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General aggregation problems and social
structure: A model-theoretic generalisation of

the Kirman-Sondermann correspondence∗

Frederik Herzberg†‡
Daniel Eckert§

Abstract
This article proves a very general version of the Kirman-Sondermann

[Journal of Economic Theory, 5(2):267�277, 1972] correspondence by
extending the methodology of Lauwers and Van Liedekerke [Journal of
Mathematical Economics, 24(3):217�237, 1995]. The paper �rst proposes
a uni�ed framework for the analysis of the relation between various
aggregation problems and the social structure they induce, based on �rst-
order predicate logic and model theory. Thereafter, aggregators satisfying
Arrow-type rationality axioms are shown to be restricted reduced product
constructions with respect to the �lter of decisive coalitions; an oligarchic
impossibility result follows. Under stronger assumptions, aggregators
are restricted ultraproduct constructions, whence a generalised Kirman-
Sondermann correspondence as well as a dictatorial impossibility result
follow.

Key words: Arrow-type preference aggregation; judgment aggregation;
systematicity; model theory; �rst-order predicate logic; �lter; ultra�lter;
reduced product; ultraproduct
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1 Introduction
The problem of collective decision making as formulated in Arrow's [1] famous
impossibility theorem is a major puzzle in social philosophy, especially in the
light of the di�cult relation between power and rationality. According to
Habermas [10], power neutrality is even a precondition of collective rationality.
Recent extensions of the social choice literature from the aggregation of
preferences to judgment aggregation however suggest that rationality even in
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the weakest possible sense of logical consistency bears a close relation to power:
In fact, the literature on judgment aggregation (for a survey, cf. List and Puppe
[17]) shows that the structure of a collective decision problem (essentially via
the logical interconnections between the propositions in its agenda) determines
the social structure (given by the structure of the set of decisive coalitions) and
that this power structure can be as asymmetric as a dictatorship.

This relation between aggregation problems and the power structure they
induce is well known since Kirman and Sondermann [13] established the
correspondence between aggregation functions and ultra�lters on the set of
individuals and has been systematically explored in the use of ultra�lters in
the proof of Arrow's theorem (for a survey, cf. e.g. Monjardet [18]) and its
analogues in judgment aggregation (cf. Dietrich and Mongin [5] as well as
Eckert and Klamler [14]).1 However, the natural foundation of this relation in
model theory, namely via the ultraproduct of models, has only be explored in
a seminal paper by Lauwers and Van Liedekerke [15] and some recent sequels
(e.g. Herzberg [11]).

In this paper we show that �rst-order predicate logic and model theory
provide a natural uni�ed framework to study the relation between aggregation
problems and social structure in great generality, including the aggregation of
preferences, propositional judgments and modal propositional judgments. This
framework can also be seen as the most natural one for the logical analysis of
mathematical models like the ones used in social choice theory.

We shall then characterise aggregators satisfying Arrow-type rationality
axioms: We prove that the collection of decisive coalitions forms a �lter � and
even an ultra�lter under stronger assumptions. Arrow-type aggregators map a
given pro�le of models to a restriction of the reduced product. Under stronger
assumptions, aggregators are in a one-to-one correspondence with ultra�lters.
As corollaries for �nite electorates, we obtain oligarchic and, under stronger
assumptions, dictatorial impossibility results.

This paper can be seen as a natural continuation of the visionary article by
Lauwers and Van Liedekerke [15] (with a recent correction by Herzberg et al.
[12]), who were among the �rst to study aggregation problems using �rst-order
predicate logic and model theory.2

2 A uni�ed framework for general aggregation
theory

Let A be a countable set. Let L be a language consisting of at most countably
many predicate symbols Ṗn, n ∈ N, and constant symbols ȧ for all elements a
of A.3 The arity of Ṗn will be denoted δ(n), for all n ∈ N.

1Earlier approaches to judgment aggregation also based on the analysis of the structure of
the sets of winning coalitions are due to Nehring and Puppe [20, 19].

