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Abstract

We describe a liberalized competitive market for lows on a net-
work. The model can serve to understand the strategic interac-
tion of firms producing electricity, gas, or telephone service and
satisfying the demand of consumers via a network. - The network
fees are fixed externally. The consumers satisfy their demand
according to the prices set by the entrepeneurs and the network
costs via some “Bertrand” demand function. The strategic be-
havior of the firms is analyzed and seen to involve price setting
as well as network specifications. As a consequence, we obtain a
generalized (oligopolistic, “Bertrand”) n-person game of the power
companies. The equilibria of this game may serve to support mar-
ket decisions of power companies, telefone service providers and
others. ’
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1 Electricity Networks

Network—-flow problems and minimal cost problems on networks are a stan-
dard topic in OR. Accordingly, great parts of the model we introduce are
discussed in textbooks and rmonographs, see e.g. SCHRIIVER[5], Chapter 12.

We consider networks that are capable of transporting a certain flow within
well specified limitations. There are various examples in economical context.
The main application we have in mind is the case of electricity transportation.
- Here we have the typical network with capacity constraints.. The constraints
limit the transportation of electricity through the lines as well as through
certain nodes. The nodes may vary in their character: First of all there
are the power plants which essentially generate electricity. We have also
consumers which use electricity as an input. A further type of node is given
by some transformer station. Here the output and input may be considered
- to be the same but again, a transformer has a limited capacity.

A second feature of the electricity network is given by cost generating quan-
tities. We assume that the power companies have an incentive to maximize
revenue. They may be able to set prices and this way influence their net
output of electricity. This output, however, will depend on the reaction of
the consumers. A further cost generating feature is given by the network
~fees. In a partially liberalized market we assume that the network fees are
specified externally. They are the result of some induced price setting proce-
dure which may be implemented by a government agency. On a higher scale
we could think of a cooperative game that takes place ex ante and results in
a specification of network fees.

We regard the power companies as active entrepeneurs who compete on an
oligopolistic market. The actual nature of their strategic behavior has to be
determined and will result in an n-person non-cooperative game. The (Nash)
equilibria of this game reflect the result of the balance of the market forces.
. They may be useful to explain competitive behavior of power companies in
a liberalized electricity market.

The model is based on the one developed by H.-M. WALLMEIER [6]. This au-
thor introduces strategic considerations into a liberalized electricity market.
However, the strategic variables are just prices. Oligopolistic competition is
discussed, but the market mechanism is assumed to result from some plan-
ning agency that, given the prices of all firms, minimizes aggregated total
cost of providing electricity to the consumer(s). The author suggests that
equilibria in mixed strategies can be found.
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By contrast, we shall attempt to provide a model in which there is a suit-
ably modified version of Bertrand equilibrium given that firms are “similar”.
(WALLMEIER speaks of firms of “approximately the same size”, so this as-
sumption may be acceptable for the practitioners).

It should be mentioned that, for the electricity market, there are by now
various approaches. See e.g. BALASKO[1], who explicitely states that “This
approach ignores the important spatial features of the electricity power in-
dustry like transmission and distribution networks”. This author discusses a
problem of general equilibrium with production in which one firm (the power
company) faces a finite number of consumers. One could argue that this -
author discusses Walrasian equilibrium while the present paper deals with
Bertrand equilibrium — all setups adapted to the specific needs of the special
type of economic consumption good called “electricity”.

This first section provides the modelling definitions. We will first speak about
the basic network which supplies the natural background for the market. We
then turn to the cost structure and the utility functions of the entrepeneurs. .
Finally we discuss some operations that take place on networks: they can
be united, summed up, or be disintegrated and we would like to study the
consequences of such operations.

- We start out with the definition of a network.

Definition 1.1. A network (with capacity constraints) is a pair of date
(1.1) ' N = (N,C)

with the following specifications and interpretations.

1. N is a finite set, the set of nodes. The elements of X := N x N
are called the edges; we imagine that (N, X) represents a finite graph
such that (h, k) € X is the link between h and k.

2. C = ((Chk)(h)k)egc, (Lk)keN). 15 a set of data as follows:

| (a) The first matriz describes capa_citz'e.é of the edges. Thus,
(1.2) ' Chk Z 0

is the mazimal amount of flow to be sent along h — k An edge
with capacity 0 can as well considered to be nonezistent. Flows
may be directed in both directions, h — k and k — h.
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- (b) The second set of data descibes the characteristics of the nodes
to either produce flow (sources), to consume flow (sinks) or to
just transfer (‘transform’) it. Intuitively, Ly is the mazimal net -
output of node k; negative outputs are consumption.

3. There are restrictions of the node characteristics that declare the nodes
to be of a certain type.

If Ly = 0 holds true, then k is a transformer, we indicate
this by writing k € T, hence T C N is the set of tmnsform—
ers.

If Ly =: —d; < 0 holds true, then j is a consumer, we wmte
j€ J

If L; > 0 holds true, then ¢ is a (flow or electricity producmg)
power company, we write1 € I. Later on we will assign an
active role to the power companies as players of a (Bertrand
oligopoly) game.

