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1. INTRODUCTION

In [1] we determined the capacity region of the multiple-access channed
{MAC) by proving a coding theorem and its weak converse. Recently
Dueck [2] proved a strong converse theorem in the sense of Wolfowitz [3].
His proof uses the Ahlswede-Géacs-Korner {4] method of “blowing up de-
coding sets’ in conjunction with a new “wringing technique™, This technique
makes it now possible to prove strong converses, if the average error

probability criterion is genuinely used (as is the case in the results for the
MAC mentioned above, c.f. [5]).

In this paper we prove Dueck’s result without using the method of

“plowing up decoding sets”, whick is based on nor-elementary combi-
natorial work of Margulis [6].

Qur proof fotllows our old approach of {7] to derive upper bounds on
the length of maximal error codes. In [7] we considered the TWC, the
MAC can be treated in essentially the same way. [In conjunction with a
suitable “wringing technique” (Lemma 3) this approach becomes applicable
also to averagge error codes. The heart of the matter is the fact that codes
for the MAC have subcodes with a certain independence structure, Actually
even this fact can be understood from a more basic simple principle concern-
ing the comparison of two probability distributions on 2 product space
(Lemma 4). This general principle makes the combinatorial or probabilistic
nature of Dueck’s technique and our improvement thercof (Lemma 3) fully

transparent. It also leads to a somewhat sharper result on coding: Strong
converse with 4/n log n deviation,

The paper is sell-contained and all ideas are explained in detail.

2. THE STRONG CONVERSE THEOREM FOR THE MAC

X, 4 are the (finite} input alphabets and Z is the (finite) output
alphabet of a MAC with transmission matrix w. For words of length # the
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RUDOLF AHLSWEDE 217

transmission probabilities are

(2.1) W x) :tljt wz, | xppforx = (X, ..., ) € X = ﬁ ¥,
e, e g !
A code (n, M, N, 3) for the MAC is a system {(4,v), Dy} : 1 i< M,
I <) < N} with
(a) e X yey, Dy for 1<isM, <f<N

(b) Dy N Diy = Qlor (i, j) # (0, ))
1 N M -
(c) MN iz:l j)_:l WDy fup) =1 —A

A pair of non-negative reals (R, Ry) is an achievable pair of rates for
Ae (0, 1), if for all sufficiently large n there exist codes (m, ["exp Ryi],
Fexp R}, &) R(A) denotes the set of those pairsand R = _ 1 KR

AE(0 1)
is called the capacity region. The characterization found in [9], which is
somewhat different {rom the original one in [1], is

(2.2) R =conv{(Ry, R)€E RL:R <KX AZ|Y), R<KYAZ|X),
R, + Ry < KXY A Z) for some indep. X, Y}
where X, Y are input variables, Z is the corresponding output variable,

X A Z), X A Z)|Y) et denote mutual resp. conditional mutual infor-
mation, and “conv”” stands for the convex huli operation.

Dueck’s strong converse theorem states
23) RE <R (and hence R = KA for A & (0, 1.
We prove the
Tueorem. For every nand every (n, M, N, A) code:
(log M, log N) € (n + 0 (/& log n)R

The approach of [7] makes use of Augustin’s [11] strong COnVerse estimate
for one-way channels, Wolfowitz gave in [12] a general lemma for proving
strong converses, which he credited as follows: “It is a formalization and
slight generalization of methods used by Kemperman, Yoshihara, and the
author”. We formulate and prove here a slight extension thereof, called
packing lemma, which yields also the result of [11]. This way one has one
key tool for proving strong Converses and also, the paper becomes self-

contained.

3. THE PACKING LEMMA AND A Bounp oN Copes FoR THE MAC
Let J( and [ be finite sets and let P be a | K| % |-L]-stochastic matrix.

vol. 7, No. 3 (1982)



218 STRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL

2140 (M, \)-gpieNS TOXNEREH (FHEDREW IFOB ITHE MIGF{PRE-ACCESS CHANNEL

f -
" Eﬁfioﬁe% asysem ((u DY <1< #1) wih

<a) ',—fg..%my l:{ !:’.

