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Abstract— If robots are to succeed in novel tasks, they must
be able to learn from humans. To improve such human-
robot interaction, a system is presented that provides dialog
structure and engages the human in an exploratory teaching
scenario. Thereby, we specifically target untrained users, who
are supported by mixed-initiative interaction using verbal and
non-verbal modalities. We present the principles of dialog
structuring based on an object learning and manipulation
scenario. System development is following an interactive eval-
uation approach and we will present both an extensible, event-
based interaction architecture to realize mixed-initiative and
evaluation results based on a video-study of the system. We
show that users benefit from the provided dialog structure to
result in predictable and successful human-robot interaction.

I. INTRODUCTION

In the last years, robotic platforms have made significant
progress towards increasing autonomy in constrained as well
as increasingly open environments. Here, the ultimate goal of
policy design is to increase the flexibility of accomplishing
a dedicated task despite unforeseen events. The task specifi-
cation itself is completely decoupled from its execution.

One of the most striking changes that service robotics
has brought into view is the interaction between human and
robots. While strict separation was common in industrial
applications for a long time, service robots have to share their
environment with humans and may even collaborate with
them. Thus, the earliest works in service robotics already
recognized both the difficulty of human-robot interaction,
due to unstructured environments and tasks [1], as well as the
promise: That human-robot collaboration can substantially
increase success, especially in new or unclear situations [2].

A particular challenge for interaction has been found to
be at the initial stage [3], with two main issues: Firstly,
users require significant training to learn about the robot’s
interaction [4]. Secondly, human behavior is tremendously
variable, which creates an as yet unsolved problem for
automatic action recognition. Thus, is it not surprising that
most existing work assumes expert users, e.g., in space or
rescue robotics [5], [6].

In contrast, the present work proposes a task structuring
strategy that allows untrained users to work with a robot
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Fig. 1. The current Curious Robot Interaction Scenario. Two Mitsubishi
PA-10 robot arms are fixed to the ceiling, with a left and right Shadow robot
hand attached. In the background, an anthropomorphic robot torso is present.
Sensors not visible are an overhead camera and a headset microphone.

using natural human modalities in a peer-to-peer fashion.
Whereas in previous approaches it is the human who demon-
strates an object, our approach reverses the roles, with
the robot providing the initial task-structure. For instance,
the robot can determine interesting visual areas, engage in
pointing and grasping and ask questions about its environ-
ment. The robot’s initiative thus gives the human partner
explicit information about its focus and language capabilities.
Having learned the interaction style, the human may take the
initiative as well, as our dialog system supports a mixed-
initiative paradigm [7].

From linguistic studies, it is known that humans align
their behaviors to achieve more efficient dialogs [8]. A
robot taking initiative can similarly influence the human’s
reactions, making them more predictable, particularly as the
interaction target is already known. While interaction using
natural modalities such as speech and gesture is often brittle,
due to the difficulties of automatic pattern recognition, these
constraints simplify the situation and increase robustness.

As it is by no means clear how to structure human-robot
collaboration most effectively, the present work combines
system development and interactive evaluation, following the
general approach proposed by Hanheide et al [3]. In our
scenario, the robot guides a human in an object learning
and manipulation task, learning labels and grips. This task
is a pre-requisite for many other applications and provides



a good learning environment for the user. The resulting
system has been evaluated by performing video studies with
inexperienced subjects, demonstrating the effectiveness of
the proposed strategy.

A. Related Work

Interactive robot learning with mixed-initiative has been
described by Hanheide et al for the so-called “home tour”
scenario [3]. There, robot initiative provides feedback on
internal models to solicit corrections by the human. This
aspect has been picked in the current work, which uses
the same dialog software. However, we extend it by also
initiating at the start of the dialog and target learning for
object manipulation instead of navigation.

Steels et al have described an interactive object-labeling
scenario with the robot AIBO [9]. They show that social
guidance improves learning because it focuses the robots
attention. We follow their approach for social learning but
add robot initiative to the interaction.

