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Abstract

We consider optimal stopping problems for ambiguity averse decision
makers with multiple priors. In general, backward induction fails. If,
however, the class of priors is time–consistent, we establish a gen-
eralization of the classical theory of optimal stopping. To this end,
we develop first steps of a martingale theory for multiple priors. We
define minimax (super)martingales, provide a Doob–Meyer decompo-
sition, and characterize minimax martingales. This allows us to ex-
tend the standard backward induction procedure to ambiguous, time–
consistent preferences. The value function is the smallest process that
is a minimax supermartingale and dominates the payoff process. It is
optimal to stop when the current payoff is equal to the value function.
Moving on, we study the infinite horizon case. We show that the value
process satisfies the same backward recursion (Bellman equation) as
in the finite horizon case. The finite horizon solutions converge to
the infinite horizon solution. Finally, we characterize completely the
set of time–consistent multiple priors in the binomial tree. We solve
two classes of examples: the so–called independent and indistinguish-
able case (the parking problem) and the case of American Options
(Cox–Ross–Rubinstein model).
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1 Introduction

Good timing is a key decision in economic environments; whether it is the
right time for entering a new market, launching a new brand, going public,
exercising an option and so on — in all these cases economic agents have
to determine an optimal time for some action. Formally, all these problems
can be cast as optimal stopping problems. For a given sequence of possible
stochastic payoffs, a decision maker has to choose a random stopping time
that maximizes the expected reward.

Traditionally, it has been assumed that the distribution of payoffs is per-
fectly known to the agent. In such a formulation, the agent faces risk as she
does not know the possible payoffs ex ante, but does know its probabilistic
properties. Now in many real life situations that involve optimal stopping,
this assumption seems restrictive. As an example, think of one shot deci-
sions, when, e.g., an entry decision is made for the first time, and no data
are available to estimate the distribution of possible profits. Alternatively,
one might want to check the robustness of the results derived under the as-
sumption of a unique prior. In that case, we ask if the optimal solution is still
approximately optimal if one varies slightly the shape of the distribution.

It seems thus important to study optimal stopping in models that im-
pose less stringent assumptions on the ex ante probabilistic knowledge of
agents. In this paper, we adopt the framework of ambiguity that allows to
distinguish between risk and uncertainty as it has been developed by Gilboa
and Schmeidler (1989) and been extended to dynamic settings by Epstein
and Schneider (2003b). Accordingly, we assume that the agent has a set of
possible prior distributions and evaluates a random payoff by computing the
minimal expected value over this class of priors. We thus leave the realm
of the Bayesian world. As is well known, one easily runs into dynamic in-
consistencies if one does so (Sarin and Wakker (1998), Machina (1989), Yoo
(1991),Eichberger and Kelsey (1996)); in the current setting, we also give an
example where the naive choice of two priors leads to dynamically inconsis-
tent decisions of stopping (Example 3.1 below). The work of Epstein and
Schneider (2003b) shows how to overcome this difficulty. The set of priors
must satisy a certain dynamic consistency condition that they call rectan-
gularity. This property appears in other decision–theoretic contexts as well,
see, e.g. Delbaen (2002b), Riedel (2004), or Föllmer and Schied (2004). It
has also been called stability under pasting or time–consistency. We go for
the last name here.
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This paper develops a general theory of optimal stopping under time–
consistent ambiguity. We show that much of the classical results are still
valid provided that the class of priors is chosen in a time–consistent way.
When the horizon is finite, backward induction leads to the optimal solution
as in the Bayesian case. One can thus compute easily the value function
of the problem, the generalized Snell envelope of the payoff sequence. An
optimal stopping rule is, as in the classical case, to stop when the payoff from
stopping is equal to the Snell envelope.

The proof of these results is not completely straightforward, though. To
this end, we develop first steps of a theory of minimax martingales in Section
3.2. A minimax martingale (Mt) satisfies the usual martingale property for
the nonlinear minimax expectation operator, or

Mt = ess inf
P∈Q

EP [Mt+1 | Ft] ,

where Q is the set of time–consistent priors. Similarly, a minimax super-
martingale (St) satisfies

St ≥ ess inf
P∈Q

EP [St+1 | Ft] .

A minimax martingale is a submartingale for all probability measures P ∈ Q
and a martingale for some (worst–case) probability measure P ? ∈ Q. The
existence of this worst–case measure requires time–consistency of the set of
priors. Intuitively, a minimax martingale models a game against nature that
an uncertainty–averse agent would consider as ”fair”: in the worst case, it is
a fair game (martingale) — as a consequence, it must be a favorable game
(submartingale) in all other cases. We show that two key results from clas-
sical martingale theory hold true for minimax supermartingales: the Doob
decomposition and the Optional Sampling Theorem.

The Doob decomposition states that a minimax supermartingale can be
written as a minimax martingale minus a predictable, increasing process that
starts at 0. While the proof is a copy of the original proof, it is noteworthy
that we do not have here a uniform decomposition for the class of priors as
one obtains it in the Optional Decomposition Theorem (Kramkov (1996)).
There, one aims to write a uniform supermartingale as a uniform martin-
gale minus some optional increasing process. Minimax martingales are not
uniform martingales, in general; thus, the type of decomposition is quite
different.
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The second theorem that plays a key role here is the preservation of the
minimax supermartingale property under stopping, the so–called Optional
Sampling Theorem. This theorem is a typical systems theorem. It says that
if you play an unfair game against nature, then you cannot ”beat the system”
whatever stopping rule you use. Formally, this means that if we start with a
minimax supermartingale, then also the stopped process remains a minimax
supermartingale. The validity of this theorem hinges critically on the time–
consistency of the set of priors.

Having established these two key theorems, one can proceed as in the
classical literature (Chow, Robbins, and Siegmund (1971), Snell (1952)). We
show that the value function which one defines by backward induction (Bell-
man principle) is the smallest minimax supermartingale that dominates the
payoff process. As long as stopping is not optimal, the value function is a
minimax martingale. In discrete time, optimal stopping times are usually
not unique. The mentioned rule to stop whenever the payoff equals the value
process, is the smallest optimal stopping time. The minimax Doob decompo-
sition allows to determine the largest optimal stopping time as well. We also
obtain a duality result that has first been obtained by Föllmer and Schied
(2004) and Karatzas and Kou (1998) with different methods. The minimax
value function is the lower envelope of all Bayesian value functions. Under
our assumptions, the infimum is also attained by some probability measure.
As a consequence, the smallest optimal stopping rule in the minimax case is
equal to the smallest optimal stopping rule a Bayesian decision maker would
choose under some probability measure P ∗ ∈ Q.

In Section 5, we extend the theory to infinite horizon where backward
induction is not feasible. We show that the value process is still the small-
est minimax supermartingale that dominates the payoff process. It satisfies
the same recursive (or Bellman) equation as the value process does in the
finite horizon case. Moreover, we show that the the finite horizon solutions
converge to the infinite horizon solution as the horizon tends to infinity.
This is important for applications as the finite horizon solution can easily be
computed by backward induction. The convergence theorem then allows to
approximate the infinite horizon numerically.

In Section 6, we study important classes of economic optimal stopping
problems in the binomial tree. Time–consistency of priors is a strong require-
ment in the binomial tree. We show that a set of priors is time–consistent
if and only if the conditional probabilities of moving up at some node stay
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between two predictable bounds (p
t
) and (pt). If we impose the indistin-

guishability condition of Epstein and Schneider (2003a), then the bounds
(p

t
) and (pt) must be constant over time.
We then solve two classes of optimal stopping problems in the binomial

tree. When the payoff is an increasing function of the current up– or down-
ward move only, then it is optimal to behave as if the lower bound p was the
probability for moving up. This solves for example the class of parking prob-
lems where the aim is to stop as close as possible to a given target without
knowing whether spots are occupied or not. Similarly, we solve the class of
problems where the payoff is a monotone function of the ambiguous random
walk. This includes the exercise of American Options as well as entry and
exit decisions as important special cases.