2The work of Lauwers and Van Liedekerke has an early precursor in a paper by Rubinstein
[21], who was presumably the �rst author to systematically explore the methodological value
of mathematical logic for generalisations of results in social choice theory (in this case the
extension to single pro�le analogues of classical results involving social welfare functions).

3The assumption that L is countable will not be used, but it is imposed for pedagogical
reasons: For, we shall use the completeness of the L-predicate calculus, and if L were
uncountable, Henkin's completeness proof would have to invoke either Zorn's Lemma or the
Löwenheim-Skolem theorem. The exposition of the required elements of predicate logic and
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Let S be the set of atomic formulae in L. Let T be the Boolean closure of
S, i.e. the closure of S under the logical connectives ¬̇, ∧̇, ∨̇. The elements of T

are called test sentences, and the elements of S are called basic test sentences.
Let T be a consistent set of universal sentences in L.4 (As part of the

aggregator axioms, an additional assumption on T and T will be imposed.)
The relational structure A = 〈A, {Rn : n ∈ N}〉 with Rn ⊂ An for each

Rn is an interpretation of L if the arities of the relations Rn correspond to the
arities of the predicate symbols Ṗn. In this case, A will be called an L-structure.
It is a model of the theory T if A |= ϕ for all formulae ϕ ∈ T , i.e. if all formulae
of the theory hold true in A.

Let Ω be the collection of models of T with domain A. The restriction of a
model A ∈ Ω is the L-structure that is obtained by restricting the interpretations
of the relation symbol to the domain B ⊆ A; it is denoted resBA.

We assume that there are two sentences in S, henceforth denoted µ, ν ∈ S,
such that each of µ∧̇ν, µ∧̇¬̇ν and ¬̇µ∧̇ν is consistent with T , in symbols,

T ∪ {µ∧̇ν} 6` ⊥, T ∪ {µ∧̇¬̇ν} 6` ⊥, T ∪ {¬̇µ∧̇ν} 6` ⊥ (1)

(wherein ⊥ is shorthand for φ∧̇¬̇φ for some sentence φ). This assumption
already appears in the paper of Lauwers and Van Liedekerke [15]. Its analogue
in judgment aggregation can be found in the various assumptions about richness
or logical connectedness of the agenda.

We assume that the following propositions hold for all L-structures A, A1,A2:

(∀λ ∈ S (A1 |= λ ⇔ A2 |= λ)) ⇒ A1 = A2. (2)
A |= T ⇒ resAA ∈ Ω (3)

∀λ ∈ T (A |= λ ⇔ resAA |= λ) . (4)

Remark 2.1. If S is the set of all atomic L-formulae, then the implication (2)
holds for all A1, A2 with domain A.

Proof by contraposition. If A1 6= A2 for A1 =
〈
A,

{
R1

n : n ∈ N
}〉

and A2 =〈
A,

{
R2

n : n ∈ N
}〉

, then R1
n 6= R2

n for some n ∈ N. Since A1, A2 ∈ Ω,
both R1

n and R2
n are (di�erent) subsets of Aδ(n). Hence, there exists some

〈a1, . . . , aδ(n)〉 ∈ Aδ(n) such that either 〈a1, . . . , aδ(n)〉 ∈ R1
n and 〈a1, . . . , aδ(n)〉 6∈

R2
n or 〈a1, . . . , aδ(n)〉 6∈ R1

n and 〈a1, . . . , aδ(n)〉 ∈ R2. In both cases

〈a1, . . . , aδ(n)〉 ∈ R1
n 6⇔ 〈a1, . . . , aδ(n)〉 6∈ R2

n

hence
A1 |= Ṗn(ȧ1, . . . , ȧδ(n)) 6⇔ A2 |= Ṗn(ȧ1, . . . , ȧδ(n)),

although Ṗn(ȧ1, . . . , ȧδ(n)) ∈ S.

Remark 2.2. If T is universal, then the implication (3) holds for all L-
structures A.

Proof. If T is universal and A |= T , then resAA |= T and thus resAA ∈ Ω.
model theory follows the textbook by Bell and Slomson [2].

