bpel 0 (6] - bf) 0 )
a.ndd _ |
{ao o0 o 0 0 101 )
0 + 0 0 (1~ eb™)pq -1 0o
| 00+ (1 -5 B} 1 -3
+ 0+ 0 TP B 0
0 0 0 (b2—14)) ¢ I T
\* 00 b‘f(b —b) (1-EBw)f — b8 +npa) —b] (65— b)) )

15



After processing the fourth column we have the following matrix -

e

[ O 0 o 0 1f0 000 0 1 1 )
bp (1-07) 0 0 010 + 0 0 (1—eb®)py -1 O
1 0 1 0 0|0 0 + + —Eb -1 -1
B (1-8) 0 0 0|+ 0 4+ 0 NP -1 0
\ & - ¥ a-¥) o]0 0 + 0 ¢ ~1 -1/

Now we decide to take as the leading column the sixth one. As the resulting

matrix we have

Z5 =
[ 0 0 0 0 10 0 0 0 0 + 1\
be (1-0%) 0 0 1{0 + 0 0. (I—eb®)p, O
1 0 1 0 1{00 + + =—E&§ 00
¥oa-) o 0 1|4+ 0 + 0 TP 0
\of -8y of 1-8)) 110 0 + 0 ¢ 0 1)/

Note also that there is only one column,nafnely the fifth, which contains negative
elements. Hence there is only one column to be processed. How many elements
of this column are negative depends on the fee-vectors 5* and &°. Finally, it
is not difficult to see, that - |

CZP =17

q.e.d.

Lemma 1 If
| n=1-8-820,

then
(=1-b — Eby=1-bf —bSp, — bips > 0.

16



Proof: First of all, we note that

(=1-% - Eb =

1~ b — bSpa — bips =

1— 85 — b3(1 — ps) — bips =

1—bf — b5 + (8 — 8)ps =n + (b — b5)ps.

Let n =1 —b5 — ¥ =0, then 1-— ¥ = 2. From 1 — B — b >0 follows
1—5 > b5 Hence bg =1— ¥ > b8 and, finally, b$ > b2. So it is not difficult to
see that _

C=1-1 —Eb >0.

Further take n = 1 — b3 — b‘f > 0. Since 1 — bf - bg >0, next-inequalitiés

hold true —b% > —1+8 and b5 — b > _bg -1+ bf..Then we have

(=1-8 - Bby=1-b] — b3+ (8§ — b)ps >
L 1-W - (- H - bpe =
(1 -8 —8)(1 — pg) = n(1 —pg) > 0.

q.e.d.

Theorem 2 Let T € $! be a fee-game . If n=1—b3 _ ¥ > 0, then the vertices
of the corresponding polyhedron S(T') are '

M = (0,0,0,0),

£P = (83,1 - ,0,0),

€0 = 88,1 8,8,1- 1),

€9 = (1 — Eb], Eb5,1 — EbS, EBS).

Proof: As if follows from the Proposition 3, to find the vertices of the polyhe-

dron $ we have to procees one column of the matrix
A ’ |

17



(0‘0

0 o0 1]/0 0 0 0 0 + 4+
P 1-52 0 0 1|0 + 00 (1-epa 0 +
1 0 1 0 1|0 0 + +  —Eb 0 0
¥o1-8¥ 0 0 1|+ 0 + 0 (1-8—-8)pa. 0 +
\ ¥ 188 B 1-80 1]0 00+ 0 (Q-¥-Eb) 0 0 )

In this case, due to Lemma 1, there is only one negative element, namely —Eb3,

in the leading column
(0, (1 — €b*)pa, —EBG, (1 — b — b9)p,, (1 — b = EBI))T.

