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Abstract

We develop a theory of optimal stopping problems under ambiguity in
continuous time. Using results from (backward) stochastic calculus,
we characterize the value function as the smallest (nonlinear) super-
martingale dominating the payoff process. For Markovian models,
we derive an adjusted Hamilton–Jacobi–Bellman equation involving a
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Hans Föllmer, and Xunyun Zhou. Financial Support through the German Research Foun-
dation, International Graduate College “Stochastics and Real World Models”, and Re-
search Training Group EBIM, “Economic Behavior and Interaction Models”, is gratefully
acknowledged.

1



1 Introduction

This paper is a sequel to my previous analysis of optimal stopping problems
under ambiguity in discrete time published in Riedel (2009). As such, the
motivation, the economic examples, and the importance of the question is the
same as in that paper, of course. We now pass from discrete to continuous
time.

New economic insights can be obtained from continuous–time models. In
our case, one real function – the driver of the variational expectation – will
suffice to describe ambiguity aversion, a great simplification compared to us-
ing a whole set of multiple priors or a penalty function defined on the space
of all probability measures. Continuous-time models also have special appeal
due to their elegant solutions and the power of (stochastic) calculus.The ex-
plicit solutions in continuous time allow for comparative statics that would
otherwise be difficult to find. The continuous–time solutions approximate
well the discrete–time ones if the time intervals are sufficiently small (see
our analysis in another paper, Cheng and Riedel (2010)), but they are fre-
quently easier to interpret, and can be used, through their explicit formulas,
as building stones for more complex models. Famous examples in the non–
ambiguous setup include the theory of investment under uncertainty with
sunk costs or the real options literature (Dixit and Pindyck (1994), Trigeor-
gis (1996), Smit and Trigeorgis (2004)), American options (Myneni (1992),
Karatzas (1988), Jacka (1991) ) or search models (Weitzman (1979), Sargent
(1987), Nishimura and Ozaki (2004)). Optimal stopping has also important
applications in the design of experiments (DeGroot (2004); Chernoff (1972)).

As a first step into the rich world of continuous–time models, we en-
gage into the large class of diffusion models that still form the standard and
benchmark in most of the literature. We thus assume that the relevant in-
formation is generated by a (d–dimensional) Brownian motion1. We aim to
develop a general theory of optimal stopping for ambiguity–averse agents
who use multiple prior, or more generally, variational preferences in such a
diffusion setting.

Next to a number of economically desirable properties like ambiguity–
aversion, continuity, monotonicity etc. a crucial feature of normatively ap-
pealing dynamic models is time–consistency. The concept of dynamic consis-

1In general, one might want to allow for jumps, or more general semimartingale models.
First steps in this direction can be found in the recent work of Trevino (2008), e.g. who
proves a general minimax theorem.
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tency has a long history in economic thought, compare Koopmans (1960) and
Duffie and Epstein (1992). On the technical side, time–consistency allows to
apply the principle of dynamic programming. From the normative point of
view — if we are to apply our results to the regulation of financial markets,
for instance — dynamic consistency seems to me a necessary condition: in-
consistent behavior (even if it admittedly occurs in reality!) is difficult to
justify.

Time–consistency restricts the class of admissible models quite a bit, but
allows nevertheless for a rich variety of economically interesting studies. To
start with, there is the benchmark model of “κ–”, or, as we prefer to call
it, “drift” ambiguity by Chen and Epstein (2002), where the agent knows
the volatility, but not the drift of the underlying Brownian motion. She thus
considers all priors under which the Brownian motion has a drift (θt(ω)) with
values in the interval [−κ, κ] for some constant κ > 0 that measures the level
of ambiguity. It is very important to allow for stochastic and time–varying
drift θt(ω) here because else, we loose time–consistency, as shown in Chen
and Epstein (2002). Our examples below (Section 4) illustrate nicely that
it is rational to change one’s belief about the worst drift; this occurs, for
example, when the payoff changes its monotonicity due to a stochastic event
(as in Barrier Options).

κ–ambiguity is our leading example in the applications. But the class
of models we consider here is much larger and covers (almost) all models of
variational utility as axiomatized in Maccheroni, Marinacci, and Rustichini
(2006). To see this, note that Chen and Epstein (2002) show that the con-
ditional expected value under drift ambiguity solves a backward stochastic
differential equation. Formally, if we denote by Pκ the set of priors under
κ–ambiguity and let X be a suitably bounded random variable, then the
conditional minimal expectation

Yt = Et (X) = min
P∈Pκ

EP [X|Ft]

satisfies
− dYt = −κ|Zt|dt− ZtdWt (1)

for some volatility process Z. The “driver” g(z) = −κ|z| in Equation (1)
is concave. More generally, it has been shown in the literature that time–
consistent variational preferences of the form

Et (X) = min
P

EP [X|Ft] + αt(P )
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satisfy under some regularity conditions a backward stochastic differential
equation of the form

−dYt = g(t, Zt)dt− ZtdWt

for some driver g(t, z) that is concave in z. Such nonlinear expectations have
been called g–expectations by Shige Peng who developed a rich probabilistic
theory for them (see Peng (1997), Peng (1999)). The driver g and the penalty
function α in the variational representation share the following relation. If we
denote by f the convex dual2 of g, then the penalty function can be written
as

αt(P ) = Eθ

[∫ T

t

f(s, θs)ds|Ft

]
where the process θ = (θt) is the Girsanov kernel of the measure P with
respect to our reference measure P0, see Section 2.1 below.

Let us now review the contributions of the current paper. To start with,
we derive the general structure of optimal stopping times and the value func-
tion. In the non–ambiguous case, it is well known that the value process is
a supermartingale, and a martingale as long as it is not optimal to stop. By
waiting, we keep the expected value constant if waiting is optimal, and we
lose some value in expectation if waiting was the wrong decision. We show
that our value process is the smallest rightcontinuous g–supermartingale that
dominates the payoff process. Note that we have to replace the concept of
supermartingale by the (analogously defined) concept of g–supermartingale
(the g–supermartingales correspond to the multiple prior supermartingales
in Riedel (2009)). It is optimal to stop when the payoff is equal to the value
process.

As an aside, we provide during the proof of this theorem a lemma on
rightcontinuous versions of g–supermartingales. One can assume without
loss of generality that a g–supermartingale V has rightcontinuous sample
paths if the ex–ante (nonlinear) expectations t 7→ E0 (Vt) are rightcontinuous.
This task is performed in the appendix F ; it relies on a generalization of
the classical up– and downcrossing inequalities for supermartingales to g–
supermartingales given in Chen and Peng (2000).

In the multiple prior case, it is natural to go for a minimax theorem as
we maximize over stopping times a minimal expectation. With our general

2i.e. f(θ) = supz∈Rd g(z)− z · θ
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structure theorem, it is easy to derive such a theorem. With the help of a
Girsanov transformation, we identify a worst–case measure. The worst case
measure assigns drift +κ or−κ to the underlying Brownian motion depending
on which case is more unfavorable. The sign of the drift is determined by
the endogenous volatility process of the value function (we come back to this
point below). For the moment, let us point out that it is indeed important to
allow for stochastic drift (and stochastic Girsanov kernels) when specifying
the class of priors. Without this, a worst–case measure would not exist, in
general (see also our Examples below, in particular on the American Straddle
Options). As soon as a worst–case measure exists, the minimax theorem
follows trivially. Using convex duality, we also prove the existence of a worst–
case measure in the general case.

Many important models in finance and economics exhibit a Markovian
structure, the most famous one being the geometric Brownian motion model
used in the Samuelson model of financial markets. We thus move on to study
optimal stopping problems when the payoff is a function of an underlying
Markov process that solves a (forward!) stochastic differential equation. In
this case, we are able to derive an analog of the classical Hamilton–Jacobi–
Bellman equation for the value function.

This partial differential equation has the same structure as in the classical
case, except for a nonlinear term that is generated from ambiguity aversion.
In our setup, this nonlinear term is of the from g(t, vx(t, x)σ(x)) where g
is the driver of our g–expectation and vx is the first derivative of the value
function with respect to the state variable; σ(x) is the volatility of the state
variable.

For drift ambiguity, the driver g(x) = κ|x| is a multiple of the absolute
value. With the help of our Bellman equation, we can then easily solve a
large number of problems where the payoff is a monotone function of the
underlying state variable. As an example, think of the American Put in
the Samuelson model. There, the volatility σ(x) = σ of the asset price is
constant. The payoff Xt = max {K − St, 0} e−rt is a function of (time and)
the asset price which is monotone decreasing in the asset price. It is thus
natural to guess that the value function will be monotone decreasing in the
asset price. As we have g(x) = −κx for negative x, we are back at a linear
Bellman equation. This linear Bellman equation corresponds to the value
function of a classical optimal stopping problem (with a different drift).

We prove in general, that for such monotone problems, the value function
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coincides with the classical value function after changing the drift to κ (if the
payoff function is monotone increasing) or −κ (else). In particular, we thus
obtain the existence of a worst–case measure in this restricted setting again.

In particular, our methods cover and give a rigorous proof of the results
in Nishimura and Ozaki (2007).

In the monotone case with drift uncertainty, the worst–case prior is easy
to guess: the agent just presumes the most unfavorable drift. In general,
the situation is quite more complex, as we show with the help of two ex-
amples. When the payoff is path–dependent or a non–monotone function of
some underlying Markov process, the agent’s belief about the worst–case drift
changes stochastically, and this can happen quite frequently. We illustrate
this effect with the help of Barrier Options and the American Straddle. In
general, the worst–case drift depends on the effect of the state variable on the
value function. So, if we are currently in a region where the value function
is increasing in the state variable, the agent pesumes the minimal possible
drift, and vice versa. Whenever the state variable thus crosses a minimum of
the value function, the agent changes her belief; in particular, close to such
a minimum, this happens infinitely often due to the diffusion nature of the
state variable. Under uncertainty, even rational agents might appear quite
panicky from the outside, at least as far as their beliefs are concerned.

The paper is set up as follows. The next section introduces the
continuous–time setup and explains the relation between variational expec-
tations and backward stochastic differential equations, and g–expectations.
All required techniques from this literature are explained in this paper. I
hope to convince the reader that he or she does not need to know much more
than the usual probability background to understand our results. Section
3 introduces the optimal stopping problem and exposes the general theo-
rems about optimal stopping under ambiguity. First, it contains the general
structure theorem that characterizes the value function as the smallest right-
continuous g–supermartingale that dominates the payoff process. We also
provide the relationship to reflected backward stochastic differential equa-
tions (but this part can be skipped). This section contains also the existence
of a worst–case measure and the general minimax theorem as a corollary. Sec-
tion 3.2 derives the Hamilton–Jacobi–Bellman equation in Markovian mod-
els. We conclude that section with a treatment of the infinite time horizon
(for Gilboa–Schmeidler–like expectations). Section 4 contains examples and
applications. We start with the monotone problems described above. To
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show that a reduction to a classical problem is not always trivial, we also
study more complex problems. For barrier options and american straddles,
the agent’s worst–case measure exhibits a quite complex structure. Section
5 concludes, and the appendix contains additional material and most of the
proofs.

2 The Optimal Stopping Problem for

ambiguity–averse agents

Our informational setup is given by a probability space (Ω,F , P0) on which
B = {Bt, 0 ≤ t ≤ T} is a d-dimensional standard Brownian motion. We
denote by (Ft)t≥0 the filtration generated by B augmented by the P0–null
sets. P0 serves the role of a reference measure3 here; it need not describe nor
the empirical nor the subjective probabilities.

