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Abstract. The NGPCA method, a combination of the robust neural
gas vector quantization method and a fast neural principal component an-
alyzer, has proved to be a valuable tool for the generalized learning of
high–dimensional data. At its core, the method uses a competitive rank-
ing to adapt its units. The competition is guided by a specialized distance
function — known as the normalized Mahalanobis distance — that as-
sumes elliptic cluster shapes. Recently, an alternative distance function,
the normalized Rayleigh quotient, has been suggested. This paper com-
pares the performance of NGPCA on different distance functions. For the
comparison a data set from a realistic robot arm experiment is used.

1 Introduction

Principal component analysis (PCA) is an ubiquitous statistical method for di-
mension reduction. Although PCA is linear in its nature, it has been successfully
applied to a large variety of problems ranging from data compression to pattern
recognition. PCA is based on a linear projection from a high-dimensional data
space into a low-dimensional feature space, yielding the so-called principal com-

ponents. The projection is information-preserving in the sense that it takes
into account those directions in which the data have their highest variance and
thus convey most of their information. The other directions which are consid-
ered irrelevant are dismissed which eventually leads to a loss of information.
The distance between a data point and its reconstruction from its correspond-
ing principal components, which is known as the reconstruction error, is the
quantity which is sought to be minimized (usually over all data points). The
projection which fulfills this optimality condition is the projection into the sub-
space spanned by the eigenvectors corresponding to the m largest eigenvalues of
the sample covariance matrix.

The objective of local PCA methods [1, 2] is to extend the basic PCA ap-
proach by augmenting it with a vector quantization (VQ) method. This allows
for the accurate approximate of a globally nonlinear structure (e.g. a curved
manifold) by locally applying linear PCA. Commonly, local PCA approaches
are based on specialized distance functions. Among these are the normalized
Mahalanobis distance [2] and the normalized Rayleigh quotient [3]. The choice
of the distance function has a strong influence on the performance of the local
PCA method. The objective of this paper is to review two of these distance
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functions and to evaluate their performance when used in an on-line local PCA
framework which will be presented in the following.

2 Local PCA method

In this section we will briefly review a local PCA method, known as neural gas
principal component analysis (NGPCA) [2]. This method is an on-line learning
algorithm. The algorithm is an extension of the neural gas (NG) algorithm
[4] to local PCA. In contrast to other VQ algorithms, neural gas uses a soft
competition between prototypes during the training. The goal of this heuristic
is to prevent the algorithm from getting stuck in local minima [4].

2.1 NGPCA

The extension of NG to local PCA requires two major modifications: The mod-
ified code book is a set of units which consist of the center and the local PCA
subspace which is represented by an n ×m matrix Wi containing the m prin-
cipal eigenvectors, an m × m diagonal matrix Λi containing the m principal
eigenvalues, and the residual variance σ2

i which is the sum of the n −m minor
eigenvalues. These entities form a 4-tuple Ui = (ci,Wi,Λi, σ

2
i ), to which we will

refer as a unit.
Let the code book be denoted by U = {U1, . . . , UN}. The assignment be-

tween units and data points is calculated using the distance function

d(x, Ui) = yT
i Λ

−1
i yi +

1

λ∗

i

(‖ξi‖
2 − ‖yi‖

2) + ln |Λi|+ (n−m) ln(λ∗

i ), (1)

where ξi = x − ci denotes the deviation between x and the unit center, yi =

W T
i ξi denotes the vector of principal components, and λ∗

i =
σ
2

i

n−m
is the es-

timate of the minor eigenvalues. Furthermore, |Λi| =
∏m

j=1 λ
(j)
i denotes the

determinant of Λi. The distance function (1) is called normalized Mahalanobis

distance. In fact, the iso-distance surface of (1) are hyper-ellipsoids, centered at
ci and augmented with a hyper-sphere in the n−m minor dimensions. The term
Erecon = ‖ξi‖

2 − ‖yi‖
2, which also appears in (1), is equivalent to the instanta-

neous reconstruction error. The term in (1) which depends on the determinant
of Λi is related to the volume of the hyper-ellipsoid; this term penalizes “large”
hyper-ellipsoids during the training [2].