A substantial literature on the social mechanisms of
human-robot interaction exists and has been surveyed in [10].
Most work addresses imitation learning or learning from
demonstration in isolation. In contrast, we provide a dialog
structuring strategy that can embed such methods and enable
them to be used without instruction.

Object learning, e.g. for grasping or object detection, can
also be performed without explicit human instruction [11],
[12]. Generally, such methods require many training sam-
ples and are most suitable for acquisition of basic motor
primitives. For interaction, they lack human-understandable
descriptions.

Explorative behaviors based on multi-modal salience have
recently been explored by Ruesch et al to control the gaze
of the iCub robot [13]. The resulting behavior appears well
interpretable by human observers and might be the basis for
starting an interaction. At the moment, however, no further
activity is created by their system. In contrast, our system
uses salience just to initiate a dialog that can then acquire
more information.

II. MIXED-INITIATIVE LEARNING SCENARIO

The task in our learning scenario is to acquire human-
understandable labels for novel objects, learn how to pick
them up and place them in a container on the working
surface. Several grasping primitives are known to the system
but their association to the objects is not. Through a dialog
system and speech recognition, the human partner is collab-
orating with the robot in a peer-to-peer fashion to provide
missing knowledge and error correction.

A. Dialog Shaping Strategy

As outlined before, we would like the robot to guide
the user, particularly at the beginning of an interaction.
Therefore, we have chosen a bottom-up strategy to drive the
robots interest, as this requires no interaction history. Many
potential bottom-up features exist and we have architected
the system to be extensible in this respect.

The first implementation is based on visual salience, a
well-established feature to determine interesting objects in
the robot’s visual field [14]. It provides a ranking (cf section
II-D) of interaction targets, which the robot may ask about
to start the interaction.

To disambiguate its focus of interest, the robot produces
appropriate gesture (such as pointing), when asking for an
object label. This allows us to bootstrap the dialog without
knowledge of object attributes by using the robots embodi-
ment. Last, but not least, the robot provides verbal feedback
about its goal during motor activities.

For interaction with inexperienced users, we consider the
structure provided by the robot to be the most important
factor. However, the human tutor often has helpful comments
or may detect errors earlier than the robot. For these cases,
the support for mixed-initiative allows the user to actively
engage in the robot’s action at any time.

B. System Description

The hardware used for the interaction scenario is shown in
figure 1. It is a bi-manual, fixed setup that affords complex
grasping and manipulation capabilities. To achieve a robot
capable of interacting with a human in a natural way, a
number of perception and dialog components are needed
in addition to the robot control software. An overview of
the components present is given in figure 3 and the activity
diagram showing their interaction is shown in figure 2. We
will first give an overview of the whole system, before
describing some components in detail. The system is built
using the XCF middleware toolkit [3].
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Fig. 3. System Components.

The system is composed of three major parts: Perceptual
analysis, task generation (“initiative”) and dialog-oriented
task execution. These three parts communicate exclusively
through events, where sink components register for event
types they are capable of handling. Their interaction is shown
in figure 2, and described in the following.

The dialog shaping strategy occurs in the perceptual and
initiative parts of the “system-level” lane: Visual analysis cre-
ates events describing interesting regions (“interest items”)
which are then ranked and proposed as new dialog actions.
See section II-D for details.
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Fig. 2. UML 2.0 System Activity Diagram. Note that components execute in parallel and communicate using event signals, facilitating extensibility in
the proposed system. Different input modalities are mapped to different task types to realize mixed-initiative.

Parallel to that, user input is always possible and handled
in the “user-level” lane. It is important to note that user
utterances may serve different purposes: For example, they
may be replies to robot questions or commands. See section
II-E for more information.

Task execution and coordination is the main responsibility
of the “dialog” part. Activity in this part occurs both ver-
bally (replies, questions, progress feedback) and non-verbally
(pointing and grasping). The main point here is that coor-
dination between various components and progress in sub-
tasks is coordinated through the Active Memory [15], which
stores task descriptions and notifies participating components
when they are updated during execution. Thereby, the various
components do not have to directly know each other but
simply provide and receive information items.