This way N = I+J+T is a decomposition of the set of nodes (Our
convention is to use + for disjoint umons and to writei € I, j € J, etc.
and, if possible, L', d;, eic.)

4. N denotes the set of networks living on a finite set of nodes N token
from a fized universe which is thought of to be a countable set. Given
some fized N, the date specifying the capacities are real numbers, hence
the system N of networks living on N is essentially a Euclzdmn space,
we have

- (1.3) | Ny = RIxRY.

We now assign feasible flows to our network. A flow is a certain state of
nature in which a fixed quantity of electricity passes through an edge of the
network. Accordingly, at each node there occurs an input and an output
of electricity the net difference of which has to be limited by the capacity
constraints.

Definition 1.2, . A flow is an assignment of flow quantities to the
edges. We write this : :

(14) X = (The) (hp)ex -
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The (net) output at k € N at X is given by

(15) Yk(X) = Z Tpp — Z Trk -

helN - relN

An analogous deﬁm’tio_n ezplains the consumption Y; of j at a ﬂow'
X which is given by

w8 0= a - o
L ' l- r

2. A flow X is feasible ‘?,f it respects the capacity restrictions of the whole
network. That is, the capacitiy conditions at the edges

(1.7) 0 < zp <o (R, K) € K),

~ are satisfied. Also, the the nature of the nodes are reflected, we have:

(1.8) 0<YHX)< L' (iel),
(1.9) Yi(X) = d; (j€J),

and

(1.10) YHX)=Y(X) = 0 (keT).

3. The set of feasible flows for N is denoted by X or XN,

We want to consider some natural structures on N which will be usefull with
respect to capacity considerations later on. For instance we would like to add
networks which essentialy means that we add their capacities. In this context
it is not always necessary to regard the specification of capacities as defining
a real network. It could as well mean a requirement issued by a company or a
group of companies specifying certain capacity demands. Roughly speaking
the various power companies could be forced to specify subnetworks which
reflect their demands for capacities on certain parts of the market. To be
able to operate with such capacity requirements is essential in our context.

" A particular network is given by O € N, the zero capacity network or zero
network which is specified by all data being 0. We don’t have to specify
-the set of nodes O is living on. Actually the detailed specification of the

nodes a network is living on is less important. A network can always be
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extended to some larger set of nodes by specifying all additional nodes to
be transformers with capacity 0. That is, the extension is supposed to look
like the zero network on the new nodes. The operatlon of restmctwn can
also be defined in a quite obvious manner.

There is a partial ordering < on networks defined via
N=<N

(1.11) o : - _

Cht < Chk ((h,k) EfK), L., <L, (‘Z.GI),

di<d; (jelJ.

Clearly, the 'smaller network’ in the sense of < has less capacity with respect
- to every node. Therefore we may conclude that

xﬂ' g xN
holds true whenever N = N happens to be the case.

It is not hard to see that, with respect to <, the set of nétworks constitutes
a lattice, that is, the operations A (minimum) and V (maximum) are well
defined. The minimurmn net allows for every flow that may occur in both of the
nets involved (the minimum flow, that is) and the maximum net allows for
every flow that is the maximum flow of two flows occurring in the networks
involved. (The operations discussed may as well be defined on flows).

Finally, we can speak about the sum of networks. This means that under
certain circumstances we may add capacities (and flows) for various networks.
Thus, we say that a network N is the sum of a family of networks

(Np)? (,6‘ = 1;- ’T)

if
k= D ch ((BE)EX)
p=1
(1.12) ' I'= >'I" (el

=1
r

d = > d&, (GeJ)

=1

holds trﬁe.
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Having these operations at our disposal we now define a further structure on
networks: the fees requested for transportation of fiow through an edge.

Definition 1.3. An Electricity Network is o tripel
(1.13) ’ &= (N,C,8)

such that N = (N, C) is a network as specified above (Deﬁm’tion 1.1) and
the quantity ' ‘

(1.14) B = (Brr)hiyex = 0

is o matriz attached to the edges of N. 3 is interpreted as a fized price scheme
or service fee schedule. The meaning is that a unit flow (an MWh of elec-
tricity) to be send from h to k generates e fee of Bux units of money.

Sometimes we wish to refer to the data separately. E.g., if a network N is
given, then a fee schedule B will be called suitable for N, if the matriz has
the right dimensions, i.e., constitutes a function on X.

The next sections will serve to gradually built up the electricity network
game. To this end we proceed from the most primitive one company/one
consumer network to the most involved version in which we have overlappmg
demand and supply on a free market.

In SECTION 2 we discuss the primitive version. The main purpose is to discuss
‘the cost functions that result from varying demand of a single consumer. This
cost function appears in later sections and is part of both, the entrepeneurs
and the consumers strategic problem.

