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ABSTRACT. The theory of Boolean algebras can be fruitfully applied to judgment
aggregation: Assuming universality, systematicity and a sufficiently rich agenda, there
is a correspondence between (i) non-trivial deductively closed judgment aggregators
and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the
electorate. Furthermore, there is a correspondence between (i) consistent complete
judgment aggregators and (#}valued Boolean algebra homomorphisms defined on the
power-set algebra of the electorate.

Since the shell of such a homomorphism equals the set of winning coalitions and
since (ultra)filters are shells o2{valued) Boolean algebra homomorphisms, we suggest
an explanation for the effectiveness of the (ultra)filter method in social choice theory.

From the (ultra)filter property of the set of winning coalitions, one obtains two general
impossibility theorems for judgment aggregation on finite electorates, even without the
Pareto principle.
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1. INTRODUCTION

The purpose of the present paper is three-fold: (i) To show that universal systematic
judgment aggregation can be studied by means of Boolean algebras. (ii) To show
that the concept of an (ultra)filter arises naturally when describing systematic judgment
aggregators through Boolean algebras, and thus to explain the effectiveness of the
(ultra)filter methodology in abstract aggregation theory. (iii) To give concise algebraic
proofs of dictatorial and oligarchic impossibility theorems in judgment aggregation. The
thrust of this paper is the second aspect which suggests a new perspective on the (ultra)filter
method.

The use of filters and ultrafilters has been firmly established in the theory of preference
aggregation. Fishburn [7] was the first to apply the ultrafilter concept to prove a possibility
theorem for preference aggregation on infinite electorates, and Kirman and Sondermann
[11] employed the ultrafilter concept to prove that Arrow’s rationality axibimsply
dictatorship for finite electorates. Slightly later, Hansson [10] and Brown [2] realized that
the concept of a filter can be used to characterize oligaréhléss so-called (ultra)filter
methodology can be summarized as follows: In order to prove impossibility theorems for
finite electorates, one shows, using rationality axioms on the aggregation function, that the
set of all decisive coalitions must be an ultrafilter (filter, respectively) on the power-set of
the electorate. If the electorate is finite, one can then deduce that this set of coalitions must
be the set of all coalitions containing one and the same element (one and the same subset,
repectively), viz. the dictator (set of oligarchs, respectively).

During the past two years, the (ultra)filter method has also been applied in the theory
of judgment aggregation (i.e. aggregation of logical propositions): Eckert and Klamler
[6] employ ultrafilters to prove a simple dictatorial impossibility theorem for judgment
aggregation due to Nehring and Puppe [15], and Dietrich and Mongin [4] prove more
general impossibility results for judgment aggregation, of both oligarchic and dictatorial
kind, by means of (ultra)filters.

The success of the (ultra)filter method in social choice theory has often been simply
attributed to the fact that filters and ultrafilters possess, apparently by some mathematical
coincidence, exactly those set-theoretic closure properties that are also desirable in the
investigation of economic aggregation problems. A notable exception is an article by
Lauwers and Van Liedekerke [12] which shows that there is a one-to-one correspondence
between ultraproductsf preference relations on a given set of alternatives and preference
aggregation functions.

However, one can give a more fundamental explanation for the link between abstract
aggregation theory and (ultra)filters: On the one hand, the concept of a Boolean algebra is
a natural mathematical notion for formalizing abstract aggregation theory as it provides a
unified framework to capture both the algebraic structure of the electorate and the algebraic
structure of the set of truth values. On the other hand, (ultra)filters occur naturally in the
context of Boolean algebras because homomorphisms of Boolean algebras are typically
classified via the pre-image of theelement of the image algebra, callglel], and shells
of (2-valued) Boolean algebra homomorphisms are nothing else than (ultra)filters.

In light of this, it is reasonable to ask whether judgment aggregators can, at least under
some rationality assumptions, be conceived of as Boolean algebra homomorphisms and, if

1By “Arrovian rationality axioms” we mean the following four conditions: at least three alternatives;
universality; unanimity preservation (Pareto principle); independence of irrelevant alternatives.