Objects are grasped using one out of three basic grasp
prototypes, as shown in figure 4, created from a previ-
ously developed algorithm [16]. Pick-and-Place operations
are coordinated using hierarchical state machines, which
parameterize appropriate low-level robot controllers [17].

C. Perceptual Analysis

Perceptual analysis is multi-modal, including speech,
vision and proprioception. Speech is recognized by the
ESMERALDA speech recognizer [18], with speaker-
independent acoustic model, and a situated speech-
understanding component [19].

Visual analysis employs standard components for saliency,
blob detection and object recognition. Please note that ini-
tially, object recognition is untrained and thus only salience

and blob detection will produce events. Saliency computation
is based on a psychologically motivated algorithm [14],
which would also work with much more cluttered scenes.
Proprioception is used to estimate the robots own position in
the visual field, so that we may ignore self-generated events.

D. Saliency-Driven Task Proposal

As previously mentioned, the robot should help structure
interaction by pointing out what it is interested in. In our
current scenario that is “grasping of visually interesting
regions in the robot’s immediate vicinity”. Starting point for
the task selection process is the ranking of visual regions, to
select an interaction target. Besides its saliency value Si, each
region may be associated to additional context information,
i.e. the object label and required grip prototype.

The exact formula for the ranking function is extensible
and should depend on which tasks the system supports. At
the moment, we fuse bottom-up (salience) and top-down
(object/grip label) information using the formers numerical

(a) power grasp (b) two finger precision (c) all finger precision

Fig. 4. Basic Grasp Primitives



value and a binary indicator variable for the latter: With
salience Si of the i’th object in [0, 1] and Iij = 1 if the
j’th piece of information is available, 0 otherwise, the top
region is given by argmaxi

(
Si +

∑
j Iij

)
.

To acquire information through the dialog, three differ-
ent task types exist: “acquire label”, “acquire grip type”
and “grasp”. In the beginning the robot only has salience
information available, so it simply selects the region with
highest salience as its focus and emits an “acquire label” task.
Having received a label, more components become active and
their information is fused based on the spatial overlap of their
corresponding regions. The task initiative component then
sequentially requests the information that is still missing by
emitting the appropriate tasks. See figure 5 for an illustration.

RegionsSaliency Interest-Region

Fig. 5. Example illustrating the fusion of the object detector’s and salience
module’s outputs. The top ranked “Interest-Region” is highlighted.

E. Interactive Learning Framework

The interactive learning framework is realized by a multi-
modal dialog system based on grounding [20]. Its extensible
architecture can use both human and system generated task
initiative proposals for mixed-initiative interaction. Dialog
examples of the current system are given in table I.

Initiative Interaction goal Example subdialog
Robot Acquire label R: What is this? 〈pointing〉

H: That is a banana.
Acquire grip R: How can I grasp the banana?

H: With the power grasp.
Grasp R: I am going to grasp the banana.

R: I start grasping now.
R: 〈grasping〉
R: OK!

Human Command grasping H: Grasp the apple!
R: OK. I start grasping now.
R: 〈grasping〉
R: OK!

Interrupt system H: Stop!
R: OK, I’ll stop. 〈stops grasping〉
R: OK!

TABLE I
EXAMPLE DIALOGS FOR BOTH INITIATIVE TYPES.

For effective interactive learning, a framework has to fulfill
two objectives: Constrain what is to be learned and focus
the attention of the learner [9]. While usually the human
provides structure, we achieve it by using robot initiative,
with the benefits outlined in the introduction. For example,
the learning task (label or grip) is constrained through the
robot’s question and the focus of attention is given initially
through deictic gesture and later, after learning, also by
verbal reference.