Decisions under ambiguity are being studied by a number of authors cur-
rently. The present paper relies heavily on the fundamental work by Epstein
and Schneider (2003b), Delbaen (2002a), and Föllmer and Schied (2004).
The duality theorem 3.9 appears in Föllmer and Schied (2004) (derived by
other arguments). The notion of a generalized Snell envelope for maxmax ex-
pected utility (which is easier than the minimax case treated here) appears
also in the theory of dynamic coherent risk measures in Artzner, Delbaen,
Eber, Heath, and Ku (2002). Another approach can be found in Karatzas
and Zamfirescu (2003) (see also Zamfirescu (2003)) who discuss both the
maxmax– and the minmax–case and characterize saddle–points. However,
they do not assume time–consistency. In the framework of Brownian motion,
the concept of g–expectation introduced by Peng (1997) is closely related to
minimax expectations. In that framework, Coquet, Hu, Mémin, and Peng
(2002) derive a nonlinear Doob–Meyer decomposition. A first application of
optimal stopping in continuous time can be found in Nishimura and Ozaki
(2007) who solve the optimal stopping problem for an American Option when
the drift term is unknown. The corresponding discrete–time result follows
from our examples in Section 6.

The aim of the present paper is to present the theory of optimal stopping
under ambiguity in a unified and closed form. We have tried to work as
closely as possible along the classical lines.
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2 Ambiguity and Optimal Stopping

Let
(
Ω,F , P0, (Ft)t∈N

)
be a probability space with a filtration (Ft)t∈N. We

assume that F0 is the trivial σ–field and that F is the σ–field generated by
the union of all Ft, t ∈ N.

Let (Xt)t∈N be an adapted process that describes the payoff from stopping.
We assume throughout that (Xt) is bounded.

Assumption 2.1 The payoff process X is bounded.

The decision maker chooses a stopping time τ with values in N∪ {∞} of
the filtration (Ft)t∈N. From stopping she obtains a payoff Xτ (ω) = Xτ(ω)(ω)
for ω ∈ Ω, and we set Xτ (ω) = 0 if τ(ω) = ∞. She aims to maximize the
expected reward; as she is uncertain about the distribution of X, she uses a
class Q of probability measures on (Ω,F). The (minimax) expected reward
is thus given by

inf
P∈Q

EP Xτ . (1)

Without loss of generality, we can assume Q to be convex.
We impose the following assumption.

Assumption 2.2 All P ∈ Q are locally equivalent to the reference measure
P0, i.e. for all t ∈ N, and A ∈ Ft we have P (A) = 0 if and only if P0(A) = 0.

The reference measure P0 just serves the role of fixing the sets of measure
zero. Economically, this means that the decision maker has perfect knowledge
about sure events. In a discrete model, one can take P0 to be the uniform
distribution without loss of generality. More generally, if the measurable
space (Ω,F) has a nice topological structure, and the minimal expectation
as in (1) is continuous from below, one can always construct P0 from the set
of priors Q, see Tutsch (2006).

Mathematically, it might be possible to extend the theory to classes Q
that are only absolutely continuous with respect to the reference measure P0.
As this comes at a high technical cost, I prefer to assume equivalence. Eco-
nomically, the assumption just excludes the case in which some prior assigns
a probability of zero to an event that can occur with positive probability
under the reference measure P0. We think that it is plausible to exclude this
degenerate case. A behavioral foundation for this assumption can be found
in Epstein and Marinacci (2006).
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Note that we assume local equivalence of the priors only. It would not be
reasonable to assume that all measures in Q are equivalent to the reference
measure P0 on the information up to ∞ given by the σ–field F = F∞ =
σ (

⋃∞
t=0Ft). As an example, assume that the sequence (Xt) is independent

and identically distributed with different mean values mP 6= mQ under two
measures P, Q ∈ Q. By the Law of Large Numbers, the arithmetic mean
converges P–almost surely to mP , and Q–almost surely to mQ. Hence, the
measures are even singular on F∞. Therefore, we only impose the assumption
of equivalence locally for finite times t.

Due to our assumptions and the Radon–Nikodym theorem, the set
of priors Q can be identified with the set of density processes D ={(

dP
dP0

∣∣∣
Ft

)
t∈N

|P ∈ Q
}

. We impose the following technical condition that

ensures that the infimum in (1) is always attained for bounded stopping
times, see Lemma B.2.

Assumption 2.3 For every t ∈ N, the family of densities

Dt =

{
dP

dP0

∣∣∣∣
Ft

|P ∈ Q
}

is weakly compact in L1 (Ω,F , P0).

Note that the assumption is satisfied without loss of generality when
the densities in Dt are bounded by a P0–integrable random variable. In
particular, the assumption is satisfied whenever the state space Ω is finite.

The assumption is equivalent to certain monotone continuity conditions,
see Corollary 4.35 in Föllmer and Schied (2004) or Chateauneuf, Maccheroni,
Marinacci, and Tallon (2005), and also Lemma B.1 in the Appendix. A
behavioral description for such kind of continuity has been given by Arrow
(1971).

3 Finite Horizon: Backward Induction and

Time Consistency

The problem we consider in this section is

maximize infP∈Q EP Xτ over all stopping times τ ≤ T
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for a finite horizon T < ∞.
For standard expectations, i.e. Q = {P} a singleton, the general solution

to the above problem is well known1. One proceeds by backward induction
and defines UP

T = XT , the value in the last period. By backward induction,
set for t < T

UP
t := max

{
Xt, EP [Ut+1|Ft]

}
.

Then the value process (UP
t ) is the smallest P–supermartingale that domi-

nates the payoff process (Xt), and an optimal stopping time is given by

τ ∗ = inf
{
t ≥ 0 : UP

t = Xt

}
.

The process UP is called the Snell envelope of X under P .

3.1 Time–Consistency

The following example shows that backward induction fails in general for
minimax expected utility.

Example 3.1 Consider a two–period binomial tree as in Figure 3.1. Let
X0, X1, X2 be the sequence of payoffs. We take X0 = x,

X1 =

{
3 after up
1 after down

and

X2 =


0 after up, up
6 after up, down
6 after down, up
0 after down,down

.

The decision maker believes that the up and down moves are independent and
identically distributed. She uses two priors. Under the first prior, one moves
up with probability 1/3 in all nodes, whereas under the second prior, one
moves up with probability 2/3 in all nodes, see Figure 3.1. If we use backward

induction, the value at time 2 is U2 =


0
6
6
0

. At time 1, the minimal

1The theory starts with Snell (1952); for textbook accounts, see Chow, Robbins, and
Siegmund (1971), or Dixit and Pindyck (1994) that contains many important economic
applications.
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conditional expected payoff in the upper node is achieved for the probability
2/3 with a value of 2. From stopping, we get 3. Hence, backward induction
prescribes to stop in this node. Similarly, in the lower node, we obtain a
value of 2. Finally, at time 0, the value deduced by backward induction is
U0 = max{x, 7/3}. Hence, if x ≥ 7/3, backward induction prescribes to stop
immediately and one obtains a value of x. On the other hand, consider what
happens if one does not stop at all. Then the ex ante minimax expected payoff
is

min{1/9 · 0+2/9 · 6+2/9 · 6+4/9 · 0, 4/9 · 0+2/9 · 6+2/9 · 6+1/9 · 0} = 8/3 .

