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Abstract

We model and solve Best Choice Problems in the multiple prior
framework: An ambiguity averse decision maker aims to choose the
best among a fixed number of applicants that appear sequentially in
a random order. The decision faces ambiguity about the probabil-
ity that a candidate – a relatively top applicant — is actually best
among all applicants. We show that our model covers the classical
secretary problem, but also other interesting classes of problems. We
provide a closed form solution of the problem for time-consistent pri-
ors using minimax backward induction. As in the classical case the
derived stopping strategy is simple. Ambiguity can lead to substantial
differences to the classical threshold rule.
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1 Introduction

The classical secretary problem is one of the most popular problems in
the area of Applied Probability, Economics, and related fields. Since
its appearance in 1960 a rich variety on extensions and additional
features has been discussed in the scientific1 and popular2 literature.

In the classical secretary problem introduced by Gardner (1960)
an employer sequentially observes N girls applying for a secretary job
appearing in a random order. She can only observe the relative rank
of the current girl compared to applicants already observed and has no
additional information on their quality. The applicants can be strictly
ordered. Immediately after the interview the employer has to accept
the girl or to continue the observation. Rejected applicants do not
come back. Based on this information the agent aims to maximize the
probability of finding the best girl3.

Most of the classical literature in this field assumes that the girls
come in random order where all orderings are equally likely. The
solution is surprisingly simple. It prescribes to reject a known fraction
of girls, approximately N

e , and to accept afterwards the next candidate,
i.e. a girl with relative rank 1. Such stopping rules are called simple.
This strategy performs very well: Indeed, the chance of success is
approximately 36, 8% ≈ 1

e for large N .
This nice and surprising result is based on the strong assumption

that the girls arrive randomly, all possible orderings being equally
likely. There are good reasons to care about the robustness of this
assumption. From a subjective point of view, the decision maker might
not feel secure about the distribution of arrivals — she might face
”ambiguity”. Even if we take a more objective point of view, we
might want to perform a sensitivity analysis of the optimal rule. While
there is certainly a degree of randomness in such choice situations, it
is not obvious that the arrival probability would be independent of the
girl’s quality, e.g. It might well be that more skilled applicants find

1Freeman (1983) gives an overview of the development until the eighties. Ferguson
(1989) contains historical anecdotes. A lot of material is covered in Berezovski and Gnedin
(1984).

2Gardner’s treatment is the first instance here. A most recent example is the treatment
in a book about ”love economics” by a German journalist Beck (2005). It plays also a role
in psychological experiments, see Todd (2009).

3This is an extreme utility function, of course. On the other hand, the analysis based
on this extreme assumption serves as a benchmark for more general utility functions. The
results are usually similar, at least in the Bayesian setting, see Ferguson (2006), e.g.
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open jobs earlier4. In this paper, we present a way of dealing with
these questions by embedding the best choice problem into a multiple
prior framework as introduced by Gilboa and Schmeidler (1989) for
the static case, and extended to dynamic frameworks by Epstein and
Schneider (2003b). The agent works here with a class of possible prior
distributions instead of a single one, and uses the minimax principle
to evaluate her payoffs. We use then the general theory for optimal
stopping under ambiguity developed in Riedel (2009) to analyze the
model.

Our main result is that the optimal stopping rule is still simple,
or a cutoff rule. The agent rejects a certain number of girls before
picking the next applicant that is better than all previous ones —
in the literature on best choice problems, such applicants are usually
called candidates. The optimal strategy thus consists in building up a
”database” by checking a certain number of applicants, and to take the
first candidate thereafter5. We are able to obtain an explicit formula
for the optimal threshold that determines the size of the database.

In best choice problems, ambiguity can lead to earlier or later
stopping compared to the Bayesian case, in contrast to the analysis in
Riedel (2009) where ambiguity leads to earlier stopping. The reason
for this is that the original payoff process in best choice problems is
not adapted. Indeed, when the employer accepts a candidate, she does
not know if that candidate is the best among all applicants. She would
have to observe all of them to decide this question. She thus uses her
current (most pessimistic) belief about the candidate indeed being the
best applicant. Two effects work against each other then. On the one
hand, after picking a candidate, the agent’s pessimism leads her to
believe that the probability of better candidates to come is very high
— this effect makes her cautious to stop. On the other hand, before
acceptance, she uses a very low probability for computing the chance
of seeing a candidate. This effect makes her eager to exercise her
option. We illustrate these effects with three classes of examples.

