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Abstract

We describe a modell of price competition between firms with
piecewise linear cost functions. Thus, we consider “Bertrand
oligopoly”, an n-person noncooperative game in which players
choose prices and the market, reflected by a decreasing demand
function, reacts discontinuously as total demand concentrates on
those firms that offer minimal prices. Firms do not have to be
identical. But a notion of similarity between firms is necessary
in order to prove the existence of a Nash (-Bertrand) equilib-
rium. Here we are only interested in an equilibrium involving all
firms — the case of subgroups with “similar” members deserves an
additional study.
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1 Bertrand Oligopoly

Within this paper we discuss the existence of equilibria within a certain
type of Bertrand Oligolpoly. [1] The main feature is the structure of the
cost functions of the firm, these are supposed to be piecewise linear and
convex. Such cost functions appear naturally in the context of network flow
structures, where flows passing through capacity limited nodes and edges
generate costs depending on the choice of edges as well. We think of such
kind of flow as electricity or data material on an electronic net. Routing the
flow optimally (cost minimizing) results in a linear programming problem,
- the solution of which yields a piecewise linear cost function. See [6] for a
detailed model of this type.

The technique is not far away from standard procedures. However, apart
from missing dlfferentzabrhty assumptions we also do not assume symmetric
~ firms. -

Most of the literature seems to rely on at least one of these assumptions.
DasTIDAR[2] discusses the asymmetric case as well (assuming that costfunc-
tions are twice differentiable), however the assumptions imposed on the model
vary during the presentation. HOERNIG[4] constructs in addition to the con-
tinuum of pure equilibria existing a host of mixed ones. See also MASKIN[5]
for mixed equilibria. Symmetry is also assumed in HEHENKAMP— LEININGER
[3], who discuss evolutionary Bertrand equilibria. '

It would seem that none of the properties derived in the context of this lit-.
erature suffers when differentiability is sacrlﬁced and firms are just “similar”.

As frequently, it is assumed that firms have a limited capacity of production.
Yet they are supposed to meet market demand at the level required. The
game in which firms may plan to sell less than required has different strate-
gies and payoffs. Yet it seems that the type of equilibrium exhibited would
constitute an equilibrium in the extended game as well. Within our present
framework, we will not attend to thls question.

The model is specified essentially by a set of piecewise linear costfunctions
for the firms and a demand function of the market. We specify this data as
follows.

- For any nonnegative convex, monotone function D on the reals we denote by
D' the derivative of a linear support function of D at ¢. This derivative is
unique up to at most countably many points.

A decreasing function is slowly decreasing if it does not decrease faster than



* SECTION 1: BERTRAND OLIGOPOLY + : 3

1/t, ie., if —Qéﬂ > ~D'(t} holds true for all ¢ in the domain of definition.
Economically this reflects nonneagtive marginal expenditure.

Given positive real numbers dy and py, we call a function
D [0,p0] — [0, dg]

a demand function if it is continuous at 0, convex, and slowly decreasing.
A demand function is hence continuous and differentiable with the exception
of at most countably many points.

] On the other hand, let for K € N
(1.1) | C® = (A9, BY) ¢ R2¥

" be such that A® = (Afco))k=0,_,_K and B® = (B,Eo))k=o,.._x are real numbers
strictly increasing in k and satisfy Ago) =0, B((,O); 0. We put

ABO _ BO - B,

AAD T AD - AD

(1.2) AP = 0, AL =

We assume that /_\.Ecﬁ) is as well strictly increasing in k& and satisfies

(1.3) - Ag =dy, AxAk — Bk < po.