°Monjardet [14] has argued that Guilbaud’s analysis of collective decision making [8] (English translation in
[9]), which appeared around the time of Arrow’s clasSacial Choice and Individual Valugisnplicitly uses the
notion of an ultrafilter.

3An ultraproduct is a model-theoretic construction, obtained from a — finite or infinite — sequence of
structures of the same type, based on an ultrafilter on the index set of the sequence.
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so, whether such a representation allows for an economic interpretation of the shell of a
homomorphism induced by a judgment aggregator.
For sufficiently rich agendas, the answer to both questions turns out to be affirmative.
Assuming universality, systematicity, and an agenda richness condition, we show
through Theorem 3;

e Consistent and complete judgment aggregators correspoRdvahied Boolean
algebra homomorphisms defined on the power-set algebra of the electorate.

e The shell of any such homomorphism is just the set olvalining coalitions(i.e.
those coalitions which win the collective outcome for some proposition and some
profile).

e Hence the set of all winning coalitions is an ultrafilter if the judgment aggregator
is consistent, complete, universal and systematic.

Theorem 6 generalizes this result. Again assuming universality, systematicity, and an
agenda richness condition:

e Non-trivial deductively closed judgment aggregators correspond to Boolean
algebra homomorphisms defined on the power-set algebra of the electorate.

e The shell of every such homomorphism equals the set of all winning coalitions.

e Hence the set of all winning coalitions is a filter if the judgment aggregator is
non-trivial, deductively closed, universal and systematic.

Under the additional assumption of a finite electorate, we obtain a dictatorial
impossibility theorem for certain complete systematic judgment aggregators and an
oligarchic impossibility theorem for certain deductively closed systematic aggregators.
These impossibility theorems are among the most general versions of Arrow’s theorem
to this day, and are slight variations of results by Dietrich and List [3] and Dietrich and
Mongin [4]. The algebraic methodology of this paper allows us to give remarkably short
proofs of these results.

The paper presents the framework in Section 2 and Section 3. Thereafter, one section
each is devoted to the axioms on judgment aggregators, the results, the proofs, and a
conclusion. Technical footnotes make this article self-contained.

2. JUDGMENT SETS

Let X be a set of sentences in propositional logic, calledatienda We assume that’
is the union of proposition-negation pairs (i.e. there exists a non-emply stsentences
such thatX = UPEX, {p, —p}). For everyp € X we denote by~p an element; of X
such that eitheq = —p orp = —q.

Subsets ofX will be calledjudgment setsand we denote the power-set®fby P(X).

Let X be a consistent set of sentences in propositional Ibgic.

For every judgment sét:

(1) Y is X-consistentf and only if S U Y I/ (p A —p) for any sentence.

4Many authors of the judgment-aggregation literature formulate their results with respect to a general

monotonic logicL instead of propositional logic. In order to translate our framework into theirs, we have to
assume thak is a set of L-formulae, wherel is a language whose symbols include the connectivaad A
(other truth-functional connectives are defined as usual in termsaofiA). We need to require, in addition, that
a formal provability relatiort is defined for sets of.-formulae, and assume that the system of consistent subsets
induced by has the following properties:

(1) {p, —p} is inconsistent for every.-formulap;

(2) subsets of consistent sets are consistaonhptonicity;

(3) @is consistent, and every consistent set has a consistent superset containing an element of each pair-set

{p.—p};

(4) for all L-formulaep, ¢, {p,q} - p A qgaswellasbotlp A ¢ - pandp A gt gq.
Note that in this frameworks: can simply be added to the axioms of the deductive system given bience, if
one adopts this general framewokkjs redundant and may be deleted — or replace@by- wherever it occurs
in the following. (I owe the formulation of this footnote to Professor Franz Dietrich.)