Therefore all rows of Z*, except the third one, are included in the next matrix.
To this matrix we should also add an additional row which is a linear éombi-
nation of the third and the last rows. (Combinations of the third row with the
second and the fourth rows do not contribute any additional rows because they
have less then three ‘common zeros’.) As a result, we have the following matrix
Z = (M|L) , where |

M =
[ 0 0 0. 0 1)
be 158 0 0 1
i 1= 0o 0 1
¥ 1—5 by 1—b8 1
\ -0 (1 - Eby) (1-b)Eby (1—b)(1 - Eb6) (1-b8)Eb; (1—b)) )
‘and-'
/000 0 0 + +)
0 + 0 0 + 0 +
L=+ 0+ 0+ 0 +
00+ 0+ 00
\0 0 + + 0 0 0

The process is completed because there are only nonnegative elements on the

right-hand side in the matrix I:: Now we choose rows (ﬁ?.t-|l~,~) such that |J;| >

18



0 (¢ - 1,4), or in other words, rows containing on the right at least four zeros .

Their corresponding left parts are

1 = (0,0,0,0,1),

g = (by,1—157,0,0,1),

| s = (6,1 - 8,80,1 -8, 1),

g = ((1 - 6)(1— Eby), (1 - ) Ebg, (1 - ¥)(1 — EB), (1 — b)) Bb, (1 — 87)).

They deliver the vertices of the polyhedron 3 :

¢ = (0,0,0,0),

£® = (b§,1 - 82,0,0),

€0 = (8,1, 67,1 - ),

£ = ((1 - BbY), b3, (1 — EbY), BbY).

q.e.d.

Corollary 3 Let T € ©! be a fee-game such as in the Theorem 2. Then the

_extreme BIC and IR mechanisms are as follows:

u® = ((0,0), (0,0)),
o u® = (2,1 - 19),(0,0)),
u® = ((B0,1-88), (¥, 1 - b)),

4 = ((1 - BY, BE), (1 — EY, Bb3)).
Proof : Going back to our previous notations, we can wrire:

=g, 5 =g
O =6, 1BV =g

Then we also have
B0 = (a0, 129) (i =T9).
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Theorem 3 LetT € 5! be a fee-game. If n=1-10§ — bf’ = (), then the vertices

of § are as follows:

£ = (0,0,0,0),

5(2) = ( 1- b )3
5(3) = (bﬁ 1- )7
eW = (), 1-f 87,1 - bf),

£0) = (1 — Eb), B85, (1 — Eb%), Eb).

Proof : In view of the Lemma 1 the matrix Z* to be transformed is the next

one:
/[0 0 o0 0 1|0 00 O 0 + 1)
1 0 1 ©0 1.]/0 0 +4+ + —Eb 00
1t 0 0 1[0 + 0 0 (I—-e)ps 0 1
¥oi-¥ 0o 0o 1|+ 0 + 0 0 0 1
\ & 1-t¥ ¥ 1-¥¥ 1{0 0 + O ¢ 0 0

After processing the leading column we have the following matrix Z = (M|L),

where
M=
( 0 0 0 0 1)
be 18 0 0 1
b? 1- 8 0 0 1
B 1-t? A y 1
\ (=)0 - B) (-8B (- #)1-EW) (1-¥)EG (1-8) )
and
[0 0 0 0 0 + + )
0 + 0 0 4+ 0 +
L=+ 0+ 0 0 0 +
00 + 0 + 0 0
\0 0 + + 0 0 0




It is obvious, that |J;| > 0 for all 7 = 1, 5. It means, that every row (1) (i =
1,5) delivers a vertex of the polyhedron . Then the vertices of & are as follows:

¢ = (0 0,0, 0),

: 5(2) (b(‘f: 1-— )1 _

| 6(3) = (bl )’
€0 = (4], 1- 4,0 1—b‘3)

£ = (1 - Bb3), Bt5, (1 — Et), Eb).
g.e.d.

Corollary 4 Let I" € ! be 4 fee-game such as in the Theorem 3. Then the

extreme BIC and IR mechanisms are as follows:

4® = ((1 = Eb}, E8), (1 — EbT, EbY)).

Proof is cbvious. -

q.e.d.

Theorem 4 Let T € T! be a fee-game . Ifn = 1 — b — ¥ < 0 and ¢ =
1— % = Eb] > 0 then the vertices of S(T) are as follows:

¢® = (0,0,0,0),

. 5(2) = ( ?1'1 - bfllaoao)?