In SECTION 3 we enlarge the network so that various companies serve one
single consumer. We assume that this can be done by completely disjoined
networks owned by the companies. Yet, at this instant our view is slightly
changed: we conceive the management of the power plant as an oligopolist in
a competitive market and, as a consequence, concepts of Game Theory enter
the scene. The set I of ﬂow _producing entities or power plants receives now
additional weight via the interpretation as the set of players.

In this context the game is rather easy to describe and the strategic behav-
ior of the power companies is just explained by their price setting policies.
Because the network constraints can just be considered separately, there ap-
pears a cost function for each company. The consumer is seen as a price
taker. He has no strategic considerations in mind but, given the compa-
nies prices, just minimizes his expenses. Therefore, eventually a version of
Bertrand Oligopoly emerges.
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In SECTION 4 we combine the features discussed previously. Now we have
overlapping networks and electricity may freely be exchanged though net-
work costs occur and prices may change according to the strategic behavior
of the power companies. It turns out that the strategic behavior of the com-
panies involves capacity planning. They have to set aside a certain capacity
specification for each consumer they want to serve. Within these constrains
they try to route electricity towards the consumer at minimal prices. Since
the strategy understood this way is combined by price settings and networks
specifications, the results of SECTION 3 can be applied in an intricate manner.

‘As competitive specification. of network requirements may result in excess
capacity demands we introduce penalty functions, which generate further
costs (towards the entrepeneurs) for capacity requirements exceeding the
global networks capability. In equilibrinm, however, there will be no excess
capacity demands as a single entrepeneur would always improve the situation
by reducing his capacity demand.
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2 Monopoly: The Cost Function

Within this section, we restrict ourselves to networks N with capacity con-
straints such that there is a single power company i which supplies electricity
to a a single consumer j. Formally, we assume the existence of at least on
‘intermediate’transformer. Consider the demand d = d; of the consumer
and suppose that, for the moment, we regard this as a variable. The resulting
" network is then called N%. The system of feasible flows is X¢. Note that,
within this simple framework, a feasible flow clearly satisfies

(2.1) YI(X) = %(X) = d,
which reﬁects the fact that the full demand of consumer j is just satisfied by
the production of the only power company .

G1ve11 a suitable fee schedule 3, the network fees constitute a cost function
-as follows. First of all, the capacity constramts yield an upper bound for the
supply of electricity, say d.

Now the power plant schedules the total flow to the consumer such that
network fees are minimized. Then the resulting cost function is described by

C=CY¥ =CNe) :[0,d]=R.

(2.2) Cld) = ng = .min{Zﬁikxlk|X € Id,} (de0,d}).

Clearly we have

Theorem 2.1. Given some network N and a suitable fee schedule B, the
cost function Cgfd 18 monotone, continuous, convezr, and piecewise linear.

We will only consider costfunctions of this type. Let us agree on suitable
description.

A strictly increasing, convex, and piecewise linear function C is written

C [Oyg]_}R+a

B3 max{Ad-Bilk=0,.K} (e 0,d).

Here (Ag)k=o,..x and (Bk)k=0,'___ x are real numbers strictly increasing in k and
satisfying Ag > 0, By = 0. We put '

By — By,

. | Ay = Ay = —
(2.4) 0 =0, Ay = g



* SECTION 2: MonopoOLY: THE CosT FUNCTION % ' 10

and assume that Ay is as well strictly z'n'creasz'ng in k.

The numbers A; describe the arguments at which the function shows kinks:
it is seen that ' '

(2.5) C(t) = At — B (t = [Ak,Ak_H])

holds true {¢f. Figure 2.1).

Graph Ay ¢ —B;

Figure 2.1: A Cost Function -

Now we exhibit the connection between costfunctions and networks.

Definition 2.2. A network N is called a chain if it consists of one power
plant i, one consumer j and a set of transformers (at least one) connecting
both along a unique path (cf. Fig. 2.2 ). A chain is uniform if all capacities
along the path are equal. A chain is minimal if it is uniform and contains
just one transformer. Finally, ¢ network is called minimal if it is the sum
of finitely many minimal chains each of which having the same power plant
and the same consumer while the intermediate nodes as well as the capacities
are -all different.

Clearly, a chain € generates a linear cost function on an interval. More
generally, we can state:
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- capacity L;

K

Figure 2.2: Chain and Minimal Network

Theorem 2.3. Let C be a cost function. Then th,ere 15 a minimal network
N and a fee schedule B such that

(2.6) ¢ = cy

holds true. The pair (N, B) is essentially unique (i.e., up to choosing the
nodes in the universe).

Proof: This is obvious: if C is given via
Ct) = max{At—B|k=0,...K} (te0,d),

then the generating network consists of a power plant ¢, a consumer j, and
K +1 intermediate nodes 0, ..., K. The transformer capacities and the cost
schedule are given by

Bo = A o =Lo=cy; = Ay,

B = A Gi=Li=cx; = Ay— Ay,
2.7 ’ ) | ’
( )_ B = Ag Gk =Ly =cx; = Api1— Ay,

Bk = Ax  ax=Lkx=cx; =. d-Ag,
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the remaining quantities can obviously chosen to be large enough. (The
construction can also be changed by chosing the node capacities suitable and
the edge capacities large).

g.e.d.