P%){%HB” l(D— /}orgfl EYA M

F?:)a r(ogalb:lhtgdlstrlt}\ut:Pn (PID),J- op #f and a number & > 0 define
(3.1) Fgf'(%’ }5)0:54 ]ﬁj—mﬁtn%ﬁ\‘\()}l (@F) fd?rk’éw a number 8 > 0 defline

Lewm ). Supppse thes fallak (o, Y-codg f&iﬁ@ﬁ | <Zi < M} there
extdrly PBZ 4 T m(f__: pasmvé’ﬁhm?v’ee d’ such ;,',Ei i< M) there

L 1. Suppese that an (M, A) code {(u;, Dy} <
G cﬂz‘?‘rsr; ?gﬂy or=g ﬂu}t{t’e nﬁ')n'b/‘e Fedy, ..., 0u such thar

iy
thgd.?)  max E P! u) << x,
l<i<M 1eB, 5. r)

(3.38 M-< {1 —x—«)texp (M ‘E 01)

s i st o 5. ).
(The case 6’ =0 fort sTi< Mis rhe result of [12]).
p,gowd o that A -+ x <

F'D(C}__ - Ca{;l;.f.édg the code ({u D lfs?he rﬂ%!; gfailﬂﬂt}ne forl < i M

Proof. Considér thefadedss [)Pf_ﬁ_;fﬂ = Ql,% anddefine forl < i< M

Pl u)
Then for [ & 4; el'r 14,-;1{(::{ ifFakd hepgg— = }
) > B ey fDs i) 7 Bbrhende [ 16) > 1A — .

{t follows that
'r(A)>P(A|ui)fP(Dlu,)—P(D — A; | ) = =1 A=k

— K
It follows that & = log ———— i)
and also that 9'_ > log l-A—x

= log

1 M
Wﬁﬁh&:ﬁ;i‘,log r(D) ;"M‘-E, lﬂgﬂi{—}—loe(l—hmx)

M
! %JZ_}HI) ]Iﬁgn——“Lf‘"- Y - 10gM+log(1—A._—x)

£ = M =
This imphes M = r(D;) i=1
rﬂ‘f? —log M +log {1 — A --x).
This implies M < (I —A2—x)"exp (M Y. 5l QED.

RemARK 1, The lemfda<cdd bed Fritlet ‘?@ut(‘iﬁzzﬁ 9!}' average errgi D
codes. We did not present this more general form, because we h
genuine Rppligations Mheitlemma can be further generalized 1o aver ge Oetror

eneral form, because we have no
SRRskSit t‘ﬁvﬁe&*gkawtt r'id?( tﬁlelsccr)r:l%ex ull in {2.2) a proof of the

TheobsAR MR ARPNARORS 187 3ke non- -stationary DMC’s, w&i%l} are defiged. o
Sinee it is necessary to take the convex hull m A proo the

Theorem naturally has to involve non-stationary,I¥bs’ s;,}ylw:b}giresgpﬁncd

Jr. Comb , Inf. & Syst. Sci.



RUDOLF AHLSWEDE 219
by a sequence (wo)ruy of | X} x| Z}-stochastic matrices and

(3.4) W |xm) = :“. w(z, | x) for every n=1,2,...; every x" & X"
and every z" € 2"

as transmission probabilities for words. We show next how to prove the
familiar strong comverse for non-stationary DMC’s via Lemma I. In
applying this lemma one has some freedom in the choice of r. Kemperman
[10] used r** = rifx ... xr}, where r* is the mazximizing output distribution
for w,, that 1s,

R(p#, w) = ¥, pl(x)wz | x) log %‘{‘2 = max 14, A Z) = o

For a given (1, M, A)-code {(u;, D)1 1 =i < M)} Augustin [11] used r" =
rx...xr, where

] M
3.5) rla)= M ZI wilz 4y for wy = (s . - -, tin).