4A sentence is universal if it (in its prenex normal form) has the form (̇∀̇v̇k1 )̇ · · · (̇∀̇v̇km )̇φ
for some formula φ that does not contain any quanti�ers.
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Remark 2.3. If S is a set of atomic formulae, then the equivalence (4) holds
for any L-structure A.

Proof. If S only consists of atomic formulae with constant symbols for elements
of A, clearly

∀λ ∈ S (A |= λ ⇔ resAA |= λ) .

Since T is just the Boolean closure of S, the equivalence (4) is established.

Elements of ΩI will be called pro�les.
An aggregator is a map f whose domain dom(f) is a subset of ΩI and whose

range is a subset of Ω.
For all λ ∈ T and all A ∈ ΩI , we denote the coalition supporting λ given

pro�le A, by
C(A, λ) := {i ∈ I : Ai |= λ} .

Let us �x an aggregator f , and let us also �x SP , SS ⊆ T (the signi�cance of
the subscripts will be explained later). Consider the following axioms:

(A1). dom(f) = ΩI .

(A1'). There exist models A1,A2,A3 ∈ Ω such that

1. A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, A3 |= ¬̇µ∧̇ν, and
2. {A1, A2,A3}I ⊆ dom(f).

(A2). For all A ∈ dom(f) and all λ ∈ SP , if f(A) |= λ, then C(A, λ) 6= ∅.
(A3). For all A, A′ ∈ dom(f) and all λ, λ′ ∈ SS such that C(A, λ) = C(A′, λ′),

one has f(A) |= λ if and only if f(A′) |= λ′.

(A1) is the axiom of Universality. Axiom (A2) is a generalised Pareto
Principle. (A3) is a generalised form of the axiom of Systematicity, which itself
is a strong variant of the axiom of Independence of Irrelevant Alternatives.5

If f satis�es (A2) and (A3), we shall call the sets SP and SS , respectively,
the Pareto domain, and the systematicity domain of f .

Axiom (A1') is simply a weak version of (A1): More precisely, (A1) implies
(A1') under the assumption of (a), as the following remark shows.

Remark 2.4. If there exist µ, ν ∈ S such that µ∧̇ν, µ∧̇¬̇ν, ¬̇µ∧̇ν are each
consistent with T , then there already exist three pairwise di�erent models
A1, A2, A3 ∈ Ω such that A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, and A3 |= ¬̇µ∧̇ν.

5Systematicity vacuously implies Independence of Irrelevant Alternatives. The converse is
true under additional hypotheses: In the preference aggregation framework, the combination
of Independence of Irrelevant Alternatives and the Pareto Principle implies Systematicity if the
individual preferences are complete and quasi-transitive (cf. Lauwers and Van Liedekerke [15,
Section 6, p. 232]). In the judgment aggregation framework, the combination of Independence
of Irrelevant Alternatives and the Pareto Principle implies Systematicity under an additional
assumption on the logical interconnections of the propositions in the agenda known as total
blockedness (cf. List and Pettit [16], Dietrich and Mongin [5, Lemma 5], Klamler and Eckert
[14, Lemma 15]).
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Proof. Since each of the three test sentences µ∧̇ν, µ∧̇¬̇ν, ¬̇µ∧̇ν is consistent with
T , the completeness of predicate logic yields models B1,B2, B3 such that B1 |=
T ∪ {µ∧̇ν}, B2 |= T ∪ {µ∧̇¬̇ν}, and B3 |= T ∪ {¬̇µ∧̇ν}. De�ne A1 := resAB1,
A2 := resAB2, and A3 := resAB3. By implication (3), A1,A2, A3 ∈ Ω, and by
equivalence (4), we have A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, and A3 |= ¬̇µ∧̇ν. Finally, since
the three test sentences are pairwise inconsistent, the three models A1, A2, A3

must be pairwise di�erent.

An aggregator f will be called Arrow-rational if and only if the axioms
(A1),(A2),(A3) are satis�ed for SP = SS = T; f will be called weakly Arrow-
rational if and only if the axioms (A1'),(A2),(A3) are satis�ed.