Hence, if 7/3 ≤ x < 8/3, we conclude that backward induction does not lead
to the ex ante optimal solution. One checks easily that the ex ante optimal
decision is to wait until time 2 while backward induction would prescribe to
stop immediately.

Backward induction fails in the above example because the preferences
of the agent are not time–consistent. This issue has recently received much
attention in the decision theory literature and also in Mathematical Finance,
see Epstein and Schneider (2003b), Artzner, Delbaen, Eber, Heath, and Ku
(2002), Riedel (2004), Detlefsen and Scandolo (2005). There, it is shown that
minimax EU preferences (and coherent dynamic risk measures) are time–
consistent if and only if the set of priors satisfies a certain condition that has
been called rectangularity, stability under pasting, or time–consistency. We
are going to impose this property in the following.

Assumption 3.2 The set of priors Q is time–consistent in the following
sense. For P and Q in Q, let (pt) and (qt) be the density processes of P
resp. Q with respect to P0, i.e.

pt =
dP

dP0

∣∣∣∣
Ft

,

and analogously for Q. Fix some stopping time τ . Define a new probability
measure R by setting for all t ∈ N

dR

dP0

∣∣∣∣
Ft

=

{
pt if t ≤ τ

pτ qt

qτ
else

. (2)

Then R belongs to Q as well.
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Note that the measure R above is well defined as the density process q is
strictly positive by Assumption 2.2. The above definition of time–consistency
is taken from Delbaen (2002b). It may look different to the definition of
rectangularity used in Epstein and Schneider (2003b). They are equiva-
lent, though. The appendix discusses another equivalent definition given
by Föllmer and Schied (2004),

The assumption ensures that the set of priors is closed under the operation
of pasting together marginal and conditional distributions. In fact, if the
decision maker uses the measure Q until time τ and evaluates expectations
after τ according to Q̂, then the newly constructed expectation is still in
her set of priors Q. In the binomial example above, the set of priors is not
time–consistent as it does not contain the probability measure under which
we first go up with probability 1/3 and in the second period the probability
of an upward move is 2/3. It has been shown (see Epstein and Schneider
(2003b), more generally Delbaen (2002b), Theorem 6.2. and 8.2.) that under
Assumption 2.3 Q is time–consistent if and only if we have for all bounded
random variables Z the following version of the law of iterated expectations:

ess inf
P∈Q

EP [Z|Ft] = ess inf
P∈Q

EP

[
ess inf

Q∈Q
EQ [Z|Ft+1]

∣∣∣∣ Ft

]
(t ∈ N) . (3)

3.2 Minimax Martingale Theory

This section sketches the beginning of a martingale theory for time–consistent
multiple priors that we are going to need in the following. The material might
be useful in other contexts as well. To facilitate reading, we have put all
proofs into the appendix. Remember that we impose throughout the paper
the Assumptions 2.2,2.3, and 3.2.

Definition 3.3 Let Q be a set of priors. Let (Mt)t∈N be an adapted process
with EP |Mt| < ∞ for all P ∈ Q and t ∈ N. (Mt) is called a minimax (sub–,
super–)martingale with respect to Q if we have for t ∈ N

ess inf
P∈Q

EP [Mt+1|Ft] = (≥,≤)Mt .

It is important to distinguish this concept from the different notion of a
Q–martingale. A Q–(sub– or super)martingale is a process that is a (sub– or
super)martingale for all priors in Q simultaneously. The concepts are related
as follows.
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Lemma 3.4 Let (Mt) be a bounded, adapted process.

1. M is a minimax submartingale if and only if it is a Q–submartingale,

2. M is a minimax supermartingale if and only there exists P ∗ ∈ Q such
that M is a P ∗–supermartingale,

3. M is a minimax martingale with respect to Q if and only if

(a) there exists P ∗ ∈ Q such that M is a P ∗–martingale and

(b) M is a Q–submartingale.

Note the big difference between minimax sub– and supermartingales.
While a minimax submartingale is a submartingale for all Q ∈ Q uniformly,
a minimax supermartingale is a supermartingale for some Q ∈ Q only. This
is due, of course, to the fact that we take always the essential infimum over
a class of probability measures.

We are now going to extend two fundamental theorems from martingale
theory to minimax martingales. We start with the famous Doob decomposi-
tion.

Theorem 3.5 (Doob Decomposition) Let S be a bounded minimax su-
permartingale (submartingale) with respect to Q. Then there exists a mini-
max martingale M and a predictable, nondecreasing process A with A0 = 0
such that S = M − A (S = M + A). Such a decomposition is unique.

In other words, every game against nature that is regarded as unfair under
ambiguity (a minimax supermartingale) can be written as a fair game under
ambiguity (a minimax martingale) minus some cumulative payments.

The second fundamental theorem concerns the preservation of the
(super)–martingale property under optimal stopping. It is a version of the
famous folk theorem on unfair games: if you play an unfair game against
nature, then you cannot obtain a positive payoff even if you use a fancy exit
strategy. More formally, it means that a minimax supermartingale stays a
minimax supermartingale when it is stopped at some random stopping time.
The validity of this theorem relies on time–consistency of the set of priors.

Theorem 3.6 (Optional Sampling Theorem) Let Z be a bounded mini-
max supermartingale with respect to Q. Let σ ≤ τ be stopping times. Assume
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that τ is universally finite in the sense that P [τ < ∞] = 1 for all P ∈ Q.
Then

ess inf
P∈Q

EP [Zτ |Fσ] ≤ Zσ .

3.3 Generalized Snell Envelope, Optimal Stopping
Times, and Duality

We show now that backward induction solves the optimal stopping problem
for time–consistent sets of priors.

Theorem 3.7 Define the minimax Snell envelope of X with respect to Q
recursively by UT = XT and

Ut = max

{
Xt, ess inf

P∈Q
EP [Ut+1|Ft]

}
(t = 0, . . . , T − 1) . (4)

Then

(i) U is the smallest minimax supermartingale with respect to Q that dom-
inates X,

(ii) U is the value process of the optimal stopping problem under ambiguity,
i.e.

Ut = ess sup
τ≥t

ess inf
P∈Q

EP [Xτ |Ft] ,

(iii) an optimal stopping rule is given by

τ ∗ = inf {t ≥ 0 : Ut = Xt} .

Proof: U is a minimax supermartingale by definition. Let V be another
minimax supermartingale with V ≥ X. Then we have VT ≥ XT = UT . Now
assume that Vt+1 ≥ Ut+1; as V is a minimax supermartingale,

Vt ≥ ess inf
P∈Q

EP [Vt+1|Ft] ≥ ess inf
P∈Q

EP [Ut+1|Ft] .

We also have Vt ≥ Xt by assumption. Hence

Vt ≥ max

{
Xt, ess inf

P∈Q
EP [Ut+1|Ft]

}
= Ut .
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Thus, U is the smallest minimax supermartingale that dominates X.

Now let Wt = ess supτ≥t ess infP∈Q EP [Xτ |Ft]. From the minimax super-
martingale property of U and U ≥ X, we conclude with the help of the
Optional Sampling Theorem 3.6 that for every stopping time τ with values
in {t, . . . , T},

ess inf
P∈Q

EP [Xτ |Ft] ≤ ess inf
P∈Q

EP [Uτ |Ft] ≤ Ut .

Wt ≤ Ut follows.

It remains to be shown that Ut ≤ Wt. To this end, we define the stopping
time

τ ∗t = inf {s ≥ t : Us = Xs} .