In order to understand this choice Jet us choose first r as

| M
r(z") = i E; w(z" | u),

i=

that is the output distribution corresponding to the ““Fano-distribution”:

A% probability on each code word ;.

r(z) i=1
is a mutual information up to a constant ¢. By a suitable choice of ¢ one
can derive the weak converse by using Lemma 1. One does not get the

LARTH M
With f=c ¥ W(z* ) log ¥, ¢ a constant, we ge tht =%,
=

strong converse, because log EE(J)_“Q is not a sum of independent RV’s and

therefore the variance is 100 big. r” is the output distribution obfained by
choosing as input distribution

n M 1

3.6y p"= H P pix) = E W 3(!«1“, x),xe ¥ i<gtsn

el jua1
that is the product of 1-dimensional marginal distributions of the “Fano-
distribution” and may therefore be called Fano*-distribution. This way one
achicves both, the independence property and the «matching” of an infor-
mation guantity. r" reflects structural propertics of the set of code words,
which r** doesn’t.
. I — A
Now with the choices X = X", L=2"r =17, P=W,y= —5> and

Vol. 7, No. 3 (1382)



220 STRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL

fori=1,...,. M

Wi | 4, 9 W(‘ u;) 12
BfﬁEW(,Iui)log rn(!))+(l_AVarW(,|u,)log rn(J.)f) .

By Chebyshev’s inequality

(3 7) W(Bm(gn ¥ J i u) —2— for 1<i M

and hence Lemma 1 yields

(38) M <y z exp{ Zﬂ}

l=l

In order to bound the right-side expression set

| M W
1= g 8 By s 2L

. Oy L2
E(Varm | un) 108 ! Iu‘})

M < rr(-)
Clearly,
Mo
Ti= T G Ve |u) log Tl
_\ . Wiz x)
— Ig g ; &y, x)w(z | x) log e
(39) - }j{ KX, A Z), where Pr (X, = x) = p(x)

and Z, is the corresponding output distribution.
T, was bounded in [11] as follows:

By the convexity of the square root function

M 1 W | u ]‘12
I, < (2 'H VHI'W( | ) log --g—';(l-.-}-—'))

and .
| ) &M - [,
E.l H VarW{ . | m) lﬂg wi-n(’ l;) = ‘g E VarWl( iun) IOg (,(l 1;! )
- wi(z | x) Wi+ | x)
= L LT poms | % (Iog e~ Bz lop M LY )

Since for any RV F and any constant a Var F < E(F + @), the last
quantity can be upperbounded by

Z 2 2 ,P,(I)W,(z | .r)(log wiz 1 )"I‘ lOg p,(x))2

i=l rz)
— d {x)wiz|x Wz | x)pe(x)
ngrt(z)—‘ﬁl—( ""—"""'";_""'(})—--)

Jr. Comb., Inf. & Syst. Sei.
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Since for a probahility vector (g, ..., a.)
_X‘i a; log? a; < max (log? 3, log? c),
also
pAxM(z | X) phxwlz | )Y
N log T) < max (log” 3, log? | X)) < 31X
Thus
(3.10) T2 < (31| m'2
Thus, (3.9) and (3.8) yield
n 12
jog M < % 106 A Z) + (125 312¢1a) "+ log 1
and hence the
CorOLLARY 1 (Augustin [11]):  Foran (s, M, A) code {u;, D;): 1 <i<M}

for the non-stationary DMC (w,
=1

(1) log M < X IX A Z) + ]i{\liri n2 0 <A< 1,
fo} -

where the distributions of the RV’s are (as usual) determined by the Fano-
distribution on the code words.