Thus, up to the capacity of the least expensive chain, this chain is solely
used for transportation of electricity. Thereafter, the second cheapest chain
is used etc. This generates exactly the cost function prescribed.

Remark 2.4. Clearly, each chain of the minimal network constructed corresponds
to exactly one linear function Ay, » — By, generating C. More generally, if a network
N is the sum of finitely many uniform chains which share only the one and only one
power plant and consumer, then each chain can be associated to one supporting
* linear function of the cost function. The mapping constructed is unique if the total
costs of transporting a unit along a chain are all different.

Theorem 2.5. A Network N can be decomposed into a sum of networks
(2.8) N=N+e€ +e +...+€F

such that the C* (k =0...K) are uniform chains while N* has zero capacity.

Proof: This is a standard result from Network-Flow Theory (FORD-FUL-
KERSON [2][3]). Consider the case of of one power plant and one consumer
only. Pick a feasible flow with maximal output and, at each node beginning at
the power company, mark a direction of maximal output. One reaches either
a consumer or generates a loop. This defines a chain or a loop. The minimum
of all flow quantities along this chain/loop defines a uniform set of capacities
which can be deducted. After removing all loops successively, the remaining
chains are assigned this uniform capacities and deducted successively as well.
Each one actually exhaustes one arc completely. The final remainder is a
network of zero capacity.

g.e.d.

Corollary 2.6. Let N be a network and let 3 be o fee schedule. Then N can
be decomposed into a sum of networks

(2.9) CON=N"+C 4@ +...4CK

as follows: the networks C¥ (k = 0...K) are uniform chains while N* has
zero capacity. Each C* can be assigned to a linear support function of the cost
function Cg,‘r in the sense of Corollary 2.4. This cost function is the same as
the one generated by €° + C' + ... + C¥.

.
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Proof: Let A; be the last point in the domain of definition of C at which
the first linear function A e —By = Ape supports CB Take a ﬂow with
output d = A; which is cost minimizing, hence costs CN(Al). We may
assume that there are no loops. Then decompose this ﬁow according to the
FORD-FULKERSON method indicated by Theorem 2.5. This generates a set
of chain flows wich in turn can be used to define uniform chain networks.
Along this networks the marginal cost has necessarily to be the minimal one
possible, i.e., Ag. Necessarily, this is the sum of all costs occurring along the
chain. Therefore the fee schedule for this chain is defined in a canonical way,
i.e., the same as for the original network.

'The rest is done by induction.

q.e.d.

Definition 2.7. We call two pairs (N, 8) and (N, ') equivalent if they
- generate the same cost function C. The minimal network generating the cost
Junction according to Theorem 2.3 (which is an element of the equivalence
class “of C”) is called the minimal representative.

Remark 2.8. Given (N, ) the minimal representative of the equivalence class
can be constructed at once. Decompose the network according to Corollary 2.6.
Dispose of the zero capacity network. Now replace every chain (which is uniform )
by a minimal chain with the same capacity generating the same costs. This way
we obtain the minimal network generating the same cost function.

Remark 2.9. Similarly to the situation with cost functions, we may introduce
a metric on pairs of equivalence classes (N, 3). To this end, we take the minimal
representatives, assume w.l.o.g that they are defined on the same N, and apply a
Euclidean metric w.r.t. the (pairs of} data {C, B8). Clearly, equivalence classes are
close if and only if the corresponding cost functions are close. We will (sloppily)
_say that networks and cost schedules are close if this is the case for the equivalnece
class, that is, for the minimal representatives.

The following theorem discusses the relation between comparable El-networks
and their cost functions.

Theorem 2.10. Let €, &' be two El-networks such that N < N and B8 > '
holds true. Then, on the domain of C~, the corresponding cost functions
satisfy -

(2.10) cN >N,

If B =3, then C* has at most the slopes that appear in C .
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Proof: We write € := CM and ¢’ := OV,

It is rather clear that C has the smaller domain on which it dominates C.
For, whenever we consider a chain of N, then this will constitute a chain of
N’, but the expenses are lower at the larger network.

In particular, if both cost schedules are equal, consider the decomposition N
of as indicated by Corollary 2.6 into chains correponding to the slopes of the
cost function. Then, if we take the chain corresponding to some slope Ay,
we will be able to send this flow through this chain with respect to the net
N’ as well. For small demand, this flow will possibly not be cost minimizing
with respect to N'. But with increasing demand one is eventually forced to

use all the edges and nodes within this chain in order to transport further
flow in N.

* Thus, the slope A will appear in C'. Proceding this way, we observe that C
is obtained by “shrinking” N, i.e., the same slopes appear successively, but
on possibly shorter (or empty) intervals. : q.e.d.