We want to study the optimal decision of an agent who receives a reward
Xτ upon stopping at time τ where X = (Xt)0≤t≤T is an adapted process
describing the agent’s gain. Our agent is ambiguity–averse; her evaluation of
an uncertain payoff X is given by a functional E0 (Xτ ) at time 0, respectively
Et (Xτ ) at time t ≥ 0. The agent chooses a stopping time τ ≤ T that
maximizes E0 (Xτ ).

Before we impose more structure on our dynamic expectations, let us fix
some technical condition on the payoff process that we shall need.

Assumption 2.1 The payoff process X = (Xt)0≤t≤T is an adapted, nonneg-
ative4 process that has continuous sample paths5. In addition, X is bounded

3In particular, the (in)equalities involving random variables have, unless otherwise
stated, to be read as almost–sure–statements with respect to P0; we also use P0 to define
our space of admissible payoffs.

4As our variational expectations are constant–additive, nonnegativity is equivalent to
assuming boundedness from below. Most economic applications of optimal stopping have
a certain “option” feature so that the payoff is bounded from below.

5Most interesting economic payoff processes, like Call, Put, etc. have continuous sample
paths. However, this assumption can be weakened. A detailed inspection of our proofs
shows that it is enough to have rightcontinuous sample paths and “leftcontinuity over
stopping times in g–expectation”, i.e. for any sequence of stopping times (τn) that increase
to a stopping time τ , we have E0 (Xτn

) → E0 (Xτ ). This will cover examples like digital
options in diffusion models.
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in L2 (Ω,F , P0):
E0 sup

t∈[0,T ]

X2
t < +∞ . (2)

Here, and in the sequel, we denote by E0 the expectation with respect to
our reference measure P0.

2.1 Variational Expectations

Let us now come to the nonlinear expectation. We are inspired by our later
applications to ambiguity–averse agents who evaluate payoffs according to
Gilboa–Schmeidler preferences like

E0 (Xτ ) = inf
P∈P

EP Xτ

for a suitable set of priors P , or more generally by variational preferences
like

E0 (Xτ ) = inf
P∈∆

EP Xτ + c(P )

for a penalty function c(P ) defined on the set ∆ of all6 probability measures
on our space. In the recent literature on variational preferences and convex
risk measures, the structure of such functionals in diffusion models has been
worked out7.

Let us start with our benchmark example, called κ–ignorance in Chen
and Epstein (2002), or, as we call it, drift ambiguity. Drift ambiguity models
an agent’s uncertainty about the drift of the underlying Brownian motion.
For simplicity, we set the dimension d = 1 for the moment. Fix an ambiguity
parameter κ > 0 and denote by Dκ the set of all progressively measurable
processes θ = (θt)t∈[0,T ] with |θt| ≤ κ. Call Pκ the set of all probability mea-

sures Q that are equivalent to P0 with density exp
(∫ T

0
θsdBs − 1

2

∫ T

0
θ2

sds
)

.

This model describes an agent who is uncertain about the drift of the un-
derlying Brownian motion and thus allows any drift between −κ and +κ.
We stress that it is important to allow for a stochastic and time–varying
Girsanov kernels (drift change) here because we otherwise lose the property
of dynamic consistency, see Chen and Epstein (2002) for details.

6The cost function is allowed to assume the value infinity, see xxx below.
7The most general result in our continuous–time setting has recently been obtained by

Delbaen, Peng, and Rosazza Gianin (2009).
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Chen and Epstein (2002) show that drift ambiguity expectations solve
a backward stochastic differential equation in the following sense. At the
terminal time, we have ET (X) = X, as X is supposed to be known at time
T (the terminal condition); before T , the expectations satisfy the recursive
relation

dEt (X) = −κ|Zt| dt + Zt dBt (3)

for some progressively measurable, square–integrable process Z. Therefore,
ambiguity gives rise to a version of stochastic differential utility in the sense
of Duffie and Epstein (1992)8. The ambiguity aversion is described here by
the concave function g(z) = −κ|z|.

A more general version of stochastic differential utility allows for general
concave functions g of the volatility process Z in the backward recursive
equation (3). This in turn leads to a suitable version of dynamic variational
expectations in our diffusion setting.

Definition 2.2 We call a function g : Ω× [0, T ]×Rd → R a standard driver
for variational expectations if it satisfies the following properties:

1. (g(ω, t, z))t∈[0,T ] is an adapted process with

E

∫ T

0

|g(t, z)|2 dt < ∞

for all z ∈ Rd;

2. g is Lipschitz continuous9 in z, uniformly in t and ω: there exists
µ > 0 such that for all t ≥ 0 and all z1, z2 ∈ Rd we have |g(ω, t, z1) −
g(ω, t, z2)| ≤ µ‖z1 − z2‖;

3. g(ω, t, 0) = 0 for all t ≥ 0 and ω ∈ Ω,

4. g is concave in z.

8For more on this relationship, see, e.g., Skiadas (2003). Let us also mention that the
Bernoulli utility function u is integrated into the payoff process in our paper.

9By assuming Lipschitz continuity for the aggregator, we exclude some dynamic risk
measures. A prominent example is the so–called entropic risk measure, or in our context,
better: entropic expectation, which has driver g(z) = 1

2z2. However, for this expecta-
tion, the optimal stopping problem under ambiguity is equivalent to the standard optimal
stopping problem to maximize − 1

aE0 exp (−aXτ ) for some parameter a > 0. Entropic risk
corresponds in economic terms to Expected Utility with Constant Absolute Risk Aversion.
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The backward stochastic differential equation

dYt = −g(Zt)dt + ZtdBt . (4)

with terminal condition X ∈ L2 has then a unique solution (Y, Z) in the space
of square–integrable adapted processes with terminal condition YT = X.
Peng (1997) calls Yt = Et (X) the (conditional) g–expectation of X.

Every g–expectation gives rise to a variational expectation in the following
sense. Let

f(ω, t, θ) = sup
z∈Rd

g(ω, t, z)− z · θ
(
ω ∈ Ω, t ∈ [0, T ], θ ∈ Rd

)
be the convex dual of g10. We denote by D the set of all progressively
measurable processes (θt) such that

E0

∫ T

0

f (s, θs)
2 ds < ∞ .

Now let t ≤ τ ≤ T be a stopping time. El Karoui, Peng, and Quenez
(1997) establish the following dual representation for solutions of backward
stochastic differential equations (or g–expectations): For an Fτ–measurable
random variable ξ the g-expectation at time t can be written as

Et (ξ) = ess inf
θ∈D

Eθ [ξ|Ft] + αt,τ (θ)

where the penalty function is

αt,τ (θ) = Eθ

[∫ τ

t

f(s, θs)ds|Ft

]
. (5)

Here, Eθ denotes the expectation under the measure P θ determined by the
Girsanov transformation with kernel θ. Note that we consider only measures
P here that are equivalent to P0; we identify those measures with their Gir-
sanov kernel θ. Moreover, we restrict to Girsanov kernels with values in the
domain of the convex dual f ; as g is Lipschitz–continuous with constant µ,
we know that θ takes values in the compact set [−µ, µ]d. We refer to Delbaen,
Peng, and Rosazza Gianin (2009) for more details.

10Here, and in the sequel, z · θ denotes the dot or scalar product in Rd.
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2.2 Properties of g–Expectations, g–Martingales

Let us list here for later reference a set of properties of variational expecta-
tions in the above sense. We shall see that they share many of the appeal-
ing properties with standard expectations, except, of course, the linearity.
Et (X) is defined for all square–integrable, FT –measurable random variables
in L2 = L2 (Ω,FT , P0) and is itself a square–integrable, Ft–measurable ran-
dom variable. Et (X) is the agent’s subjective expected value for X given her
information at time t.

The variational expectation is monotone, i.e.

X ≥ Y ⇒ Et (X) ≥ Et (Y ) (6)

and the inequality is strict whenever X < Y with positive P0–probability.
Our variational expectation is also additive with respect to payments that

are known at time t: if Z is Ft–measurable, then we have for all X ∈ L2

Et (X + Z) = Et (X) + Z. (7)

If the agent knows that an event A has occurred at time t, then her expecta-
tion does not depend on states of the world that he knows to be impossible
from now on. Technically, we have for A ∈ Ft and all X ∈ L2

Et (1A X) = 1A Et (X) . (8)

This condition is equivalent to the following seemingly stronger property: for
an event A ∈ Ft and all X, Y ∈ L2, we have11

Et (1A X + 1Ac Y ) = 1A Et (X) + 1Ac Et (Y ) . (9)

The next property in our list is a suitable kind of continuity. We will fre-
quently use monotonic continuity,

Xn ↑ X ⇒ Et (Xn) ↑ Et (X) (10)

and a version of Lebesgue’s dominated convergence theorem: if (Xn) is
bounded by some square–integrable random variable Y ∈ L2 and Xn → X,
then

Et (Xn) → Et (X) . (11)

11The proof is as follows (can be canceled later): let Z = 1A X + 1Ac Y . By applying
(8) twice, we have 1AEt (X) = Et (1AX) = Et (1AZ) = 1AEt (Z). By analogy, we have for
B = Ac, 1BEt (Y ) = Et (1BY ) = Et (1BZ) = 1BEt (Z). By adding up the two equations,
we get (9).
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So far, we have discussed basic properties of expectations. We come
now to inherently dynamic considerations. For a Bayesian agent, we have
the important law of iterated expectations; this law is essential in deriving
time–consistency and the principle of dynamic programming. It is of utmost
importance for our dynamic techniques that we have this law here, too. For
all times 0 ≤ s ≤ t ≤ T and random variables X, Y ∈ L2

Es (X) = Es (Et (X)) (12)

holds true.
We note some basic regularity in the time variable t; the expectation

process Yt = Et (X) is continuous in t as it solves a backward stochastic
differential equation. For a stopping time τ ≤ T , the “expectation at time τ”
is then a well–defined Fτ–measurable random variable Eτ (X) and it coincides
with the process Y stopped at τ .

We model now (un)fair games against nature, or g–(super)martingales
for our agent. A process (St)t∈[0,T ] ⊂ L2 is called a g–(super–)martingale if
we have for all 0 ≤ u ≤ t ≤ T

Eu (St) = Su (Eu (St) ≤ Su) . (13)

Rational agents understand that there is no smart way to beat an unfair
game. Technically, we have a version of the Optional Sampling Theorem: let
(St)t∈[0,T ] be a g–supermartingale. Then for all stopping times 0 ≤ σ ≤ τ ≤ T
we have

Eσ (Sτ ) ≤ Xσ . (14)

The fact that our variational expectation has all these nice properties has
been established by Shige Peng, 1997, see also Coquet, Hu, Mémin, and Peng
(2002).

Theorem 2.3 (Peng) The g–expectation (Et (X)) satisfies the conditions
(6) to (14).

3 The Structure of Optimal Stopping Times

We now clarify the general structure of our optimal stopping problem. As
our variational expectations are time–consistent, the dynamic programming

12



principle holds true even though we are in a non–Bayesian world. Loosely
speaking, it says that our value function V = (Vt)0≤t≤T satisfies

Vt = max {Xt, Et (Vt+dt)} .

