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Abstract— Previous catadioptric systems with a single reflective
surface have either a constant elevational gain, producing the Xom (0),
desirable linear mapping between elevation angle and camera an- "
gle [1], or a single viewpoint [2]. We present a novel combination 1
of reflective and refractive surfaces that offers both propeties. 301
The derivation of the surfaces leads to a second order differerl
equation that can be solved numerically. A prototype made from
acrylic glass is presented.

E=al+ -3

. INTRODUCTION To

Omnidirectional imaging systems that usually consist of a
reflective surface mounted in front of a conventional lens-
based camera can achieve very large field of views and are
widely used for applications in robotics and computer visio
see [3] for an overview of the design and applications of such
systems. _ _ _ _ ' '

In th? fpllovying, We W!ll discuss two fundamental propeﬁie;gﬁa:tlibn gg;stratlon of a reflective surface with constanéwltional gain,
of omnidirectional imaging systems, the angular mapping) an
the viewpoint(s). We will focus on reflective surfaces that
achieve a linear mapping of elevation angle.

elevational gain, Eq. (2), can be described by

A. Reflective surfaces with constant elevational gain

. . . . . Xm(o) = 7‘(6)8(0) )
An imaging system with constant elevational gainis 5

defined by the following mapping between camera artjle with 7(0) = o (cos 5)=+T 3)
and elevation angle: cos(24L 4 Syt

sin 6
% . W and e(f) = (COS 9> ,
™
e+— = abl+p5,
2 T wherer(6) is the distance to the mirror surface as a function
= & = ab+p- 5 (2) of camera anglé andr, = r(0) the distance to the apex (see
Fig. 1).
where is an integration constant, defining the elevation angle The advantage of using a reflective surface of constant ele-
for =0, e.g., if 3 = 0 thene(0 = 0) = —7, i.e. a viewing vational gain is that one can achieve a large FOV with a single
ray originating from the camera along the optical axis iskbaccamera while preserving an uniform angular resolution & th
reflected. vertical plane. In the camera image, the angular resolution

As derived in [1], reflective surfaces achieving a constaper pixel in the radial direction is practically constarg, @ane



single, fixed viewpoint. However, as already mentionedy the
do not offer a constant angular mapping.

In this paper we present a combination of reflective and
refractive surfaces that has both desirable propertiesstaat
elevational gain and single viewpoint). Recently, it hasrbe
shown that also a combination of two mirrors can be used to
achieve various different “constant resolution” mappingsle
keeping a single viewpoint [7, 8]. As we will describe in the
following sections, the use of a refractive surface allows t
construct a very compact and rugged imaging system. This
system builds on previous work [9] where a reflective surface
was machined into a curved acrylic globe. However, in that
system the outer surface of the acrylic globe functioneg asl
a transparent, protective cover and a visually non-obteic
support, and had no optical role. There the outer surface was
designed to be orthogonal to the incoming rays and therefore

¢ did not alter their course. Thus, that system, describe®]in [
Fig. 2. The viewpoints of a reflective surface with constdavational gain !S equivalent to previously described constgnt-galn _seEfaas
lie on a caustic surface (red curve) defined in (4). All priatirays are tangent N [1], and therefore has a constant elevational gain buianot
to the caustic. fixed viewpoint.

) ) ) ) II. DERIVATION OF OPTICAL SURFACES
would have with a true spherical sensdrhis property is not a

feature of other shapes, e.g. hyperboloidal reflectiveasad, ~ We consider a viewing ray emerging from the nodal point of
where the angular resolution increases with radial digtaniéie camera that is first reflected at the mirror surface and the
from the image centre. refracted at the Perspex surface, see Fig. 3. All coordinate
will be given in the reference frame of the camera, i.e. the
B. Non-single viewpoint of constant elevational gain scefa camera’s nodal point defines the origin and its optical axis
I(gefine:s thez-axis. Because of the rotational symmetry we can
strict the derivation to two dimensions. The viewing rays
e overall system should obey the following equation:

The viewpoint of a constant-gain surface is not fixed:
. . . . . . e
varies with the elevational angle of view, as shown in Fig. %h
As derived in [4] using an approach described in [5], the

locus of these viewpoints describe a so-called “caustiasat X

=t VIS x(\,0) = 0 n cose(0) (5)
whose profile is given by ) " sin e (6)
i (2)