5(3) = (bfa 1-— b?’b[fa 1- béi)’

¢® = ((1 - Eb}), Bbg, (1 ~ Eb;), EbG),

- b MNP (1 - bf)ﬂpa
£(5) _ 1 _
€0 = (o1 %= (1-ebf)pg” (L— ebﬂ)pa)'
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Proof : Now we have to process the next matrix Z* =

[0 0 0 0 1100 0 O 0 + 1)
1 0 1 0 1}00 + + —-EB, 00
e 1-862 0 0 10 + 0 0 (1—eb®)p, 0 1
¥Wo1-8¥ 0 0 1|4+ 0 + 0 NPa 01
\ & 1-8% ¥ 1-%¥ 110 0 + 0 ¢ -0 0/
Taking into account that 7 < 0 and ¢ > 0, we have the follouﬁng matrix Z =
(M|L) , where
M =
( 0 0 0 0 1)
b2 1— b2 0 0
A 1-b8 b 188 1
(1 — Eb) Ev; (11— EB) Eb; 1—b

\ B5(1—et’)ps (1 —BI)(1 - ebP)pg ‘ Wnpe (1= )mpa (1—WP)ps )

(note that here, for the sake of notation sixﬁplicity, all elements of the fourth row
are devided by 1 - ¥ > 0) '

and .
[0 00 00+ +)
0.+ 0 0 + 0 +
L=]100+ 0+ 0 0
| 0 0 ++ 000
\+ 0 + + 0 0 +

Since every row of the matrix L includes at least four zero-elements, all rows of

the matrix M correspond to vertices of the polyhedron 3(T').

'q.e.d.

Corollary 5 Let I' € T! be a fee-game such as in the. Theorem 4. Then the

ertreme BIC and IR mechanisms are as follows:

# = ((0,0),(0,0)),
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u? = ((b¢,1 - 85),(0,0)),

u® = (68,1 bP), (b" 1- )
p® = ((1 - Eb], Eb}), (1 — Ebg, BbY))
)

B . bfnpa (1 — bﬂ)ﬂpa
u® = (@f,1- bf)a(—(l —ebf)ps’ (1—eb? Pﬁ)

bl

H

Proof is obvious.

g.ed.
Theorem 5 Let I' € T! be a feegame . Ifnp=1—-02 — b < O'and ¢ =
18 - -Lj’/’bg = ( then the vertices of (') are as follows:
¢ =(0,0,0,0),
£® = (43,1 -187,0,0),
€9 = (o, 1 - 8,8,1— )

Proof : Now we have to transform the next matrix Z* =

0o 0 0 ©0 1}0 0 00O 0 + 1)
1 0 1 0 170 0+ +,  =—-Ewx 00
b 1—-b 0 0 1[0 + 0 0 (1—eb®)p, 0 1
wWo1-% 0 0 1|+ 0 + 0 NPa 0 1
¥Wo1-v ¥ 10 1|0 0 + 0 0 0 0
As usual, we process the leading column '
(03 _Eb;: (1 - eba)paa NMPxs O)T
So we receive the matrix
) ¢ 0 o 0 1100000 +1
Z=|b 1-52 0 0 1|0+ 00 + 01
¥o1—6 b} 1) 1|00 + 00 00

Note, that no additional rows nave been adjoin to the matrix Z. 1t is obvious, _

that there are three vertices of S in this case:
¢ = (0,0,0,0),
9= (bf,1 - b,0,0),
€9 = (], 1,1, 1-5)).
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- qed.

Corollary 6 Let ' € T! be a fee-game such as in the Theorem 5. Then the’

extreme BIC and IR mechanisms are as follows:

£ = ((0,0), (0,0)), -
) ru’(z) = ((btllv 1- b?): (070))5_
p® = (5,1 -80), (¥7,1 - 1))

Proof is obvious.
g.e.d.