4 FREDERIK HERZBERG

(2) Y is X-deductively closef and only ifforallp € X, if YUY F p,thenp € Y.
(3) Y iscompletefand only ifforallp € X, p ¢ Y implies~p € Y.
(4) Y is algebraically consistenf and only if for allp € X, ~p € Y impliesp ¢ Y.

Clearly, everyX.-consistent set is algebraically consistent. The converse is true if the
elements o U X’ consist of pairwise different propositional variables, hence the name
algebraig as opposed to logical, consistency.

We assume that for evegy € X, {p} is Z-consistent. Let us introduce the following
abbreviations:

(1) D denotes the set of all-consistent and complete subsetskof

(2) D* denotes the set of all-consistent an@-deductively closed subsets &f.

(3) D’ denotes the set of ail-deductively closed subsets &f.

(4) D“c denotes the set of all algebraically consistent and complete subskgts of
(5) D“ denotes the set of all algebraically consistent subsels. of

A subsety” C X is € D*¢if and only if for all p € X,
PpEY & ~peY.
ClearlyD C D* C D', andD C D% C D*.

3. JUDGMENT AGGREGATORS AND COALITIONS

Consider a non-empty (finite or infinite) sefV, called the electorate
(committee/population) set. The elements Mf will be referred to asindividuals
and subsets aV will be calledcoalitions We denote the power-set 8f by P(INV).

Consider some mag : ©; — P(X) with D; C DY, calledjudgment aggregator
Elements of the domaif® ; of f will be referred to aprofiles the components of every
profile will be calledindividual judgment setsvhereas the elements of the rangef ofill
be calledcollective judgment sets

f is calledcomplete(or consistentor deductively closedor algebraically consistent
respectively) if its range only consists of complete (or consistent, or deductively closed, or
algebraically consistent, respectively) judgment 3ets.

There are two kinds of impossibility theorems: dictatorial and oligarchic ofiesill
be calleddictatorial if and only if there exists somig € N such thatf(A) = A, forall
A € DV. f will be calledoligarchicif and only if there exists some non-empty; C N
such thatf(A) = ﬂier A; forall A € DV.

Next, we introduce some terminology and notation for the description of coalitions. For
allp e X andA = (A;),.n € Dy, the coalition

Ap)={ie N : pe A;}

is called thecoalition supportingy given A. We say thatA(p) is winning for p given A
underf ifand only ifp € f(A).
We collect allwinning coalition§ in the set

Fr:={A(p) : Ae DY, pe f(A)},

5In the first part of Theorem 6, we shall only assume thé deductively closed, hence we do not have to
assume completeness or consistency at the collective level. A similar framework has been suggested by Dietrich
and List [3]. The consistency of the collective judgment sets will follow from other properties of the judgment
aggregators under consideration.

6 The set of winning coalitions fgy is the same for each profile if and onlyjfifis independent.e. for every
pe€ XandA, A’ € Dy,

Alp)=A'(p)=> pe f(A)epe f4) .
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and we say that two coalitions, C’ C N are said teshare the same part of a winning
coalition (denoted” ~ C”) if and only if there exists som& € F; such that

cCnU=0C'nU.
These two concepts — winning coalition and sharing the same part of a winning coalition
— will be useful in the algebraic description of systematic judgment aggregators.

Finally, we adopt the following convention as a notational device: Fadal © ¢, we
regardf(A) as a functionf(A) : X — {0, 1}, defined via

F(A)p) = { 0 eI

4. AXIOMS

Consider the following axioms, which are inspired by Arrow’s rationality axioms:

e Al. Finite electorate. N is finite.

e A2. Agenda richness. There are propositiong,q € X such that each of the
proposition A g, —p A q,p A —q is X-consistent ang X

A3. Universality. ®y = DV,

A4. Non-triviality. f is neither constantly= @ nor constantly= X.