%e(8) = xm(68) — ~r(0) [ (OB @) = x,+Aes(0) ()

o —cos(al + ) sin(ad + 3)
with es(0) = < 9 ) ., A> k() . (7)

Apart from the trivial case of a planar reflective surface tha —cos(at + )

g O:btg |nie: ;r(c;T f)rg/ycsss ;n%e';hueltiggr?rr]n fter:v?(l)m?: )Tl’ x, = (0,2,)" is the location of the vision system’s single

surfaces with constant elevational gain do not have a ﬁxViéa wpoint where all viewing rays, if extended backwards
. . . 9 .Kgge dashed line in Fig. 3), should intersect. As before, the
viewpoint (Fig. 2). Such surfaces can be regarded as a fi . . .

. . . rametersy and 5 determine the linear mapping between
viewpoint system as long as objects are far away comparedp tao

. . . camera anglé and elevation angle, see equation (2), and
the size of the caustic surface, and resolution is low. Hawev . . L
. . Co . "~ e4(0) is the corresponding direction vector. The functigi?)
for close objects this assumption is not valid, compliaatin

the calibration of such catadioptric systems and limitingit defines the distance of the outer surface from the viewpoint

S . . - ‘]see below).
applicability because algorithms in- computer vision ofte The reflective surfacewill be parametrised as in equation
assume a single viewpoint system. Baker and Nayar [2, P q

describe a family of catadioptric imaging systems that heave*™”’ €.
xm(0) = r(0) e(0) , ®)

1The perspective mapping of the camera lens will introduce stesiations
from the ideal constant angular resolution per pixel fogéacamera angles. . . . . . .
For a camera lens with perfect perspective mapping, elevaiigte e and however with different(9). As derived in appendix, equations

distance from image centre are related byo = f tan@ @ ftan[L (e — (26) — (29), the normal vector of this surface is given by

B + 5)], where f is the focal length of the camera lens in pixel. o= 1 9 0 o
L(e — B+ ) < 1 the linear approximation ~ f0 = L(c — f+ T) is n,(#) = ——— (—p( )C.OS + s ) , (9)
valid. p(0)2+1 \ p(0)sinf+ cost



The differential equations can be solved in closed form,

ri(0) = 1o (sin §)= (18)
sin(—“ 9+§) o
B (cos 5)7T
r2(0) = 7o : (19)

cos(26 + 5) ST

The second equation is exactly equation (3) defining a sarrfac
of constant elevational gain. Thus, if the mirror surfacais
constant elevational gain surfadg) is not defined and the
refractive surface can not be computed, i.e. there exists no
refractive surface that can be added in order to achievegéesin
viewpoint for the whole system.

Fig. 3. lllustration of the constraints for the derivation.

(8 o B. Derivation of 2¢ constraint
where p(0) = —5¢. Thus, the direction vector of a reflected o o )
viewing ray originating from the camera is given by Next, we calculate the directiosy of an incident light ray
after refraction at the outer surface. If its initial direct is
en(0) e(9) — 2(e(0)n,, (6))n,,(6) e; = —e, (see Fig. 3) then we obtain from Eq. (32) in the
1 p%sinf + 2pcosd — sin 0 appendix withn; = 1, n; = n, (the refractive index of Per-
R (pz cosf — 2psinf — cos 9) (10)  spex),n = —n, and substituting; = , /1 — 772(1 — (esny)?),
the normal component of the incident ray after refraction at
The refractive surfacds defined by the air-perspex interface,
_ 1
%:(0) = %0 + k(0) s (a e = —(mit (e~ (emany)) .
P
wherek(0) is the distance of the refractive surface from the ‘1:> ]
viewpoint as a function of the camera angleSimilar to (9), —e,— —e, = (y— —e,ny)n, . (20)
the normal vector of the refractive surface (11) is np np
. As depicted in Fig. 3-e; must be equal te,,, the direction
B 1 k(0) cos(al + B) — asin(ab + 5) .
n,(0) = T <K(9) sin(af + B) + acos(ad + 8)) vector of the reflected viewing ray. Thus
12) 1
i _ K@) €m — —€s = 7V — — €15 )1,
where we have introduced(0) = 775 - Ny ( np )