In other words, either it is optimal to stop at time t (because of Vt = Xt), or
the value function stays constant in expectation; in probabilistic terms, the
value function is a g–supermartingale (Vt ≤ Et (Vt+dt)), and a g–martingale
as long as it is not optimal to stop. Generalizing the classical theorem about
optimal stopping problems (see, e.g. El Karoui (1979), Peskir and Shiryaev
(2006)), we now characterize the value function as the smallest (rightcontinu-
ous, see below) g–supermartingale that dominates the payoff process. At the
same time, we extend the discrete–time result of Riedel (2009) to continuous
time.

Theorem 3.1 Let
Vt = ess sup

τ≥t
Et (Xτ )

be the value function of the optimal stopping problem. One can choose a
version of V with rightcontinuous sample paths. Moreover:

1. (Vt) is the smallest rightcontinuous g–supermartingale dominating
(Xt);

2. τ ∗ = inf {t ≥ 0 : Vt = Xt} is an optimal stopping time;

3. the value function stopped at τ ∗, (Vt∧τ∗) is a g–martingale.

We quickly comment on an important technical detail for the proof. From
its definition, it is not clear that the value function has rightcontinuous sam-
ple paths; and in fact, this need not be true per se. It is thus important to
show that we can find a version of that process with rightcontinuous sample
paths. This task is performed in the appendix F ; it relies on a generaliza-
tion of the classical up– and downcrossing inequalities for supermartingales
to g–supermartingales given in Chen and Peng (2000)12

12The question of rightcontinuity has also been studied in a much more general frame-
work in independent work of Trevino (2008).
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A Detour: Reflected Backward Stochastic Differential Equations

At this point, we would like to highlight the relation of our approach with the
mathematical literature on reflected backward stochastic differential equa-
tions and obstacle problems. Let X = (Xt)0≤t≤T be an adapted stochastic
process that we interpret as an obstacle. Our aim is to control a process
V = (Vt)0≤t≤T in such a way that

• it stays above the obstacle,

• satisfies the stochastic dynamics

− dVt = g(t, Zt)dt− Zt · dBt + dCt (15)

for an increasing process C,

• the terminal condition VT = XT holds true,

and we spend as less “fuel” dCt as possible. Formally, we call a triple
(Y, Z,C) of progressively measurable processes with E0 sup0≤t≤T Y 2

t < ∞,

E0

∫ T

0
‖Zt‖2dt < ∞ and C a rightcontinuous, increasing process with C0 = 0

and E0C
2
T < ∞ a solution to the reflected backward stochastic differential

equation with obstacle X, terminal condition XT and driver g if the above
conditions are satisfied, and in addition, we have∫ T

0

(Yt −Xt) dCt = 0 ,

see ElKaroui, Kapoudjian, Pardoux, Peng, and Quenez (1997) for details.
These authors use a Picard–Lindelöf–type approach to prove existence and
uniqueness of solutions.

Our approach yields another proof for the existence and uniqueness of
solutions to reflected backward stochastic differential equations. The reason
is that the value function of our optimal stopping problem with variational
expectations with driver g is the unique solution of the reflected BSDE. The
obstacle problem can be viewed as a sequence of optimal stopping problems.
Our value function clearly stays above the “obstacle” X; times when it is
necessary to push up the process V to stay above X correspond to optimal
stopping times in our problem.
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Corollary 3.2 There exists an increasing, adapted, rightcontinuous process
with left limits K and an adapted process Z with E0

∫ T

0
‖Zt‖2dt < ∞ such

that (V, Z,K) is the unique solution of the reflected backward stochastic dif-
ferential equation with driver g, obstacle X, and terminal condition XT .

Intuitively, it is clear that the value process dominates the payoff process.
The g–martingale principle entails that we have the stochastic dynamics (15)
with dCt = 0 in the continuation region. The value function is pushed up-
wards whenever it is optimal to stop, i.e. when Vt = Xt, and only then. This
yields the minimality required for a reflected backward stochastic differential
equation.

3.1 Worst–Case Priors and Duality

We now relate the solution of our optimal stopping problem under ambiguity
to classical single–prior solutions. We identify a worst–case prior P ∗ such
that the value function of our stopping problem coincides with the value
function of stopping the payoff process X under the worst–case prior P ∗ in
case of drift ambiguity. In general, we have to take the penalty function
of the variational expectation into account. Nevertheless, we still find a
Girsanov kernel θ∗ that achieves the infimum in the dual representation of
the g–expectation.

To illustrate our general result we start with the Gilboa–Schmeidler–type
example of drift ambiguity, or κ–ignorance. When the payoff is a monotone
increasing function of the underlying Brownian motion, it is plausible that
the maximal negative drift is the worst case to consider by the agent. In
general, the worst drift depends on the local monotonicity of the payoff;
in a general, non–Markovian setting, this local term is taken over by the
volatility process Z that comes from the Doob–Meyer decomposition of the
value process.

The Doob–Meyer–type decomposition for rightcontinuous g–
supermartingales was derived by Peng (1999), see Lemma A.1 in the
Appendix. Classically, any rightcontinuous supermartingale13 can be
decomposed into the difference of a martingale and a predictable, increasing
process. For g–supermartingales, there is a similar decomposition of the
form

−dVt = g(t, Zt)dt + dAt − Zt · dBt

13of class (D), an integrability condition that is satisfied in our paper
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for a suitable volatility Z and an increasing process A. In the case of κ–
ignorance, g(t, Zt) = −κ|Zt| and we thus have

−dVt = −κ|Zt|dt + dAt − Zt · dBt .

With the help of a Girsanov transformation, we can then find a probability
measure P ∗ and a Brownian motion B∗ such that

dVt = −dAt + Zt · dB∗
t .

(B∗ has the drift κ sgn(Zt) under P ∗). Our value process is thus a classical
supermartingale under P ∗. Therefore, it must be greater or equal to the value
process of the classical stopping problem under P ∗. On the other hand, as
P ∗ ∈ P , we also have the other inequality. We thus obtain the following
minimax theorem.

Theorem 3.3 (Duality for drift ambiguity) Suppose that the agent
uses κ–ignorance to evaluate her expectations, i.e.

Et (X) = ess inf
P∈Pκ

EP X

for some parameter κ > 0. There exists a probability measure P ∗ ∈ Pκ such
that

Vt = ess sup
τ≥t

Et (Xτ ) = ess sup
τ≥t

E∗ [Xτ |Ft] .

In particular, optimal stopping times and worst–case measures exist, and we
have the minimax relation

max
τ

min
P∈Pκ

EP Xτ = min
P∈Pκ

max
τ

EP Xτ

The existence of a worst–case measure carries over to the general case.
Let

f(t, θ) = sup
z∈Rd

g(t, z)− z · θ

be the convex dual of g. Recall that the penalty function can be represented
as

αt(θ) = E

[∫ T

t

f(s, θs)ds|Ft

]
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by (5). By convex duality, we then have

g(t, z) = inf
θ∈Dt

f(t, z) + z · θ

where we denote by Dt =
{
θ ∈ Rd : f(t, θ) < ∞

}
the effective domain of f .

The infimum is actually achieved because the the effective domain is included
in the compact set [−µ, µ]d ( µ–Lipschitz–continuity of g). With the help of
a measurable selection theorem, we can then choose an adapted process θ∗

with values in the effective domain of f that solves

f(t, θ∗t ) = g(t, Zt)− Ztθ
∗
t .

The process θ∗ is the Girsanov kernel for the worst case measure. We have
the following theorem:

Theorem 3.4 (General Duality) For variational expectations with stan-
dard aggregator g there exists a worst–case measure P with Girsanov kernel
θ∗ that solves

f(t, θ∗t ) = g(t, Zt)− Ztθ
∗
t .

We have

Vt = ess sup
τ≥t

Eθ

[
Xτ +

∫ τ

t

f(s, θs)ds|Ft

]
.

Proof: Let θ∗ solve

f(t, θ∗t ) = g(t, Zt)− Ztθ
∗
t

as described above. Set V ∗
t = ess supτ≥t E

θ∗
[
Xτ +

∫ τ

t
f (s, θ∗s) ds|Ft

]
. From

the dual representation of variational expectations (see (5)), we have

Vt = ess sup
τ≥t

Et (Xτ ) = ess sup
τ≥t

ess inf
ν: νt∈Dt

Eν

[
Xτ +

∫ τ

t

f(s, νs)ds|Ft

]
and we get immediately V ≤ V ∗.

On the other hand, the Doob–Meyer–Peng decomposition for g–
supermartingales (see our Lemma A.1 in the Appendix) yields an increasing
rightcontinuous adapted process A and a square–integrable adapted process
Z with

−dVt = g(t, Zt)dt + dAt − Zt · dBt
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which is – by definition of θ∗ – equal to

= (f (t, θ∗t ) + Zt · θ∗t ) dt + dAt − Zt · dBt

= f (t, θ∗t ) dt + dAt − Zt · dB∗
t .

Here, B∗ denotes the standard Brownian motion under P θ∗ with B∗
t =

Bt −
∫ t

0
θ∗sds. Hence, Mt = Vt +

∫ t

0
f (s, θ∗s) ds is a P θ∗–supermartingale

that dominates X (f is nonnegative because of g(t, 0) = 0). From the clas-
sical Snell envelope theorem, we conclude that Mt ≥ V ∗

t +
∫ t

0
f (s, θ∗s) ds, or

V ≥ V ∗. 2

3.2 The Markov Case: Hamilton–Jacobi–Bellman
Equation

In many applications, the state of the economic system is described by a dif-
fusion S with values in Rd that evolves according to the (forward) stochastic
differential equation

dSt = b(St)dt + σ(St)dBt, S0 = x (16)

for suitable drift
b : Rd → Rd

and volatility functions
σ : Rd → Rd×d .

We assume that b and σ satisfy the usual regularity assumptions that ensure
a unique strong solution for the stochastic differential equation (16). The
standard model is still the Samuelson specification with b(x) = µx and σ(x) =
σx for some constants µ and σ and d = 1. We obtain the Bachelier model
for b(x) = µ and σ(x) = σ. As in Krylov (1980), let us assume

Assumption 3.5 The functions σ and b are Lipschitz–continuous, i.e. there
exists a constant K > 0 with

‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ ≤ K‖x− y‖ (x, y,∈ Rd) .

σ grows at most linearly, i.e. ‖σ(x)‖ ≤ K(1+‖x‖), x ∈ Rd and it is uniformly
elliptic in the sense that for some η > 0

x · ax ≥ η‖x‖2 (x ∈ Rd)

for the diffusion matrix a with aij(x) =
∑d

k=1 σik(x)σjk(x).
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The payoff process Vt = f(t, St) is often a function of this strong Markov
process and time. The typical examples are, of course, the American Put
and Call with f(t, x) = e−rt(K − x)+ and e−rt(x − K)+ for some interest
rate r > 0 and a strike K > 0. In addition to these cases, we also treat the
American Straddle (f(t, x) = e−rt|K − x|) below.