In general, the optimal threshold can be quite different from the
classical case (and in this general sense, the 37 %–rule described above

4Another obvious way of introducing ambiguity concerns the number of applicants.
This question is not pursued here; see Engelage (2009) for a treatment of best choice
problems with an unknown and ambiguous number of applicants.

5Optimal stopping rules need not be simple. For example, in the situation with in-
complete information about the number of objects a Bayesian approach does not lead to
simple stopping rules in general, see Presman and Sonin (1975).
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is not robust). When the highest probability of finding a candidate
decays sufficiently fast, the threshold– number of applicants–ratio can
be very close to zero; indeed, it is independent of the number of appli-
cants for large N . In such a situation, one has rather an absolute than
a relative threshold. Instead of looking at the first 37 % of applicants,
one studies a fixed number of them before choosing the first relatively
top applicant.

On the other hand, if the probability of finding a candidate at
time n is in the interval [ γ

n , 1
γn ] for some parameter γ ∈ (0, 1), the

threshold– number of applicants–ratio can converge to any positive
number between 0 and 1. For γ → 1, we obtain again the 37 % – rule.
In this sense, the classical secretary problem is robust.

Last not least, we give an example where the ambiguity about
applicants being candidates remains constant over time. This example
can be viewed as the outcome of independent coin tosses with identical
ambiguity as described in Epstein and Schneider (2003a)6. The aim
is to pick the last 1 in this series of zeros and ones. We show that the
agent optimally skips all but a finite number of applicants. In this case,
we the ratio converges to 1 for large N . Different parametrizations of
this example show that ambiguity can lead to earlier stopping (when
the probability of finding a candidate are known to be small) as well
as later stopping compared to the Bayesian case.

On the modeling side, our approach succeeds in finding a model
that allows to introduce ambiguity into best choice problems. Note
that one has to be careful when introducing ambiguity into dynamic
models because one can easily destroy the dynamic consistency of the
model7. To do so, we reformulate the classical secretary problem in the
following way. The agent observes a sequence of ones and zeros, where
1 stands for ”the current applicant is the best among the candidates
seen so far”. The agent gets the payoff of 1 if she stops at a 1 and
there is no further 1 coming afterwards. In the secretary problem,
the probability of seeing a 1 at time n is 1/n as all orderings are
equally likely. We then allow for ambiguity by introducing an interval
[an, bn] for this probability; finally, we construct a time–consistent
model by pasting all these marginal probabilities together as explained
in Epstein and Schneider (2003b).

The analysis of the stopping problem proceeds in three steps. In

6see also the examples of this type discussed in Riedel (2009).
7See Epstein and Schneider (2003b) for a general discussion of time–consistency in mul-

tiple prior models, and Riedel (2009) for the discussion in an optimal stopping framework.
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a first step, we have to derive an equivalent model with adapted pay-
offs — note that the payoff function is not adapted here because the
agent’s payoff depends on the events that occur after stopping. We
pass to adapted payoffs by taking conditional expectations prior by
prior; it is not at all clear that this leads to the same ex ante pay-
off, though. Time–consistency and the corresponding law of iterated
expectations for multiple priors8 ensure this property. In the second
step, we compute explicitly the relevant minimal conditional expecta-
tions. After having stopped, the agent uses the maximal probability
for seeing a 1 afterwards. Intuitively, the agent’s pessimism induces
him to suppose that the best candidate is probable to come later after
having committed herself to an applicant. After this, we have arrived
at an optimal stopping problem that can be solved with the methods
developed in Riedel (2009). Indeed, the problem at hand turns out to
be a monotone problem: the worst–case measure can thus be identi-
fied as the measure under which the probabilities of seeing a candidate
are minimal (until the time of stopping, of course). It then remains
to solve a classical Bayesian stopping problem, and we are done.

The paper is organized as follows: Section 2 introduces the model
and provides the stepwise solution as well as the main theorem. Sec-
tion 3 contains three classes of examples that allow to discuss in more
detail the effects of ambiguity in best choice problems.