A5. Systematicity. For allp,q € X andA, A’ € D¢ If A(p) = A'(q), then

p€ f(4) e qe f(A)
The axiom of non-triviality, which to the knowledge of the author is new in the
judgment-aggregation literature, is satisfied in two important special cases:

e o o

Remark 1. (1) Suppos¢ satisfies the axiom aftrict unanimity preservatiome. for
allp € X andA € Dy, if A(p) = N thenp € f(A4) and if A(p) = @ then

p € f(A). Thenf satisfies (A4).
(2) Sincew is not a complete subset add not a consistent subset &f, one hasy ¢
Dand X ¢ D. Therefore, (A4) is satisfied jfis both complete and consistent.

The axiom of systematicity clearly implies the axiom of independénckctually,
systematicity is even equivalent to independence if the agenda satisfies an additional
condition known agotal blockednes¢cf. e.g. Eckert and Klamler [6]). Intuitively, an
agenda is totally blocked if “any proposition in the agenda can be reached from any other
proposition in it via a sequence of conditional entailments” (List and Puppe [13]), in other
words, if one can deduce “any position on any issue from any position on any issue, via a
chain of deductions” (Dokow and Holzman [5]).

The agenda richness axiom is inspired by the ultrafilter proof of Lauwers and
Van Liedekerke [12].

5. RESULTS

Recall that(P(N),n,uU,C,2,N) (whereinCB := N \ B for all B C N) and
({0,1},A,V,*,0,1) (wherein0* = 1, 1* = 0), are Boolean algebrdsWe write 2 for
{0, 1}. We will show that non-trivial universal systematic judgment aggregators are derived

"See Footnote 6 on page 4.
8<B, A,V,*,0p,1p) is called aBoolean algebraf and only if A andV are associative and commutative
operations on a non-empty sBtsatisfying both

Vz,y€ B (zVyAy=(zAy)Vy=y
and the distributivity axiom
Vz,y,z€ B (eVy)Ahz=(xAz)V(yAz),
and for allz € B, the element™* € B satisfies

zAz* =05, zVz*=1pg.
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from Boolean algebra homomorphistwegith domain?(N) and vice versa. The sh#liof
these homomorphisms will be just the the set of winning coalitions.

Lemma 2. If f satisfies (A2), (A3) and (A5), then the map
T P(N) =2, Alp) = f(A)(p)
is well-defined. Furthermore; {1} equalsJ; and is bothD-closed andh-closed

Note thatr does not have to be a lattice homomorpHié(tet alone a Boolean algebra
homomorphism) in generalt need not preserve joins, since the union of two coalitions
C, C" which are not winning (i.eC, ¢’ € 7~1{0}) can nevertheless be a winning coalition
(e.CuC en {1}).B

Our first result is that complete:-consistent non-trivial systematic judgment
aggregators correspond2evalued Boolean algebra homomorphisms, and that every such
homomorphism yields a complete algebraically consistent systematic judgment aggregator.

Theorem 3. (1) If f satisfies (A2), (A3) and (A5) and is both consistent and complete,
then f also satisfies (A4) and is a homomorphism with shefl;.
(2) Conversely, i : P(N) — 2 is a homomorphism, then the judgment aggregator

frA={peX : p(A(p) =1}
satisfies (A2-A5) and is both algebraically consistent and complete.

Corollary 4. If f satisfies (A2), (A3) and (A5) and its rangeds D, thenJ; is an
ultrafilter.** If, in addition, (A1) holds, therf is dictatorial.

In the following we mean by @&ongruence relatioran equivalence relation which
respects the Boolean operatidisRecall that two coalitiong’, C’ stand in relation~ ¥
to each other if and only if they share the same part of some winning coalition.

Lemma 5. If f satisfies axioms (A2-A5), thevy is a congruence relation on the Boolean
algebra®P(N) and the Boolean operations di(IV) induce a Boolean algebra structure
onP(N)/ ~y.