We will now derive two constraints ensuring that the imag- o . . i
ing system has the desired properties of constant elemti%UbSt'tu“ng (12), (10), (7) and dividing again the first b t

gain and fixed viewpoint second vector component, we can solve A(f),

Ii(e) o an, ("2 —r?) sin[(a+1)04B8]+27"r cos[(a+1)0+5])
— np((r'2—r2) cos[(a+1)0+p]—2r'r sin[(a+1)9+ﬁ])+(r’2+1(”;)1)'

A. Derivation of ¥* constraint

As illustrated in Fig. 3, a viewing ray from the camera, afte(E Dif tial tion f
reflection at the mirror surface,,(6), has to hitx;(9), i.e - bierential equation OW( )

Sincex(0) was defined a ) we have

X (0) + Nep(0) x,(0) (13)
= Aen(d) = x.(0)—xn(0) . (14) k(O)k(0) = K(0) . (22)

Substituting (8), (10), (11) and dividing the first by the sed Substituting (21) and (15) into the left side of (22) and the

. derivation of (15) w.r.tf into the right side of (22) results in
vector component on both sides of (14), we can solve:(6, a (second orger; differential eque?tion that d(epe)ndyor'(

k(0) = 2, (r"? =72) sin 04277 (2, cos O—r) (15) r” andf. So far, we have not been able to find an analytical
(r"2=r?) sin[(a+1)0+5]+2rr’ cos[(a+1)0+5] solution and thus will use numerical integration to solve fo

Remark: It is interesting to examine when the denomit (), which defines the reflective surfade(0), defining the
nator in (15) will be zero. Solving for’ yields two solutions, refractlve surface, is then obtained from (15). Solving f6r

e find,
) = —r@e* 0+ D) as) M= )
anyg(0,r,r" )2 h(0,r,r" ) —m(0,r,r)b(0,r,r")
a+1 /6 fT(a’r’ T/) = . m(0,r,r")2r (r24+r'2)c(0,r ’
r5(6) = r(®)tan(=——0+7) . (17) (@r.r)2r (ritr72)e(0:r) (23)



where we have used the definitions Fig. 4 shows the profiles of the optical surface that were
plotted using the results(d) and r'(6) = ¢(#) of the nu-

A Y N / ’
bb(Z’ " T,) B bl(aér’,g )g(g’ T’Tg Z(Q; rjre)bQ(i’ T’,g) ’ merical integration of (25) for the specified parameter salu
bl((g’r’ r,) o (,(2 T )Cols _2 oS )9_ """ The shape of the reflective surface is given by (8), the shape
2(0,7,1') = ((g o )(2044?. )Jg ') cos£(6) of the refractive surface is calculated from (11) wikiid)
—2rr'(a+2)sing(0) , defined in (15). Using simple raytracing we verified that the
6,r) — 1) in(af g simple raytracing
06( ’7;) B (’j,gm((‘; +1) ;5)27 o Sm(oé +8), viewing rays emerging from the outer refractive surfaceehav
Z(a’r’ r,) B (r _,QT )S;ng.( Z+ ;T,COS”;( ) é 5 the desired constant elevation gain. Extending these mggwi
mg 9’:’ :,; - ZU((((:’Q_ :2))8(:1:)18 f?é) TT;;?SBHE ( ;»r ' rays backwards, they intersect in a single point (see dotted
s Iy - D - -

lines) proving the single viewpoint property of the system.
So far we have implicitly assumed that the rays from the

(24) nodal point start inside the acrylic body. As indicated by

the dashed curve in Fig. 4, the course of the rays would be
unaffected if we used a concave spherical shape at the camera
gi’;lcing surface (with the nodal point of the camera in thereent
of the sphere). However, for simplifying the manufacturéhef
acrylic body, we decided to use a planar surface. As we will

+T’2—|-7“2 ,
£0) = (a+1)0+p5 .