We claim that
(
Us∧τ∗t

)
s=t,...,T

is a minimax martingale. It then follows that

Ut = ess inf
P∈Q

EP
[
Uτ∗t

|Ft

]
= ess inf

P∈Q
EP

[
Xτ∗t

|Ft

]
≤ Wt ,

and we are done. To check the minimax martingale property, fix s ∈
{t, . . . , T}. Note that on the set {τ ∗t ≤ s}, we have U(s+1)∧τ∗t

= Uτ∗t
= Us∧τ∗t

.
Hence,

ess inf
P∈Q

EP
[
U(s+1)∧τ∗t

|Ft

]
= Us∧τ∗t

on the set {τ ∗t ≤ s}. On the complement {τ ∗t > s}, we have Us > Xs. The
definition of U implies that

Us∧τ∗t
= Us = max

{
Xs, ess inf

P∈Q
EP [Us+1|Fs]

}
= ess inf

P∈Q
EP [Us+1|Fs] = ess inf

P∈Q
EP

[
U(s+1)∧τ∗t

|Fs

]
.

Hence,
(
Us∧τ∗t

)
s=t,...,T

is a minimax martingale, and the above claim is proved.

As a further consequence, we obtain for t = 0 that (Us∧τ∗) is a minimax
martingale for

τ ∗ = inf {t ≥ 0 : Ut = Xt} .

Hence, the Optional Sampling Theorem 3.6 yields U0 = infP∈Q EP Xτ∗ . This
shows that τ ∗ is optimal. 2
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Remark 3.8 (i) One might wonder where time consistency of Q was used
in the proof. We need it when using the Optional Sampling Theorem.
This theorem does not hold true without time consistency.

(ii) Optimal stopping times are usually not unique. By using the Doob
decomposition of the Snell envelope U = M −A, one can show that the
largest optimal stopping time is

τmax = inf {t ≥ 0 : At+1 > 0} .

The above theorem gives a complete solution to the optimal stopping
problem under ambiguity. One might next wish to study the relationship
between the minimax Snell envelope U and the usual Snell envelopes UP for
the individual priors P ∈ Q. At time T − 1, there is a worst prior P T−1 ∈ Q
such that

ess inf
P∈Q

EP [XT |FT−1] = EP T−1

[XT |FT−1] ,

and therefore UT−1 = UP T−1

T−1 . At time T − 2, there is a measure P T−2 ∈ Q
such that

UT−2 = max{XT−2, EP T−2

[UT−1|FT−2]} = max{XT−2, EP T−2
[
UP T−1

T−1 |FT−2

]
} .

Now time consistency allows us to paste P T−1 and P T−2 together to obtain
a new measure QT−2 ∈ Q in such a way that QT−2 = P T−2 on FT−1 and
the conditional probability of QT−2 given FT−1 is equal to the conditional
probability of PT−1 given FT−1. We then get

UP T−1

T−1 = UQT−2

T−1

and also

UT−2 = max{XT−2, EQT−2

max{XT−2, EQT−2
[
UQT−2

T−1 |FT−2

]
} = UQT−2

T−2 .

Continuing in this manner by backward induction, we conclude that there
exists a worst case measure P ∈ Q such that U = UP , see the proof of
Lemma 3.4 for the rigorous construction. We have thus derived the following
minimax theorem originally obtained by Föllmer and Schied (2004), and by
Karatzas and Kou (1998) for American Options in continuous time.

14



Theorem 3.9 (Duality) The minimax Snell envelope U constructed in
Theorem 3.7 is the lower envelope of the individual Snell envelopes UP :

Ut = ess inf
P∈Q

UP
t .

The essential infimum is attained by some measure P ∈ Q, i.e. U = UP .
We have the minimax identity

ess sup
τ≥t

ess inf
P∈Q

EP [Xτ |Ft] = ess inf
P∈Q

ess sup
τ≥t

EP [Xτ |Ft] .

The preceding theorem can be viewed as an equivalence theorem: for a
given payoff process X, the ambiguity averse decision maker behaves like
an expected utility maximizer for a certain worst case measure P . This
does not imply, however, that optimal stopping under ambiguity aversion is
behaviorally indistinguishable from optimal stopping under expected utility.
In general, the worst case measure P depends on the payoff process X. For
suitably constructed different payoff processes, the ambiguity averse decision
maker behaves like two distinct expected utility maximizers. This makes it
possible to distinguish behaviorally between ambiguity averse and ambiguity
neutral (EU) decision makers.

4 Infinite Time Horizon

Many optimal stopping problems are naturally formulated without imposing
a finite time horizon. Also, the infinite horizon case frequently leads to sim-
pler closed form solutions that are usually not available in the finite horizon
case. We thus extend the analysis of the preceding section to T = ∞. We
show that the value function satisfies the same Bellman–type backward re-
cursion as in the finite case. Again, it is optimal to stop when the current
payoff is equal to the value function. Moreover, we establish that the solu-
tions of the finite time horizon converge to the infinite horizon solution. This
is important as it allows to approximate the general solution by using the
constructive algorithm available in the finite horizon case.

The problem we consider in this section is

maximize infP∈Q EP Xτ over all stopping times τ that are universally finite,
i.e. infP∈Q P [τ < ∞] = 1.
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As we cannot use backward induction as in the finite horizon case, we
define the value function at time t as

Vt = ess sup
τ≥t

ess inf
P∈Q

EP [Xτ | Ft] .

Note that Vt is well defined and finite because X is bounded.

Theorem 4.1 (i) V is the smallest minimax supermartingale with respect
to Q that dominates X,

(ii) The value process (Vt) satisfies the Bellman principle

Vt = max

{
Xt, ess inf

P∈Q
EP [Vt+1|Ft]

}
for all t ≥ 0,

(iii) an optimal stopping rule is given by

τ ∗ = inf {t ≥ 0 : Ut = Xt} ,

provided that τ ∗ is universally finite.

Proof: We start with (ii). By Lemma B.3, there exists a sequence (τk) of
stopping times such that

ess inf
P∈Q

EP [Xτk
|Ft+1] ↑ Vt+1 .

Continuity from below (Lemma B.1) and time–consistency (3) imply that

ess inf
P∈Q

EP [Vt+1 | Ft] = lim
k→∞

ess inf
P∈Q

EP

[
ess inf

Q∈Q
EQ [Xτk

|Ft+1]

∣∣∣∣Ft

]
= lim

k→∞
ess inf

P∈Q
EP [Xτk

| Ft] ≤ Vt .

As Xt ≤ Vt is clear, we obtain

max

{
Xt, ess inf

P∈Q
EP [Vt+1|Ft]

}
≤ Vt .
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For the converse inequality, take some stopping time τ ≥ t and define a new
stopping time σ = max{τ, t + 1} ≥ t + 1. Then

ess inf
P∈Q

EP [Xτ | Ft] = Xt1{τ=t} + ess inf
P∈Q

EP
[
Xτ1{τ≥t+1}

∣∣Ft

]
= Xt1{τ=t} + ess inf

P∈Q
EP

[
Xσ1{τ≥t+1}

∣∣Ft

]
= Xt1{τ=t} + ess inf

P∈Q
EP [Xσ | Ft] 1{τ≥t+1}

= Xt1{τ=t} + ess inf
P∈Q

EP

[
ess inf

Q∈Q
EQ [Xσ|Ft+1]

∣∣∣∣Ft

]
1{τ≥t+1}

≤ max{Xt, ess inf
P∈Q

EP [Vt+1 | Ft]} .