2 Best Choice Problems under Ambi-

guity

Let us start with formalizing the classical best choice problem in a
way that allows a natural generalization to ambiguity. In the classical
secretary problem, the agent observes sequentially the relative ranks
of applicants, say R1 = 1 for the first one, R2 ∈ {1, 2} for the second,
R3 ∈ {1, 2, 3} for the third and so on. The random ordering implies
that the random variables (Rn) are independent9. As we are only
interested in finding the best girl, we can discard all applicants with
a relative rank higher than 1, and call candidates those girls that
are relatively top at the moment. Let us introduce the 0 − 1–valued
sequence Yn = 1 if Rn = 1 and Yn = 0 else. The random variables

8See, e.g., Riedel (2009), Lemma 11.
9See Ferguson (2006) or Chow, Robbins, and Siegmund (1971) for the technical details.

5



(Yn) are also independent, of course, and we have

P [Yn = 1] =
1
n

because all permutations are equally likely.
A simple stopping rule first rejects r − 1 applicants and accepts

the next candidate, if it exists, i.e.

τ(r) = inf {k ≥ r|Yn = 1}

with τ(r) = N if no further candidate appears after applicant r − 1.
One uses independence of the (Yn) and monotonicity of the value func-
tion to show that optimal stopping rules must be simple, see Section
2.1.4 below for the argument in our context. It then remains to com-
pare the expected success of the different simple rules. The event that
girl n is a candidate and also the best of all girls means that no further
girl has relative rank 1. In terms of our variables (Yn), this means that
Yn = 1 and Yk = 0 for all k > n. The success of a simple strategy is
then

φ(r) := P [τ(r) picks the best girl] =
N∑

n=r

P [τ(r) = n, girl n is best]

=
N∑

n=r

P [Yr = 0, . . . , Yn−1 = 0, Yn = 1, Yk = 0, k > n]

=
N∑

n=r

N∏
j=r

P [Yj = 0]
P [Yn = 1]
P [Yn = 0]

=
N∏

j=r

j − 1
j

N∑
n=r

1/n

1− 1/n
=

r − 1
N

N∑
n=r

1
n− 1

.

The sum approximates the integral of 1/x, so the value is approxi-
mately

φ(r) =
r − 1
N

log
N

r − 1
.

The maximum of the function −x log x is in 1/e, so we conclude that
the optimal r is approximately [N/e] + 1.
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2.1 Best Choice under Ambiguity

2.1.1 Formulation of the Problem

We generalize now the above model to ambiguity by allowing that the
probabilities

P [Yn = 1|Y1, . . . , Yn−1] ∈ [an, bn]

for all histories Y1, . . . , Yn−1 come from an interval instead of being
a known number. Throughout the paper, we assume that 0 < an ≤
bn < 1.

Modeling ambiguity in dynamic settings requires some care if one
wants to avoid traps and inconsistencies. We view the random vari-
ables (Yn) as outcomes of independent, but ambiguous experiments
where in the nth experiment the distribution of Yn, i.e. the number
P [Yn = 1] is only known to come from an interval [an, bn]. From these
marginal distributions, the agent has to construct all possible joint
distributions for the sequence (Yn). She does so by choosing any num-
ber pn ∈ [an, bn] after having observed Y1, . . . , Yn−1. A possible prior
then takes the form

P [Y1 = 1] = 1 (1)

because the first applicant is always a candidate, and

P [Yn = 1|Y1, . . . , Yn−1] = pn ∈ [an, bn] (2)

for a predictable sequence of one–step–ahead probabilities pn. Note
that we allow pn to depend on the past realizations of (Y1, . . . , Yn−1).
For a time–consistent worst–case analysis this is important because
different one–step–ahead probabilities might describe the worst case
after different histories. From now on, we work with class P of all
probability measures that satisfy (1) and (2) for a given sequence
0 < an ≤ bn < 1, n = 1, . . . , N . For more on the foundations of
dynamic decisions under ambiguity, we refer the reader to Epstein
and Schneider (2003b) and Epstein and Schneider (2003a), see also ?.

The astute reader might now wonder why we speak about indepen-
dent realizations if the conditional probabilities are allowed to depend
on past observations. Independence in a multiple prior setting is to
be understood in the sense that the interval [an, bn] is independent of
past observations, just as it means that the conditional probability of
the event {Yn = 1} given the past observations is independent of these
observations in classical probability. In this sense, the agent does not
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learn from past observations about the degree of ambiguity of the nth
experiment.