For numerical integration we have to determine startinges
0o, r(00), 7' (6p) and fix parameters, § and z,. Furthermore
we transform (23) into a system of two coupled first ord
differential equations by introducing= r’,

ro= q, show by raytracing, this affects the system’s charactesist
¢ = f0,rq) , (29) only marginally.
where f,.(0, 7, q) is defined in (23). sor
[1l. PROTOTYPE OFIMAGING SYSTEM 408

351

For the first realisation of an omnidirectional imaging
system with constant elevational gain and single viewpoint
the following parameter values were used: For the mapping
between camera angte and elevation angle, equation (2)

30

251

we chosea = 5 (elevational gain) angs = 10455 rad. The il
z-position of the viewpoint was set te, = 30mm. The tor
initial values for numerical integration wei = 55 rad, s¢
ro = 27.5mm, o = r, = 9.6mm/rad. Starting values of

for 0y close to zero proved to be problematic for numerical
integration. However, this does not pose a serious problem - - o 0w 0w %
as it is likely to b.e in the blmd. zone'’ of the syst(_em _Wherq:ig. 5. Shape of the acrylic body as manufactured for our pyp#& Fig. 6.
the camera sees its own reflection. For the refractive index e cyiindrical shaft and the planar surface facing the canage depicted

acrylic glass we used,, = 1.5. by dashed lines.

For the machining of the acrylic body, we extended the
profile of the reflective surface in the rangd < 6y using
an arc tangent to the surface &#,. In addition, a short
cylindrical shaft (length 9 mm, diameter 20 mm) was intro-
duced for mounting the acrylic body onto the CNC lathe to
facilitate machining and subsequent attachment to the body
of the camera lens. The resulting shape of the acrylic body
is shown in Fig. 5. As can be seen from the raytracing for
this profile (Fig. 5), the single-viewpoint property stilblds
in quite good approximation. However, due to the refractibn
the planar surface, the effective FOV of the camera is ratluce
and the effective nodal point is shifted irby approx.—4 mm,
‘ ‘ ‘ ‘ ‘ ‘ ‘ as is the viewpoint. As a result the camera lens has to be

20 10 0 10 2 %0 40 50 placed 4mm closer to the reflective surface, compared to

Fig. 4. Raytracing (blue continuous lines) using the caltad reflective and when a spherical concavity is used. In addition, although th

refractive surfaces (thick black curves). The dotted lishew that all rays elevational gain is still constant in very good approxiroati
appear to emerge from a fixed viewpoint(@t z,,). The dashed curve depicts

the concave shape of the perspex surface facing the camesasdiface is  20f course, depth of focus would change because only prihciga would
spherical, to ensure that it does not refract rays entelirgcamera. hit the surface perpendicularly.

50

40t

30

20




it is reduced froma = 5 to a.g ~ 3.2. The elevation range
of our prototype is approximately € [—35°,32°]. Thus, the

camera lens has to have a vertical FOV of abdlft (since

Qe X 70°/2 4 3 —90° = 32°).

A. Manufacture

After CNC-machining, the acrylic body was hand-polished
on a lathe and the reflective surface was produced by a vapour-
deposited layer of aluminium. For mounting onto the camera
lens a cylindrical element was machined from plastic. Afotas
cap was fitted over the concave opening at the top to protect
the thin aluminium layer and prevent unwanted light enterin
the camera from above, see Fig. 6. Images captured with the
omnidirectional imaging system are shown in Fig. 7.

Fig. 7. Two examples of captured images(@ x 480 pixels).

Fig. 6. Picture of the first prototype of an omnidirectional gimey
system with constant elevational gain and single viewpddiameter of the
transparent globe is 48 mm.

B. Calibration Results

In order to examine the imaging properties of our prototype,
we calibrated the imaging system using the “OCamcCalib”
Matlab toolbox [10]. Since the camera model of this toolbox
assumes a single viewpoint, a large reprojection error for
points of the calibration pattern, in particular for imagésere
the calibration board was held close to the camera, would be a
good indicator that the single viewpoint property is vielt
However, mean reprojection error (for 12 images) was low,
approximately 0.47 pixels. The image with the highest ayera
reprojection error (0.57 pixels) is shown in Fig. 8. The sife
the calibration pattern (& x 7 checker board printed on A4
paper that was glued onto a Perspex plate) @Bsmm x
168 mm. . . . . Fig. 8. lllustration of the good fit of the single viewpointroara model