This proves (ii). As a consequence, (Vt) is a minimax supermartingale. Now
suppose that (Wt) is another minimax supermartingale that dominates X. As
X is bounded, we can assume without loss of generality that W is bounded.
(Else consider (min{Wt, K}) for a sufficiently large number K > 0.) Then
for every stopping time τ ≥ t, the Optional Sampling Theorem 3.6 implies
that

ess inf
P∈Q

EP [Xτ | Ft] ≤ ess inf
P∈Q

EP [Wτ | Ft] ≤ Wt .

By taking the supremum over all such stopping times, Vt ≤ Wt follows. This
shows (i).

For (iii), one shows first that (Us∧τ∗) is a minimax martingale, see the
proof of Theorem 3.7. If τ ∗ is universally finite, bounded convergence
(Lemma B.1, 4.) gives

inf
P∈Q

EP Uτ∗ = lim
T→∞

inf
P∈Q

EP UT∧τ∗ = U0 .

Hence, τ ∗ is optimal. 2

The above theorem characterizes nicely the value process for an infinite
horizon stopping problem. In contrast to the finite time horizon, it does not
provide a constructive algorithm to compute the value process, though. It is
thus important to know that the Snell envelopes of the finite horizon models
converge to the infinite horizon value.

Theorem 4.2 (Finite Horizon Approximation) Denote by UT the min-
imax Snell envelope of X with time horizon T . Then limT→∞ UT

t = Vt for
all t ≥ 0.
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Proof: Note that UT
t is bounded and increasing in T . Hence, we can

define U∞
t = limT→∞ UT

t . By continuity from below (Lemma B.1) and the
definition of the Snell envelope, we obtain

U∞
t = lim

T→∞
max{Xt, ess inf

P∈Q
EP

[
UT

t+1

∣∣Ft

]
} = max{Xt, ess inf

P∈Q
EP

[
U∞

t+1

∣∣Ft

]
} .

Hence, U∞ is a minimax supermartingale that dominates X. By Theo-
rem 4.1, we have U∞ ≥ V . On the other hand, by Theorem 3.7, UT

t =
ess supt≤τ≤T ess infP∈Q EP [Xτ |Ft] ≤ Vt. As a consequence, V = U∞, and the
proof is complete. 2

5 Examples

We now apply our previous theory to two important classes of examples. The
first example has a payoff structure that is independent and indistinguish-
ably distributed. This generalizes the well–known case of independent and
identically distributed payoffs to the ambiguous framework. The second class
of examples is concerned with sums of independent random variables as they
occur typically in financial models. Both classes of models use a binomial
tree. Hence, we first characterize time–consistent sets of priors in these trees.

5.1 Time–Consistency in the Binomial Tree

In this section, we completely characterize the sets of priors that satisfy our
assumptions for the benchmark model of the binomial tree.

We model the binomial tree by fixing a probability space (Ω,F , P0) on
which we have a sequence (Xt)t=0,1,2,... of random variables that are indepen-
dent and identically distributed under P0 with P0(Xt = 1) = P0(Xt = 0) =
1/2. The uniform measure P0 serves only the role of a reference measure here.
Let (Ft) be the natural filtration of (Xt). We now characterize the sets of
priors which satisfy our assumptions2.

Theorem 5.1 In the binomial model, a set of priors Q satisfies Assumptions

2.2, 2.3, and 3.2 if and only if there exist two predictable processes
(
p

t

)
and

2A similar result is mentioned without proof in Artzner, Delbaen, Eber, Heath, and
Ku (2002).
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(pt) with 0 < p
t
≤ pt < 1 such that

Q = {P |P has a density process with respect to P0 of the form

dP

dP0

∣∣∣∣
Ft

= 2t

t∏
s=1

αXs
s (1− αs)

1−Xs (5)

for a predictable process (αt) with p
t
≤ αt ≤ pt

}
The proof is given in the appendix.
Time–consistency in the binomial tree means that we specify an interval

[p
t
, pt] at time t − 1 in which the probability of moving up at time t has to

lie. Note that these bounds can be stochastic in general. If we impose sta-
tionarity, the bounds become constant. This concept has been introduced by
Epstein and Schneider (2003a) — they call it independent and indistinguish-
ably distributed random variables and prove a strong Law of Large Numbers.
In the binomial tree, the following corollary characterizes all Q that satisfy
the Epstein–Schneider requirement. In the terminology introduced in Ep-
stein and Schneider (2003b), we have then an ambiguous random walk.

Corollary 5.2 Q is a model for an independently and indistinguishably

distributed random walk if and only if the bounds
(
p

t

)
and (pt) of Theorem

5.1 are constant numbers in (0, 1).

Proof: Indistinguishability is defined as time stationarity of the condi-
tional distributions in Epstein and Schneider (2003a). Formally, we must
have for all t ∈ N P [Xt+1 = 1|Ft] ∈ [p, p] for fixed numbers p, p ∈ [0, 1]. 2

5.2 The IID Case and the Cox–Ross–Rubinstein
Model

We now discuss two classes of optimal stopping problems in the binomial
tree.

Let (Zt) be a sequence of binary random variables and Q a family of
priors as in Corollary 5.2. In particular, p and p are the lower resp. upper
bound for the conditional probabilities P [Zt = 1|Z1, . . . , Zt−1] ∈ [p, p] for

all P ∈ Q. We denote by P and P the probability measures under which
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(Zt) is identically and independently distributed with P [Zt = 1] = p and

P [Zt = 1] = p resp.

5.2.1 The Indistinguishable Case and the Parking Problem

We consider the case where the payoff can be written as a (possibly time–
dependent) increasing function of Zt, i.e. Xt = g(t, Zt), and g is increasing in
the second variable. When g does not depend on time t, the payoff sequence
is independently and indistingushably distributed (Epstein and Schneider
(2003a)). A famous special case is given by the following example.

Example 5.3 The Parking Problem (see Chow, Robbins, and Siegmund
(1971), and Lerche, Keener, and Woodroofe (1994) for a generalization).
You are driving along the Rhine. Your aim is to park your car as close as
possible to the place where the ship leaves for a sightseeing tour. When a
spot is empty, you face the decision whether to stop and park, or to continue
hoping to find a spot closer to the departure point. Formally, let N ∈ N
be the desired parking spot. The spot k is empty when Zk = 1. The payoff
from parking at an empty spot is −|N − k|. If you stop at an occupied spot,
you pay a fee K (assumed to be that large that it is never optimal to stop
at an occupied spot). Traditionally, it has been assumed that the probability
p = P [Zt = 1] is known to the driver. We allow for some ambiguity here.

Theorem 5.4 Let
(
UT

t

)
be the Snell envelope of Xt = g(t, Zt) under P for

a horizon T > 0. Then the minimax Snell envelope is UT = UT , and an
optimal stopping rule under ambiguity is given by

τT = inf{t ≥ 0 : g(t, Zt) = UT
t }.

The same holds true for an infinite time horizon provided that τ∞ = inf{t ≥
0 : g(t, Zt) = U∞

t } is universally finite.

Proof: The infinite horizon result follows from the approximation theorem
4.2 once we have established the result for finite horizon. So let T > 0. We
prove by backward induction that UT

t = u(t, Zt) for a function u(t, z) that
is increasing in z and equal to the Snell envelope under the measure P . We
clearly have UT = g(T, ZT ) = UT

T , and the claim is thus valid for t = T . We
have for t < T

UT
t = max

{
g(t, Zt), min

pt+1∈[p,p]
(pt+1u(t + 1, 1) + (1− pt+1)u(t + 1, 0))

}
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By induction hypothesis, u(t + 1, 1) ≥ u(t + 1, 0), thus

UT
t = max

{
g(t, Zt),

(
pu(t + 1, 1) + (1− p)u(t + 1, 0)

)}
= UT

t .