Given these conditions, we identify the data (1.1)}with the strictly increasing
piecewise linear function C'® given by

C(O) : [07 dﬁ] — [Or fPD];

1.4
B oot s mas a0 - B9 k=0, K} (epa).

As a consequence, the numbers Aio) describe the arguments at which the
function shows kinks: it is seen that

@y 09 = 4Dt~ BY (e (al,al))
holds true (cf. Figure 1.1). Thus E.g. (1.3) shows that
C9(do) < po

is satisfied, thus the domain of definition is indeed [0, dy] and the range is
contained in [0, po)-
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Figure 1.1: A Cost Function

Given po and dy, we call C© or C©® a cost function if, in addition, we.
have

(1.6) Agg) = C™(do) > po, pody < COdg) = A(f?)do + ng}-

The first inequality shows that marginal cost at maximum production exceeds
maximal prices. The latter reads also pody — C® (dy) < C®(0) = 0, meaning
that, at maximal prices, a firm’s profit at the maxima) possible demand is
less than at zero production. The advantage of dealing with this simple setup -
is provided by the topology available for cost functions; this is given by the
Euclidean metric on R2X. :

Definition 1.1. A Piecewise Linear Bertrand .Oligopoly (PLBQ) for
@ set of players I = {1,...n} is a set of data

(L7 O := (py,do, D, (CW)ses) |
such that py, dy are the domain of definitions, D is a demand function and

c® represents the cost function for player i € I.

Given some price p € [0, pg], we first consider the function

GH = GO . [0,d]—R

(1.8) G(i)(t) = pt-— C(i)(t) (t € [0, do])-
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This function describes the profit of player ¢ € I if the total demand of the
market would accumulate at this player (the monopolistic profit function at
fixed price).

However, the actual payoff within the N-person game resulting from price
competition is defined via the modified demand function customary in Bertrand
oligopoly as follows: '

Definition 1.2. = 1. For any (price) vector p € R" let

(1.9) Mi(p) = arg min; p = {z el

pi= Tel}lpk}

denote the set of minimizing arguments or minimizers of p.

2. Let D : [0,po] = R be a demand function. Then, for i € I the

function |
D . [0,p0)f = R
(1'10) ) 7 o 0 1 ¢ MI(p) I
D(p) = { }351(9;!” i € My(p) (p € [0,m0]")

is the Bertrand demand function resulting from D.

3. Finally, let C* or C® respectively be the costfunction of firm or player
i. Then the (oligolpolistic Bertrand) profit function of player i is the
function

G = [0,p =R

(1.11) i i () (i
Gi(p) = pDi(p)~CO(Di(p))
We note that T' = T'9 =: ([0, po)’, (G")ier) is the n—person game based on
the data of O, the Nash equilibria of which we are concerned with. These
Nash equilibria are referred to as Berirand equilibria.

For a beginning, we attempt to establish a Bertrand equilibrium in which
all players participate. Then we are dealing with a price vector (strategy
n-tupel) p = (p,...,p), in which case some definitions simplify e.g. to

D) = 28, Gp) = 28 o (D—(P))

n ]

Now we wish to discuss some necessary conditions for equilibria and, if pos-
sible, establish a situation in which these conditions turn out to be sufficient
as well.
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Fixp = (P, ...,P) in order to tentatively denote an equilibrium. Let £ = D(p)
8o that _ _ —
G = B_ c'(i)(i) = GY (ﬁ)
n n n

is player #’s payoff in equilibrium. Here we refer to the function G = G ).
defined via (1.8) for the fixed price p.

First of all, suppose that player i wants to deviate in a way that all market
demand is concentrated at his firm. That is, the player lowers his price to
7 — €. The equilibrium condition can be formulated to be

G (%) =  GP) > G'(p—ee)
= @E-9DE-¢)-CODE-¢) (> 0)

which implies for ¢ — 0

(1.12) GY (6) > pE — CO(g).
Thus,

13 €&y s E_ oo
(113) - CYC) 25 - CO@).

is a necessery condition for a Bertrand equilibrium involving all players. The
condition indicates that it should not be profitable for player i to draw all
the market demand £ at equilibrium on himself compared to share of 1§ he -
obtains when the equilibrium is sustained.