We are now in the position to formulate a standard monopoly model. We
introduce a demand function for the consumer and a payoff function for the
power plant.

The demand of the consumer is modelled by a decreasing continuous and
convex function

(2.11) ! D :Ry—=R;

which, given a price p € R, yields the demand D(p) of the consumer. For
technical reasons we shall later on (in the context of oligopoly) assume that
the demand function generates increasing marginal ezpenditure. Formally we
require that it is slowly decreasing, i.e., satisfies —Qgﬂ > -D'(t)(t € Ry) (CL

[4]).

‘Now, if the power plant fixes a price p € R, then electricity is sold in a
quantity resulting from demand and the payoff to the power plant is obtained
by a function which combines revenue and costs. This yields a payoff or utility
for the power plant '

for p € Ry
(2.12) Up) = pDy(p) —~ C(D(p)) (p € R,).

Here we assume that maximum demand at zero price can be transported
throug the network, hence is located in the domain of C. If fixed costs and
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production costs are to be incorporated, then the appearance of the payoff
function changes into

213 Uk) = pDG)-a-CD@) - CDG)).

Formally, this function is of the same type if we assume that C° is piecewise
linear and convex as well. So the additional terms can just be thought of as -
incorporated in the cost function C. Therefore, we will mainly discuss the
version (2.12).

Now the power company will maximize its payoff resulting from the price
setting procedure and the network fees. It is the task of the power companies
management to find

(2.14) max {U(p) [pE Ry }.

This kind of monopoly is a textbook problem. Usually one assumes that
expenditure is concave and that a price can be found at which marginal
expenditure and marginal cost coincide. Another version is as follows:

Theorem 2.11. Let py be the marimal price in the domain of the cost func-
tion C and let p < po be such that U(p) >0, U(pe) = 0 holds true. . '

Then the quentity (2.14) exists and o magimizer correponding to the problem
(2.14) establishes an optimal price for the power plant.

This follows from the fact that U(0) = 0 is assumed (implied by zero cost at
zero production).

Next we will consider ologopolistic competition in the market.
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3 Oligopoly: Disjoint Networks

Within this section we consider an Electricity Network & with just one con-
sumer 7 and a finite number of power plants. Also, we will assume that the
power companies act on almost disjoint networks, each of them supplying
electricity to the consumer via its own separated network. Formally, this is
expressed by the existence of finitely many networks N* (¢ € I) each of them
containing just one single power company 4. All of them are dominated by
the global network (N* < N (¢ €.I)) such that (with some abuse of notation)

(3.1) N = \/N, NAN = {v} (i,i’eI)

icE
holds true.

Wlthm each of these disjoint networks we can speak of feasible ﬂows we
write

(3.2) X o= {X[X = (Zhk)(hp)esc X feasible for N}

If a fee schedule 3 is suitably defined for N, then obviously the restriction to
any of the subnetworks defines a fee schedule suitable for this subnetwork. It
is not necessary to carry the index * in this case. Thus, the above mentioned
decomposition naturally induces a decomposition of the global structure &
into local (power company owned) structures &'.

As a consequence, we can assign cost functions to the various local networks.
Therefore, the framework of SECTI0N 2 which refers to a monopolistic network
can be applied to each of the structures N* and &°. This way we obtam for
any ¢ € I, a cost function

C [O,Ei]'—> R*

(33) C:(d) = min {Z BT hi }X € I“‘, } .

Here, a flow X* referes to the network N which is obtained from N' by
altering the input of the single consumer j from d; to d. The detailes are
treated exactly as in SEcTIoN 2. Not that the cost- functmns are all defined
on a possibly different domain, the interval [0, d*]. If need be, one can choose
dy := min{d’|i € I} for the joint domain of definition.

We assume that the consumer is characterized by a demand function D =
Dt in the sense of [4] i.e., a convex and slowly decreasing function which
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is continuous at 0. In order to obtain a compact range, one can choose
po sufficiently large as to satisfy all the conditions that are specified for
a piecewise linear Bertrand oligopoly (PLBO) in [4]. Now we recall the
Bertrand demand function derived in this context.

The behavior of this consumer is described by the assumpﬁon that he dis-
tributes his demand equally among those competitors who offer the minimal
price.

Definition 3.1. Let p = (p*)icr € RL be ,d price vector. We put

34) = M = {ieI

p"-z I&i}lpi} = arg miny p.

Also, let D; : [0,po] = [0,dy] denote the demand function of consumer j.
We put for p € [0, po]L |

3.5 | Di(p) : 0, 1 &M
(3.5) | i(p) = Do) i e My

The functions D} describe the demand resulting from the price settings of
the power companies. This, in terms of oligopoly, is the market reaction
function.

Now we are in the position to describe oligopolistic competition. Suppose,
that all power companies fix a certain price p'. Then, for i € I, payoff to
power company ¢ is given by

(3.6) Ui(P-). = Ui((pk)kEI)

= p'Di(p) — C*(Di(p)).
Finally we have the n—person game generated by the electricity network.