We denote by AR the set of all Arrow-rational aggregators, and by AR′

the set of all weakly Arrow-rational aggregators. Since (A1) implies (A1') (see
Remark 2.4), AR ⊆ AR′.

Given an aggregator f , we de�ne the set of decisive coalitions by

Df := {C(A, λ) : A ∈ dom(f), λ ∈ SP ∩ SS , f(A) |= λ} .

Remark 2.5. If f satis�es (A3), then for all A ∈ dom(f) and λ ∈ SP ∩ SS,

C(A, λ) ∈ Df ⇔ f(A) |= λ.

Proof. Suppose f satis�es (A3), let A ∈ dom(f) and λ ∈ Ss. By de�nition,
f(A) |= λ implies C(A, λ) ∈ Df . Conversely, if C(A, λ) ∈ Df , then there exist
A′ ∈ dom(f) and λ′ ∈ T with f(A′) |= λ′ and C(A, λ) = C(A′, λ′). As f satis�es
(A3), this means f(A) |= λ.

This framework is su�ciently general to cover the cases of preference
aggregation, propositional judgment aggregation, and modal aggregation:

• For the case of preference aggregation, the centrality of binary relations
makes it particularly natural to express preferences by a binary predicate
in �rst order logic (cf. Rubinstein [21], Lauwers and Van Liedekerke [15]).
A more elaborate formalisation and complete axiomatisation of Arrow's
theorem in �rst order logic was recently given by Grandi and Endriss [7].

• For propositional judgment aggregation à la Dietrich and List [3], one lets
L have a single unary predicate Ḃ, modelling a belief operator. The set
A will be the agenda. The interpretation of Ḃȧ is �a is accepted�. (Thus,
the interpretation of Ai |= Ḃȧ is �under pro�le A, individual i accepts
a�, and the interpretation of f(A) |= Ḃȧ is �under pro�le A, a is socially
accepted�.) T can be any universal theory in that language.

• For modal propositional judgment aggregation, one simply uses the
reduction of modal logic to �rst-order predicate logic, where the
individuals correspond to possible states of the world. Thus, the set A
will be the set of states of the world. Let there be in L one predicate Mp

each for the elements p of the agenda, modelling a modal belief operator
with world argument and proposition index. Let there also be a binary
predicate Ṙ in L, denoting the accessibility relation. The interpretation
of Ṙ(ȧ, ḃ) will thus be �b is accessible from world a�. The interpretation
of Ṁpȧ will be �proposition p is accepted in world a�. (The interpretation
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of Ai |= Ṁpȧ is thus �under pro�le A, individual i accepts p in world a�,
and the interpretation of f(A) |= Ṁpȧ is �under pro�le A, p is socially
accepted in world a�. The modal operator ¤ will then not be an operator
in the strict sense any longer, but in can be de�ned as a family of formulae,
indexed by p:

¤pv̇0 :≡ (̇∀̇v̇1)̇(̇Ṙ(v̇0, v̇1) → Ṁpv̇1)̇

The interpretation of ¤pȧ is �p is accepted in all worlds which are accessible
from world a�, or just �p is necessarily accepted in world a�. T can be any
universal theory in that language, which includes the axioms of the modal
logical system employed (such as K, S4, S5, etc.).

3 Characterisation of aggregators. Impossibility
results

In order to further analyse and characterise aggregators (in particular, through
corresponding ultra�lters and related impossibility results), we need to make
assumptions on the expressivity of the intersection of the Pareto domain and
the systematicity domain of f . (In the judgment-aggregation terminology,
these axioms would classify as assumptions about the richness and logical
connectedness of the agenda, cf. e.g. Dietrich and Mongin [5] or Dietrich and
List [4].)

(a). The Boolean closure of {µ, ν} is a subset of SP ∩ SS .