Already in [7] we showed how to use Fano-distributions to derive upper
bounds on the lengths of codes for the restricted TWC in case of maximal
errors. We apply this approach now to (n, M, N) codes {(u;, 93 Dij) 1 1 €
i < M, 1 <j< N} for the MAC with average error A, that is,

1 M N -
(3.12) migljg W(D”|u,-, vj) =1-—A

(.13) J={(z‘,j):ww,-j|u,~,u,); —Lion i,
Igjgw}

314 C={iD:GNed 1<j<N)
B =t Ghed1<i <M
Consider the subcode {(w;, v,, Dyy) : (i, /) & A} and define with its Fano-
distribution RV’s X, ¥*
(3.15) Pr (X7, )= (@, v)) = |ALifGHed
It follows from Corollary 1 that

(.16 108 B0) < T I A Zi] Ye=vi) + 2 1,

vol. 7, No. 3 (1982)



222 STRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL

(3.17) log (@)l < EI(Y ANZ X _u,r)+ E:’E[ iz,
and

(3.18) log |A| < )": KXY A Z)+ ]——_"-’_—i X ni,

Since Prob (Y, =y)=|A f; 8(r;, v}, it follows from (3.16) that
{ihed
(3.19) | At Y, log |B())
i-ned
= tu’ﬂ_] EI NZ ] Y, = ”;1)25('”;1:}’)"5" ‘1’\ L
(i Ned =1

E X AN 2| YD) + 1 lfrl nliz,
Since | 4] + ‘—;—"‘ (MN =) 3 (1 — )MV, we get

1—2 2A
2 | 2 — MN = [ = 2 )MN=(1 — MM
(3:20) 1A I+A ( 1+}.) ( SN,

Furthermore,

A Y log | B = A~ X 1B)) log | BU)|
(hiled J=1

2 A L . 180) s |B0)
FBGNP —— M

— )
I).M

> {1 — 5 1) og

— )*
=(1-—l)10g] i M,

and therefore by (3.19)
2\ & 3
og 4 < (14 25 106 A 701 8 - 23 12000) — 1o (1 - 4
+ log n
< Y KK A Zi| Y+ et
fua |

Analogously,

log N < $ HY, A Z0{ X) + cxmi
and by (3.138), (3.20) also

log MN < il KY, A Z,1 X)) + csine,
Thus we have proved

Jr. Comb., Inf. & Syst, Sci.
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LEMMA 2. An (n, M, N, A) code {(u, v, Dij) 1 | ST< M, 1 <j <N}
for the MAC satisfies for 0 <2 A < | and ¢() suitable

log M < 'gl X, A Z) YD) + e(int?,
log ¥ & X H(Ye A Zo1 XD + c(n'2,

log NM < ¥ I(X,Y, A Z) + c(Mn'?,
=1

where the distributions of the RV's are determined by the Fano-distribution
on the code words {(u,, v)) : (G, ) € A} A is defined in (3.13).

ReMArk 2. This does not yet prove the Theorem, because X, and ¥,
are not necessarily independent.

4. WRINGING TECHNIQUES

To fix some ideas let us quickly recall the attempt of [7], which may be
considered as the first “wringing idea”. In order to gain the independence
of X¥», Y7 mentioncd in Remark 2 it would suifice to find for an (n, M, N, A)
code a maximal error subcode of essentially the same rates, that 18, a set

= B Crwith B*cfl,..., M) 0l ..., N} such that
(4.Yy WDy 1w, v)>¢ for (i, /) & A*
and
(42) @Y > M exp {—o(m}, |C* = N exp {~o(m)}.
Abstractly the problem can be stated as follows:

Given Ac{l,...,M¥x{l,..., N}, | =8MN, M=exp {Rnl,
N = exp { R}, does there exist an A* = F* C* c J satisfying (4.2)?

This is exactly the problem of Zarankiewics [13] for certain values of the
parameters (there exists an extensive literature on this problem for | 3*,
IC*| small). In[17] we showed that the question has in general 2 negative
apswer and Dueck [5] proved that also the reduction to a maximal error
subcode is in general impossible, because average and maximal error capa-

city regions can be different.
Next observe that the existence of subcodes with weaker properties
suffices. It is enough that X" and Y~ are almost independent, As & possi-

ble approach one might try to achicve this by considering a Quai-
Zarankiewics problem in which the condition J* = B*xC*C A is

replaced by
AF ) B = (- B AT D Q) = — %

for j € C*, i € B* and 7 close o I

Vol. 7, No. 3 (1982)



24 $TRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL

Selecting (] at random it is readily verified that this is in general again
not possible for the parameters specified above.