This game is now well defined as we have described the strategic behavior of
the power companies and defined their payoffs-accordingly.

Definition 3.2. The El-Network game generated by the Electricity Net-
work € is the noncooperative |I|—person game

(3.7) I =T = (RY, (UYer) .

The El-Network game is a Bertrand Oligopoly. The power companies appear
in the role of the players, the consumer just provides the price dependent
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demand function, his behaviour is not strategic but price taking. We can
- apply standard results from Oligopoly Theory, like e.g. Theorem 3.4. of [4]
and Remark 2.9 in order to come to the following conclusion:

Theorem 3.3. Let & be an El-Network with disjoint subnetworks N* of the
powerplants. Suppose that these networks are close in the sense of Remark
2.9 and hence the cost functions define a PLBO with similar firms (Definition
2.9. of [4]}). Also, assume that demand and supply are interceding (Definition
3.2 of [4). Then there ezists a Bertrand equilibrium. Within a certain

neighborhood, the Bertrand equilibrium correspondence is uhc in the data
of N. - '



% SECTION 4: THE EL-NETWORK GAME % 19

4 The El-Network Game

Our next aim is the construction of the El-network game and of equilibrium
in the general case of overlapping networks. It seems that the approach which
was successful in SECTI0N 3 is not sufficient in the general environment. The
problem is that the power companies will not only have to balance their prices
in equilibrium. Also they will have to take care that electricity is transported
with minimal networking fees towards the consumers.

In this context minimizing the networking fees can only mean that, in equi-
librium, the single power company optimizes against its opponents. Given
this viewpoint the special capacity demand of the power companies or, more
pretisely, a network specification, will be part of the equilibrium. Clearly,
this raises the question of the meaning of strategic behavior in our context.

The first idea is that, next to the price setting mechanism, the flows of elec-
tricity as planned by the power companies are part of the strategic behavior.

Yet, because of non-uniqueness of the (minimizing) flows we are confronted

with a selection problem. In addition, the concept of maximizing the payoff
depending on the price against given network specifications of the opponents

appears inherently in SEcTION 3. One cannot recognize any concept of max-
imizing against the opponents chosen transportation of flow.’

We shall, therefore, adopt the idea that a strategy of a player (a power
company) is a price plus a network specification. Among the advantages we
note the one that a nework specification implies a cost function.

On the other hand, there appears a further problem which, however, is nat-
ural in this context. Whenever a choice of prices and network specifications
of the companies is specified, then possibly the the capacity constraints of
the global network cannot be met. The equilibrinm calculus will not a priors
lead to capacity constraints. Our solution is obtained by introducing penal-
ties attached to an overflow at some node or edge of the network. Again this
supports the idea of introducing network specifications: to impose penalties
for the concrete planning of flows does not seem to be sensible. To intro-
duce penalties as a punishment for exceeding capacity demands appears to
be most natural. :

Penalties will be a natural but only intermediary tool. Given sufficiently large
penalty payments, we expect the network in equilibrium to be organized in
a way such that penalties are avoided and the capacity constraints are met.

We first describe a simple version of penalties. Within this context we use
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« in order to denote max{c,0} for real numbers a.

Definition 4.1. A penalty code (given a network N) is a family Q (Q,R).
of positive quantities such that

(4.1) ' Q = (Qu)rpex >0

s @ matriz and

(4.2) R = {RYiwer>0

s a vector.

We suggest the following interpretation of the penalty code. As previously, |

we can disregard the particular set of nodes and extend @ canonically to all
networks in the universe (the values are zero outside the original finite V).

Now we introduce the the penalty function. This function is defined on
pairs of networks. We use the letter Q for thls version as well, no confusion
will arlse We define

(43) @ =@Qy:NxEoR,
by | :
QN N) = > Quilhi (B — )
(4.4) (hoE)EX
+ ZRiEi(fi - Lt
icl

The penalty function is interpreted to be arranged for the punishment of
overcapacities required from the network N by the power companies. We
interprete the last formula as follows. There is the underlying net N which is
available to all players. Based on the strategic decision of all players, there is
a total or “public” demand for capacity represented by the network N. This
network is hypothetical. There is also a privat demand of a player represented
by N which is hypothetical as well. The excess demand for capacity that may
occur in the public network is compared to the capacity available at N. Now,
in order to punish overcapacity demands, some penalty charge is raised. The
private network is charged in accordance with its own capacity demands only
1f public excess demand occurs at all.

Having cleared this point, we can now turn to the formulation of strategic
behavior in the present context.
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Definition 4.2. Let N be o network and let ¢ € I be player (a power com-
pany). A strateqy of i is a price/network specification

(45) | § = ()
with the following properties:
1. The first data
(4.6) | Pe = (Bi)jes 20
s a nonnegative vector, called a pﬁce vector.

2. The second data

(4-7) ' N; = (Nj')je.r
| 15 a family of networks such that
(4.8) DN =N
, jed '

is satisfied. This family is called the network specifications or ca-
pacity requirements.