2

Example 5.5 The Parking Problem ctd. The previous theorem tells us that
an ambiguity averse driver should behave as if the lowest probability p was
the correct one. The solution to this Bayesian problem is well known (see,
e.g., Ferguson (2006), Chapter 2.11). Let r ∈ N be the smallest number such

that
(
1− p

)r+1 ≤ 1/2. The optimal rule is to start looking when you are r
places away from the desired location and to take the first available spot. If,
e.g., you think that in the worst case one out of one hundred places is empty,
you should start looking when you are 68 places from your target.

5.2.2 Ambiguous Asset Markets and Optimal Exercise of Ameri-
can Options

In the binomial model of asset markets(Cox, Ross, and Rubinstein (1979)),
there is a riskless asset with price Bt = (1 + r)t for an interest rate r > −1,
and a risky asset (St) given by S0 = 1 and

St+1 = St ·
{

(1 + b) if Zt+1 = 1
(1 + a) if Zt+1 = 0

.

To preclude arbitrage opportunities, we assume −1 < a < r < b. We consider
an investor who exercises an American Option that pays off A(t, St) when
exercised at time t. We assume that A(t, ·) is increasing and bounded. In
our model, the investor perceives the risky asset as ambiguous as he does not
know the exact distribution of St.

Example 5.6 A risk–neutral buyer of an American Put has A(t, s) =
e−rt max{K − s, 0}. Our model allows also to include risk aversion. For
example, a buyer of an American Call with constant absolute risk aversion
maximizes the expected payoff A(t, s) = − exp(−ρt − α max{s − K, 0}) for
some subjective discount rate ρ and risk aversion α > 0.

Theorem 5.7 Let (U t) be the Snell envelope of Xt = A(t, St) under P for a
horizon T > 0. Then the minimax Snell envelope is UT = UT , and an optimal
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stopping rule under ambiguity is given by τT = inf{t ≥ 0 : A(t, St) = UT
t }.

The same holds true for an infinite time horizon provided that τ∞ = inf{t ≥
0 : A(t, St) = U∞

t } is universally finite.

Proof: The infinite horizon result follows from the approximation theorem
4.2 once we have established the result for finite horizon. So let T > 0. We
prove by backward induction that UT

t = u(t, Zt) for a function u(t, z) that is
increasing in z; moreover u(t, Zt) = UT

t . We clearly have UT = A(T, ZT ) =
UT

T , and the claim is thus valid for t = T . We have for t < T

UT
t = max {A(t, Zt),

min
pt+1∈[p,p]

(pt+1u(t + 1, St(1 + b)) + (1− pt+1)u(t + 1, St(1 + a)))

}
.

By induction hypothesis, u(t + 1, St(1 + b)) ≥ u(t + 1, St(1 + a)), thus

UT
t = max

{
g(t, Zt),

(
pu(t + 1, St(1 + b)) + (1− p)u(t + 1, St(1 + a))

)}
= UT

t .

2

From inspection of the proofs, one sees that both Theorem 5.4 and 5.4 rely
on the fact that P is the worst probability measure in the sense of first–order
stochastic dominance.

6 Conclusion

We present a unified and general theory of optimal stopping under ambigu-
ity in discrete time. Much of the received theory can be translated to the
multiple priors framework provided the priors satisfy the time consistency
criterion. In this case, it seems also possible to generalize much of classical
martingale theory. A natural next step is, of course, to extend these results
to continuous time. Recent work also shows that one might generalize our
results to the more general class of dynamic variational preferences (Mac-
cheroni, Marinacci, and Rustichini (2006)) or convex risk measures (Föllmer
and Penner (2007)).
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A Equivalent Descriptions of Time–

Consistency

Several notions of time–consistency have been introduced in the literature.
For the sake of the reader and our own convenience, we gather them here,
and prove that they are equivalent to each other. In this section, we fix a
finite time horizon T < ∞. All stopping times τ are thus bounded by T .
Moreover, we write dP

dQ
etc. for the densities on FT .

Epstein and Schneider (2003b) call Q rectangular if for all stopping times
τ and all P, Q ∈ Q the measure R given by

R(B) = EQP (B|Fτ ) (B ∈ F)

belongs to Q as well. Föllmer and Schied (2002) call Q stable if for all
stopping times τ , sets A ∈ Fτ , and priors P, Q ∈ Q, there exists a unique
measure R ∈ Q such that R = P on Fτ and for all random variables Z ≥ 0
one has

ER [Z|Fτ ] = EP [Z|Fτ ] 1Ac + EQ [Z|Fτ ] 1A . (6)

Lemma A.1 The following assertions are equivalent:

1. Q is time–consistent,

2. Q is stable,

3. Q is rectangular.

Proof: Time–consistency implies stability: Suppose that Q is time–
consistent. Fix a stopping time τ , sets A ∈ Fτ , and priors P, Q ∈ Q. Let
(pt) and (qt) be the density processes of P and Q with respect to P0. Define
a new stopping time σ = τ1A + T1Ac . By time–consistency, the measure R
given by

dR

dP0

=
pσ

qσ

dQ

dP0

∈ Q .

Note that
dR

dP0

=
pτ

qτ

dQ

dP0

1A +
dP

dP0

1Ac .

Taking conditional expectations, we get

dR

dP0

∣∣∣∣
Fτ

= pτ .

23



Hence, R = P on Fτ . Application of Bayes’ formula yields (6).
Stability implies Rectangularity: Fix a stopping time τ and P, Q ∈ Q.

Take A = Ω. By stability, there exists a measure R ∈ Q with R = P on Fτ

and (6). Take Z = 1B for B ∈ F . (6) yields R(B|Fτ ) = Q(B|Fτ ). As R = P
on Fτ , we obtain

R(B) = ERR(B|Fτ ) = EP R(B|Fτ ) = EP Q(B|Fτ ) .

Rectangularity implies Time–Consistency: Let P, Q ∈ Q and τ be a
stopping time. Define R by setting

dR

dP0

=
pτ

qτ

dQ

dP0

.

For B ∈ F , we obtain by conditioning and using Bayes’ formula

R(B) = EP0

[
1B

pτ

qτ

dQ

dP0

]
= EP0

[
pτ

qτ

EP0

[
1B

dQ

dP0

∣∣∣∣Fτ

]]
= EP0 [pτQ(B|Fτ )] = EP Q(B|Fτ ) .

Rectangularity yields R ∈ Q. 2

B Properties of Minimax Expected Values

For the sake of the reader, we list here some properties of minimax expected
values that are known in the literature and used frequently in the arguments
of the main text.

Let Q be a set of probability measures equivalent to the reference mea-
sure P0. For random variables Z ∈ L∞ (Ω,F , P0), we define the conditional
minimax expected value πt(Z) = ess infP∈Q EP [Z|Ft] . From the properties
of conditional expectations and the essential infimum, it follows immediately
that πt is

• monotone: for Z ≥ Z ′ in L∞ (Ω,F , P0) we have πt(Z) ≥ πt(Z
′),

• conditionally homogeneous of degree 1: for Ft–measurable random vari-
ables λ ≥ 0, we have πt(λZ) = λπt(Z) for all bounded random variables
Z,
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• superadditive: for Z,Z ′ ∈ L∞ (Ω,F , P0) we have πt(Z + Z ′) ≥ πt(Z) +
πt(Z

′),

• additive with respect to Ft: for Ft–measurable, bounded Z and all Z ′

we have πt(Z + Z ′) = Z + πt(Z
′).

We need the following continuity properties.