Theorem 3 can be generalized as follows:

Every Boolean algebra can be endowed with an antisymmetric, reflexive and transitive ordering by defining
r<y:SrANy==x
forall z,y € B. For a primer of Boolean algebras and their use in logic, cf. e.g. Bell and Slomson [1, Chapter 1].

9A Boolean algebra homomorphisifior short: homorphismis a mapp : B1 — B2 between two Boolean
algebrag B1, A1, V1,*,01,11) and Ba, A2, Va,” ,02,12 which preserves all three Boolean operations, i.e.

plary)=p)h2py), pleViy)=p@)Vapy), ple™)=p)"

forall z,y € Bj.

10rheshellof a Boolean algebra homomorphigm By — B is defined ap—1{1,}.

Ly other words, ifC, C' € FrandC” D C,thenbothC' N C’ € Fy andC” € F¢. A non-empty subset
G of P(NV) that is bothD-closed andh-closed is sometimes already calfdter. However, we use the woffidter
in the sense gbroper filterand require in addition th&d # P(NV).

124 Jattice homomorphisris a map between two lattices, e.g. Boolean algebras, which preserves meets and
joins.

LBconsider, for example, an oligarchfcand letC' be a proper subset of the skf; of oligarchs and let
C' = Mg\ C.Then,C,C’" € r=1{0} albeitC U C' = My € 7~ 1{1}.

147 non-empty seG C P(N) is called dfilter on N if and only if G # P(N) and§ is both D-closed and
N-closed. A filter is called anltrafilter if and only if for all C C N, eitherC € Sor N\ C € &.

L5viore formally, a binary relation-~ on a Boolean algebra is@ngruence relatioiif and only if ~¢ is
reflexive, symmetric and transitive, and for ally, ', 4" such that botlx ~¢ =’ andy ~¢ %', one has

zAhy~cz ANy, zVy~cx VY, z*~c ()"
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Theorem 6. (1) If f satisfies (A2-A5) and is deductively closed, then the canonical
surjectiono : P(N) — P(N)/ ~ is a homomorphism with shefly.
(2) Conversely, ifr : P(N) — B is a homomorphism for some Boolean algelira
then the judgment aggregator

ftA={peX : 7(Alp)) =18},
satisfies (A2-A5) and is algebraically consistent.

Corollary 7. If f satisfies axioms (A2-A5), théfy is a filter. If, in addition, (A1) holds,
thenf is oligarchic.

6. CONCISE ALGEBRAIC PROOFS

Remark 8. Letr be finite or infinite. LetV = | J, ., C; be a disjoint decomposition of
and let(Y;),_,_be afamily of:-consistent subsets af. Then, eacty; can be extended to

a X-consistent and complete subggtof X. Thus, there exists a unique profiee DV
such that4; = Z; D Y; for everyi € C; andj € «.

Remark 9. If (A2) is satisfied, the§ A(p) : A€ DV, pe X} =P(N).

Proof. Due to (A2), X contains a sentence such that both{p} and {-p} are 2-
consistent® Consider now an arbitrary coalitiafi. Remark 8 provides a profilé € DV
suchthatforali € N, if i € C'thenp € A; andifi € N\ C then—p € A;, hencep ¢ A;
whenever € N \ C sinceA4; is consistent. Therefore,

pEAi<:>i€C'

for everyi € N. HenceA(p) = C. So, every coalitiorC is of the formA(p) for some
Ae DV andp e X. O

Proof of Lemma 2.Supposef satisfies (A2), (A3) and (A5). By (A5)r is well-defined
on®D, = {A(p) : A€ Dy, pe X}. Sinced; = DV by (A3), we actually have
D, ={A(p) : Aec DN, pe X}, henced, = P(N) by Remark 9.

Since

fA)p)=1epe f(4)

forallp € X andA € Dy, itis clear thatr—!{1} = F;. Next, we shall prove that
7~ {1} is closed under supersets and intersections. For the following, efenote the
two sentences whose existence was postulated in (A3).