In such a situation, the value function v(t, x) of the optimal stopping
problem solves a Hamilton–Jacobi–Bellman equation of the type

max
(t,x)

{f(t, x)− v(t, x), vt(t, x) + Lv(t, x)} = 0

where

L =
d∑

i=1

bi(x)
∂

∂xi

+
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

is the infinitesimal generator of the Markov process S.
Before we discuss the ambiguous situation, let us pause to reflect on the

smoothness of the value function. In general, we cannot expect the value
function to be twice continuously differentiable in the space variable. For
example, the value function of the American Put is not twice, but only once
continuously differentiable at the exercise boundary (see, e.g., Jacka (1991),
Peskir and Shiryaev (2006), usw.)14. On the other hand, under our assump-
tions, the value function is smooth enough to allow for generalized deriva-
tives; moreover, the value function is also smooth enough for an application
of Itô’s formula. We refer to Krylov (1980), Chapter 4.7, Theorems 4 and 7
for the existence of the generalized derivatives. The same book contains in
Chapter 2.10 a discussion of the generalized version of Itô’s formula15. For
our purposes, we will thus work with the space W1,2 that consists of con-
tinuous functions that can be suitably well approximated by functions that
are continuously differentiable in time and twice continuously differentiable
in the space variable16.

Let us now come to ambiguity’s effect on the Bellman equation in the
Markovian case. We have already seen that ambiguity is essentially described

14Barrier Options of the Knock–Out type even lose the differentiability at the knock–out
barrier, see, e.g., Karatzas and Wang (2000). Such options have path–dependent payoffs,
however.

15In fact, one can even find weaker assumptions, see Föllmer, Protter, and Shiryaev
(1995) for the best possible theorem in this direction.

16See, e.g., Krylov (1980) for the definition of this space and its use in optimal control.
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by the drift term g(t, Zt) above. The volatility Z can be identified via Itô’s
lemma as the first derivative of the value function (or gradient, in general)
with respect to the state variable multiplied by the volatility (matrix) . We
thus obtain the following extension of the HJB–equation to ambiguity.

Theorem 3.6 (Verification Theorem) Let f : [0, T ]× Rd → R be a con-
tinuous function that satisfies a growth condition: there exists m ∈ N and a
constant K > 0 such that

|f(t, x)| ≤ K (1 + ‖x‖)m . (17)

Let v : [0, T ] × Rd → R be an element of W1,2 that solves the nonlinear
Hamilton–Jacobi–Bellman equation

max
(t,x)∈[0,T ]×Rd

{
f(t, x)− v(t, x), vt(t, x) + Lv(t, x) + g(t, σ(x)>∇v(t, x))

}
= 0 ,

(18)
and the terminal condition

v(T, x) = f(T, x)
(
x ∈ Rd

)
.

Assume also that v and its generalized first derivatives satisfy a growth con-
dition: for some n ∈ N and K > 0 we have

|v(t, x)|+ ‖∇v(t, x)‖ ≤ K (1 + ‖x‖)n . (19)

Then v is the value function of our optimal stopping problem, i.e. Vt =
v(t,Xt).

The most general way to work with nonsmooth solutions of the Bellman
equation, and, maybe, the most elegant one, is to use the concept of viscosity
solutions. In quite a large class of Markovian optimal stopping problems, the
value function can be shown to be the unique viscosity solution of the as-
sociated Hamiton–Jacobi–Bellman equation. See Crandall, Ishii, and Lions
(1992) and Fleming and Soner (2006). For our setup, ElKaroui, Kapoudjian,
Pardoux, Peng, and Quenez (1997) have shown in the context of reflected
backward stochastic differential equations that the value function of our op-
timal stopping problem is even the unique viscosity solution of the above
Bellman equation. For applications, it is often easier to check piecewise dif-
ferentiability (which is enough to apply our above result). This works in a
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number of concrete case studies (Pham (1997), Peskir and Shiryaev (2006),
Karatzas (1988), Jacka and Lynn (1992)); this is the reason why we have
opted for this less general formulation that is hopefully easier to apply.

Ambiguity introduces nonlinearity into the HJB equation. From a the-
oretical point of view, the nonlinearity is not too critical as it involves only
the first–order term, not the leading term of the partial differential equation.

We see again here that in our diffusion setting, we are essentially deal-
ing with ambiguity about the drift. The term g

(
t, σ(x)>∇v(t, x)

)
in the

Hamilton–Jacobi–Bellman equation reflects this ambiguity.
The Bellman equation opens a way to obtain the worst case measure

in this Markovian setting. If we remove the drift term g
(
t, σ(x)>∇v(t, x)

)
by a Girsanov transformation, we are back at a classical Hamilton–Jacobi–
Bellman equation under the new measure; the value function thus coincides
with the value function of the classical optimal stopping problem under the
new measure, and we get the above duality result Theorem 3.4 in this setting.

3.3 Infinite Time Horizon

Our results can be extended to infinite time horizon under suitable integra-
bility assumptions on the payoff function. We illustrate how to perform this
for the benchmark case of drift ambiguity. In this subsection, let

Et (X) = ess inf
P∈Pκ

EP [X|Ft]

be the conditional expectation for an agent who faces drift ambiguity. This
expression is well–defined for any P0–square integrable random variable X
on our probability space (Ω,F , P0). Now let (Xt)t≥0 be a payoff process that
satisfies Assumption 2.1 for T = ∞.

For stopping times τ that are universally almost surely finite, i.e. P [τ <
∞] = 1 for all P ∈ Pκ, we can then formulate the infinite time horizon
optimal stopping problem

Vt = ess sup
τ≥t

Et (Xτ ) = ess sup
∞>τ≥t

ess inf
P∈Pκ

EP [Xτ |Ft] .

Let us denote by V T the value function for the corresponding problem
with a finite horizon T < ∞. It is clear that V T ≤ V and that the value
function is increasing in T , as you expand your options with a longer time
horizon. Hence, the limit

V ∞ = lim
T→∞

V T
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is well defined and V ∞ ≤ V . In the next proof, we show that V ∞ is actually
equal to V .

Theorem 3.7 The value function for the infinite time horizon is the limit
of the finite horizon value functions:

lim
T→∞

V T = V .

4 Examples and Applications

In this section, we assume that the agent uses κ–ambiguity to evaluate his
payoff. In particular, the nonlinear function describing his ambiguity aversion
is g(z) = −κ|z| for some κ > 0. We also go to dimension d = 1 and keep
the Assumption 3.5 for the Markov process S with dynamics (16). We also
assume a positive volatility σ(x) > 0 throughout.

4.1 Monotone Markov Problems under κ–ambiguity

In many applications, the payoff function f(t, x) is monotone in the state
variable. Typical examples are the American Call with f(t, x) = e−rt(x −
K)+ for some interest rate r > 0 and a strike K > 0, or the American
Put with f(t, x) = e−rt(K − x)+. The same payoff structure holds true
in irreversible investment problems and some search problems as studied
recently by Nishimura and Ozaki (2004) and Nishimura and Ozaki (2007).

In such cases, it is clear from an economic point of view that the worst
thing that can happen to the agent is the lowest possible drift. Technically,
under any measure P θ with Girsanov kernel |θt(ω)| ≤ κ, the dynamics of the
underlying S read as

dSt = (b(St) + θtσ(St)) dt + σ(St)dBt .

As σ(St) > 0, it is suggestive that the choice θ∗t (ω) = −κ should be the worst
case.

How can we verify this? Under P−κ, we have a standard Markovian
optimal stopping problem of a diffusion process. Classical results (Krylov
(1980)) then tell us that the value function under P−κ, that we denote by
v−κ(t, x) satisfies the classical Bellman equation

max
(t,x)

{f(t, x)− v(t, x), vt(t, x) + Lv(t, x)− κvx(t, x)σ(x)} = 0 .
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Note the additional term −κvx(t, x)σ(x) that comes from changing the drift.
But the monotonicity of f entails the monotonicity of v−κ; hence, we

have v−κ
x (t, x) ≥ 0. The nonlinearity in our Bellman equation (18) then

vanishes because of |v−κ
x | = v−κ

x . The “old” Bellman equation under P−κ thus
coincides with our Bellman equation under g–expectations. We can apply
our verification theorem17 3.6 to show that v−κ is also the value function of
our problem.

Theorem 4.1 Assume that the payoff function f is continuous, increasing
in x, and satisfies the growth condition (17). Denote by v−κ(t, x) the value
function of the standard optimal stopping problem with payoff function f
under the measure P−κ. Assume that v−κ satisfies the growth condition
(19). Then the optimal stopping time under κ–ambiguity has value func-
tion Vt = v−κ(t, St) where v−κ is the value function of the classical optimal
stopping problem under the measure P−κ with the least favorable drift for the
underlying process S.

An analogous result holds true if f is decreasing in the state variable, of
course.

Irreversible Investment Nishimura and Ozaki (2007) prove the impor-
tant economic result that Knightian uncertainty has opposite comparative
statics than risk in investment timing problems with sunk cost. In their
problem, a firm receives a (discounted) profit πt, modeled as a geometric
Brownian motion, and pays a irretrievable cost K > 0 upon entering a mar-
ket. The authors derive the Bellman equation for the finite time horizon
and assume “relations among variables in the finite-horizon case converge, as
the horizon goes to infinity, to those in the infinite-horizon case”, see their
Proposition 2. They then identify P−κ as the worst–case measure for the
infinite time horizon and obtain explicit results and comparative statics.

Our above theorem18 4.1 shows that P−κ is also the worst–case measure
in the finite time horizon model. Moreover, our results on convergence (The-

17The growth conditions of Theorem 3.6 are also satisfied, see Krylov (1980), Theorem
4.7.4. and 4.7.7.

18Let us quickly point out that the growth condition (19) is satisfied for both the Ameri-
can Put and the Call Option if the underlying process is a geometric Brownian motion, i.e.
µ(x) = µx and σ(x) = σx for constants µ ∈ R, σ 6= 0. For the Put, with payoff function
e−rt(K−x)+, this is clear as both the value function and the derivative in x are bounded.
For the American Call (f(t, x) = e−rt(x−K)+) or the problem of optimal investment as
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orem 3.7) establish that the assumption in Nishimura/Ozaki’s proposition 2
is satisfied. This extends their analysis to the finite–time horizon case and
provides a complete proof of their main result.

4.2 Non–Monotone and Path–Dependent Payoffs

4.2.1 Barrier Options

We treat now a typical barrier option under κ–ambiguity by looking at the
American version of the so-called up-and-in Put. Such an option is knocked
in when the asset hits a level H; if this does not happen over the lifetime of
the contract, the option remains worthless. After knock-in, the buyer owns
a usual American Put with some strike K. We assume H > K and, to avoid
the trivial case, H > S0 = 1.

We take the standard Samuelson–model of asset pricing under P0 by
setting

dSt = µStdt + σStdWt, S0 = 1 .

The option’s payoff is

Xt = e−rt1{t≥τH} (K − St)
+

for a discount rate r > 0, a strike K > 0, and a knock–in time

τH = inf {t ≥ 0 : St ≥ H} .

After knock–in at τH , the barrier option is nothing but a standard Amer-
ican put. It is thus clear from our previous results on monotone payoffs, that
the worst–case measure has drift +κ. The value at time τH of the American
barrier option is thus

YτH
= ess sup

τ≥τH

Eκ
[
e−rτ (K − Sτ )

+ |FτH

]
.

treated in the real options literature (see Dixit and Pindyck (1994) or Trigeorgis (1996)),
we have to assume that µ < r, or else stopping until the end is optimal (and the growth
conditions are satisfied anyway). The value function of the infinite time horizon is poly-
nomial, and an upper bound for the finite horizon problem. Hence, the value function
satisfies the growth condition. As far as the derivative in x is concerned, we have the
following. For large values of x, immediate stopping is optimal and we have vx(t, x) = 1.
In the continuation region, the derivative vx is increasing in x because the value function
v(t, x) is convex in x. By smooth fit, we have vx = 1 at the stopping boundary. So the
derivative vx is bounded.
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As S is a strong Markov process under P κ, this value depends only on SτH
=

H and the time of knock–in τH . Let us denote by vκ(τH , H) the subjective
value of the put under the measure P κ, see Jacka (1991) for details.