However, in order to prove the strong converse via Lemma 2 it suffices
to find subcodes, whose associated component variables X, Y, are almost
independent for t = 1, 2, ..., n. The answer is given by Lemma 3 below.

Dueck’s original solution is based on a wringing technique, which is
slightly weaker (see Remark 3). He doesn’t need to produce a sub-code,
because he uses instead of Lemma 2 the method of blowing up decoding
sets [4] in conjunction with Fano’s Lemma.

LEMMA 3. Let X7, Y* be RV’s with values in X*, 4" resp. and assume
that

(X" n YY) <o
Then for any 0 < 8§ < o there existty, ..., & {l,..., n}, where 0 < k

28 - = =~ -
< such that for some Xy, Vs Xigy Xayy Voo « 1«5 X1y0 Yy,

@) IXAY X, =% Yy =V Xy, =%, ¥y, = 7} <8

fort=1,2,...,m and

(42 Pr{(X, =X, Yo, =D - s Xpy =%p, Yy, = 7)

g (!3?1 mfzo = a)Y'

Proof. 1f (4.1) does not hold already for & =: 0, then for some #
(X, A Yy) >3 Since

o= IX"A YD) Z XA YL XY+ I(X, A Y

we obtain
(XA Y| X, Y,) < o8,
et al:“afl=2ua 8
| —
and
ffu(ﬂ) = {(x,, y):Pr (Xi =x, Y, =¥»)= {:{’:Ilq}"}'

Then

@ —82 )) HX"A Y| Xy=xy, Yo=p,) Pr (X, =x,, ¥=y.)

(xl‘p }’:;)E AJ;(EI)

and since Pr ((X,,, Y,,) € A,(¢))) < ¢ there exists an (¥, Vi) € An(e)) such
that

oy — 8 ; I(X" /\ Yn [Xn —_— Ef}.’ Yu = }!J(I "'"fl).

Jr. Comb., Inf. & Syst. Sci.
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Using (¢ — 8)}(1 — /)l = oy — g we get therefore

& _ _
(4'3.} Ul_i;I(XﬂA Yﬂh‘r!;:xlp Y-h:yf]_)

and

4.4 T ¥, = P) et
(44) Pr(X, =%, Yon=y,)2 ESN]

We repeat now the argument with the choices 9, =0 — %’ € = 2-—8_3,
a2

We are either done or there exists a f; with
X, A Yy | Xy = X Y, =7, > 8
Then
oy (X" A Y| Xy =Xy, ¥y = 3)
ZHX AV | X=X, Y, =y, X Vi)
+HX, A Y Xy =X, Yoy = pu)

and there exists a pair (X, Ys) with

8 _ — . -
(45) g — '2' ;2 I(X" A m | X!; = Xt YE] = yl‘p X!; = X Y’t; = }’r,)

and with

X T = — €
(4.6) Pr(Xy =X Yo =Ju | Xy, =Xy Yo, = o) 2 W[.
. . . 5 8 .
[terating the argument with the choices a; = 0, — 5, & = 5 (=3

: , 29 — 8
4,...) we obtain either for some i =k < id 5

I(Xl A Yf | Xu = Efp Yh = j’fu LR Xt.t = Em YJ‘& = ?l.) <4
or for k = %, o, = a(% — l)g < 8, and hence again
02 ok 2 [(Xn/\ Y“IXH:EID Yh:?m"'s Xn =?w Yn:ﬁn)
Z

I(Xf /\ YJ | XI: = }fv Yh = ?t:w tr Xu = fh' th = 571‘&)
fort=1,...,n
In any case also
Pr (Xl; = Et;s Yh = }!n rery Xr, = EH’ Yt

gk 5 s k
= L = D remes =5 = (I e — a)) - QED

li
=
L

vol. 7, No, 3(1982)



226 STRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL

ReMARK 3. Dueck’s result is that under the assumption of the Lemma
I(Xf f\ Y[thY;l,-.-,X“Y“) (‘-;Sfort—: 1, 2,..-,"
a
and some £, ..., f k< 5
[n the following it is convenient to adopt the notation:

Fora RV X" = (X,,..., X,) with values in X" and distribution P we
define

P(x") = Pr (X = x")
and
Pxg, .o %, [ X oo X ) =PolX, = xg, ., Xy = x| X
=Xy .. Xy, =%,)
for any not necessarily distinct
Sts vy Sty ey tme{l, ..., 0l

LEmMA 4. Let P and Q be probability distributions on X7 such thar for
a positive constant ¢

4.7 P(x = (1 -+ )O(x") for all x* = F»,
then forany 0 <y < ¢, 0 e<< | there exist 1y, ..., L &{1, ..., n}, where

¢ -
0<k < > such that for some X, ..., Xy

(4'8) P(xfl I Rf! T -Jl:“) g max ((1 + ?)Q{xl | Elp e Et.)a E)
foralxy,e Xandallt =1,2,...,n

and
(4‘9) P(:fru LC _x:_rk) = Ek-

Progf. 1 (4.8) does not hold already for k = 0, then for some #; and
some X,

P(x,) > max (1 +9)Q(x,). €)

and we derive from (4.7)
(I + Q%) 2= P(xy,) > max (1 + VIQ(Xy), €).

This insures (4.9) for k = t and P(x,) > (1 + 4)Q(X,)) > 0. From (4.7 we
can derive therefore

- 1
(4.10) P(x"| %,) < ]—{—; O(x™ | %,) for all x" & o,

Repeating the argument we get either P{x, | x,,) < max (I -+ ¥)Q(x | x,), €)
for x; € X, 1 <1< n(and we are done) or there exists a 7, and an Xy

Jr. Comb., Inf. & Syst. Sci.



RUDOLF AHLSWEDE 297
with

| +¢
1+
This yields (4.9) for k = 2 and implies with (4.10)

Oy, | Xy) = P(xyy | X4) > max (1 + )00, | Xp), €).

P(x" | Xy Xpy) < (ll_—: C)z Q(x" | Xp» X1y).

Clearly, after k steps (without the procedure having ended before) (4.9)
holds and

- — i _ _
PO Xy Xpp - -9 Xpp) (1 : E};Jc QX" | Xy« s Xee)s

which implies
- — - 14+¢ -
P(xrixm xfg""&xft)“‘-(]_:_) Q( l]xtu'-'sx:,)
forallx,e X, 1 <t <n

log(l4+¢) 14¢
% : .E.D.
e +n Ay <! QED
COROLLARY 2. Ler ACil, ..., Myx{l, ..., M} 1A = (1 — AMN,
and fet {(u;, v;, Dij) 1 (ixJ) € A} be a code for the MAC with maximal error
probability A.

Nowfork—i—l,--

At

Then for any °<°’<“ér__m’ D=L e< ] there exist 1y, ..., L

%
e{l,...,n}, where k < X —and some (X0 oo -« 5 (X0 Py,) suCh

{1 — A%)

that
@12) (@, v;, D)2 () € A}
2 fuy, vy, D)t () € Ayt = Ty ¥, = Py, for 1 KT <
is a subcode with maximal error A and
@ | 2 HA, M=l GJ) € A= <M,
N=|r,:LHEM 2N
() (1 +9) Pr (¥, = %) Pr (Y, =) —r— X9
< Pr(X,=x, ¥, =y) <max (1 +7) Pr(X,=x)Pr(Y, =) ¢
forallxe X,ye Y, 1 <1<
— Xy ... X, "= (¥, ..., Y,)aredistributed according fo the Fano-
distribution of the subcode.
Proof. Apply Lemma 4 with P as Fano-distribution of the code, that

Vol. 7, No. 3 (1982}



228 STRONG CONVERSE THEOREM FOR THE MULTIPLE-ACCESS CHANNEL
1s,
P(x", y") = Pr (X"=x", Y?=)") =
and Q defined by

O(x", y7) = Pr (Xm = x*) Pr (Y" = y7), (x", y") € X"x Q.
L x A" takes the role of ¥ in the Lemma.