7~ 1{1} is D-closed. Let ¢’ € 7—1{1} andC 2 C’. By (A3) and Remark 8 there
exists a profiled € DY such that

Vie C\C'" pA—-qeA;, Vie N\C —-pAqeA;, VieC pAqgeA;.

ThenA(pAg) = C' € = {1}, whencenAq € f(A) becauser is well-defined. However,
f(A) is deductively closed, therefopec f(A), hencer=1{1} > A(p) = (C\C")UC' =
C.

n~H1}isN-closed.LetC’, C" € n~1{1}. By (A3) and Remark 8 there exists a profile
A’ € DN such that

Vie C"\C'" pA-qe A, Vie N\C" -prqe A, VieC'NC" pAqe A,
ThenA'(p) = (C'NC")U(C"\ C") = C" € n= {1}, sop € f(A") sincer is well-
defined. On the other hand;(¢) = (C'NC")U(N\C") 2 (C'NC")U(C'\C") =C" €
7~ 1{1}, henced’(q) € =—{1} because we have already seen that{1} is O-closed.
Again, sincer is well-defined,A’(¢) € == 1{1} impliesq € f(4’). So,p,q € f(A"),
whencep A g € f(A’) becausef (A4') is deductively closed anglA ¢ € X. It follows that
1 3 A(pArg) =C N, 0

165ch a sentence is also callEecontingent
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Proof of Theorem 3First, suppose thaf satisfies (A2), (A3) and (A5) and is consistent
and complete. Then Remark 1 teaches that (A4) is satisfied. Also, Lemma 2 already affirms
thatr—1{1} = F;. For the first part of the Theorem, it remains to verify thgireserves
algebraic operations.

7 preserves meetdet C,C’ C N. Sincer~!{1} is bothD-closed andh-closed, we
have that

cnC er {1} & (Cer {1}, C en'{1}).
Becauser is {0, 1}-valued, we deduce
Tr(CNC) =1 x(C)=1, n(C)=1)sx(C)Ar(C) =1
and thus
m(CNC") =xn(C)Ar(C).

7 preserves complementket A € DV andp € X. For everyi € N, the set4; is

consistent and complete, hence

peEA & ~pdA,
S0A(p) = N\ A(~p) = CA(~p), or equivalently
(1) CA(p) = A(~p).

On the other handf(A) is consistent and complete, thereferg € f(A) if and only if
p & f(A). Hence, we finally obtain
m(CA(p)) =1 e 7(A(~p) =1 ~pe f(A) & p & f(A) & m(Alp) =0,
7 (CA(p)) =0 7 (CA(p)) #1 & 7(A(p)) #0 = 7 (A(p)) = 1.

m preserves joinsLet C,C’ C N. First, supposer(C) vV n(C’) = 1. Then either
7(C) = 1lorm(C") = 1, hence eithe€ € 7=*{1} or C' € =='{1}. ThereforeC U C’
will be the superset of an elementof 1 {1}, hence byD-closedness af ~1{1}, we obtain
CuC' en {1}, thatistr (CUC’) = 1.

Next, supposer(C) vV w(C’) = 0, hencer(C) = n(C’) = 0. We have already shown
thatr preserves complements, therefore we deducertf@€) = = (CC’) = 1. Since we
have also already seen thapreserves meets, we obtain thafCC NCC’) =1/ 1 = 1.
Using de Morgan’s laws (C(C'UC”)) = 1, hence, again exploiting that preserves
complements, we arrive at(C U C") = 0.

Hence,r is a homomorphism and the first part of the Theorem established.

For the converse part of the Theorem, suppeseP(N) — 2 is a homomorphism.
We have to verify thalf satisfies axioms (A2-A5). We have not chang€dso (A2) is
satisfied. By definitionf satisfies (A3) and (A5).