Let τ ? denote an optimal exercise time for the American up–and–in put.
As the payoff is zero before knock–in, we clearly have τ ? ≥ τH . Finally, by
Theorem 3.1 and optional sampling for g–martingales we obtain on the event
{τH > t} ∈ Ft

Vt = Vt∧τ? = ess inf
P∈Pκ

EP [VτH∧τ?|Ft∧τ? ] = ess inf
P∈Pκ

EP [VτH
|Ft]

= ess inf
P∈Pκ

EP
[
vκ(τH , H) e−r(τH−t)|Ft

]
. (20)

We are thus left with determining the minimal expectation for a function
of the knock–in time τH . The American put value vκ(τH , H) is decreasing in
τH , as is e−r(τH−t). We will now use stochastic dominance to show that P−κ

is the worst–case measure. This is quite intuitive as the asset price has the
lowest drift under P−κ.

Lemma 4.2 τH is stochastically largest under P−κ in the set of priors Pκ

in the sense that on {τH > t} we have for all t < u ≤ T , and for all P ∈ Pκ

P−κ [τH > u|Ft] ≥ P [τH > u|Ft] .

Therefore, Lemma 4.2 and the usual characterization of first–order
stochastic dominance yield for any θ ∈ Dκ on {τH > t}

Vt = EP−κ [
vκ(τH , H) e−r(τH−t)|Ft

]
≤ EP θ [

vκ(τH , H) e−r(τH−t)|Ft

]
.

To conclude, the ambiguity averse buyer of this option uses a worst–
case prior P ? that is the pasting of P κ after P−κ at knock–in time τH . As
a consequence, at time t = 0 for instance, the value of this option under
κ–ambiguity is

V0 = E−κ
[
Eκ

[
(K − Sτ?)+ e−rτ?|FτH

]]
,

where

τ ? = inf{t ≥ τH |Vt = (K − St)
+e−rt}

denotes an optimal stopping time after knock–in.
As in the related discrete time case, the pessimistic holder thus presumes a
change of drift at knock–in. Before the option becomes valuable, she uses the
lowest mean return in her computations, and afterward, she uses the highest
mean return.
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4.2.2 American Straddle

The American Straddle has payoff f(t, x) = e−rt|x − K| for some strike K
and interest rate r; it is used as an insurance against large movements of the
underlying and plays also a role in certain bets on the volatility of an asset.
When selling them short, the investor bets on stable courses19.

To keep the technicalities minimal, let us work here with the Bachelier20

model of financial markets where the underlying S is a Brownian motion
under the reference measure P0, i.e.

dSt = dBt, S0 = 0 .

Let the strike price be K = 0 (this is merely a normalization). To have a
stationary problem, let the time horizon be infinite.

In the non–ambiguous case, the investor maximizes

E0e
−rτ |Bτ | .

The investor exercises the option when the asset price has moved suf-
ficiently far away from the strike; the optimal stopping time has thus the
form

τb = inf {t ≥ 0||St| = b}

for some critical number b > 0 which is explicitly given by

b =
x∗√
2r
∼=

1.199679√
2r

and x∗ ∼= 1.199679 is the unique positive root of the equation x tanh(x) = 1.
We postpone the details of this classical stopping problem to the appendix.

Our focus is here on the role of ambiguity. So let us introduce drift
ambiguity with a parameter κ > 0. The buyer of the option profits if the
asset price moves away from zero. We thus guess that the worst case measure
assigns maximal positive drift to the asset price if it is negative, and maximal

19A spectacular example involving straddles is the bankruptcy of the Barings Bank, see
http://riskinstitute.ch/137560.htm.

20Louis Bachelier developed Brownian motion as a model of stock markets in 1900
(Bachelier (1900)) long before modern option pricing started with Samuelson, Merton,
and Black and Scholes. See also the book Louis Bachelier: Aux Origines de la Finance
Mathématique, Courtault and Kabanov (2002).
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negative drift if the asset price is positive. Under the (guessed) worst–case
measure P ∗, the dynamics of S are therefore

dSt = −κ sgn(Xt)dt + dB∗
t

where B∗ is a standard Brownian motion under P ∗.
We show below how to find the value function for this problem and verify

that the solution of this classical stopping problem (with a very non–classical
dynamics for the asset price) solves indeed the stopping problem under am-
biguity.

For the moment, we note that the rational investor changes his belief
about the asset’s drift quite frequently. Indeed, when X is close to the strike
K = 0, the diffusion nature of the asset leads to infinitely many sign changes
in any small interval. As a consequence, the investor changes his belief about
the drift from +κ to−κ infinitely often in any time interval. Ambiguity might
thus play a role in explaining the high psychological stress that grabs market
participants sometimes.

We explain now how to find the value function under P ∗ (for κ = 0, you
obtain the solution of the classical case). The infinite time horizon renders
the problem homogenous in time, so we guess that the value function is of the
form e−rtv(x) for some continuous function v : R → R which we assume to be
twice continuously differentiable in the continuation region. By symmetry
and time–homogeneity, we guess that it is optimal to wait until S hits a
critical number c or −c, with c > 0. On (0, c), our Bellman equation reduces
then to

− rv − κv′ +
1

2
v′′ = 0 (21)

with a general solution

A1 exp(α1x) + A2 exp(α2x)

where α1,2 are the two solutions of the characteristic equation

− r − κx +
1

2
x2 = 0 . (22)

The constants A1 and A2 can be found by using continuity and smooth fit
at the exercise point c, i.e.

v(c) = c (23)

v′(c) = 1 . (24)
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For negative values of x, we have a different Bellman equation, namely

− rv + κv′ +
1

2
v′′ = 0 (25)

where you note the sign change in front of v′ because the agent changes his
belief about the drift. The general solution here is of the form

B1 exp(β1x) + B2 exp(β2x)

where β1,2 are the two solutions of the new characteristic equation

− r + κx +
1

2
x2 = 0 . (26)

Again, B1 and B2 can be found by using continuous and smooth fit at −c:

v(−c) = c (27)

v′(c) = −1 . (28)

The only remaining unknown is the constant c at which we exercise. A first
guess might be that we can find it by pasting continuously the two parts
of our value function together at x = 0. But this continuity is satisfied
automatically here (see the appendix). Had we started with asymmetric
exercise points c and −d, the continuity condition would tell us that c = d.
As we have made this guess from the start, the continuity condition does not
yield new information now. The right condition to determine c is

v′(0−) = v′(0+) = 0 . (29)

That is, we paste the two solutions of the different Bellman equations on
the right and on the left of zero smoothly together at zero in such a way that
the value function has a minimum there. Economically, this is quite natural:
as the payoff function has a minimum at zero, and we are in a completely
symmetric situation (also the ambiguity is modeled in a symmetric way!), it
is natural to expect the value function to have a minimum at zero, too.

From a more technical perspective, we paste together the solutions of
two distinct differential equations on the negative and the positive axis in
zero. The value function has to be continuously differentiable in zero because
we would else lose the martingale property of the process e−rtv(Wt) in the
continuation region. If the value function was not continuously differentiable
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in zero, a local time term would appear in the Itô formula21 that would
create trouble. So v′ continuous with v′(0) = 0 is necessary. We show in the
appendix that this even implies that the value function is twice continuously
differentiable.

Theorem 4.3 The conditions (21) to (29) determine uniquely a convex func-
tion v that is continuously differentiable. e−rtv(x) is the value function of the
American straddle under drift ambiguity with parameter κ. In particular, the
measure P ∗ where the asset price satisfies the dynamics

dSt = −κ sgn(St)dt + dB∗
t

for the P ∗–Brownian motion B∗ is the worst–case measure.

5 Conclusion

We have now a fairly complete understanding of optimal stopping under
Knightian uncertainty. We used the methods of stochastic calculus to char-
acterize the value function either as a nonlinear supermartingale or as the
solution to a Bellman equation. In a number of case studies, we are able to
obtain closed–form solutions, as in the classical case of pure risk. As usual,
the power of calculus and the beauty of the solutions justify the use of a
continuous–time model even though most economic decisions take place in
discrete time.

In Markovian models, the methods of stochastic calculus allow to extend
the classical Bellman equation to Knightian uncertainty. Knightian uncer-
tainty is mirrored in a nonlinear drift term that involves the first derivative of
the value function with respect to the state variable. In monotone examples
like the American Call or Put, or in irreversible investment problems, the
nonlinearity disappears and one can easily identify the worst–case measure
as the one where the state variable has the most unfortunate drift. In more
complex settings, as exemplified by Barrier Options or American Straddles,
the nonlinearity in the Bellman equation persists, and the worst–case mea-
sure has a highly nontrivial structure. In the example of the straddle, we have
seen that a (rational!) ambiguity–averse investor can change his worst belief

21See, e.g., Karatzas and Shreve (1991), Theorem 3.6.22 for Itô’s formula for convex
functions.
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about the drift infinitely often in critical times when the state variable is in a
region where the monotonicity of the value function changes. Maybe a hint
that “panic” is quite a natural phenomenon under Knightian uncertainty.

One of the big advantages of the model originally proposed by Gilboa
and Schmeidler to capture uncertainty aversion is that it allows for a time–
consistent extension and a rich dynamic theory. Our results can now be used
to tackle more complex economic problems. As an example, let us mention
the capacity extension program of a firm that can continuously invest into
capacity (Pindyck (1988), Bertola (1988), Riedel and Su (2009)).

A A Characterization of g–Supermartingales

As in the discrete–time case of Riedel (2009), it is useful and important
to understand g–supermartingales and relate them to classical supermartin-
gales. In the case of drift ambiguity with parameter κ > 0, we shall see
below that the counterpart of Lemma 6 in Riedel (2009) holds true: a pes-
simistic agent with multiple priors views a game against nature as unfair (a
g–supermartingale) if and only if the game is unfair (a P–supermartingale)
under some prior P in his set of priors.

Before we state the lemma, let us recall some notation. Let g be a stan-
dard driver for variational expectations as in Definition 2.2. Let

f(ω, t, θ) = sup
z∈Rd

g(ω, t, z)− z · θ
(
ω ∈ Ω, t ∈ [0, T ], θ ∈ Rd

)
be the convex dual of g. We denote by D the set of all progressively measur-
able processes (θt) such that

E0

∫ T

0

f (s, θs)
2 ds < ∞ .

Lemma A.1 Let V be a process satisfying Assumption 2.1. Let g be a stan-
dard aggregator for variational expectations with Lipschitz constant κ ≥ 0.
Then the following assertions are equivalent:

1. V is a g–supermartingale,

2. the process St = Vt +
∫ t

0
f (s, θs) ds is a P θ–supermartingale for some

θ ∈ D,
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3. V has a unique Doob–Meyer–Peng decomposition of the form

Vt = VT +

∫ T

t

g(s, Zs)ds−
∫ T

t

ZsdBs + AT − At (30)

for a càdlàg increasing process A with A0 = 0 and E0A
2
T < ∞ and an

adapted, square–integrable process Z.