The strategy spaces are denoted by

S = 8lx...x8"

Thus, the company plans to sell electricity at prices varying with the con-
sumers. Also, it plans to set aside a certain set of capacity requirements
(represented by a set of networks) for each customer such that the total
capacity does not exceed the capacity of the network available.

Of course, the independent planning may lead to inconsistencies — it is just
the task of the forces establishing equilibrium that should eventually take
care of a consistent global planning.

Given the subnetworks resulting from strategic choice, we may now proceed
a5 in SECTION 3 in order to determine market demand. That is we consider
the ’local’ capacity constraints and define the cost function and the cost
schedule accordingly. This means that, given the local capacity constraints
and a feasible demand of a consumer, the power plants compute the minimal
costs and add it to their fixed costs if any. -
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Definition 4.3. Let N be a network and let i € T be a player {poﬁ;er com-
pany) and j € J be a consumer.

1. Lets' = (p;,N:) be a strategy of i. Then X} denotes the set of feasible
flows within N3,

2. Let B be a fee schedule suitable for N. Then 3 constz‘tﬁtes also a fee
. schedule for N; Hence there is a well defined cost functio'n

Cj(sis o) : [0, J}] — R¥
.. id
(4.9) Cilshd) = Cy o
= min {Z BrrTrr ‘ Xe x}d; }

defined on the interval of possible delivery of i ftowards j. This cost
function is specified exactly as in SECTION 2 and SECTION §. That is,
Nt refers to the network N% (part of the strategy!) in which the demand
of consumer § has been changed to be d.

3. Accordingly, given the demand function of consumer j, there is the
specific (Bertrand) demand function of consumer j towards player i,
i.e., the function D;'- : R; = Ry, which is eractly defined as in
formula (3.5) of SECTION 8. o .

4. Let D'(s) = Y . ; Di(e). Th,.e' oligopolistic demand is the function

(4.10) D : 8—=RY s— (DHs))ier .

Note that the capacity constraints of a single power company are reflected
in its strategic choice. Not so the total capacities of the global electricity
network. The oligopolistic demand curve describes the demand pattern of the
market. In a sense we have justified the demand curve by a microeconomic
consideration. Now we describe the payoff functions of the players employing
the penalty functions for overdemand of capacities.

Definition 4.4. Let & be an electricity network.

1. Let st = (pi,Ni) be a straﬁegy of i € E. Then

. L

(4.11) Ni(sh) == D> N

jeJ

reflects the capacity demand of i at s*.
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2. Moreover, if s is a strategy |I|—tuple, then

(4.12) N) = Y N(s)

icl
reflects the total capacity demand at s.

3. The payoff function of player i € I is the mapping

U 8-—>R;
Ui(s) :== p'Di(p) — > Ci(Dilp)) — QIN(s%), N(s))
413) e A
(“19) = Y [piDi(p) — Ci(Di(p))] — QIN'(s"), N(s))
jeJ .

(s € 8).

4. The El-Network Game (o noncooperative n-person game) of the
power companies s given by

Wy Do (8 (e -

Penalties are generated only when the total capacity is exceeded. In this case

each company pays proportionally to its demands. It makes sense to assume

that penalties are large compared to fees. Sofar as the penalty function will

be used to enforce stability of equilibrium there should be no incentive to
“accept penalties in exchange for more capacities alloted.

In what follows, we assume that there is just one consumer in the market,
hence the label j is fixed. We are going to construct an equilibrium within
this context. The generalizations are obvious.

First of all we construct, for each player 7, the network N* which results from
player ©’s exclusive use of the network. To this end, given a player 2 € I, we

render all nodes (of players) ¢ =;é 1 to become transformers That is, we
change Lt > 0 to I = 0.

Next, we decompose the remaining network (which includes one player and
one consumer only), according to the procedure indicated by Corollary 2.6.
This generates a set of chains €% and some network N*, the first group
representing the slopes of the corresponding Cost functlon ¢ and the last one
having no overall capacity. We put
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o K
(4.15) , Nt = Y N,
i=1

Definition 4.5. The network N’: together with the original cost schedule 3
and player i’s utility function U* define player i's monopolistic El-network

83'

Next we begin with the construction of the (hypothetical} equilibrium net-
works N* (i € I). To this end, consider the system

N = {(Nl,...,w)‘ng"\rf(z’ef), 3NN,

(4.16) i€l -

- N-—- Z N has zero capa,city}

el

Definition 4.6. Let

@ w= mn {|0F-0|| of..or) e
and let
No= (W, %)

be a minimizer of the above problem. Then N.is a share network system
and the component N is player i's share network.

" Lemma 4.7. The quantity M defined in (4.17) is well defined and share
networks systems ezist.

Proof: First of all, have to show that the set on the right hand side of (4.17)
is nonempty. To this end, we construct an element N of this set.