Essentially we would like to estabish a situation in which (1.13) is part of a
sufficient condition as well. To this end we prove a standart lemma which is
based on concavity of the cost functions and on slowly decreasing demand.

Lemma 1.3. Let O be a PLBO (Definition 1.1) and let G* be the resulting
Bertrand profit function of player i (Definition 1.2). Then, for all p € [0, po)’
and t > O such that p — te* € [0,pg)! is true, we have '

(1.14) . G(B-te) <pDE) - CY (D(B)) -

Proof: Assume first of all that D is differentiable.
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Note that —C@ o D is a decreasinig function. Also, D is convex and decreas-
ing, hence we have for positive and suitable arguments £ and 7

D —n) < DE) - nD'(€ —n).

Applying this we find

Gp-te) = (- t)DE:—1) - CO(D@i—1))
< Bi-8)[D@) - D' (5 - 1)
~c® ( D(f’i))
= 5D(p) - C¥(D(@))
- (1.15) - - t[D(ﬁi) +p:D' (B — ;)]
| | + 82D (5; — t)

< aD(E) - 09(D5) -2 Py + 50 )|

< mD@E)-C9(D@E));
‘the last inequal.ity uses the requirement that D is élow]y decreasing,
- q.ed.
We note that, in the particular case of = (p,...,B), equation (1.14) reads

G'(p —te'} < pD(p;) — C9 (D(p;)) =: pE — CD(E) = GO(E). Therefore
the lemma shows that equation (1.13) indeed implies that player ¢ cannot
‘profitably deviate by decreasing his price arbitrarily, i.e., (1.13) is sufficient

in order to establish (part of) the equilibrium condition.

There is a second type of deviation of a player from equilibrium that we have -
to take into account. At this version, player i inserts a price exceeding the
common equilibrium price 7. Naturally, it is much easier to see that this is
not profitable. For, if p = (5,...,p + €', ..., D) for some t > 0 denotes the
resulting strategy n-tuple, then the Bertrand demand accumulating at player
i is D*(P) = 0, hence player i’s payoff is

(1.16) G'(p) = G¥(0) = ~C¥(0)(= 0),

(if we are assuming zero fixed costs). Combining these ideas we obtain
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Corollary 1.4. Let O be a PLBO. Also, let p € [0,py] and € := D(p).
Juppose that, for all i € I, the inequalities

(117) ﬁ%—wﬂwg)zﬁé—cm@)
and

' -_—.__ (i)§ — (i)‘
(1.18) . p-—CV(>) 2 =C™(0)

are satisfied. Then p = (p,...,P) is a Bertrand equilibrium in O involving
all players..

The problem is that the quantity £ does not depend on i, it has to be chosen
simultaneously for all players. The sunple idea to generate this quantity is
described as follows.

If, for some ei € I and 7 € [0, po] the inequality
(1.19) 5> CO = AP

is satisfied, then G has e1ther a second zero in [0,pg] or is nonnegative
within all of the interval. Let

(1.20) | @:nmqmem%H§>QMW@=o}

with the understanding that & = dy whenever the maz has to be extended
over the empty set. Also, let

(L21) - § = min{z€[0,d] |GV >GY(n) Ine[0,do]}
denote the first maximizer of the function G® . Then we have

Corollary 1.5. Let § € [0,po] and write £ := D(p). Suppose the cor-
responding function G¥ = Gi{;) with respect to its zeros and mazimizers
satisfies ‘

3 |owi

(1.22) g<><g

forallic I. Thenp = (p,...,D) is a Bertrand equilibrium.
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Figure 1.2: The Location of Equilibrium Demand

Proof: As % is located to the right of the maximizer of G®, we have (1.17).