One consequence of reversing the roles is that the robot
becomes more autonomous, which naturally has implications
for interaction. To let the user know what is happening, the
autonomous activities of the robot must be made transpar-
ent [21]. We address this by providing verbal feedback during
longer motor activities. For example, during grasping, we
announce the goal before moving the arm, the beginning of
the grasp when in position and acknowledge when the object
has been placed (compare table II, lines 9-15).

Communication of the robot’s hypotheses is provided to
enable the user to control the learning process. This is
primarily done by repeating the information learned (see
table II, lines 5 and 8).

Another important issue is communication of the robot’s
expectations. Of course, the best solution would be to design
the interaction in a way that the human intuitively meets
the expectations. As the experiment showed, this is achieved
with the robot’s question for the object label (see section IV-
B). However, if the robot has expectations that are not that
obvious, they are communicated explicitly. For example, the
robot can pass the bowl to the human and it needs to know
when the human is ready to accept it, which is requested
verbally during the activity.

Last, but not least, human-initiative is handled by the
learning framework depending on the current interaction
state. We distinguish replies, commands and interruptions.
Replies are based on robot initiative and may only occur after
robot initiative. Commands propose tasks such as grasping,
and are accepted when the system is idle. Otherwise, the
dialog provides helpful feedback on when it will become
possible again. Interruptions, such as “Stop” pertain to the
currently executed task and are immediately applied, e.g. by
interrupting motor control.

III. SYSTEM EVALUATION

From the issues identified in the introduction we have
two main items to evaluate. Firstly, the questions posed by
the system should give users a better idea of what to do
next, particularly at the beginning. Secondly, the guidance
provided by the system should be well understood by the
human partner and trigger more predictable answers. As an
aside, we were interested in how humans combine modalities
when demonstrating grasps to the robot.

The evaluation has been performed as a video-study,
where an interaction with an experienced test person was
recorded and shown to the test subjects. During the video,
questions are posed to the subjects, as shown in table III. The
questions are asked after the robot has acted, but prior to the
moment where the recorded person answers, to guarantee
an unbiased answer. We can then compare user’s reactions
in the varying interaction situations. The difference in the
responses for the various situations can give us insight on the
general effectiveness of the guidance (our first item), and the
variability in the responses indicates whether the constraints
increase predictability (our second item).

The advantage of a video study like this one is that
diverse interactions may be explored without frustrating the



Initiative Speaker Intention Verbal Unit Non-verbal Unit Comment
1 Human Human - Hello, robot. -
2 Robot Greet Hello! -
3 Robot Robot Learn label What is this? Point at object
4 Human - . This is a banana. -
5 Robot Confirm hypothesis. Banana. OK. -
6 Robot Robot Learn grip How can I grasp the banana? -
7 Human - . With power grasp. -
8 Robot Confirm hypothesis. Power grasp. OK. -
9 Robot Robot Explore grip I am going to grasp the banana. -
10 Robot Confirm OK, I start grasping now. Grasp Grasp will fail
11 Human Human - Stop! Release
12 Robot Abort action OK, I stop. -
13 Human Human - Grasp the banana! -
14 Robot Confirm start OK, I start grasping now. Grasp
15 Robot Confirm end OK! Grasp successful
16 Human Human - Good bye! -
17 Robot Say goodbye Good bye. -

TABLE II
EXAMPLE DIALOG

Time (mm:ss) Situation Question
00:07 Scenario shown What do you think could

this robot do?
How would you instruct
this robot?

00:29 “What is that?” What would you do now?
00:47 “How can I grasp that?” What would you do now?
00:51 “Beg your pardon?” How would you correct?
03:40 Failed to grasp apple. What would you do now?
06:33 Points at empty position. What is happening?

TABLE III
STUDY PLAN

subjects, because they can show their intuitive behavior
first, which may or may not be supported by the system,
yet, and then observe continue further interactions based
on the behavior the experienced test subject demonstrates.
The obvious disadvantage is that results may not directly
generalize to direct interaction. However, video studies have
been shown to generalize well when correctly analyzed [22].
Therefore, we consider the benefits of early feedback to
outweigh the potential drawbacks and use video studies as
one tool for experiment-driven system design.