(a'). There exist sentences λ1, λ2, λ3, λ4, λ5 ∈ SP ∩ SS , such that

1. T ` (̇λ1↔̇µ∧̇ν )̇,
2. T ` (̇λ2↔̇µ∧̇¬̇ν )̇,
3. T ` (̇λ3↔̇¬̇µ∧̇ν )̇,
4. T ` (̇λ4↔̇µ)̇,
5. T ` (̇λ5↔̇ν )̇

(b). S ⊆ SP ∩ SS .

Clearly, (a') is a weak version of (a). The assumptions (a) and (b) are
satis�ed if SP = SS = T. Thus, if f ∈ AR, then (a),(a'),(b) hold.

Now we verify the (ultra)�lter properties of Df

De�nition 3.1. A collection D ⊆ 2I of coalitions is a �lter on I if
F1. ∅ /∈ D
F2. For all C ∈ D and C ′ ∈ 2I , if C ⊆ C ′ then C ′ ∈ D (closure under

supersets)
F3. For all C, C ′ ∈ D C ∩ C ′ ∈ D (closure unter intersections)
A �lter D ⊆ 2I is an ultra�lter if for all C ∈ 2I either C ∈ D or I\C ∈ D

but not both.

Lemma 3.2. Let f ∈ AR′.

1. If f satis�es (a'), then Df is a �lter.
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2. If f satis�es (a), then Df is an ultra�lter.

Proof. We verify the (ultra)�lter properties for Df :

• Since f satis�es (A2), Df cannot contain ∅.
• Next we prove that Df is closed under supersets; we will need this result

in order to show that Df is closed under intersections. Let C ∈ Df and
C ′ ⊆ I with C ⊆ C ′. We shall show that C ′ ∈ Df . Since f satis�es (A1'),
the domain of f contains a pro�le A such that

∀i ∈ C Ai |= µ∧̇ν

∀j ∈ C ′ \ C Aj |= µ∧̇¬̇ν

∀k ∈ I \ C ′ Ak |= ¬̇µ∧̇ν.

Note that C (A, µ∧̇ν) = C ∈ Df , so f(A) |= µ∧̇ν due to Remark 2.5. In
particular, f(A) |= µ, whence readily C (A, µ) ∈ Df . On the other hand,
however, C ′ = C (A, µ) by the choice of A. Summarising this, we arrive
at C ′ ∈ Df .

• Now we prove that Df is closed under intersections. Let C,C ⊆ I. Again
since f satis�es (A1'), there must be a pro�le A ∈ dom(f) such that

∀i ∈ C ∩ C ′ Ai |= µ∧̇ν

∀j ∈ C \ (C ∩ C ′) Aj |= µ∧̇¬̇ν

∀k ∈ I \ C Ak |= ¬̇µ∧̇ν.

Then C = C(A, µ) ∈ Df , so f(A) |= µ by Remark 2.5. Also C ′ ⊆ C(A, ν)
and C ′ ∈ Df , therefore C(A, ν) ∈ Df , as we have already shown that Df

is closed under supersets. Again by Remark 2.5, we obtain f(A) |= ν, too.
Thus, f(A) |= µ∧̇ν, therefore C ∩ C ′ = C(A, µ∧̇ν) ∈ Df .

• Let C ⊆ I, and let us show that C ∈ Df or I \ C ∈ Df . Since f satis�es
(A1'), the domain of f contains a pro�le A such that

∀i ∈ C Ai |= µ∧̇¬̇ν

∀j ∈ I \ C Aj |= ¬̇µ∧̇ν.

Then Ai |= (̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇ for all i ∈ I, therefore Ai |= ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇
for no i ∈ I. In other words,

C
(
A, ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇

)
= ∅,

whence
f(A) 6|= ¬̇(̇(̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇)̇

as f satis�es (A2). Therefore,

f(A) |= (̇µ∨̇ν )̇∧̇¬̇(̇µ∧̇ν )̇.

This means that either f(A) |= µ or f(A) |= ν, hence either C(A, µ) ∈ Df

or I \ C = C(A, ν) ∈ Df . However, I \ C = C(A, ν) and C = C(A, µ) by
construction of A. Hence, either C ∈ Df or I \ C ∈ Df .