As illustrated in Fig. 9, the mapping of elevation angle of the 0OCamcalib calibration toolbox [10] for our prototyRistance of the

to radial distance from image centpeis almost linear. Note calibration board to the imaging system was about 15cm. Smaltresses
- - . - . ark the automatically detected corners of the calibratidgtepa Blue circles
that a slight deviation from a perfect linear mapping is to bgww the reprojected points computed from the known geometdy the

expected for largep values since the perspective projectioRstimated calibration parameters. The small red circle defietimage centre
of the camera lens maps to camera anglé according to as estimated by the calibration toolbox.
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Fig. 9. Result of calibration, showing the measured mappinigvedxn -60

elevation angles and radial distance from the image centre fop varying o L 5 = = P m =
from 75 to 225 pixels. The dashed red line shows, for compargsperfectly angle 6 [DEG]

linear mapping represented by= —38° + 0.5° /pixel (¢ — 75 pixel).
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Fig. 11. Elevation angle versus camera angk for (from left to right)
Az = —15mm, —10 mm, —5 mm, 0 mm, +5 mm, +10 mm, +15mm. €
and@ are as defined in Fig. 1. Fakz = 0 mm, we have the linear mapping

6 = arctan(o/f), where f is the focal length of the lens in == "5

pixels. Thus, using Eq. (2) and ignoring distortions introeld
by real lenses, the mapping with respect to elevation arggle i
e = aarctan(o/ f) + f. is nevertheless almost constant for small shifts (see sifiore
We conclude from the results of the calibration procedurg: = +5mm) significant deviations from a linear relationship
that our prototype is indeed, at least in good approximatiopetween angled and elevation angle become visible for
a single viewpoint imaging system with constant elevationgAz| > 10 mm.
gain.
V. CONCLUSION
The use of an additional refractive surface gives the oppor-
For the derivation of the surfaces and the results presentgglity to incorporate additional desirable properties finom-
in the previous section we assumed that the nodal point of thiglirectional imaging system. In this paper we have uses thi
camera is located at the origin of the coordinate system. dpproach to construct a single-viewpoint system with contst
the following we investigate the effect of a shift of the nbdaelevational gain. In addition, the machining of the reflesti
point along thez-axis. This is of particular interest since thesurface into a globe of acrylic glass enables the constmucti
exact position of the nodal point of the camera lens along tae compact, rugged omnidirectional imaging systems withou
optical axis is often hard to determine. any obstructing parts. Future work will include analysis of

Fig. 10 shows raytracing results using the same shape of fiifage blur and optimal focus settings.
optical surfaces as in Fig. 4 but with the nodal point shifted

by Az = +15mm. Despite these quite large shifts there ACKNOWLEDGEMENTS
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IV. SENSITIVITY TO SHIFTS ALONG z-AXIS
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APPENDIX|: SURFACE NORMAL VECTOR
For a surface in 3D that is parameterised by two parameters,

xs(s,t), the normal vector is given by Fig. 12.  Hitting a surface of different refraction index, ight ray with
5 9 direction vectore; is partly reflected into directior,. and partly transmitted
=Xs(s,1) X 55xs(8,1 into directione;.
n(st) = D XERD g t

120 (5.) % s 0]
o ot

For surfaces of revolution parameterised in spherical dioor

nates, (30)
e = € t+e .
x(9,0) = r(0)e(9,0) , - Lo
e(¢,0) = (cos¢psinf,sinpsinf, cosf)’ Snell's law,
we obtain from (26): ngsing; = n;sing; , (31)
ny(¢,0) = Xn 7 is equal to
Il nge = n;e;
cos ¢ (1'(0) cos @ — r(0) sin 6) U " il
X, = sing (r'(0) cos@ — r(0)sind) | , (28) — ¢ = —(e;—(emn)n) .
—7'(0)sin® — 7(0) cos f A A I i A f
- .
Il = O (0 . e component orthogonal to the surface is
. . . . . . . . €1 = Tn,
If we consider just the radial direction and thalirection this
simplifies to where~ can be calculated from the constraint
na(0) — -1 —7":(0) c989+r(0) sin 0 e? = e?II +4% =1
(02 +r(0)2 \ 7'(0)sin6 +r(6)cost , n2 )
B -1 —p(0) cos 0 + sin 29) = 7 = 1= n? (e — (eim)n)
- 0(0)2 + 1 p(0)sinf + cosb ) ’ n2 ( )
= 1-— (ein)
where we have defineg(d) = ’;((g)) (assumingr(6) # 0). "
Thus, the direction of the refracted ray is (flem > 0)
APPENDIXIl: REFRACTION
N\ 2 .
In order to calculate the direction vectey of the transmit- e, = \/1 - (&) (1—(e;n)?)n+ &<ei —(e;n)n) .
Tt ny

ted ray, it is split into components parallel and orthogadoal
the surface of refraction, see Fig. 12, (32)