V is a g–martingale if and only if the process A in the decomposition (30) is
zero.

Before we prove this lemma, we also provide the generalization of the
characterization of multiple prior super– and submartingales in Riedel (2009),
Lemma 6.

Lemma A.2 Let V be a process satisfying Assumption 2.1. Let g(z) =
−κ|z| be the driver for κ–ambiguity. Then V is a g–supermartingale if and
only if it is a P–supermartingale fpr some P ∈ Pκ. V is a g–submartingale
if and only if it is a P–submartingale for all P ∈ Pκ.

The submartingale part of the above lemma is immediate from the defi-
nitions, see also Riedel (2009), Lemma 6. The supermartingale part follows
from Lemma A.1 and the fact that the convex dual f takes the value 0 for
θ ∈ Dκ, the set of all Girsanov kernels bounded by κ.

Let us now come to the proof of Lemma A.1.
Proof: The Doob–Meyer–Peng decomposition for g–supermartingales,
that is, the equivalence of 1. and 3. above is due to Peng, Peng (1999),
Theorem 3.3. and Corollary 3.12. In this original paper, the decomposition is
formulated for strong g–supermartingales. The Optional Sampling Theorem
of Chen and Peng (2000) show that strong and weak g–supermartingales
coincide. For our version, see also Coquet, Hu, Mémin, and Peng (2002),
Theorem 6.3.

If V is a g–martingale, then, by definition, Vt = Et (VT ); so, there exists
a square–integrable process Z such that (V, Z) is the unique solution of the
backward stochastic differential equation with driver g and terminal value
V , i.e.

Vt = VT +

∫ T

t

g (s, Zs) ds−
∫ T

t

ZsdBs
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which shows that A is zero. On the other hand if A = 0 in (30), then (V, Z)
is the unique solution of the backward stochastic differential equation with
driver g and terminal value V , and this entails Vt = Et (VT ), the g–martingale
property.

Now we prove the implication 3. to 2. Choose a process θ∗ ∈ D that
solves

f(t, θ∗t ) = g(t, Zt)− Ztθ
∗
t .

See Footnote 11 in El Karoui, Peng, and Quenez (1997) on existence and
measurability of θ∗. There, it is also explained that |θ∗t | ≤ κ (because g is
Lipschitz with constant κ). So, θ∗ is bounded. Hence, there exists a measure
P θ∗ equivalent to P0 with Girsanov kernel θ∗. By Girsanov’s theorem, B∗

t =
Bt −

∫ t

0
θ∗sds is a standard Brownian motion under P θ∗ . We then get

−dSt = g(t, Zt)dt + dAt − Zt · dBt

which is – by definition of θ∗ – equal to

= (f (t, θ∗t ) + Zt · θ∗t ) dt + dAt − Zt · dBt

= f (t, θ∗t ) dt + dAt − Zt · dB∗
t .

. Hence, St = Vt +
∫ t

0
f (s, θ∗s) ds is a P θ∗–supermartingale.

To see the implication from 2. to 3., recall the dual representation of
g–expectations from (5): we have for t ≤ t + u ≤ T

Et (Vt+u) = ess inf
θ∈D

Eθ

[
Vt+u +

∫ t+u

t

f(s, θs)ds|Ft

]
.

From 3. and θ∗ ∈ D, we then get immediately

Et (Vt+u) ≤ Eθ∗
[
Vt+u +

∫ t+u

t

f(s, θs)ds|Ft

]
= Eθ∗ [St+u|Ft]−

∫ t

0

f(s, θs)ds

which – S is a P θ∗–supermartingale – is less or equal to

≤ St −
∫ t

0

f(s, θs)ds = Vt .

This concludes the proof. 2
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B The Structure of Optimal Stopping Times:

Proof of Theorem 3.1

Let us first note that Vt is well–defined because for every stopping time
τ ≤ T , the payoff Xτ is bounded by the square–integrable random variable
supt∈[0,T ] Xt by Assumption 2.1. From now on, all stopping times appearing
in this proof are assumed to be bounded by T .

It is important that we can approximate the value Vt by choosing an
appropriate sequence of stopping times τn ≥ t with Et (Xτn) ↑ Vt. To this
end, we need the following lemma.

Lemma B.1 For all t ≥ 0, the family

{Et (Xσ) : σ ≥ t}

is upwards directed.

Proof: Let σ, τ ≥ t be two stopping times. Let

ξ1 = Et (Vσ) , ξ2 = Et (Vτ ) .

It is sufficient to find a stopping time ν ≥ t with

max {ξ1, ξ2} = Et (Vν) .

Set
A := {ξ1 ≥ ξ2}

and note that A ∈ Ft. Our desired stopping time will be

ν = σ1A + τ1Ac ,

because we have

max {ξ1, ξ2} = ξ11A + ξ21Ac

= (Et (Vσ)) 1A + (Et (Vτ )) 1Ac

which, by property (8) is equal to

= Et (Vσ1A + Vτ1Ac) = Et (Vν) .
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2

For every t ≥ 0, the last lemma allows us to choose a sequence (τn(t)) of
stopping times greater or equal t with

Et

(
Xτn(t)

)
↑ Vt .

By monotone continuity (property (10)), and by the law of iterated expecta-
tions (12), we obtain for 0 ≤ s < t ≤ T

Es (Vt) = Es

(
ess sup

τ≥t
Et (Xτ )

)
= Es

(
lim

n→∞
Et

(
Xτn(t)

))
= lim

n→∞
Es

(
Et

(
Xτn(t)

))
= lim

n→∞
Es

(
Xτn(t)

)
≤ ess sup

τ≥s
Et (Xτ ) = Vs

and we conclude that the value process (Vt) is a g–supermartingale.
Our next task is to find a version of the value process (Vt) with rightcon-

tinuous sample paths. We are going to use our generalization (Lemma F.1)
of a classical result in martingale theory. All we need to show is that the ex
ante expectations t 7→ E0 (Vt) are rightcontinuous. So let tn ↓ t. First, we
note that by the supermartingale property, E0 (Vtn) is increasing and less or
equal E0 (Vt). Hence, the limit exists and limn→∞ E0 (Vtn) ≤ E0 (Vt). Now fix
ε > 0. There exists a number m ∈ N with E0

(
Xτm(t)

)
≥ E0 (Vt) − ε (for the

sequence (τk(t))k∈N chosen above, after Lemma B.1). Define a new sequence
of stopping times via

νn = max{τm(t), tn} .

Clearly, νn ≥ tn and νn ↓ τm(t). By rightcontinuity of the payoff process X,
we have Xνn → Xτm(t), and by dominated convergence (property (11)), we
also have E0 (Xνn) → E0

(
Xτm(t)

)
. We thus obtain

E0 (Vt) ≤ E0

(
Xτm(t)

)
+ ε = lim

n→∞
E0 (Xνn) + ε .

The law of iterated expectations (property (12)), the definition of the value
function, and monotonicity (property (6)) allow us to conclude

lim
n→∞

E0 (Xνn) = lim
n→∞

E0 (Etn (Xνn)) ≤ lim
n→∞

E0 (Vtn) .
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Putting all these things together, we obtain

lim
n→∞

E0 (Vtn) ≤ E0 (Vt) ≤ lim
n→∞

E0 (Vtn) + ε .

As ε > 0 was arbitrary, we get the desired rightcontinuity. Hence, by Lemma
F.1, we can assume that (Vt) has rightcontinuous paths.

Now let (St) be another rightcontinuous g–supermartingale with St ≥ Xt

for all t ∈ [0, T ]. Monotonicity (property (6)) and the Optional Sampling
Theorem (property (14)) yield immediately

Vt = lim
n→∞

Et

(
Xτn(t)

)
≤ lim

n→∞
Et

(
Sτn(t)

)
≤ St .

Hence, (Vt) is the smallest rightcontinuous g–supermartingale dominating X.

We continue our proof of Theorem 3.1 with a characterization of optimal
stopping times.

Lemma B.2 A stopping time τ ≤ T is optimal if and only if we have Xτ =
Vτ and M := (Mt)t∈[0,T ] := (Vt∧τ )t∈[0,T ] is a g–martingale.

Proof: If we have Xτ = Vτ and the g–martingale property for the value
process stopped at τ , then we obtain

E0 (Xτ ) = E0 (Vτ ) = V0

and τ is optimal. Conversely, if τ is optimal, then

V0 = E0 (Xτ ) ≤ E0 (Vτ ) ≤ V0 , (31)

where we have used the fact that V dominates X and is a g–supermartingale
(and the optional sampling theorem (14)). Strict monotonicity ((6) and the
remark thereafter) of our variational expectation then implies Xτ = Vτ . We
also get that the stopped process (Vt∧τ )t∈[0,T ] is a g–martingale because else
the last inequality in (31) would be strict. 2

We can now continue the proof of Theorem 3.1. As VT = XT , the infimum
in the definition of τ ∗ is well–defined. By rightcontinuity of X and V , we get
Xτ∗ = Vτ∗

22. It remains to show that the stopped process (Vt∧τ∗)t∈[0,T ] is a
g–martingale.

22Let us remark here that the preceding two sentences have to be changed in the case of
T = ∞. For infinite horizon, we have to assume that the infimum is finite a.s. to conclude
Xτ∗ = Vτ∗ .
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The idea is to approximate τ ∗ from the left23 with the help of the stopping
times

τλ := inf {t ≥ 0 : Xt ≥ λVt}

for 0 < λ < 1.
Note that the family is increasing in λ, and bounded by τ ∗. Hence, the

stopping time τ̄ = limλ↑1 τλ exists and is less or equal τ ∗.
We show in Lemma B.3 below that we have

V0 = E0 (Vτλ) .

The definition of τλ, leftcontinuity of X and dominated convergence allow
to conclude

V0 = E0 (Vτλ) ≤ 1

λ
E0 (Xτλ) →λ↑1 E0 (Xτ̄ ) ≤ V0 .

Hence, τ̄ is an optimal stopping time. By Lemma B.2, we have that Xτ̄ = Vτ̄ .
By definition of τ ∗, we thus have τ ∗ ≤ τ̄ ; as we already know the other
inequality, τ ∗ = τ̄ follows. Invoking again Lemma B.2, we see that (Vt∧τ∗) is
a g–martingale. This concludes the proof of Theorem 3.1.

We still have to check the claim used in the above proof:

Lemma B.3 With the notation introduced above,

V0 = E0 (Vτλ) .

Proof: For this lemma, we introduce more generally for all t ≥ 0 and
0 < λ < 1 the family of stopping times

τλ(t) = inf {u ≥ t : Xu ≥ λVu} .

As above, we have
τλ(t) ↑λ↑1 τ̄(t)

for some stopping time τ̄(t) ≤ τ ∗(t) := inf {u ≥ t : Xu = Vu} .
Introduce the process

Wt := Et

(
Vτλ(t)

)
.

23Here is the point where we use leftcontinuity of X; actually, as you see from the proof,
“leftcontinuity in g–expectation over stopping times” would be enough.
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We claim that W is a g–supermartingale that admits rightcontinuous sample
paths. For 0 ≤ t ≤ t + u ≤ T we have

Et (Wt+u) = Et

(
Et+u

(
Vτλ(t+u)

))
iterated expectations = Et

(
Vτλ(t+u)

)
V g–supermartingale ≤ Et

(
Vτλ(t)

)
= Wt .