To prove (A4), note thap(@) = 0 andp(N) = 1 sincep is a homomorphism’
and by Remark 9, we can find, A" ¢ DV andp,q € X such thatd(p) = @ and
A'(q) = N. Then, by construction of, bothq € f (4') andp & f (A), sof (A") # &
andf (4) # X.

Finally, for everyA € D andp € X, note thatd(~p) = CA(p) by Equation (1), and
therefore, using that is a homomorphism,

pefld) & p(Ap)=1%p(CA@p)=0% p(A(~p) =0
& p(Alp) #1 & ~p & f(A).
Hence,f(A) is complete and algebraically consistent for evarg DV, O

L7ror, sincep preserves algebraic operations, one has (for an arbitraty V)
p(@)=p CNLC =p(C)Ap(C)" =0

and
p(N)=p CUBC =p(C)Vp(C) =1
by the definition of the complement of a Boolean algebra element .
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Proof of Corollary 4. Every shell of a2-valued homomorphism is an ultrafiltét.
Therefore, (A2-A5) implies via Theorem 3 th@§ = 7~ {1} is an ultrafilter onV.
However, every ultrafiltef on a finite setV is principall® Hence, if even (A1-A5) are
satisfied, then there must be soipes N suchthatr='{1} =F; ={C C N : if € C},
hence
pe flA) & n(Alp) =14 Alp) €Ty i c Alp) & p € Ay,

forall A € DY andp € X. O
Proof of Lemma 5Supposef satisfies (A2-A5). Ther; = 7~ '{1} is non-empty by
(A4) andn-closed by Lemma 2. Therefore;; must be a congruence relatiéh For all

C C N, denote by|C| the equivalence class @f with respect to~;. Since~; is a
congruence relation, the operationsv,*, introduced representative-wise via

ICIANIC =]CnC'], |C|v|C|:=|Ccul’|, |CI":= \EC]
forall C,C" C N, are well-defined. If we define, in addition,

0~; =19, 1, == |N|
then through straightforward calculations one can check that
(P(N)/ ~, A, V,*,0~,,1,) isindeed a Boolean algebra. O

18¢f, e.g. Bell and Slomson [1, Chapter 1, Lemma 4.7, Theorem 4.9] The proof can be sketched as follows:
Every homomorphisnk : P(N) — B translates) into A and translates into <. (For, if C C C’ then
CNC’' = C,henceh(C) AR(C") = L(CNC") = h(C), thereforeh(C) < h(C").) Itis therefore clear that
the shellJ{ of h is N-closed and>-closed. Moreover, as shown in Footnote 17 on page 8, bo#) = 0p and
h(N) = 1p, hence{ # P(N) andH # @. Hence His afilter. If, in addition,h is 2-valued, then

CeH & h(C)=1<h(C)*=0<h CC =0
< h 00 #1s0C¢XK,
soH is even an ultrafilter.

19, e.g. Bell and Slomson [1, Example 1.3.2 and Exercise 1.3.3] An ultraffitsr called principal if
and only if there exists somee N such thaty = {C C N : i € C}. If N is finite and some ultrafiltef
on N were not principal, thed:} ¢ F and henceV \ {i} for all i € N. Since filters are closed under finite
intersections, we g¢t),c x NV \ {i} € J, albeit();c 5 N \ {i} = N\ N;cn{i} = & by de Morgan’s law, a
contradiction.

20¢, e.g. Bell and Slomson [1, Chapter 1, proof of Lemma 4.3, proof of Lemma 4.4]. The proof can be
summarized as follows: Sinc&; is non-empty~ is reflexive. By definition~ ; is symmetric. SinceFy is
N-closed,~ ¢ is transitive. (For alC, C’,C"" C N, if there existU, V € F¢ suchthaC'NnU = ¢’ NU and
NV =C"nV,thenCNUNV =C"NUNV whilstU NV € F;.) Similarly, sinceFy is N-closed,
~ s respects) andU: For all Co, C1, C{, C; C N, ifthere existlUy, U1 € Fy such thatlCo N Uy = C{ N Up
andC1 N Uy = Cf N Uy, then, by commutativity of,