T if (x, y"y=(u, v;) for (i, )€ A

Now Q(x", y") =0 implies P(x" %) =0, Q(x, yﬂ):lilTI implies
i

| . ;
P(x", y7) = PN and by our assumption on 4, T < T—% MN.

i 1 A*
Therefore (4.7) holds with ¢ = T I=1—%
yields immediately (a) and the right side inequality in (b). This inequality

implies

Prfﬂxifz =1~ P[fﬂr,?z'
(X (=) (x},,éc,,,, (X;=y ¥')

and the Lemma

=1 Y max ((1 4+ y) Pr (:f‘, = %, 17', = §'), €)
(%, FI#(x )

21— 1Y e—(1+ 91 —Pr (X, = x, ¥, =)
=+ P (X =x, Y =y) -y —|X] | QE.D.
5. PRrOOF OF THE THEOREM
We simply have to combine Lemma 2 and Corollary 2.
For an (n, M, N, Ay code {u, v, Di)) 1 | <i < M, 1< j< N}define A
as in (3.13). Then |4 = (1 - A*)MN for A* =

Apply corollary

>

1
2 with the parameters

(5.1) y=n'e=n"l

Thus for some k < nli

I — A*

(52) ].'Jﬂ o ‘k|uq] = "-linlrll‘(l-—-};‘)(l _ A*)M, ]'Q > n—)i'-ﬂ”:{“ __1-)v
Application of Lemma 2 to this subcode yields

log M < ni2logn+log M

A*
1
< ,Y*l KX, A Z,| F) + Cat? log n
log N < ?:; IY, A Z] X) + C)n Tog n
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log MN < 3, XY, A Z) + C)n*2 log

z*
| — A*

with CA) = e(d) + — log (I — X*),

Since I(X,Y, A Z) = H(X,Y) + H(Z) — H(X,Y.Z),
IX, A Z, | Y)= KXY A Z)~ I(X, A Z)
= H(X,, Y}) — HXY.Z) — H(X) + H(X.Z)
etc., using (b) we complete the proof by showing that for n=12 = {3} Y n!
(5.3) H(X,, Y) — H(X,, Y] < const. n=2 log n etc.,
where Pr (X_, = X, }—’, = y) = Pr (X, = x) P(Y, = »).
Clearly,
(1 4+ Pr(X,=x) Pr{¥,=p)—2r2<Pr(X,=x, Y, =y)
< (L4 Pr(X, = x) Pr (¥, =)+ n!
and hence
(54) Prf,=x)Pr(fi=p)=Pr(Xi=x, Y, =p{ <2
This implies with
Pr(z-zz|.f’,=x, ii,zy)=w(z|xy)=Pr(Z=ziJE=x, ¥, =1)
(55) Pr(Gi=x F=pZi=20—Pr(fi=x Y=y, Z=2) <2
forxeX,yed ze .
For 0 < a < b < a + const. n~%2 < I obviously
(5.6) |alog a — b log b| < const, -7 log a.
This and (5.5) imply (3.3). Q.E.D.

REMARK 4. Using Lemma 3 instead of Lemma 4, one can proceed as
follows:

1. One shows that for X™, Y" associated with the code I(X"| Y") < o
=f(A).

2. Application of Lemma 3 and the analogue of Corollary 3 gives a
subcode with the usual desired properties and J(X; A Yy <éforl <t <n
Since J(X; A ¥) is an Ldivergence Pinsker’s inequality implies

¥ Pr (X, = x, ¥, = y) — Pr (X, = x) Pr (¥ = ) < 82
X ¥

For 8 = n-!2 this approach yields a strong converse with the weaker
n** log n-deviation.

REMARK 5. The fact that our question concerning the Quasi-Zaran-
kiewicz problem has a negative answer has also the consequence that the

Yol. 7, No, 3 (1982)
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conclusion in Lemma 4 cannot be replaced by

(4.8% PO | B, .., %) < max (1 + MO0 T+ s ¥y O
for all x* & X" and Xy, . .., X,, suitable

and (4.9)

if for instance € = 1/n.
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