Lemma B.1 1. πt is Lipschitz–continuous with respect to the sup–norm
on L∞ (Ω,F , P0),

2. πt is continuous from above in the following sense. If Xk ↓ X in
L∞ (Ω,F , P0), then πt(Xk) ↓ πt(X),

3. under Assumption 2.3, πt is continuous from below in the following
sense. For all T > n, if Xk ↑ X in L∞ (Ω,FT , P0), then πt(Xk) ↑
πt(X),

4. under Assumption 2.3, πt satisfies bounded convergence in the following
sense. For all T > n, if Xk → X in L∞ (Ω,FT , P0), and (Xk) is
bounded by some number K > 0, then πt(Xk) → πt(X).

Proof: The unconditional version of these results is in Delbaen (2002a),
see Theorem 3.2. and Theorem 3.6. They carry over easily to the conditional
case. 2

Lemma B.2 Let T > 0, Z ∈ L∞ (Ω,FT , P0) and τ ≤ T a stopping time.
Under Assumption 2.3, there exists a measure PZ,τ ∈ Q that coincides with
P0 on the σ–field Fτ and

ess inf
P∈Q

EP [Z|Fτ ] = EP Z,τ

[Z|Fτ ] .

Proof: We show below that there exists a sequence (Pm) ⊂ Q with
Pm = P0 on Fτ such that

ess inf
P∈Q

EP [Z|Fτ ] = lim
m→∞

EP m

[Z|Fτ ] .

By Assumption 2.3, the sequence has a weak limit point PZ,τ ∈ Q and

ess inf
P∈Q

EP [Z|Fτ ] = EP Z,τ

[Z|Fτ ]
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follows.
It remains to establish the existence of the minimizing sequence

(Pm) ⊂ Q. Note first that one can restrict attention to the set Φ ={
EP [Z|Fτ ] |P ∈ Q and P = P0 on Fτ

}
. This is so because for arbitrary

P ∈ Q, we can define a new measure R with density

dR

dP0

=
dP
dP0

dP
dP0

∣∣∣
Fτ

.

Then R = P0 on Fτ . As Q is time–consistent, R ∈ Q. By Bayes’ formula,

EP [Z|Fτ ] = ER [Z|Fτ ] .

We conclude that
ess inf

P∈Q
EP [Z|Fτ ] = ess inf Φ .

The existence of the sequence (Pm) ⊂ Q with the desired properties follows
if we can show that Φ is downward directed. Hence, let P, P̂ ∈ Q with
P = P̂ = P0 on Fτ . Then

min
{

EP [Z|Fτ ] , EP̂ [Z|Fτ ]
}

= EP [Z|Fτ ] 1A + EP̂ [Z|Fτ ] 1Ac

for A =
{

EP [Z|Fτ ] < EP̂ [Z|Fτ ]
}

. We have to show that there exists R ∈ Q
with R = P0 on Fτ and

EP [Z|Fτ ] 1A + EP̂ [Z|Fτ ] 1Ac = ER [Z|Fτ ] .

This follows from the equivalent characterization of time–consistency in
Lemma A.1, 3. 2

Lemma B.3 Let Z ∈ L∞ (Ω,F , P0). Set

Vt = ess sup
τ≥t

ess inf
P∈Q

EP [Xτ | Ft] .

There exists a sequence of stopping times (τk) with τk ≥ t and

ess inf
P∈Q

EP [Xτk
| Ft] ↑ Vt .
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Proof: By the usual properties of the essential supremum (see, e.g.,
Föllmer and Schied (2004), Appendix A.5), it is enough to show that the
set

{
ess infP∈Q EP [Xτ | Ft] | τ ≥ t

}
is upward directed. Choose two stopping

times τ0, τ1 ≥ t. Set

A =

{
ess inf

P∈Q
EP [Xτ0 | Ft] > ess inf

P∈Q
EP [Xτ1 | Ft]

}
.

Set τ2 = τ01A + τ11Ac . Then τ2 is a stopping time that is greater or equal t.
The proof is complete if we can show that

ess inf
P∈Q

EP [Xτ2 | Ft] = max

{
ess inf

P∈Q
EP [Xτ0 | Ft] , ess inf

P∈Q
EP [Xτ1 | Ft]

}
.

It is obvious from the definition of τ2 that the left hand side is smaller or
equal the right hand side. Let us show the other inequality. By Lemma B.2,
there exist measures P0 and P1 such that

ess inf
P∈Q

EP [Xτi
| Ft] = EPi [Xτi

|Ft] , , i = 0, 1 .

Then we have

ess inf
P∈Q

EP [Xτ01A + Xτ11Ac | Ft] ≥ ess inf
P∈Q

EP [Xτ0 | Ft] 1A + ess inf
P∈Q

EP [Xτ1 | Ft] 1Ac

= EP0 [Xτ0|Ft] 1A + EP1 [Xτ1|Ft] 1Ac

= EP0 [Xτ2|Ft] 1A + EP1 [Xτ2|Ft] 1Ac .

Time–consistency of Q and Lemma A.1 imply that there exists a measure
P2 ∈ Q such that

EP0 [Xτ2|Ft] 1A + EP1 [Xτ2 |Ft] 1Ac = EP2 [Xτ2|Ft] .

Altogether, we obtain

ess inf
P∈Q

EP [Xτ2 | Ft] ≥ EP2 [Xτ2|Ft] ,

and as P2 ∈ Q
ess inf

P∈Q
EP [Xτ2 | Ft] = EP2 [Xτ2|Ft] .
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Now our claim follows as we have

ess inf
P∈Q

EP [Xτ2 | Ft] = EP2 [Xτ2|Ft]

= EP2 [Xτ0|Ft] 1A + EP2 [Xτ1|Ft] 1Ac

≥ ess inf
P∈Q

EP [Xτ0 | Ft] 1A + ess inf
P∈Q

EP [Xτ1 | Ft] 1Ac

= max

{
ess inf

P∈Q
EP [Xτ0 | Ft] , ess inf

P∈Q
EP [Xτ1 | Ft]

}
,

where we have used the definition of A in the last line.
2

C Minimax Martingale Theory

This section gathers the material of Subsection 3.2 with all proofs.

Definition C.1 Let Q be a set of priors. Let (Mt)t∈N be an adapted process
with EP |Mt| < ∞ for all P ∈ Q and t ∈ N. (Mt) is called a minimax (sub–,
super–)martingale with respect to Q if we have for n ∈ N

ess inf
P∈Q

EP [Mt+1|Ft] = (≥,≤)Mt .

Lemma C.2 Let (Mt) be a bounded, adapted process.

1. M is a minimax submartingale if and only if it is a Q–submartingale,

2. M is a minimax supermartingale if and only there exists P ∗ ∈ Q such
that M is a P ∗–supermartingale,

3. M is a minimax martingale with respect to Q if and only if

(a) there exists P ∗ ∈ Q such that M is a P ∗–martingale and

(b) M is a Q–submartingale.

Proof: For (1.), note that

ess inf
P∈Q

EP [Mt+1|Ft] ≥ Mt
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is equivalent to
for all P ∈ Q EP [Mt+1|Ft] ≥ Mt .

We proceed with (2.). Suppose that M is a P ∗–supermartingale for some
P ∗ ∈ Q–submartingale. Then we have for t ∈ N

Mt ≥ EP ∗ [Mt+1|Ft] ≥ ess inf
P∈Q

EP [Mt+1|Ft] ,

and M is a minimax supermartingale.
For the converse, we need the assumption of time–consistency. By Lemma

B.2, there exist measures P t+1 ∈ Q for t ∈ N that coincide with P0 on Ft

and satisfy
ess inf

P∈Q
EP [Mt+1|Ft] = EP t+1

[Mt+1|Ft] .