A. Experimental Setup

In the experiment, the user and the robot collaboratively
identify objects lying on the table, coordinate how to grasp
an object and then the robot places them in a bowl (see
figure 6). Ten test subjects were recruited from visitors
to a university wide outreach event and thus had varying
backgrounds and ages. They did not receive any instruction
whatsoever but were told that we intend to broaden the
interaction capabilities of the robot and that any action they
would like to take was acceptable and of interest to us.

The video shown includes several dialog acts with varying
initiative, changes to the scenario and several instances of
successful error recovery. The duration of the interaction as
shown to the subjects was seven minutes. We videotaped
the subjects during the experiment and had them take a
short questionnaire at the end. A single run, including the
questionnaire, took from 20 to 30 minutes. The study plan,
with timing information is shown in table III.

Fig. 6. Situation for “What is that?”, as shown in the experiment video.
The robot is pointing at the banana. The camera angle is slightly different
from the real viewpoint but we did not see complications due to that.

IV. RESULTS

This section presents our findings on the effectiveness
of dialog structuring and the implications for the design of
robotic systems that learn from humans.

A. Initial System Description

The first situation analyzed was a static image of the
scenario (similar to figure 1), where subjects were asked to
speculate on the systems interaction capabilities by appear-
ance alone. All subjects could deduce the task to be “placing
objects into the bowl”. They also agreed in that the system
was capable of vision, grasping and speech recognition, even
though no direct indication of that was given.

After that, however, the descriptions of how they might
attempt to interact with the system varied widely and no
clear pattern emerged. For example, one person said “Take
the green apple and put it in the blue bowl” while another
provided “I would explain that it should combine the four
things” and a third said “Make a fruit-salad!”. A summary



of the variations is shown in table IV. Apart from variations
in terminology and concepts, we consider it particularly
interesting that half the subjects only used meta-commentary,
such as in the second example above, and did not provide any
concrete command, even though the experimenters prompted
them multiple times. This may have been due to the study
setup, but as we can see in later parts, subjects did produce
concrete example commands when it was clear to them what
they could say.

Label Domain fruit name “object”
80% 20%

Container Label “bowl” “dish” none
40% 40% 20%

Attributes Used none Shape Color Size
50% 40% 30% 10%

Subtask none sorting
70% 30%

Commands Given none “put a in b “put all...” “sort”
50% 20% 20% 10%

TABLE IV
PERCENT OF SUBJECTS USING A PARTICULAR CONCEPT

B. Reactions to System Guidance
In contrast, answers to the “What is that?” question by

the robot were considerably more consistent, as shown in
table V. Only three constructions were used in total and they
are all slight variations of a single sentence. The subjects
apparently found it easy to answer this question, as they
needed only an average five seconds to answer (measured
from end of question to end of answer). Only one subject
required clarification.

We also looked at an error condition, where the system
pointed at an empty spot, and here two variations occur,
roughly in equal proportion: Asking for clarification and
giving the name of the closest object. The latter were always
accompanied by comments expressing that an error occurred
and thus recognizably different from regular replies.

Situation Answer Percent of Subjects
“What is that?” “That is a...” 70%

“a ...” 20%
“a yellow ...” 10%

empty pointing “What do you mean?” 50%
(pointing wrong) “That is a ...” 40%
“nothing” 10%

TABLE V
REPLIES AFTER SYSTEM INITIATIVE

C. Description of Grasping
One of the questions used during the trial was “How do I

grasp the ’object’?”. The robot did not provide any indication
on which aspect of grasping it wants described, hence this
question is considerably more open than the others. The
motivation underlying this question is twofold: Firstly, we
wanted to see how subjects react to unclear guidance and
secondly, we wanted to get uninfluenced results on how
subjects naturally describe grasping. Table VI shows the
aspects used (sometimes several aspects were given). Results
were very clear: Subjects took an average of 19 seconds to
answer, compared to just 5 seconds for the label question.