For every time step t, an input vector x(t) ∈ X = {x(1), . . . ,x(T )} ⊂ R
n

arrives, and the distance between x(t) and each unit is calculated using (1).
Each unit is then assigned a rank ri according to its distance; the unit which
has the lowest distance gets rank 0, the second lowest gets rank 1, etc. The rank
is then used to calculate an individual learning rate for each unit:

αi = ǫ(t) exp(−ri/ρ(t)), (2)

where ri denotes the rank, ρ(t) denotes the neighborhood range, and ǫ(t) is a
global learning rate. The parameters ρ(t) and ǫ(t) both depend on t and decay
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Fig. 1: 2D contours of the normalized Mahalanobis distance (top row), and the
reciprocal normalized Rayleigh quotient (bottom row) for λ1 ∈ {1, 5, 10} and
λ2 = 1.

exponentially during the course of the training from their initial values ρ(0), ǫ(0)
to their (small) final values ρ(T ), ǫ(T ) [4, 2].

In the following, we briefly summarize the learning rule of NGPCA. The
adaptation of the unit centers is analog to NG [4]:

ci(t+ 1)← ci(t) + αi · (x(t)− ci(t)), (3)

The subspaces are adapted by an on-line PCA method [5]. We write this
step abstractly as

Wi(t+ 1),Λi(t+ 1)← PCA(αi,Wi(t),Λi(t), ξi). (4)

The residual variance — which is equal to the mean reconstruction error — can
be calculated recursively, using the update equation

σ2
i (t+ 1)← σ2

i (t) + αi(‖ξi(t)‖
2 − ‖yi(t)‖

2 − σ2
i (t)). (5)

Initially, the unit centers are placed by picking samples from the data distri-
bution at random, the eigenvectors are initialized with an arbitrary orthonormal
set of vectors, and the eigenvalues and the residual variance are initially set to
common values λ(0) and σ2(0), respectively.

2.2 Alternative distance function

Besides the normalized Mahalanobis distance (1), there are other distance func-
tions that are especially suited for local PCA [2, 3]. The distance function we



func. N = 60 N = 120

m
=

3 Mahalanobis 1.36 (0.11) 1.18 (0.08)

Rayleigh 2.04 (0.23) 1.61 (0.17)

Euclidean 1.84 (0.27) 1.10 (0.06)

m
=

9 Mahalanobis 5.53 (1.15) 3.01 (0.72)

Rayleigh 1.01 (0.13) 0.78 (0.07)

Euclidean 1.19 (0.13) 0.87 (0.12)

Table 1: Grasping error Egrasp for the different distance functions (standard
deviation in brackets).

will focus on in the following is motivated by one special drawback of NGPCA
(and presumably other local PCA methods): During the training, units might
be placed (under certain conditions) in a way that they are not supported by
any of the data. Therefore, no data points are assigned to these units — termed
“dead” units —, and thus they do not contribute to the approximation of the
data distribution.

Huang et al. [3] propose a distance function — the normalized Rayleigh
quotient — which they claim is independent of the size or volume of the hyper-
ellipsoid, and thus results in less “dead” units [3]. We will present a modified
variant of the normalized Rayleigh quotient which is better suited for the NG-
PCA framework. First of all, we replaced the full covariance matrix with its
eigendecomposition in analogy to (1). This avoids the costly update of the co-
variance matrix which can be very large for high-dimensional data. Another
modification was necessary, because the normalized Rayleigh quotient is subject
to maximization whereas a distance function should be minimized. Therefore,
we take the reciprocal of the original equation [3], yielding

d̃R(x, Ui) =
(trΛi + (n−m)λ∗

i ) · ‖ξi‖
4 + ǫr

yT
i Λiyi + λ∗

i (‖ξi‖
2 − ‖yi‖2) + ǫr

, (6)

where ǫr is a small regularizing constant (in our experiments ǫr = 10−6) that
prevents (6) from becoming undefined if ‖ξi‖ = 0.

Figure 1 (top row) shows the contours of (1) for different λ1 and fixed λ2.
The contours are ellipses whose major axes vary along with the principal eigen-
value λ1. In contrast, figure 1 (bottom row) shows the contours of (6) which
only vaguely resemble hyper-ellipsoids. Although the extension in the principal
direction is mainly affected by the principal eigenvalue, it has also a strong in-
fluence on the surface’s extension in its minor direction. The two bulges at each
side of the surface become more prominent as the ratio λ1/λ2 increases.