Furthermore, as % is located to the left of the zero of the same function, we
have (1.18). : ‘

g-e.d.
An illustrating picture is obtained as follows (Figure 1). The

linear function with siope p and a cost function C¥) are depicted simultane-
ously. The maximizer £* is obtained as the first point admitting of a tangent
p at the cost function. The zero & is the last point at which the graphs
of both functions intersect. If we can find € such that 5 is simultaneously
contained within the interval spanned by both points, then an equilibrium
prevails. Slightly more formal: the function G% depends on p and so do the
maximizer and the zero. Define interval-valued correspondences on [0, o] by

(123) =) = [F®).E@)] e 0p) ,ic ).
and
(1.24) 2(p)=[)=p) (»e[0,m))-

el

Then we have
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Theorem 1.6. Suppose D € [0,po] satisfies

- (1.25) = — € E(p).

Then® = (p,...,P) is a Bertrand equilibrium.
Proof: Obiriously this theorem is just a reformulation of the previous corol-

lary. g.e.d.

Now in order to supply an existence theorem, some preparations are necessary
. in order to understand the behavior of the interval-valued correspondence
. &. This is the topic of the next section.
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2 The DMP CdrreSpondence

We start out discussing some properties of the correspondence =! that results
from player 4’s monopolistic profit function G®. For this purpose, the generic
index () is tentatively omitted for the sake of more translucence.

_So we consider a cost function C or C and the derived profit function G,

Let p > Ag. For any k with A, > p, the function A, e —B, intersects the
function pe at —"— therefore, if the graph of C intersects the graph of pe

(ie., the stralght hne with slope p) beyond the origin, then this occcurs at
the pomt e given by

. { B, |
o = no(p) = mln{A f_ Ay >P}
2.1 ~UE
( ) —_ Bko > Bko
Ap—p 7 Ay — A,
If we agreebn ko = K for the empty set in (2.1), then the index kq is

uniquely defined. In particular, if it so happens that p = A is the case, then
ko =1 and ny = A, follow at once. Now, 7y defines the point at which profit
is zero (apart from the origin), provided there is such point located thhm
the admissible interval. Hence we put '

B ,

22) b = &) = min{d 2L (>4
e — P

This way we have defined the function |

(2.3) & : [Ao,do] 2 R

which depends contmuously on the data C and on p. The function & is
closely related to the average cost function which is given by

Mk =

(24) =

If p represents a slope between the average slope at A, and Ay,,, then the
graph of pe intersects the one of C just within the interval (Ag, Agy1]- Hence
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we find that £y can be represented via

By
Ap—p

(25) &)(P) = (Mk Sp S Mk-}-l: k= 15 .. -7Ka b 2 AD)

Next, the (profit-} mazimizer correpondence derived from C is described by

= { Wy pe M w2

Obviously, this correpondence is interval-valued and upper hemi continu-
- ous (whc) in p. The construction shows, however, that it is also whe in C.
Accordingly, the smallest profit maximizer is given by

[

(2.6)

-~ L Ak ].f Ak 1<p<Ak5
2.7 fw = {or § Asp

this quantity is either the singleton contained in E(p) or the minimum of the
interval defining this correspondence. Therefore, we obtain the CoTrrespon-
dence £ : [0,pp] — P(R) which is given by

), &®)]  » € [Ao,po]
(2.8) El) = { [Ao,A=[0,41] p=4
@ P = [0, AU)

which we call the dmp—correspondence derived from C. This is motivated
as it describes the interval of non-positive or decreasing marginal profit for
a player whose cost function is described by C. From our construction it
follows easily that we have

Lemma 2.1. Whenever p > Aq, then the dmp—correspondence = is nonempty,
interval-valued and uhe in p and C.