Theorem 6 Let I’ € ! be a fee-game . Ifn =1 — b5 — ¥ < 0 and ¢ =
1 — 5 — Eb] < 0 then the vertices of S(I) are as follows:

¢ =(0,0,0,0),

5(2) = (btlzv 1- b?v 070):

e = (AU epa —¥C (1=W)(L—ebpo = (1= H)C
(1—eb®)po—¢ ' (1 —eb*)pa— ¢

B (1 —eb)pa (1—B)(1— eba)pa) |

(1—eb)pa — ¢ (L—eb)ps — ¢ -

Proof : We will use the next notation

W= (1 - ebu)pn-

Now, processing the leading column

(01 _Ebgv W, Pa, C)T

of the matrix Z* =

/0 0o o 0o 1fl0 000 0 -+ 1)
1 0o 1 0 1/0 0+ + —Eb 00
b2 1-5 0 0 1[0 + 00 w 01§,
¥oi1i-v¥ 0o 0 1|+ 0+ 0 mpe 017
\ ¥ 1-% ¥ 1-° 110 0 +0 0 0 0



we-receive the following matrix Z = (M|L), where

M =
0 - 0 0 0 1
b2 1—b¢ 0 0 1
Blw—b20) (1-B)w—(1-8)C0) Blw (1-bw (W=
and v '

00 000 + 1
I-.-—'—‘0+00+0 1-
0 + + 00 0 w-¢

Obviously, w — ¢ > 0. Hence the vertices of the polyhedron & will be the next:

g =(0,0,0,0),

_ £2) = (48,1 ~ 5%,0,0),

€O = (bfw ~b2¢ (1=bw—(1—b)¢ How (1- bf)w)
= UJ—C 3 w_g :w_C: w_( .

q.e.d.

Corollary 7 Let T' € ©! be a fee-game such as in the Theorem 6. Then the

extreme BIC and IR mechanisms are as follows:

Y =((0,0), (0,0)

p® = (8,1 - 89),(0,0)

3) _ ((b?(l — eb*)po — B3¢ (1= BF)(1 ~ eb*)pa — (1 — b‘f)C)
= (i e T A==

( bﬁla(1 - 6ba)pa (1 - bf)(l — eba)pa))

(1 —eb*)pa — ¢ (- eb")pg -¢ '

3

Proof is obvious.
q.e.d.

Remark 2 Tt seems to be of interest to consider a fee-game I' € L' under more .
general assumtions and, for instance, to deal with a game T’ € L with fee-vectors
e, bﬁr, such thateb® =1, 0<eb < 1.
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7 The Algorithm for Finding the Extreme

‘Feasible’ Mechanisms

Consider a fee-game I" € &! | given fee-vectors b*,b°, such that 0 < eb® <
1, 0<ebf <1, B¢ < bf, and p, > 0,p5 > 0 (po +pg = 1). Then the
results of the preceding Section 6 imply the following procedure for determining

the extreme BIC and IR mechanisms:

1. Find the value of
' Eb = bp, + bapg.

2. Find the value of
n=1-103 - be.
Then

(a} if n > 0 write the extreme mechanisms as follows:

£ = ((0,0),(0,0)),
§® = ((b‘{‘,l—b") (0,0)),

= (08,1 18), (0,1 - 1)),
u@ = ((1 - EbS, E¥), (1 — Eb], EbL)).

(b) if 7 = 0 write the extreme mechanisms’as follows:

1™ = ((0,0),(0,0)),

u® = (62,1~ b%), (0,0)),

1 = (6,1~ %), (0,0)),

9 = (6,1 - 8), (6,1 - 89)),
u® = ((1 — Ebj, Eb}), (1 — Ebj, Eb])).

)
)
0)
1)

(¢) if n < 0 go to step 3 .

3. Find the value of _
(=1-1b — Eb].

Then
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(a) if { > 0 write the extreme mechanisms as follows:

n = ((0,0),(0,0)),

p® = ((b3,1-8%),(0,0)),

b = (88,1 88), ( 1—b§’)),

p® = ((1 - Eb, EBY), (1 — Eb;, Et)),

u = ((b 0). (- b (1 -bﬁ npa))

(1—eb)ps’ (1~ eb)ps

(b) if ¢ = 0 write the extreme mechanisms as follows:

4O = ((0,0), (0,0)),
U = (8,1 89, (0,0)),
u® = (07, 1-89), 88,1 - b9)).