For any i, The nodes of N are the ones of the monopolistic network N .
Moreover, consider any edge (h, k) of this network. Then, if (h, k) appears
in the monopolistic network of exaktly K players, we assign %Chk to be the

capacity of N for each of these players. That is, those players who may
need this edge will have to equally share its original capacity. Of course, this
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means that a player who solely uses a certain edge may use its full capacity.
Clearly, this construction leads to a suitable system N.

Next, the costfunctions are specified similarly to formula (2.3) of SEcTION 2.
Obviously, the data specifying such a costfunction are finitely many, hence
the metric indicated in (4.17) is the one of a Euclidean metric space. Clearly,
the data of the cost functions depend continuously on the data of the un-
derlying neworks. Consequently, the function to be minimized in (4.17) is
continubushwith respect to the underlying data, that is, with respect to the
argument N. It remains to observe that the set under consideration in (4.17}
is indeed compact (and convex), as it is defined by finitely many inequalities
and equations invoving the underlying data of n—tuples of networks,

g.e.d.

Now we have

Theorem 4.8. Suppose the shared El-networks €% = (N, B) of all players
t € I are similar in the sense of Remark 2.9 and hence, with suitable py, the
cost functions define a PLOB O = (py, (d:)ier, D?, (C%)ier) with similar firms
(Definition 2.9. of [4]). Also, assume that demand and supply are interceding
(Definition 3.2 of [4]). Let C = C§ denote the cost function of player i
resulting from his shared El-network and let D; be the Bertrand egquilibrium

price of 0. Then, (N, ;) is a Nash equilibrium in the El-Network game.

Proof:

15*STEP : We start out with a discussion of the cost function that results’
from the construction of the sub-El-networks as indicated above. Note that
the cost schedule has not been changed but the capacities have been decreased
on certain edges. Therefore, it follows from Theorern 2.10 that C'* (on its

domain) dominates the costfunction C’N =: C that, corresponds to the
monopolistic network. :

2"STEP : Let us now assume that player iy deviates from the hypothetical
equ111br1um by employing a pair (N“’,p,o) Denote his cost function resulting
by Cio = C'N’c' We have to show that this player does not improve his
payoff. Now, n" his price exceeds the equilibrium price, the he will receive
zero profit and we know by the nature of the oligopoly equilibrium that this
does not improve his payoff. Hence we discuss the case p;, < p,, only.

3"STEP : First off all, if N < N is the case, then player i, has an
increased cost function in view of Theorem 2.10 . Hence, as he was not able
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to improve by cutting down his price in the original oligopoly, he will all the |
more not be able to do so with an increased cost function.

- 4*"STEP :

A similar argument holds true if player 4, tries to use some capacity that
has not been used up in Zieﬁ\f_l but is available in N. This capacity must
be located in his network N** mentioned above, as appears in this players
decomposition generating his monopolistic network. So, when collecting the

~ cheapest chains generating the slope of the cost function C‘ none of the
routes available to player i along this area appeared. Now, given the re-
strictions put on player ¢’s choices, it may be feasible to use these routs in
order to admit higher capacity. But the expenses will be higher. Thus the
costfunction again dominates the one of player i in the equilibrium as well
as the original monopolistic one.

Hence, player ¢ cannot improve his payoff by the same argument as above:
the cost function of the deviating network exceeds the ome in the original
network.

5*hSTEP :

Now we have to consider the case that player 7 deviates by specifying a net .
that exceeds the capacity available. That is, we assume that

3NN

kel ki

is not true. In this case he has to pay penalty costs. As these exceed any
cost induced from the fee schedule, the player will not improve his payoff.

' q.e.d.

We can singel out certain networks such that Bertrand equilibria exist under
conditions verifiable in advance. E.g., if the power plants can reroute feasible
fows through their neighbors domain at low costs, then the cost functions
will be similar and hence Bertrand Oligopoly for all players may exist.

Theorem 4.9. Let N = (&,3) be an El-network and let there be a power

plant v and the corresponding monpolistic cost function (07"‘ such for some
n > 0 all cost functions in an n—vicinity are similar in the sense of Definition
2.9. of [{]. Assume that, for any two power plants i,7' there is a connecting
chain

i=11,00,...ip =17
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such that
R-1 N
(418) ‘ Zﬁi:,iﬁd < ﬁ
=1
and
(4.19) iy = A% (1=1,...R~1)

holds true. Then there ezists a n equilibrium of the El-Network—-Game.

Proof: Obviously our condition ensures that in the monopolistic oligopoly
all firms are similar in the sense of Definition 2.9 of [4]. For each player can

- route flows similar to every other player by adding costs of at most 7 to his
expenses.

Now, the shared networks (cf. the proof of Theorem 4.8) appear to be the
monopolistic networks with capacities divided by V. the corresponding cost-
functions are shrinked versions (cf. Theorem 2.10) of the “monopolistic” cost
functions, so they represent similar firms as well. Therefore, the oligopoly
constructed with respect to these cost functions has a Bertrand equilibrium.
Now the remainder of the proof of Theorem 4.8 can be copied.

g.e.d.
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