We are now ready to formulate our optimization problem. Based
on the available information the agent chooses a stopping rule τ that
maximizes the expected payoff which is 1 if she happens to find the
best girl, and 0 else. A way to describe this in our model is as follows:
applicant n is the best if she is a candidate (she has to be relatively
best among the first n, of course), and if she is not topped by any
subsequent applicant: in other words, we have Yn = 1 and there is no
further candidate afterwards, or Yk = 0 for k > n. Let us define

Zn =
{

1 if Yn = 1, Yk = 0, k > n
0 else

.

The agent aims to choose a stopping rule τ that maximizes

inf
P∈P

EP [Zτ ]. (3)

2.1.2 Reformulation in Adapted Payoffs

The next problem that we face is that the sequence (Zn) is not adapted
to the filtration generated by the sequence (Yn) because we do not
know at the time when we pick an applicant if she is best or not. As
in the classical case, we therefore take first conditional expectations
of the rewards (Zn) before we can apply the machinery of optimal
stopping theory. In the multiple prior framework we thus consider

Xn =ess inf
P∈P

E[Zn|Fn] .

where Fn = σ(Y1, . . . , Yn). In the Bayesian framework, it is relatively
easy to show that the expected payoffs E[Zτ ] = E[Xτ ] are the same
for all stopping times τ . In the multiple prior framework, this is less
obvious. Indeed, the identity

inf
P∈P

EP [Zτ ] = inf
P∈P

EP [Xτ ]

does require a condition on the set of priors which has become known
as rectangularity or m–stability. In our model, this condition is satis-
fied10, and we have

10Compare Epstein and Schneider (2003b) or Riedel (2009), Section 4.1.
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Lemma 1 For all stopping times τ we have

inf
P∈P

EP [Zτ ] = inf
P∈P

EP [Xτ ].

We can thus reformulate our problem as

maximize inf
P∈P

EP [Xτ ] (4)

over all stopping times τ ≤ N .

2.1.3 Reduction to a Monotone Problem

We are now in the position to apply the general theory of optimal
stopping with multiple priors as developed in Riedel (2009). To this
end, let us first have a closer look at the payoffs (Xn). It is clear that
Xn = 0 if we do not have a candidate at n, i.e. Yn = 0, so we need only
to focus on the case Yn = 1. We are then interested in the minimal
(conditional) probability that all subsequent applicants are no candi-
dates. It is quite plausible (but requires a proof, of course) that the
probability is minimal under the measure P̄ where the probabilities
for being a candidate are maximal, P̄ [Yn = 1|Y1, . . . , Yn−1] = bn. Un-
der this measure, the (Yn) are independent (because the conditional
probabilities for Yn = 1 are independent of past observations, but see
the proof of Lemma 2 for the details), and we thus have

Lemma 2 The payoffs (Xn) satisfy

Xn =Yn min
P∈P

P [Yn+1 = 0, . . . , YN = 0] (5)

=Yn

N∏
k=n+1

(1− bk)

=:Yn ·Bn

The agent faces now a sequence of adapted payoffs that is mono-
tone in Yn (indeed, linear). The random variables (Yn) are indepen-
dent under the measure Q where the conditional probabilities for a
candidate are

Q[Yn = 1|Y1, . . . , Yn−1] = an .

Moreover, the probabilities of finding a candidate are smallest under
this measure in the whole class P in the sense of first–order stochastic
dominance. We are thus in a situation that is called a monotone
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problem in Riedel (2009). The general theory there tells us that the
optimal stopping rule with multiple priors coincides with the optimal
stopping rule under the measure Q – the worst-case measure.

Theorem 1 The optimal stopping rule τ∗ for (4) is the same as the
optimal stopping rule for the Bayesian problem

maximize EQ[Xτ ]. (6)

2.1.4 Optimal Stopping under the Worst–Case Measure
Q

We are now back to a classical optimal stopping problem under the
measure Q. A standard argument shows that optimal stopping rules
must be simple. It works as follows. From classical optimal stopping
we know that it is optimal to stop when the current payoff Xn is equal
to the current value of the problem

vn := sup
τ≥n

EQ [Xτ |X1, . . . , Xn] .

The independence of the (Xn) under Q implies that the value of the
problem after having rejected n − 1 applicants is independent of the
past observations, i.e.

vn = sup
τ≥n

EQ[Xτ ]. (7)

The sequence (vn) is decreasing as we maximize over a smaller set of
stopping times. On the other hand, the numbers

Bn :=
N∏

k=n+1

(1− bk)

are increasing in n. Now suppose that it is optimal to take a candidate
n. We have then Bn = vn; therefore, we get

Bn+1 ≥ Bn = vn ≥ vn+1 ,

and it is also optimal to stop when a candidate appears at time n+1.
We conclude that optimal stopping rules are simple.