So, W is a g–supermartingale. For rightcontinuity, use again Lemma F.1.
Let tn ↓ t. Then τλ(tn) ↓ τλ(t) by rightcontinity of X and V . Then also
Vτλ(tn) → Vτλ(t) almost surely and in g–expectation (Assumption 2.1). So

E0 (Wtn) = E0

(
Etn

(
Vτλ(tn)

))
= E0

(
Vτλ(tn)

)
→n→∞ E0

(
Vτλ(t)

)
.

Now look at the rightcontinuous g–supermartingale

Yt = λVt + (1− λ)Wt .

We claim that W dominates X. For Xt ≥ λVt, we have τλ(t) = t, hence
Wt = Vt and Yt = Vt ≥ Xt. If Xt < λVt, we have Wt ≥ 0 as X ≥ 0
(Assumption 2.1), so

Yt ≥ λVt ≥ Xt .

From Theorem E.1, we get Y ≥ V . This is equivalent to W ≥ V . On the
other hand, by definition of W and the g–supermatingale property of V :
W ≤ V . So we conclude W = V . In other words, we finally get

Vt = Wt = Et

(
Vτλ(t)

)
.

This proves the lemma (set t = 0). 2

C Reflected Backward Stochastic Differen-

tial Equations

Proof of Corollary 3.2
V is a rightcontinuous g–supermartingale; by Assumption 2.1, we have

Vt ≤ supt∈[0,T ] Xt ∈ L2(Ω,F , P0). We can thus apply the Doob–Meyer–Peng
decomposition of g–supermartingales from Lemma A.1 to get an increasing,
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adapted, rightcontinuous process with left limits K and an adapted process
Z with E0

∫ T

0
‖Zt‖2dt < ∞ such that

Vt = XT +

∫ T

t

g(s, Zs)ds−
∫ T

t

ZsdBs + KT −Kt .

It remains to show
∫ T

0
(Vu −Xu)du = 0 which is equivalent to

Kν(t) = Kt

for all 0 ≤ t < T and

ν(t) = inf {u ≥ t : Vu = Xu} .

Note that ν(t) is an optimal stopping time if we start at time t; by our char-
acterization of optimal stopping times,

(
Vu∧ν(t)

)
t≤u≤T

is then a g–martingale.

From Lemma A.1 (applied with the starting time t), we see that the increas-
ing process in the Doob–Meyer–Peng decomposition must be zero, that is,
Kν(t) = Kt. This proves minimality of K. Hence, (V, Z, K) is indeed a solu-
tion of the reflected backward stochastic differential equation with obstacle
X, terminal condition XT and driver g .

To see uniqueness, let (W, ζ, A) be another solution of the reflected back-
ward stochastic differential equation with obstacle X, terminal condition XT

and driver g. Then W is a g–supermartingale that dominates X, and from
Theorem 3.1, we get W ≥ V . Now let

ν(t) = inf {u ≥ t : Wu = Xu} .

(The infimum is taken over a nonempty set because of the terminal condition
WT = XT .) By rightcontinuity, we have Wν(t) = Xν(t). As the increasing pro-
cess A is minimal, we also have Aν(t) = At. We conclude that

(
Wu∧ν(t)

)
t≤u≤T

is a g–martingale. It follows

Vt ≥ Et

(
Xν(t)

)
= Et

(
Wν(t)

)
= Wt .

Therefore, V = W . From the uniqueness of the Doob–Meyer–Peng decom-
position in Lemma A.1, we obtain Z = ζ and A = C.
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D Markovian Models: Proof of Theorem 3.6

To start with, note that the family supt∈[0,T ] |v(t,Xt) + f(t,Xt)| ∈
L2 (Ω,F , P0) . This is due to our growth estimate (19) on v (resp. (17) for f)
and the fact that supt∈[0,T ] ‖Xt‖ is in any Lq–space, see, e.g. Jacka and Lynn
(1992), Lemma 2.1. (and its proof). Hence, we can take the g–conditional
expectation when required below.

By a similar argument, one shows that the process

g(u, σ(Su)
>∇v(u, Su)), 0 ≤ u ≤ T

is square–integrable: this is due to Assumption 3.5, the growth condition
(19) on the first derivative of the value function, the fact that supt∈[0,T ] ‖Xt‖
is in any Lq–space, and last not least the Lipschitz–continuity of the driver
g. We shall need this below to apply our Lemma A.1.

As v is in W1,2, we can apply Krylov’s (Krylov (1980), Theorem 1.10.1)
generalized version of Itô’s lemma and get with the help of the Hamilton–
Jacobi–Bellman Equation (18) for any stopping time τ ≥ t

v(t, St) = v(τ, Sτ )−
∫ τ

t

(vt(u, Su) + Lv(u, Su)) du−
∫ τ

t

∇v(u, Su)
>σ(Su)dBu

= v(τ, Sτ ) +

∫ τ

t

g(u, σ(Su)
>∇v(u, Su))du−

∫ τ

t

∇v(u, Su)
>σ(Su)dBu

−
∫ τ

t

(
vt(u, Su) + Lv(u, Su) + g(u, σ(Su)

>∇v(u, Su))
)
du

= v(τ, Sτ ) +

∫ τ

t

g(u, σ(Su)
>∇v(u, Su))du−

∫ τ

t

∇v(u, Su)
>σ(Su)dBu

+Aτ − At , (32)

where

At = −
∫ t

0

(
vt(u, Su) + Lv(u, Su) + g(u, σ(Su)

>∇v(u, Su))
)
du

is an increasing process due to our Bellman Equation (18). By Lemma A.1,
(v(t, St))t∈[0,T ] is a g–supermartingale. Our general Theorem 3.1 implies that
v(t, St) ≥ Vt for all t ∈ [0, T ].

For the stopping time ν(t) = inf{u ≥ t|v(t, Su) = f(t, Su)}, the
Hamilton–Jacobi–Bellman equation (18) yields Aν(t) − At = 0. As a con-
sequence, (v(u∧ ν(t), Su∧ν(t)))t≤u≤T is a g–martingale, again by Lemma A.1.
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By continuity of v and f , and continuity of the sample paths of S, we also
have v(ν(t), Sν(t)) = f(ν(t), Sν(t)). It follows that

Vt ≥ Et

(
f(ν(t), Sν(t))

)
= Et

(
v(ν(t), Sν(t))

)
= v(t, St)

and we obtain finally Vt = v(t, St) .

E Infinite Time Horizon: Proof of Theorem

3.7

We start by noting that Theorem 3.1 holds true for T = ∞ if the payoff pro-
cess X satisfies Assumption 2.1 — the proof goes through without changes,
except that — as in the case of pure risk — we have to assume that the
candidate for an optimal stopping time

τ ∗ = inf {t ≥ 0 : Vt = Xt}

remains finite a.s. (see also the footnote 22).
We also need to extend the concept of g–(super)martingale to the infinite

time horizon. We call a process (St)t≥0 that satisfies Assumption 2.1 for
T = ∞ a g–supermartingale if it is a g–supermartingale for all finite horizons
T < ∞.

Theorem E.1 Let
Vt = ess sup

τ≥t
Et (Xτ )

be the value function of the optimal stopping problem. Assume that

τ ∗ = inf {t ≥ 0 : Vt = Xt}

is universally finite (i.e. P [τ < ∞] = 1 for all P ∈ Pκ). Then one can
choose a version of V with rightcontinuous sample paths. Moreover,

1. (Vt) is the smallest rightcontinuous g–supermartingale dominating
(Xt);

2. τ ∗ = inf {t ≥ 0 : Vt = Xt} is an optimal stopping time;

3. the value function stopped at τ ∗, (Vt∧τ∗) is a g–martingale.
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Let us now come to the proof of Theorem 3.7. Assumption 2.1 ensures
that the value process

Vt = ess sup
∞>τ≥t

Et (Xτ ) = ess sup
∞>τ≥t

ess inf
P∈Pκ

EP [Xτ |Ft]

is well-defined. Without loss of generality, we can and do choose rightcon-
tinuous versions for our value functions V T and V .

As one increases one’s options with a longer time horizon, we also have
V T ≤ V and obviously V ∞ ≤ V as well. It is then enough to show V ∞ ≥ V .

The g–expectation is continuous from below (property 10), so the g–
supermartingale property of V T yields for all t, u ≥ 0

V ∞
t = lim

T↑∞
V T

t

≤ lim
T↑∞

Et

(
V T

t+u

)
= Et

(
lim
T↑∞

V T
t+u

)
= Et

(
V ∞

t+u

)
.

Hence, V ∞ is a g–supermartingale.
Let us show next that V ∞ admits a rightcontinuous version. By Lemma

F.1, it is enough to show that the mapping

t 7→ E0 (V ∞
t )

is rightcontinuous. Fix t0 ≥ 0 and a sequence (tn) with tn ↓ t0. The mapping
n 7→ E0

(
V ∞

tn

)
is increasing as V ∞ is a g–supermartingale. Also, T 7→ E0

(
V T

t

)
is increasing for all T ≥ t ≥ 0. We can thus interchange the limits in the
following computation and obtain the desired result:

lim
n→∞

E0

(
V ∞

tn

)
= lim

n→∞
E0

(
lim
T↑∞

V T
tn

)
monotone continuity = lim

n→∞
lim
T↑∞

E0

(
V T

tn

)
remark above = lim

T↑∞
lim

n→∞
E0

(
V T

tn

)
monotone continuity = lim

T↑∞
E0

(
lim

n→∞
V T

tn

)
rightcontinuity of V T = lim

T↑∞
E0

(
V T

t0

)
monotone continuity and definition of V ∞ = E0

(
V ∞

t0

)
.

41



Choose a rightcontinuous version of V ∞, that we denote again by V ∞.
By Theorem E.1, we must have V ∞ ≥ V .

F Right–Continuous Versions of g–

Supermartingales

As in the classical martingale theory, we need sometimes an argument that
allows us to work with right–continuous sample paths. We prove here the
corresponding version of the classical lemma24.

Lemma F.1 Let (Xt)t∈[0,T ] be a g–supermartingale with

E[ sup
t∈[0,T ]

X2
t ] < +∞ .

Assume that the mapping

t ∈ [0, T ] 7→ E0 (Xt)

is continuous. Then there exists an event Ω∗ ⊂ Ω with P (Ω∗) = 1 on which
the (right–continuous!) process

Yt = Xt+ = lim
s↓t,s∈Q

Xs (t ∈ [0, T ]) (33)

is well–defined. We have Yt = Xt a.s. for all t ∈ [0, T ], and (Yt)t∈[0,T ] is also
a g–supermartingale.

Proof: Chen and Peng (2000) prove a downcrossing inequality for g–
supermartingales25. As in the classical case, it follows that on some event Ω∗

with probability 1 the limit in (33) exists. Let us define Yt = 0 outside the
set Ω∗. By the usual conditions, Y is adapted, so Yt = Et (Yt). Because of
the g–supermartingale property and dominated convergence, we have

Et (Yt) = Et

(
lim

s↓t,s∈Q
Xs

)
= lim

s↓t,s∈Q
Et (Xs) ≤ Xt .