ConNCiNUyNU; :CéﬂC{ﬂUoﬂUl
N —
€Ty
and by distributivity ofn, U also
(CoUCl)ﬂUoﬁU1 = C(/]UC{ NUyNU;.
N——
€Ty
Finally, for all C, C’ C N, if there existd/ € F suchthaC N U = C' N U, then
U=UncC)u@Wnlc)=Wnc)uWnCo),
whence on the one hand
CC’'nUu=C0C"n (UncHhu(WUnCc) = Cc’nunc’ u Cc'nunCc =Cc’'nCenu,
————
=g
and symmetrically (by interchanging the roles®faindC’), one obtains on the other hand
Ccnu=C0cnCc’'nu=C0c'"ntcnu,

hencelC’ NU =C0C N U.
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Proof of Theorem 6With the notation of the proof of Lemma &, : C — |C]| trivially
preserves the Boolean operations.
Note that for everyC’ C N, one has

C~yNeIUedFy (CNU=NNU)&IWUeTF; (CNU=U)
& edy UCC,

hence, due to the-closedness df , we obtain
|C|=|N‘©CNfN©C€3~f.

Thereforeo = {17} = o~ {|N|} = F;.
For the converse part of the Theorem, the same argument as in the proof of Theorem 3
shows thatf satisfies axioms (A2-A5).
Finally, supposef were not algebraically closed. Then there would be segime DV
andp € X such that bothvp € f(A) andp € f(A4). Hencer (A(p)) = f(A)(p) =1
as well asr (A(~p)) = g(A)(~p) = 1. HoweverA(~p) = CA(p) by Equation (1), so
7 (CA(p)) = 1. On the other hand, sinceis a homomorphism and(A(p)) = 1, one has
7 (CA(p)) = 0, contradiction. This proves the algebraic closednegs of O

Proof of Corollary 7. As the shell of a homomorphisriy is a filter?!

For every filterF on a finite setN, there exists somé@/ C N such thatF =
{C C N : M C C}.??Hence, if (A1-A5) are satisfied, then there must be safjeC N
suchthatr='{1} =F; ={C C N : My CC}={icp, {C SN : i€C} 50

peflA)en(Alp) =1cAp) eTFre |VieMy; icAlp) | ©pe ﬂAZ—
?pgA__’ ieM;

forall A € DV andp € X. O

7. CONCLUSION

Under the assumptions of agenda richness, universality and systematicity, we have
established a correspondence between deductively closed judgment aggregators and
Boolean algebra homomorphisms on the power-set of the electorate. Moreover, we
have shown that complete judgment aggregators correspadhdldlued Boolean algebra
homomorphisms on the power-set of the electorate.

As is well-known, Boolean algebra homomorphisms can be partially characterized
through their shells, an@{valued) homomorphism shells are the same as (ultra)filters. We
have shown that the shell of a homomorphism induced by a judgment aggregator is just the
set of all winning coalitions. Hence the set of winning coalitions is always a filter — and
even an ultrafilter if the judgment aggregator is complete. This provides an explanation for
the effectiveness of the (ultra)filter method in social choice theory.

From the (ultra)filter property of the set of winning coalitions, one can easily derive
impossibility theorems for judgment aggregators on finite electorates, even without
requiring preservation of unanimity (Pareto principle): Assuming agenda richness,
universality and systematicity, the oligarchies are the only non-trivial aggregators, and the
dictatorships are the only complete aggregators.

2y, e.g. Bell and Slomson [1, Chapter 1, Lemma 4.7]; see Footnote 18 on page 9.

2Zrilters are closed under finite intersections, hefc@ € J for every filter on a finite seN. This implies,
since filters are closed under superséts,C N : (N F C C} C F. Trivially, the converse inclusion also holds.
HenceF = {C C N : N F C C} for every filterF on a finite setV.
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