Lemma 3 The optimal stopping rule τ∗ is simple, i.e. there exists a
number 1 ≤ r∗ ≤ N , s.t.

τ∗ = τ(r∗) = inf{n ≥ r∗|Yn = 1}.
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In the next step we compute the optimal threshold r∗ maximizing
(7) over all simple strategies. Let us denote by

φ(r) := EQ[Xτ(r)]

the payoff from starting to search at applicant r. We then have

φ(N) := EQ(Xτ(N)) = aN (8)

and

φ(r) = ar ·Br + (1− ar) · φ(r + 1) (9)

for r < N .
While our recursive formula for φ(r) is useful for numerical com-

putations, we record also the explicit solution of this linear difference
equation. To simplify the interpretation of this expression, we intro-
duce two concepts.

Definition 1 For each n ≤ N we call

αn =
1− an

1− bn
= 1 +

bn − an

1− bn

the degree of ambiguity and

βn =
an

1− bn

the ambiguous odds of applicant n.

The first ratio αn measures the ambiguity persisting at the time
n. The term tends to 1 as length of the interval [an, bn] decreases.
In case of an = bn the node n is completely unambiguous and the
decision maker faces only risk at n. Similarly, one can think of the
product

∏N
k=n αk as the cumulated ambiguity persisting between n

and N . The model is unambiguous if and only if
∏N

k=1 αk = 1. Note,
that we call the ratio p/(1 − p) the odds for a zero–one bet. In a
similar way, the ration βn measures the odds of seeing a candidate at
time n where we now use the (nonlinear) probability induced by our
ambiguity model.
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The solution of the linear difference equation (9) with boundary
condition (8) is given by

φ(r) =Br−1

(
βn + αnβn+1 + · · ·

n−1∏
k=r

αkβN

)
(10)

=Br−1 ·

(
N∑

n=r

βn

n−1∏
k=r

αl

)
.

Let us check now that φ has a unique maximizer. From our re-
cursion (9), we get that φ(r) − φ(r + 1) ≥ 0 is equivalent to wr ≤ 1
for

wr :=
φ(r + 1)

Br

=
N∑

n=r

βn

n−1∏
k=r

αk . (11)

As αk > 1 and βn > 0, the sequence (wr) is strictly decreasing. Thus,
(φ(r)) is increasing as long as wr > 1 and decreasing afterwards, which
shows that it has a unique maximum.

The maximizer is determined by

r∗ = inf{r ≥ 1|wr ≤ 1} (12)

The optimal threshold r∗ is determined by the weighted average of
ambiguous odds weighted with the ambiguity persisting between r
and n. Equation (11) and Equation (12) completely characterize the
solution.

We summarize our findings in the following theorem.

Theorem 2 1. The optimal stopping rule for (3) is simple, i.e.
the agent first observes r∗ candidates and takes then the first
candidate that appears;

2. The optimal threshold r∗ for the cutoff is given via (11) and (12).

3 Comparative Statics

In this section we use the sequence (wr) and the variables (αn) and
(βn) defined above to analyze the effects of ambiguity on stopping and
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the structure of the stopping strategy τ∗.
As it was shown in Riedel (2009), an ambiguity averse decision maker
behaves like a Bayesian decision maker under a special worst-case
probability measure constructed via backward induction. We have
seen in the preceding section how to construct this measure, and that
the optimal stopping rule is still simple. The central question by an-
alyzing the effect of ambiguity is now the threshold r∗. In case of
monotone problems where the payoff is known at the time of decision
such as House Selling Problem or Parking Problem discussed in Riedel
(2009) ambiguity leads to earlier stopping. The use of the worst-case
measure lowers the value of the Snell envelope and forces the agent to
stop earlier. The situation differs here because the agent faces actually
two kinds of uncertainty. On the one hand, there is payoff uncertainty
in the adapted version of the problem because the probability distri-
bution of Yn is not known. This effect leads to earlier stopping because
it reduces the expected value from waiting. On the other hand, ambi-
guity also affects the chances that a better applicant is going to come
after the current candidate. This ambiguity induces the agent to wait
longer because she believes after stopping that candidates are going
to appear with high probability. The two effects work against each
other, and we thus proceed to study more detailed models in which
we can disentangle them11. In addition, we compute the value of the
threshold r∗ and show that asymptotically, the relative fraction of ap-
plicants that the agent lets go by can assume any value between 0 and
1.