(c) if ¢ > 0 write the extreme mexanisms as follows: -
= ((0,0),(0,0)),

)
#(2) = ((b?a 1- b(i!)a (01 0)):

4® = ((b’f(l — eb)pa — B3¢ (1— M)A ~ eb)pe — (1 -~y
(1—eb®)pe—C ' (1— et™)pa — C ,

(1 — eb®)p. (1 —B)(1 — eb®)p,
((( )Pa ( )( )P, ))

= e)pa—C (1= eb)pa—C -

Remark 3 It should be useful to develop a computer program corresponding to

this algorithm.

Remark 4 In the future research we aim to provide an algorithm similar to this

one for-finding all extreme BIC and IR mechanisms of a game I' € 1", where

Y :={T:T 1is a fee-game with incomplete

information on one side and |T"| = n}.

8 Examplesﬁ |

that

Example 1 (see [21]) Find all vertices of § = S(T), givena T €%’
1
16"

9

N | _ (11 —
ba_(f(‘)sﬁ, bﬁ_(ﬁsﬁ)' Letpa— P = 15-

27
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Since n = 1 — b¥ — bg : > 0 we make use of the Theorem 2. Then the
vertices of the polyhedron S are :

é“—mooox

@ = (p, 1 - p®
{ (1,1 b ;010) (10 10 )’
, : 7 3 7 3
£ (bf,l br,0h,1=8) = (10 10° 10’ 10)’
o 9019
g@:(I—Ebz,Ebzal“EbzaEb2)='(10 10° 10’ 10)'

According to the Corollary 3 the extreme mechanisms are the following

Example 2 and all vertices of & =

S(T), givena T €X' suchthat b*=
(%’ %)’ ¥ = (%1 %) Let Po = %:

D=

wir

Heren=1-8% - b = 0, therefore in accordance with the Theorem 3 we
get the vertices of the polyhedron S

9 =(0,0,0,0),
; 21
£ = (b3,1-b%,0,0) = (3, 7,0,0),

3’3
1
¥ = (1,1~ #,0,0) = (2,4,0,0),
' 2121
4) — _ ¥ _y=(2 -2
f _(bfal bl?bgyl bl) (3:31 3) 3),
) T T T T 3 1 31
6{5} = ((1 - Eb2)7Eb2a(1 _Eb2)1Eb2) = (g: g: E; g)

~And from the Corollary 4 it follows, that

¢V = (0,0,0,0),
R 21
s =((33) (0,0),
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= (.09
#(‘”—((— )(i’i))
1= (55 &g

are the extreme BIC and IR mechanisms.

Example 3 Find all vertices of $ = S(T), given ¢ T e suchthat b=
-(%} %): ¥ = (%: %) Let po = %1 P = %

Since n = 1 — bﬁ — b = -535 < 0 we have to compute the value of { =

1-b — bs — b5 . It turns out, that ¢ = Eé > 0. Hence, we use the results of the

Theorem 4 and of the Corollary 5. Therefore, the vertices of the polyhedron

& are as follows:

&N =(0,0,0 0)

€@ = (52,1 - 52,0,0) = (1 >0, 0),

i141

(3)_ B _ I4; _ By _ o
€0 =0h1- 0 1-0) = (55.55)

| | 23 5 23 5

@ — (1 - 5. (1= EB3), Bby) = {2y 501 52
| £ = ((1 - Eb), Eb;, (1 — Eb3), Eb;) = (8 28’ 28" 28/’
bmpe  _(L—W)mpay _ (412 1
=W, 1-0, -5 ) = (555
& (b171 b?:. 1 — ebf)ps’ 1—65‘6}3) (555 O)
8 - i

The corresponding extreme mechanisms are the next:

5
23 5 23 5
H = (('2—8’%) (%%

= (G5) Grio))
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