Our next task is to estimate the length of the interval -describing = We.
claim that this is a positive constant depending in an uhc way on our data
To make this more precise, we claim

Lemma 2.2. Given py,dy, let C be a cost function. Then there is a lower
bound 3 > O such that, whenever p > A,, it follows that

E0) = &0) - &) 2 8

holds true.
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Figure 2.1: The Worst Case

Proof:

First of all assume that the graphs of C' and p- intersect beyond the origin.
Choose the index k such that

§ = Az

holds true. Asp > > Ay, we have & > 1 Also, let k° be given as in (2.2). Then
clearly k < &° (both quantities depending on p). Note that &° > 2 follows
from our a,ssumptlon p 2 Ar. Now, if (“in the worst case”, it so happens
that we have k® = %, then from (2.2) we deduce -

. B, AB,
& (p) §(P) = An-p BA
' AB.
(2.9 > e 25
- Ap — Ao, AA,
_ Bli_I-
T AAL,

(see Figure 2.1). If k% > k, then the estimate is even stronger. Therefore,
(2.9) provides the desired lower bound
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If the graphs of C' and pe do not intersect at some point apart from the
origin, then '

(2.10) §olp) — g(p) =do— Qg1 =Ag — Ag_,
follows from the fact that we have p < py < Ag (cf. equation (1.6)).
' q.e.d.

Remark 2.3. In the above situation, if p = Ay happens to be true, then we obtain

(2.11) D) —E(p) = A1 = Ay — A .

For Ay < p < A; the estimate provided by (2.'9) does not yield a lower bound. The
width of Z(p) is arbitrarily small when p approaches Aq. Yet, if we fix some e > 0
and the argument p avoids the intervall [Ag, Ap + €], then again the width of the
width of E(p) is bounded away from 0 by some constant 3 = f(e,C). Thus the
statement of the above theorem can be sharpened accordingly. This version may
be preferable if the interval [Ay, Ag] is relatively large.

On the other hand, as p increases, so does &(p) and hence £°. Imagine _
that the slopes A4, are about equally distributed so that the differences AA,
are about equal. Then (2.9) suggests that, as Byo_; increases, the interval
Z(p) also increases with p. A more refined analysis shows that this depends
on a relation between marginal and mean cost. The graph of Z(e) is an
area bounded by the piecewise constant function £ (e} from below and by
- the minimum of certain hyperbola from above (in view of (2.2)). We claim
that, depending on the curvature of C, this graph “widens” with increasing
p. Essentially, the idea is that marginal cost increases faster than mean cost.
We clarify the precise meaning as follows.

Definition 2.4. We shall say that a cost function C admits of proper MM
inerements if, for any I € N there ezists K € N such that forallk > 1> K
with Ay — A < L it follows that Ai_y > My, is true..

We have
Theorem 2.5. If C amits of proper MM increments, then |£(p) — E (p)] is

arbitrary large for increasing p.

Proof: Note that the statement of Definition 2.4 can be equivalently given
in the following version:

For any L € N there exists K € N such that for all k >I>K
with A, < Mg, it follows that Ay — A; > L is true.
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Now let L € N be a (“large”) integer and choose K accordingly. Pick [ > K+1
and consider a price p € (A1, A)]. Then in view of (2.7) we find

(2,12) ‘ Elp)= A .
As & increases in a strictly monotone way, we have
(2.13) ' &(p) — £(p) > &A1) — A

Now choose k such that for p = A;; one has

(2.14) . _ My <p=A_| < Myy
and hence |
B B
(2.15) &(p) = &(Aim1) = k £ Apg.

> =
CAp—p T A= M,

We know that Agy1 > Mgi1, hence k+1 > [—1 is necessarily true. Therefore
~ we have k£ > K.

Combining (2.13) and (2.15) we obtain

&) —&p) 2 A — A > L

which exceeds L in view of the above version of Definition 2.4,

Example 2.6. Let ¢ be a positive constant and let

(2.16) Ay =2ck, By=ck(k+1) (k=0,...,K)
such that |
(217) A0=0, Ak =k ,Mk _—’C(k—l) (k=1,...,K)

is computed at once.