3.1 Ambiguous Secretary Problem

Our first example is the multiple prior version of the classical secretary
problem. The decision maker is uncertain about the real distribution
of the orderings for reasons explained in the introduction but has no
additional information on the quality of the applicants. Doubting her
strategy she aims to know what happens if she changes the measure
slightly. Instead of P [Yn = 1] = 1

n , the ambiguity averse decision
maker assumes that the probability lies in an interval near by 1

n , i.e.

P [Yn = 1|Fn−1] ∈
[
min{γ

n
, 0, 9999},min{ 1

γn
, 0, 9999}

]
11A similar point has been made in a completely different model in Nishimura and Ozaki

(2007) when there is uncertainty about the timing and uncertainty about the value from
stopping.
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N / γ 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1
5 3 3 3 3 3 3 5 5 5

10 4 4 5 5 5 5 6 7 10
50 19 19 19 20 20 22 24 27 34

100 38 38 38 38 39 43 46 53 65
500 185 185 186 189 193 210 227 257 316

1000 369 369 372 376 385 419 453 513 630

Table 1: Absolute values of the threshold r∗ for different values of N and
levels of ambiguity γ. The threshold is increasing with ambiguity. The agent
waits longer before accepting a candidate when ambiguity increases.

N / γ 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1
5 60% 60% 60% 60% 60% 60% 100% 100% 100%

10 40% 40% 50% 50% 50% 50% 60% 70% 100%
50 38% 38% 38% 40% 40% 44% 48% 54% 68%

100 38% 38% 38% 38% 39% 43% 46% 53% 65%
500 37% 37% 37% 38% 39% 42% 45% 51% 63%

1000 37% 37% 37% 38% 39% 42% 45% 51% 63%

Table 2: Relative values of the threshold r∗ for different values of N and levels
of ambiguity γ. Also the relative threshold is increasing with ambiguity.

for some γ < 1, 2 ≤ n ≤ N . We can use the analysis of the preceding
section to compute the thresholds r∗ that depends on γ and N , of
course. Typical values are tabulated in Table 1 and 2 for the absolute
and relative values of the threshold, resp. It is interesting to see
that one waits longer as ambiguity increases. The effect of missing
a potentially better applicant outweighs the lower expectation from
ambiguity. We get here a potentially testable implication: the more
uncertain the agent is, the longer she should wait before taking a
decisive action in a best choice problem.

The following result gives exact boundaries for the optimal thresh-
old depending upon γ and N .

Theorem 3 For given γ and N , the optimal threshold r∗(γ, N) sat-
isfies

e
− 1

γ ≤ r∗(γ, N)
N

≤ e
− 2γ

1+γ +
3
N

. (13)
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In particular, the Secretary Problem is robust in the sense that

lim
N→∞,γ↑1

r∗(γ, N)
N

= lim
N→∞

r∗(0)
N

= e−1 . (14)

3.2 Independent Coins with Identical Ambi-
guity

Our example corresponds to the Independent Indistinguishably Dis-
tributed case introduced in [ES1]. Here, the probability to meet a can-
didate remains constant over time. More generally, this is the case,
where the decision maker does not know if the experiment changes
over time. At the same time she has no reason to distinguish between
periods. To express the uncertainty about the coin the agent uses a
class of measures in each period.

We consider following bet: We observe an ambiguous coin being
tossed N times and we win if we stop at the last time {head} appears in
the sequence. With this setup we are in the situation of the ambiguous
best choice problem where the probabilities for {head} remain constant
over time:

P (n-th toss is a head|Fn−1) ∈ [p− ε, p + ε]

for ε ≥ 0, ε ≤ p.
To get a feeling for the problem, let us start with the pure risk

case, ε = 0. In this case, we get

wr = β(N − r) =
p

1− p
(N − r)

and the optimal threshold is the first r such that

N − r ≤ 1− p

p
.