7



Remark 3.3. If D is a �lter, then

resA

∏

i∈I

Ai/D |= λ ⇔ C(A, λ) ∈ D

for all A ∈ ΩI and λ ∈ S.
If D is an ultra�lter, then

resA

∏

i∈I

Ai/D |= λ ⇔ C(A, λ) ∈ D

for all A ∈ ΩI and λ ∈ T.

Proof. Let D be a �lter, let A ∈ ΩI and let λ ∈ T. By equivalence (4),

resA

∏

i∈I

Ai/D |= λ ⇔
∏

i∈I

Ai/D |= λ.

Now, if λ ∈ S, then

resA

∏

i∈I

Ai/D |= λ ⇔ {i ∈ I : Ai |= λ} ∈ D

by de�nition of the reduced product, and if D is an ultra�lter, then

resA

∏

i∈I

Ai/D |= λ ⇔ {i ∈ I : Ai |= λ} ∈ D

holds for any λ ∈ T by �o±'s theorem.

Lemma 3.4. Let f ∈ AR′. If (a') and (b) are satis�ed, then f(A) =
resA

∏
i∈I Ai/Df for all A ∈ dom(f).

Proof. By Lemma 3.2, Df is a �lter, whence resA

∏
i∈I Ai/Df is well-de�ned for

all A ∈ dom(f). Let us now �x arbitrary A ∈ dom(f) and λ ∈ S. By Remark
3.3,

resA

∏

i∈I

Ai/Df |= λ ⇔ C(A, λ) ∈ Df .

Therefore, due to Remark 2.5,

resA

∏

i∈I

Ai/Df |= λ ⇔ f(A) |= λ.

Since λ ∈ S was arbitrary, we deduce by means of implication (2) that f(A) =
resA

∏
i∈I Ai/Df .

Lemma 3.5. Suppose D is an ultra�lter, and consider the aggregator
resA

∏
/D, de�ned by

resA

∏
/D : ΩI → Ω, A 7→ resA

∏

i∈I

Ai/D.

Then resA

∏
/D ∈ AR.
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Proof. Let A ∈ ΩI . Clearly, both the ultraproduct
∏

i∈I Ai/D and its restriction
to A are well-de�ned. By �o±'s theorem,

∏
i∈I Ai/D |= T , and by implication

(3), resA

∏
i∈I Ai/D ∈ Ω. Therefore, resA

∏
/D : ΩI → Ω. Let us now verify

the axioms (A1), (A2), and (A3) for resA

∏
/D.

(A1). As we have just seen, resA

∏
/D is well-de�ned on ΩI .

(A2). Let A ∈ ΩI and λ ∈ T such that resA

∏
/D(A) |= λ, that is

resA

∏
i∈I Ai/D. Then, by Remark 3.3, we have C(A, λ) ∈ D, hence

C(A, λ) 6= ∅ as D is an ultra�lter.

(A3). For all A, A′ ∈ ΩI and all λ, λ′ ∈ T such that C(A, λ) = C(A′, λ′), Remark
3.3 entails that resA

∏
/D(A) |= λ if and only if resA

∏
/D(A′) |= λ′.

Let βI denote the set of all ultra�lters on the set I.

Theorem 3.6 (Kirman-Sondermann correspondence (generalised)).
There is a bijection Λ : AR → βI, given by

∀f ∈ AR Λ(f) = Df .

Its inverse is given by

∀D ∈ βI Λ−1(D) = resA

∏
/D,

wherein, as in Lemma 3.5, resA

∏
/D : A 7→ resA

∏
i∈I Ai/D.

Proof. 1. For all f ∈ AR, Df is an ultra�lter by Lemma 3.2, whence the
range of Λ is a subset of βI.

2. D 7→ resA

∏
/D is indeed the inverse of Λ as Lemma 3.4 teaches that

f = resA

∏
/Df , hence Λ−1 (Λ(f)) = f for all f ∈ AR.