In view of (2.7) we find
Ep)=k (2c(k—1) <p< 2ck)
i.e., |

£p) = k (%gk<%+1).-
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Similarly, formula (2.5) shows

' "kk+1 :
) = St (elk-1) <p<eh)
c

ie., ' ‘

' k(k+1) P P

= —< k<= .
If we write ¢ := & for the moment, then we obtain
k(k+1

o) = D g opcigy
(2.18) L ,

Et) = k (§§k<§+1)-

From this we derive an estimate
~ Ctt+1) t
-t > —2 {41
holt) —E0) t+1)—¢. (2"’ )
' ?2—-2t—4
2t+4

which increases like £ for increasing ¢.

(2.19)

Now, if we rewrite (2.18) as
lt) = ’“é:*i) (k—1<t<k, k=1, K)

o~

) = & 2k — 2 < t < 2%),

(2.20)

then we can provide a sketch of the correspendence = as in Figure 2.2.

Note that this figure represents the correspondence with ¢ = P as the inde-
pendent variable. If we want to represent it as a correspondence in p, then
the above sketch has to be rescaled by a factor ¢, it is shrinking for ¢ > 1
and expanding for ¢ < 1.

Definition 2.7. Let O be a PLBO. Then, for every player i € I, the cor-
respondence =) derived from C® is the dmp—correpondence of player i.
The correspondence

:[0,])0] — :P(R)
B ==

ief

m

(2.21)

[

is caolled the dmp—correspondence of O.
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Figure 2.2: A DMP Correspondence

Corollary 2.8. Let C be a costfunction. Then there is a nez’ghborhoo:i of C
such that for any PLBO O with costfunctions C% located within this netgh-
borhood and for any p > /ﬂz) (2 € I), the dmp-correspondence is nonempty,
interval-valued, and uhe in p as well as in the data of ©.

In.other words, if the cost functions of the firms are similar, then the dmp-
correspondence is nonempty provided the argument p is not too small. Sim-
ilarly as in Remark 2.3, the dmp—correpondence “widens” in a sense with
increasing p and this all the more with the curvature of the costfunction
(which is similar for all of them) increases. Figure 2.2 provides the intuition:’
suppose that constants ¢; (i € I) describe the various cost functions of play-
ers given as in Example 2.6. This amounts to a variation of the rescaling
. factors to be applied to Figure 2.2. As there is a minimum width of the
correpondence to the right of A, = 1, a moderate rescaling will provide a
nonempty intersection of all correpondences of the players.

Definition 2.9. For any PLBO O the price A, = max{A® | ¢ I} is
called the maz—min marginal price of O. We shall say that @ is ¢ PLBO
with similar firms if there is a cost function C and a neighborhood of this
function such that the conclusions of Corollary 2.8 are satisfied. That is, for
p > Ay the DMP correspondence satisfies
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The above theorem is a local one. It calls for cost functions in a joint neigh-
borhood. A global theorem can be constructed in the spirit of Theorem 2.5.
We require that the relations between marginal costs and mean cost globally
do not, vary to much between the members of the oligopoly.

Definition 2.10. We shall say that a PLBO O has uniform MM incre-
ments, if there is K € N such that for k,1 > K and any pair of players
1,7 € I the following two conditions are satisfied:

1. AL > M, |

2. If AL < AJ holds true, then Ai_, > My, follows.
Theorem 2.11. Let O be an PLBO with uniform MM inerements. Then
there is K € N such that for p > A% (i € I) we obtain B(p) # 0.

' Proof: We prove that, for any pair 4,7 € I and for sufficiently large p the
relation & > £7 is satisfied. If so, then we see that

(223) & = ming > maxg

is satisfied. It follows at once that §, € E(p) holds true. The proof follows
exactly the path led in the proof of Theorem 2.5.