24Coquet, Hu, Mémin, and Peng (2002) mention in their Remark 2.2 the possibility
to prove this lemma. As the proof has not been spelt out anywhere to our knowledge,
we provide it here.Trevino (2008) proves rightcontinuity of value functions under multiple
priors in a general semimartingale setting.

25The assumption of positivity is not necessary here as explained in Coquet, Hu, Mémin,
and Peng (2002), Remark 2.1.
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We thus have Yt ≤ Xt a.s. for all t ∈ [0, T ]. On the other hand, we have as-
sumed that t ∈ [0, T ] 7→ E0 (Xt) is continuous. From dominated convergence,
we then get

E0 (Yt) = lim
s↓t,s∈Q

E0 (Xs) = E0 (Xt) .

The comparison theorem implies Yt = Xt a.s. 2

G Barrier Options

We provide here the proof of Lemma 4.2.
Fix a progressively measurable process θ with |θt| ≤ κ for all t ∈ [0, T ].

Under P θ, Bθ
t = Bt −

∫ t

0
θsds is a standard Brownian motion. By definition,

we have

Su = St exp
(
σ(Bu −Bt) + (µ− σ2/2)(u− t)

)
= St exp

(
σ(Bθ

u −Bθ
t ) + (µ− σ2/2)(u− t) +

∫ u

t

θsds

)
.

Given τH > t, the event that we reach the level H later than u can be written
as

{τH > u} = {∀v ∈ [t, u] : Sv ≤ H}

=

{
∀v ∈ [t, u] : Bθ

v −Bθ
t +

∫ v

t

θsds ≤ L

}
,

where we write

L =
1

σ

(
log (H/St)− (µ− σ2/2)(v − t)

)
.

Given that θs ≥ −κ, this set is included in{
∀v ∈ [t, u] : Bθ

v −Bθ
t − κt ≤ L

}
As Bθ is a standard Brownian motion under P θ and similarly, B−κ

t = Bt−κt
a standard Brownian motion under P−κ, we have

P θ
[
∀v ∈ [t, u] : Bθ

v −Bθ
t − κ(v − t) ≤ L|Ft

]
= P−κ

[
∀v ∈ [t, u] : B−κ

v −B−κ
t − κ(v − t) ≤ L|Ft

]
.
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But B−κ
v −B−κ

t − κ(v − t) = Bv −Bt; we thus get

P θ [τH > u|Ft] = P θ

[
∀v ∈ [t, u] : Bθ

v −Bθ
t +

∫ v

t

θsds ≤ L|Ft

]
≤ P θ

[
∀v ∈ [t, u] : Bθ

v −Bθ
t − κ(v − t) ≤ L|Ft

]
= P−κ

[
∀v ∈ [t, u] : B−κ

v −B−κ
t − κ(v − t) ≤ L|Ft

]
= P−κ [∀v ∈ [t, u] : Bv −Bt ≤ L|Ft]

= P−κ [τH > u|Ft] .

H Details for the American Straddle

Let us start with the pure risk case, when κ = 0. As we are in the stationary
infinite horizon case, the value function will have the form e−rtv(x). The
payoff function being symmetric, it is natural to guess that we will exercise
when the absolute value of the Brownian motion without drift B hits a critical
value b. In the continuation region C = (−b, b), the process e−rtv(Bt) is a
martingale, which leads to the ordinary differential equation

−rv + 1/2v′′ = 0

in C. The solutions of this differential equation are of the form

v(x) = A1 exp(α1x) + A2 exp(α2x)

for α1,2 = ±
√

2r and some constants A1, A2. The standardway to determine
these constants is to use continuity and smooth fit at the boundary b which
yields the two linear equations (in A1,2)

A1 exp(α1b) + A2 exp(α2b) = b

A1α1 exp(α1b) + A2α2 exp(α2b) = 1

with determinant −2
√

2r (note that α1 + α2 = 0) and solution (in terms of
the still unknown b)

A1 =

√
2rb + 1

2
√

2r
exp(−

√
2rb)

A2 =

√
2rb− 1

2
√

2r
exp(

√
2rb) .
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Continuity and smooth fit in −b yield the two equations

A1 exp(−α1b) + A2 exp(−α2b) = b

A1α1 exp(−α1b) + A2α2 exp(−α2b) = −1

which yields

A1 =

√
2rb− 1

2
√

2r
exp(

√
2rb)

A2 =

√
2rb + 1

2
√

2r
exp(−

√
2rb) .

We thus obtain two equations for b which we can luckily satisfy in a consistent
way. b has to satisfy

√
2rb− 1

2
√

2r
exp(

√
2rb) =

√
2rb + 1

2
√

2r
exp(−

√
2rb)

or, if we write x =
√

2rb, we need

x(exp(x)− exp(−x)) = exp(x) + exp(−x) ,

or
x tanh(x) = 1

which has a unique positive solution x∗ ∼= 1.199679.
We now come to Knightian uncertainty.

Lemma H.1 Let

α1,2 = κ±
√

2r + κ2

A1 =
α2c− 1

α2 − α1

exp((α2 − 2κ)c)

A2 =
1− α1c

α2 − α1

exp((α1 − 2κ)c)

β1,2 = −κ±
√

2r + κ2

B1 =
1 + β2c

β2 − β1

exp((−β2 − 2κ)c)

B2 =
−1− β1c

β2 − β1

exp((−β1 − 2κ)c) .
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Let c > 0 be the unique positive solution of the equation

c− 1
α1

c− 1
α2

= exp(−2
√

2r + κ2 c) .

The function

v(x) =


x if x ≥ c

A1 exp(α1x) + A2 exp(α2x) for 0 ≤ c
B1 exp(β1x) + B2 exp(β2x) for −c < x < 0

−x if x ≤ −c

is the unique solution of (21) to (29). v is convex, continuously differentiable
everywhere, and twice continuously differentiable except at the critical points
{−c, c} (where the Straddle is exercised).

Proof: The solutions of the quadratic equation (22) are

α1,2 = κ±
√

2r + κ2 .

Note that α1 + α2 = 2κ. The ansatz

v(x) = A1 exp(α1x) + A2 exp(α2x)

for x > 0 leads to the following continuity and smooth fit condition at the
(yet to be determined) exercise point c > 0:

A1 exp(α1c) + A2 exp(α2c) = c

A1α1 exp(α1c) + A2α2 exp(α2c) = 1 .

This system is linear in A1,2 with determinant

det = exp((α1 + α2)κc)(α2 − α1) = exp(2κc)(α2 − α1) 6= 0

and unique solution (in terms of c)

A1 =
α2c− 1

α2 − α1

exp((α2 − 2κ)c)

A2 =
1− α1c

α2 − α1

exp((α1 − 2κ)c) .
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On the negative axis, the solutions of the equation (26) are

β1,2 = −κ±
√

2r + κ2 .

Note that we have β1 = −α2 and β2 = −α1. The ansatz

v(x) = B1 exp(β1x) + B2 exp(β2x)

for x < 0 leads to the following continuity and smooth fit condition at the
exercise point −c:

B1 exp(−β1c) + B2 exp(−β2c) = c

B1β1 exp(−β1c) + B2β2 exp(−β2c) = −1 .

As above, this leads to

B1 =
1 + β2c

β2 − β1

exp((−β2 − 2κ)c)

B2 =
−1− β1c

β2 − β1

exp((α1 − 2κ)c) .

Note at this point that we have

B1 = A2, B2 = A1 .

From this, we immediately get A1 + A2 = B1 + B2, i.e., the two solutions
paste continuously together at 0; we have v(0−) = v(0+). We now choose
the constant c in such a way that v is even continuously differentiable in zero.
The equation v′(0−) = v′(0+) is equivalent to

A1α1 + A2α2 = B1β1 + B2β2

which we can transform to

A1α1 + A2α2 = −A2α2 − A1α1

in light of the above relations between the parameters. This equation can
only be satisfied if both sides are equal to zero. We are thus led to consider

0 = A1α1 + A2α2
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which is equivalent to

0 = α1(α2c− 1) exp(α2c) + α2(1− α2c) exp(α1c)

or
0 = α1(α2c− 1) exp((α2 − α1)c) + α2 − α1α2c

what we can rewrite as

c− 1
α1

c− 1
α2

= exp(−2
√

2r + κ2 c) .

On [0,∞[, the left side is continuously increasing from α2/α1 < 0 to 1 and the
right side is continuously decreasing from 1 to 0. Hence, there exists a unique
number c > 0 that makes our guessed function continuously differentiable in
zero with v′(0) = 0.

We remark that we then get a continuous second derivative in zero as
well. By the Bellman equations (21) and (25) we have

v′′(0+)− v′′(0−) = 2 (rv(0+) + κv′(0+)− (rv(0−)− κv′(0−)))

= 2κv′(0) = 0 .

2

With the help of the preceding lemma and Itô’s formula (which can be
applied in the standard form because the function v is convex and in W2,
or in other words, the generalized second derivative does not have a mass
point in ±c), is is easy to see that e−rtv(St) is a P ∗–supermartingale, and
a P ∗–martingale on (−c, c), compare Equation (32). To conclude the proof
that e−rtv(St) is the value function under P ∗, we just have to show that the
candidate optimal stopping times

ν(t) = inf{u ≥ t|v(Su) = |Su|}

remain finite a.s. (as we are now in the infinite horizon case). To see this,
we introduce the scale function

s(x) =

{
e2κx−1

2κ
if x ≥ 0

1−e−2κx

2κ
else

.

Then s(St) is a P ∗–martingale (again, Itô’s formula can be applied because
the second derivative of s exists as a measurable function) and by the usual
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time–change argument, B̃t = s(ST (t)) is a P ∗–Brownian motion for some
new time scale (T (t))t≥0, see, e.g. Rogers and Williams (1987), V.46–47.
We know that a P ∗–Brownian motion (in fact, any regular diffusion) leaves
(−c, c) almost surely in finite time; as a consequence, so does S under P ∗

and we get ν(t) < ∞ P ∗-a.s.
We now have to verify that the function e−rtv(x) is indeed the value

function under drift ambiguity. We know already that that e−rtv(St) is a
P ∗–supermartingale, and a P ∗–martingale on (−c, c). Now take any P ∈ Pκ

with Girsanov kernel θ bounded by κ and apply Itô’s formula (which can be
applied in the standard form because the function v is convex and in W2, or
in other words, the generalized second derivative does not have a mass point
in ±c), to see that for t ≤ τ ∗

e−rtv(St) = v(S0) +

∫ t

0

e−ru

(
−rv(Su) +

1

2
v′′(Su)

)
du +

∫ t

0

e−ruv′(Su)dBu

= v(S0) +

∫ t

0

e−ruκ sgn(Xu)v
′(Xu)du +

∫ t

0

e−ruv′(Su)dBu

by the Bellman equations (21) and (25); we continue to write

= v(S0) +

∫ t

0

e−ruv′(Xu) (κ sgn(Xu) + θu) du +

∫ t

0

e−ruv′(Su)dBθ
u

where Bθ is the Brownian motion under P θ. As we have sgn v′(x) =
sgn(x) and sgn(κ sgn(Xu) + θu) = sgn(Xu), we see that e−rtv(St) is a
P–submartingale. We therefore have v(S0) = infP∈Pκ EP e−rτ∗v(c) =
infP∈Pκ EP e−rτ∗c ≤ V0. The other inequality being obvious, the proof is
complete.
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