In this problem, it is optimal to focus solely on the last
[

1−p
p

]
+ 1

applicants, irrespective of the total number of applicants.
Let us now come to the ambiguous case. From Equation (11), we

obtain for the degree of ambiguity α = 1−p+ε
1−p−ε > 1 and ambiguous

odds β = p−ε
1−p−ε

wr =
N∑

k=r

β

k−1∏
l=r

α = β
αN−r+1 − 1

α− 1
.
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The threshold r∗ is given by the first r such that

αN−r ≤ 1 +
α− 1

β
=

p + ε

p− ε
.

We learn from this that the agent focuses only on the last

k(p, ε) '
log p+ε

p−ε

log 1−p+ε
1−p−ε

applicants. This quantity is independent of N .
In this case we observe memoryless stopping : The decision about

stopping does not depend on the number of the options already ob-
served. Only the number of options left matters. Consequently, we
obtain

lim
N→∞

r∗(N)
N

= 1 .

This example also allows us to demonstrate that ambiguity can
lead both to earlier as well as to later stopping. For p < 1

2 , the
quantity k(p, ε) is increasing; consequently, the agent stops earlier
when ambiguity increases. For p = 1/2, k(p, ε) is independent of ε
and ambiguity does not influence the stopping behavior. For p > 1/2,
the agent stops later, in general.

3.3 Finite Stopping

In our last example we consider the case where the probability to
meet a candidate falls very fast. Here, the value of waiting decreases
very fast and becomes zero at some point. In this situation the future
becomes worthless and interviewing additional candidates does not
improve the expected payoff. Even if the pool of applicants is infinite
the decision will be made in finite time. Here, we can compute the
maximal amount of applicants that need to be interviewed in order to
decide optimally.

To see how it works we first consider the value of waiting for a
fixed number of candidates N and a given one-step-ahead probabilities
[an, bn]. Now we add an applicant with P [YN+1 = 1] ∈ [aN+1, bN+1].
Clearly, adding applicants does not decrease the value of the problem.
As we vary the number of applicants now, let us write wN

r for the
crucial sequence that determines the threshold r∗(N). Clearly, wN

r is
increasing in N and the value of the threshold r∗(N+1) ≥ r∗(N). Now
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assume that w∞r := limN→∞wN
r exists. Then we can find R ∈ N s.t.

w∞R < 1 and therefore wN
R < 1 for all N sufficiently large. Therefore,

the value of the threshold r∗(N) cannot exceed R. As r∗(N) is an
increasing, but bounded sequence of integers, it has to be constant
from some point on, r∗(N) = R for N sufficiently large.

In other words, the number of applicants does not matter here for
large pools of applicants. The agent first studies a fixed number of
applicants before taking the next candidate.

Lemma 4 If

w∞ := lim
N→∞

wN
1 (15)

exists, then

1. The value of the threshold r∗(N) is bounded by a constant R ∈ N
and for sufficiently large N ∈ N, we have r∗(N) = R,

2. The fraction of rejected candidates converges to zero, i.e.

lim
N→∞

r∗(N)
N

= 0 .

Let us reflect a moment under what condition the series w∞ =∑∞
k=1 βk

∏k−1
l=r αl is finite. By d’Alembert’s ratio test, this is the case

if we have
lim sup

n→∞

1− an

an

an+1

1− bn+1
< 1 .

This condition holds true, e.g., when both (an) and (bn) converge fast,
say exponentially, to zero.

In this section we analyzed the observation period for different sets
of measures. Depending on the structure of the set P the observation
period converges to a constant c ∈ (0, 1) as in the case of the ambigu-
ous secretary problem. Or it can converge to zero making the future
worthless as in the finite stopping case. In the opposite case of memo-
ryless stopping the observation period tends to 1, assigning zero value
to the past.

4 Conclusion

We provide a closed form solution for the best choice problem in the
multiple prior framework. An appropriate version of backward induc-
tion leads to the solution if the set of priors is time-consistent. Due to
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time-consistency most of classical arguments remain valid, the stop-
ping rule is simple. The closed form solution allows to analyze the
impact of ambiguity on the stopping behavior. Additionally, we show
the robustness of the classical secretary problem in the multiple prior
framework. A natural next step is to generalize the utility function.
Additionally, one might extend the model to infinite settings.
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A Appendix

A.1 Proof of Lemma 1

Proof: Fix a stopping time τ with values in {1, . . . , N}. Our set
of priors is compact, hence we can choose Qk ∈ P that minimize
EP Xk1{τ=k}. Time–consistency of the set of priors implies that there
exists a measure Q ∈ P such that

N∑
k=1

EQk
Xk1{τ=k} = EQ

N∑
k=1

Xk1{τ=k} = EQXτ ,

see, e.g., Lemma 8 in Riedel (2009). It follows that we have

inf
P∈P

EP Xτ = inf
P∈P

EP
N∑

k=1

Xk1{τ=k} =
N∑

k=1

inf
P∈P

EP Xk1{τ=k} .