Now fix i and j. Let p > max,cr A% and choose I such that p € (47_,, A7]
holds true. Then necessarily we obtain { — 1 > K. Also, we know that
& (p) = A] holds true (from (2.7), ¢f. the corresponding step in Theorem
2.5). Next, choose k such that

(2.24) ' Mi< Al <M,

is true. From condition I. above (which in this context is an assumption
and in Theorem 2.5 was a result) we know that { — 1 < k+1, hence k > K.
Similarly as in (2.15) we obtain

&(A4l) > A
Finally, the (reverse formulation of) condition 2. implies

(2.25) &(r)—Tp) 2 G(AL) — Al > Al — Al S 0,
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3 | An Existence Theorem

We start out with some auxiliary theorems.

Theorem 3.1. Let © : [0, po]- — P([0,dy]) be an uhc and conver valued
correpondence and let F' = [0, po] — [0, dy] be a continuous function. Assume
that ©(p) #0 (p > «) holds true for some a € (0,po). Now, if

(3.1) O(a) N0, Fa)] # 6
and
(32 O(po) N [F(po),do] # 0

holds true, then there exists f € [0, po] with F(p) € O(p).

“Proof: This is an obvious generalization of the intermediate value theorem:.
It can be proved by the same procedure or by a suitable application of the
Kakutani fixed point theorem.

g.ed.

Definition 3.2. Lef 0 be an PLOB. Let a« = A, be the max—min marginal
price and let E = [£,&] be the dmp correspondence. If

(3.3) s fo")
and
(3.4) o(po) > 2\P)

holds true, then we shall say that demand and supply are intersecting. If
o 15 some other quantitiy, then we will use the definition accordingly.

Corollary 3.3. Let O be an PLOB with similar costfuﬁctz’ons (cf. Deﬁm‘tz’on
2.9). Assume that demand and supply are intersecting (Definition 3.2). Then
there exists p € [, po| satisfying 9—5—’1 € E(p). -

Proof: Put © := Eand F := %. Then apply Theorem 3.1. -

q-e.d.

Thus, we require that at the maez—mén marginal price the total production
(averaged out in a sense) is not sufficient to satisfy the demand and that, on
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the other hand, at the maximal price the demand is below of the possibilities
of total production. If so, then there is a price at which per capita demand
is located within the interval of decreasing profits.

Combining Corollary 3.3 and Theorem 1.6 we obtain

Theorem 3.4. Let O be an PLOB with similar costfunctions (Definition
2.9). Assume that demand and supply are intersecting (Definition 3.2).
Then there ezists a Bertrand equilibrium. Within a certain neighborhood,
‘the Bertrand eguilibrium correspondence is uhc in the data of O. |

The global versions are obtain in a quite similar fashion. Holwever,‘ with
respect to Definition 3.2, the role of a:has to be changed.

Corollary 3.5. Let O be an PLOB with uniform MM increments. (cf. Defi-
nition 2.10). Let K be defined accordingly and let @ = max;c; A%. Assume
that demand and supply are intersecting. Then there exists § € o, py| satis-

fying 22 € =(5).

Proof: In view of Theorem 2.11 we know that the dmp correspondence is
nonempty for p > a. Therefore we can again apply Theorem 3.1 and obtain
the analogous result.

q.e.d.

Theorem 3.6. Let O be an PLOB with uniform MM increments (Definition
2.10). Let o be as in Corollary 8.5 and assume that demand and supply
are intersecting. Then there erists a Bertrand equilibrium. Within o certain

neighborhood, the Bertrand equilibrium correspondence is uhc in the data of
0. _

Remark 3.7. The framework .of the model can be relaxed with respect to the
uniform domain of definition required in Definition 1.1. It is sufficient to require
that the costfunctions aré mappings

" C [0, ] =R (iel).

Thus, firms may have varying capacities. The role of py can be played by any real
number satisfying py > max{C*(d")|i € I'}. The property of similarity can at once
be formulated in this framework (and leads to capacity boundaries that are close
to each other in a well defined sense). The intersecting property has to be slightly
reformulated, e.g., w.r.t. dy := min{d*|i € I}.
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