3 Results

We applied NGPCA to data from a real robot arm experiment [6]. The robot
setup consist of two cameras, each of them mounted on a pan-tilt unit, and a



func. N = 60 N = 120

m
=

3 Mahalanobis 2.60 (1.20) 20.00 (3.38)

Rayleigh 7.20 (1.94) 33.10 (2.84)

Euclidean 0.00 (0.00) 3.10 (1.64)

m
=

9 Mahalanobis 25.90 (1.87) 70.80 (3.84)

Rayleigh 9.60 (2.50) 37.20 (4.42)

Euclidean 0.10 (0.30) 4.30 (1.62)

Table 2: Number of “dead” units. See text for explanations.

6-degrees-of-freedom robot manipulator with gripper. The setup is facing a table
with a colored wooden block on it. A saccade controller directs the gaze of the
cameras towards the block. The task is now to learn an association between the
gaze direction, the visual input, and an arm posture suitable for grasping the
block.

The pattern space is divided into 20 input dimensions which encode the
position/orientation of the block, and 48 output dimensions which correspond
to the grasping posture of the arm, resulting in a total of 68 dimensions. The
data set consists of 3200 distinct patterns 85% of which were used for training
and 15% for testing. All results presented in the following were obtained using
the test set.

We use NGPCA as an abstract recurrent neural network [6] to recall for a
given input (i.e. the gaze direction and the block’s orientation) a given output
(i.e. a grasping posture). We did not succeed in finding a closed-form solution
of the recall method for the normalized Rayleigh quotient yet. Therefore, we
used the recall method in its original form [6] which is based on the normalized
Mahalanobis distance.

In our experiments, the arm is not moved physically. We rather use its
forward kinematics to calculate the position/orientation of the gripper at the
recalled grasping posture. These values are compared to the position/orientation
of the block which yields four errors: The horizontal and vertical position error
and the horizontal and vertical orientation error. These errors were combined as
a weighted sum into a single index which we will refer to as the grasping error
Egrasp.

For the comparison of the different distance functions (see section 2), we
calculated the mean grasping error and the mean number of dead units, respec-
tively. We compared the normalized Mahalanobis distance (1), the normalized
Rayleigh quotient (6), and the Euclidean distance. Networks were trained using
N = 60 andN = 120 units, andm = 3 and m = 9 eigenvectors, respectively. For
each parameter combination and distance function, 10 NGPCA networks were
trained. The number of training steps was T = 30 000. The learning rate and
neighborhood radius were exponentially decreased from ǫ(0) = 0.5 and ρ(0) = 1
to ǫ(T ) = 0.01 and ρ(T ) = 0.01, respectively, during the course of the training.
The eigenvalues and the residual variance were set to a common initial value of



1. Furthermore, we used the robust recursive least squares learning algorithm
(RRLSA) [5] for the on-line PCA learning.

Table 1 shows the results (Egrasp) for the different distance functions. Ob-
viously, the normalized Mahalanobis distance is inferior in most of the cases; it
is only superior for N = 60,m = 3. The Euclidean distance is otherwise the
best for three eigenvalues. The normalized Rayleigh quotient, which shows the
worst performance for m = 3, clearly outperforms the normalized Mahalanobis
distance for m = 9, but is only slightly better than the Euclidean distance.

Table 2 shows the mean number of “dead” units. It is obvious that the
occurrence of “dead” units scales with the total numbers of units, although the
strength of this effect varies for the different functions. Moreover, the normalized
Mahalanobis distance is very sensitive to the choice of m: For m = 3 the number
of dead units is much smaller than for m = 9. The Euclidean distance and the
normalized Rayleigh quotient are widely unaffected by the choice of m.

4 Conclusion

The NGPCA method is a local PCA method whose core concept is a competition
between the local PCA units (ranking) that relies on a specialized distance func-
tion. Two of these distance functions — the normalized Mahalanobis distance
and the normalized Rayleigh quotient — were reviewed and their performance
was evaluated in a comparative study on data from a robotic arm experiment.

The normalized Mahalanobis distance performs well if the intrinsic dimen-
sionality of the data distribution is known beforehand. However, the more the
dimensionality is overestimated, the worse its performance becomes. The drop
in performance is indicated by a higher grasping error and an increase of the
occurrence of “dead” units. The normalized Rayleigh quotient fares better if
the number of eigenvectors is increased. Futhermore, if the number of units is
relatively large, there is no advantage in using a specialized distance function
and one may use the Euclidean distance instead.
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