By applying the law of iterated expectations for time–consistent mul-
tiple priors, this quantity is

=
N∑

k=1

inf
P∈P

EP Zk1{τ=k}

and by applying time–consistency again, we get

= inf
P∈P

EP Zτ .

2

A.2 Proof of Lemma 2

Proof: To show the independence we have to show that

ess inf
P∈P

P (Y1 = y1, . . . , YN = yN ) =
N∏

i=1

P̂ (Yi = yi)

for a P̂ ∈ P, yi ∈ {0, 1} for 1 ≤ i ≤ N
Because of definition of P all events of above kind have positive prob-
ability under every P ∈ P, i.e. P (Y1 = y1, . . . , YN = yN ) > 0 for all
sequences (yi) with yi ∈ {0, 1} and all P ∈ P. Therefore, using Bayes’
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rule and the fact that one-step-ahead probabilities [an, bn] depend only
on time we get

min
P∈P

P [Y1 = y1, . . . , YN = yN ] = min
P∈P

P [YN = yN |FN−1]P [Yi = yi, i < N ]

= min
P∈P

N∏
n=1

P [Yn = yn|Fn−1]

=
N∏

n=1

min
xn∈[αn,βn]

Pxn [Yn = yn|Fn−1]

=
N∏

n=1

min
xn∈[αn,βn]

Pxn [Yn = yn]

where Pxn denotes the measure defined via Pxn [Yn = yn|Fn−1] = xn.
2

A.3 Proof of Theorem 3

Proof: We denote by w(γ)n the sequence corresponding to the
problem with ambiguity γ. Straightforward calculations show that

wn(γ) =
N∑

k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)
(16)

To prove robustness we first show

e
− 1

γ ≤
r∗γ
N
≤ e

− 2γ
1+γ +

3
N

(17)

For the left-hand side of 17:

wγ
n =

N∑
k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)
≥

N∑
k=n

γ2

kγ − 1
(18)

≥
N∑

k=n

γ

k
(19)

≥
∫ N

n

γ

k
dk (20)

= γ log
(

N

n

)
(21)
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For the threshold rγ we obtain

1 = wγ
n ≥ γ log

(
N

n

)
(22)

⇔ (23)
r∗γ
N
≤ e

− 1
γ (24)

For the second inequality:

wγ
n =

N∑
k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)

=
N∑

k=n

γ2

kγ − 1
exp

(
k−1∑
l=n

ln
(

1 +
1− γ2

lγ − 1

))

≤
N∑

k=n

γ2

kγ − 1
exp

(
k−1∑
l=n

1− γ2

lγ − 1

)

≤
N∑

k=n

γ2

kγ − 1
exp

(∫ k

l=n−1

1− γ2

lγ − 1
dl

)

≤
N∑

k=n

γ2

kγ − 1

(
kγ − 1

(n− 1)γ − 1

) 1−γ2

γ

Using α := 1−γ2

γ − 1 we obtain for γ ≥ 0.5

wγ
n ≤

∫ N

n−1

γ2

((n− 1)γ − 1)α+1
(kγ − 1)α dk

≤ γ2

1− γ2

[(
N

n− 3

)α+1

− 1

]
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By setting wγ
n = 1 we get

1 ≤ γ2

1− γ2

[(
N

n− 3

)α+1

− 1

]
⇔

n− 3
N

≤ γ
2γ

1−γ2

≤ exp
(

ln(γ)
2γ

1− γ2

)
≤ exp

(
(γ − 1)2γ

1− γ2

)
≤ e

− 2γ
1+γ

2

A.4 Proof of Lemma 4

Proof: Because of boundedness of w∞ there exists a R ∈ N, s.t.

∞∑
k=n

βk

k−1∏
l=1

αl ≤ 1 for all n ≥ R

and it follows that

r∗(N) ≤ R for all N

and

r∗(N)
N

≤ R

N
→ 0 for N →∞

2
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