Therefore, the density of P t+1 with respect to P0 is 1 on Ft. Let zt+1 be the
density of P t+1 with respect to P0 on Ft+1. By Bayes’ formula, we have

Mt ≥ ess inf
P∈Q

EP [Mt+1|Ft] = EP0
[
Mt+1z

t+1|Ft

]
. (7)

Construct a new measure P ∗ by setting

dP ∗

dP0

∣∣∣∣
FT

= z1z2 · · · zT (T ∈ N) .

By time–consistency, P ∗ ∈ Q. We claim that M is a P ∗–supermartingale.
To see this, use Bayes’ formula and Eqn. (7) to get

EP ∗ [Mt+1|Ft] = EP0

[
Mt+1

dP ∗

dP0

∣∣∣∣
Ft+1

|Ft

] (
dP ∗

dP0

∣∣∣∣
Ft

)−1

= EP0
[
Mt+1z

t+1|Ft

]
≤ Mt .

Therefore, M is a P ∗–supermartingale.
For (3.), combine (1.) and (2.). 2

Note the big difference between minimax sub– and supermartingales.
While a minimax submartingale is a submartingale for all Q ∈ Q uniformly,
a minimax supermartingale is a supermartingale for some Q ∈ Q only. This
is due, of course, to the fact that we take always the essential infimum over
a class of probability measures.

We are now going to extend two fundamental theorems from martingale
theory to minimax martingales. We start with the famous Doob decomposi-
tion.

29



Theorem C.3 (Doob Decomposition) Let S be a bounded minimax su-
permartingale (submartingale) with respect to Q. Then there exists a mini-
max martingale M and a predictable, nondecreasing process A with A0 = 0
such that S = M − A (S = M + A). Such a decomposition is unique.

Proof: For uniqueness, note that from S = M − A with the stated
properties, we obtain

0 = ess inf
P∈Q

EP [St+1 − St + At+1 − At|Ft] ,

and predictability of A yields the recursive relation

At+1 = At − ess inf
P∈Q

EP [St+1 − St|Ft] . (8)

In conjunction with A0 = 0, this determines A, and then M , uniquely.
Now let A be given by (8) and A0 = 0. Note that A is predictable and

nondecreasing as S is a minimax supermartingale. Let Mt = St + At. We
have to show that M is a minimax martingale. But the predictability of A
implies

ess inf
P∈Q

EP [Mt+1 −Mt|Ft] = ess inf
P∈Q

EP [St+1 − St + At+1 − At|Ft]

= At+1 − At + ess inf
P∈Q

EP [St+1 − St|Ft] = 0 .

This completes the proof. 2

Remark C.4 As minimax submartingales are nothing but Q–
submartingales, it is worthwhile to compare the preceding Doob decom-
position with the so–called optional or uniform Doob decompositions for
Q–submartingales used in the theory of hedging, where Q is given by the
(time–consistent) set of equivalent martingale measures for some financial
market (see El Karoui and Quenez (1995), Föllmer and Kabanov (1998),
Kramkov (1996)). Here, we decompose a Q–submartingale into a minimax
martingale M and a predictable, increasing process A starting at 0. This,
however, is not a uniform Doob decomposition as M is usually only
a Q–submartingale, not a Q–martingale. In fact, for such a uniform
decomposition, A is usually only adapted, not predictable.

The second fundamental theorem concerns the preservation of the
(super)–martingale property under optimal stopping.
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Theorem C.5 (Optional Sampling Theorem) Let Z be a bounded min-
imax supermartingale with respect to Q. Let σ ≤ τ be stopping times. As-
sume that τ is universally finite in the sense that P [τ < ∞] = 1 for all
P ∈ Q. Then

ess inf
P∈Q

EP [Zτ |Fσ] ≤ Zσ .

Proof: The Doob decomposition allows to write Z = M−A for a minimax
martingale M and a nondecreasing predictable process A. By the above
Lemma 3.4, there exists P ∗ ∈ Q such that M is a supermartingale under P ∗.
The standard Optional Sampling Theorem states that

EP ∗ [Zτ |Fσ] ≤ Zσ .

As a consequence,

ess inf
P∈Q

EP [Zτ |Fσ] ≤ EP ∗ [Zτ |Fσ] ≤ Zσ .

2

Remark C.6 As minimax submartingales are Q–submartingales, the above
theorem holds also true for minimax submartingales.

D Proof of Theorem 5.1

Note that every probability measure that is locally equivalent to the uniform
probability has a density process of the form (5), where αt = P [Xt = 1|Ft−1].

We start by showing that every class of priors Q that satisfies the
Assumptions 2.2, 2.3, and 3.2 can be represented as in (5). Let us fix
t > 0 and a prior P ∈ Q. As Q is compact by Assumption 2.3, the
lower bound pt := infP∈Q P [Xt = 1|Ft−1] is actually attained, and thus
strictly positive by Assumption 2.2. By the same argument, one obtains
pt := infP∈Q P [Xt = 1|Ft−1] < 1.

Let P , P be the measures in Q whose density processes are represented
by the processes p and p resp. Due to time–consistency, P , P ∈ Q.

Now let Q̂ be the class of all priors that satisfy the requirement (5) with
p ≤ a ≤ p. From the preceding, we know that Q ⊆ Q̂. We show by induction
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over t that{
dP

dP0

∣∣∣∣
Ft

|P ∈ Q
}

=

{
2t

t∏
s=1

αXs
s (1− αs)

1−Xs | p
s
≤ αs ≤ ps, (s = 1, . . . , t),

(αs) predictable} .

For t = 1, this follows from convexity of Q. For the induction step, sup-
pose that we have proved the claim for t. Take some predictable process
(αs)s=1,...,t+1 with p

s
≤ αs ≤ ps for s = 1, . . . , t + 1. We have to show that

Z = 2t+1

t+1∏
s=1

αXs
s (1− αs)

1−Xs

belongs to Dt+1. By time–consistency, the measures R and R with densities

dR

dP0

∣∣∣∣
Ft+1

= 2pXt+1
(
1− p

)1−Xt+1

and
dR

dP0

∣∣∣∣
Ft+1

= 2pXt+1 (1− p)1−Xt+1

are in Dt+1. As Q is convex and αt+1 assumes at most 2t many values, also
the measure R with density

dR

dP0

∣∣∣∣
Ft+1

= 2α
Xt+1

t+1 (1− αt+1)
1−Xt+1

is in Dt+1. Now use time–consistency again to see that Z ∈ Dt+1.
For the converse, let Q be a class of priors that satisfy the requirement

(5) with p ≤ a ≤ p for two predictable processes
(
pt

)
and (pt) with 0 <

at ≤ at < 1. Then local equivalence, i.e. Assumption 2.2 is obvious. (Weak)
compactness, i.e. Assumption 2.3 follows from 0 < pt ≤ pt < 1. To show
time consistency, let P and Q be represented by the processes (αt) and (βt)
resp. Set γt = αt on {t ≤ τ} and γt = βt on {t > τ}. Let R be the measure
that is represented by (γt). R belongs to Q and its density process satisfies
(2). This proves time–consistency.
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Figure 1: Tree for Example 3.1. The decision maker uses two probabilistic
models. In Model 1, the (conditional) probability of moving up is 1/3 in
every node; in Model 2, this probability is 2/3. The payoff from stopping is
indicated by the bold numbers at the nodes. Time consistency fails because
the decision maker does not take the worst case probability measure into
account. Here, the worst case probability measure would have probability
2/3 of moving up in the upper node and probability 1/3 of moving up in the
lower node.
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