3. Since Λ has an inverse, it must be injective. (Indeed, if Λ(f) = Λ(g) for
any f, g ∈ AR, then f = Λ−1 (Λ(f)) = Λ−1 (Λ(g)) = g.)

4. By Lemma 3.5, the range of Λ−1 is contained in AR. Hence, for any D ∈
βI, the aggregator Λ−1(D) is in the domain of Λ, whence D = Λ

(
Λ−1(D)

)
is in the range of Λ. Therefore, Λ is surjective.

As corollary of this result we immediately obtain the well-known
impossibility results for a �nite set of individuals.

We say that f is oligarchic if and only if there exists a �nite subset Mf ⊆ I
such that Df = {J ⊆ I : Mf ⊆ J}. We say that f is dictatorial if and only if
there exists some if ∈ I such that Df = {J ⊆ I : if ∈ J}.
Remark 3.7. Let f be an aggregator, and suppose I is �nite.

1. f is oligarchic if and only if Df is a �lter.

2. f is dictatorial if and only if Df is an ultra�lter.

9



Proof. 1. A collection of subsets of a �nite set is a �lter if and only if it equals
the set of all supersets of its intersection. Thus, Mf =

⋂
Df .

2. A �lter on a �nite set is an ultra�lter if and only if its intersection is a
singleton. Thus, {if} =

⋂
Df .

Corollary 3.8 (Impossibility theorem). Suppose I is �nite, and let f ∈
AR′. If f satis�es (a'), then f is oligarchic. If f satis�es (a), then f is
dictatorial. In particular, f is dictatorial if f ∈ AR.

4 Conclusion
This short note makes three contributions: At a conceptual level, we propose
�rst order predicate logic and model theory as a uni�ed framework which
naturally extends the existing frameworks for the analyses of both preference
aggregation and aggregation of logical propositions (judgment aggregation).

The value of having a uni�ed framework for both preference and judgment
aggregation is perhaps self-evident: We hope that it will allow for a systematic
generalisation of existing techniques in social choice theory by fostering the
exchange of methodologies between the areas of preference aggregation and
judgment aggregation. (In addition, our proposal of a natural uni�ed framework
for a large class of aggregation problems might encourage the use of concepts
and methods from mathematical logic in the mathematical modelling of socio-
economic phenomena.)

In this general framework for aggregation theory, we have analyzed the
relation between aggregation problems and the social structure they induce
by generalising the Kirman-Sondermann correspondence between aggregators
and ultra�lters on the set of individuals. This relation is of genuine interest
besides its use for the proof of impossibility theorems. Under relatively mild
assumptions, we have shown that aggregators are restricted reduced products
with respect to the �lter of decisive coalitions. Under stronger rationality
axioms, a bijective correspondence between rational aggregators and ultra�lters
has been established, generalising earlier results of Kirman and Sondermann
[13] and Lauwers and Van Liedekerke [15] and allowing to derive the typical
impossibility results known from preference and judgment aggregation.

Since this paper naturally extends an article by Lauwers and Van Liedekerke
[15] written in 1992 or earlier, we have ultimately raised a hypothetical historical
point: Already in the early 1990s a su�ciently general framework for analysing
the aggregation of sets of logical propositions might perhaps have emerged,
based on the work of Lauwers and Van Liedekerke � well before the �rst papers
on judgment aggregation actually appeared.

The low level of attention which Lauwers and Van Liedekerke's [15] results
received may be comparable to the oblivion in which the �rst use of the ultra�lter
technique for a generalisation of Arrow's theorem to a �logical problem of
aggregation� � by the French mathematician Georges Théodule Guilbaud [8]
(translated into English by Monjardet [9]) � had fallen for half a century.
(Cf. Eckert and Monjardet [6].) To be sure, no individual author may be held
responsible for this development. Instead, the structural explanation for it lies
in the separation of mathematical modelling from formal logical analysis that
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still � wittingly or unwittingly � prevails in the social sciences. Our hope is
that the rich �eld of judgment aggregation will eventually help to (re)connect
mathematical modelling and formal, i.e. mathematical, logic.
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