Aspect Described Percent of Subjects
Effector position relative to object 30%
Trajectory of effector 20%
Fingers to Use 40%
Force to Use 30%
Grasp point on object 20%

TABLE VI
ASPECT OF GRASPING DESCRIBED.

D. User Initiative

An example of user initiative can be observed in a situation
where the robot fails to grasp the object. These utterances are
syntactically more varied, particularly when users provide
corrections, see table VII. However, they are conceptually
much more straightforward than the initial descriptions and
we consider it promising that users do provide verbal com-
mentary relating to grasp parameters, such as “rounder” or
“softer”, which are complementary to visual demonstration.

Answer % of Subjects
“Try again” 40%
“Grasp the ...” 20%
Grasp corrections (“rounder”, “both hands”, “softer” ) 40%

TABLE VII
USER COMMANDS AFTER FAILED GRASP

E. Discussion

Speculation behavior. From the initial speculations of
the users, we can see that subjects tend to make judgments
of the sort “because multiple colors appear, the system
can differentiate colors”, thus assuming capabilities that the
system may not actually support. In our case, they assumed
object labels to be known, which was not the case and would
have been a problem if not for the system’s guidance. This
illustrates the (sometimes accidental) influence of appear-
ances, and a dialog system should be prepared to address
such preconceptions.

Detecting subject uncertainty. It was notable that sub-
jects sometimes used meta-commentary (“I would have...”)
and sometimes gave very explicit answers, despite the same
amount of prompting by the experimenters. We surmise that
when the subjects used meta-commentary, they would have
been unsure of what to do in a real situation.

In contrast, responses after guidance by the system were
extremely consistent, almost to the point of being exact rep-
etitions. Even reactions to errors were surprisingly consistent
and corrections were provided without hesitation. We expect
that these results will generalize due to the great consistency
between subjects, even though the test group comprised just
ten subjects.

From this we can conclude that task-structuring by the
robot is necessary and should include not just verbal help
but also contextual constraints. Our results indicate that the
proposed method achieves this for object reference but that
grasp descriptions need more guidance.

Discourse structuring Another result from the responses
is that a dialog system is required and simple “question-
reply” not sufficient: Requests for clarification occur fre-



quently and user initiative plays an important role for error
detection. Additionally, even though utterances are relatively
consistent conceptually, there are still considerable syntacti-
cal variations present.

The responses by the test subjects also show that the
interaction as currently implemented would not be their
preferred mode of interaction in some cases. The preferred
alternatives were relatively few and consistent, so that they
can be implemented in the next iteration of the system.

An aspect that remains open is how to let users know when
they may interrupt the system, with additional commentary
or error feedback. The study design prompted them, but in
a real situation, other cues are necessary. This is basically
a social interaction issue and it would thus be interesting to
add more social feedback mechanisms to the interaction.

V. CONCLUSION

We have presented an interactive robot-learning scenario
that supports inexperienced users through task-structuring
and proposed a structuring strategy based on saliency and
the dialog history. Results indicate that our system creates
interactions consistent between users while keeping the abil-
ity for user initiative.

The resulting interaction is also much closer to the tech-
nical capabilities of the system than an unstructured dia-
log, without incurring the constraints of traditional system-
initiative approaches. A mixed-initiative dialog system can
thus provide valuable clues to the user for interacting with
the system and make its capabilities more transparent.

Very promising results have been seen regarding verbal
commentary during demonstration of gesture and during
error feedback. The provided input is complementary to
visually available information and thus provides a valuable
additional clue for learning. We plan to explore this avenue
in future work, to tightly integrate dialog with the learning
of manipulative actions and regarding error feedback, based
on the results presented.

To summarize, we have shown that a bottom-up initiative
can provide dialog structure to guide users during interaction
with the robot and significantly improve interaction success,
even without additional instruction. Thereby, we have signif-
icantly lowered the bar for interaction with the robot system.
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