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Abstract— Previous catadioptric systems with a single reflective
surface have either a constant elevational gain, producing the
desirable linear mapping between elevation angle and camera an-
gle [1], or a single viewpoint [2]. We present a novel combination
of reflective and refractive surfaces that offers both properties.
The derivation of the surfaces leads to a second order differential
equation that can be solved numerically. A prototype made from
acrylic glass is presented.

I. I NTRODUCTION

Omnidirectional imaging systems that usually consist of a
reflective surface mounted in front of a conventional lens-
based camera can achieve very large field of views and are
widely used for applications in robotics and computer vision,
see [3] for an overview of the design and applications of such
systems.

In the following, we will discuss two fundamental properties
of omnidirectional imaging systems, the angular mapping and
the viewpoint(s). We will focus on reflective surfaces that
achieve a linear mapping of elevation angle.

A. Reflective surfaces with constant elevational gain

An imaging system with constant elevational gainα is
defined by the following mapping between camera angleθ
and elevation angleε:

∂ε

∂θ
= α , (1)

ε+
π

2
= αθ + β ,

⇐⇒ ε = αθ + β − π

2
, (2)

whereβ is an integration constant, defining the elevation angle
for θ = 0, e.g., if β = 0 thenε(θ = 0) = −π

2 , i.e. a viewing
ray originating from the camera along the optical axis is back-
reflected.

As derived in [1], reflective surfaces achieving a constant
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Fig. 1. Illustration of a reflective surface with constant elevational gain,
equation (3).

elevational gain, Eq. (2), can be described by

xm(θ) = r(θ) e(θ) ,

with r(θ) = r0
(cos β

2 )
2

α+1

cos(α+1
2 θ + β

2 )
2

α+1

, (3)

and e(θ) =

(

sin θ
cos θ

)

,

wherer(θ) is the distance to the mirror surface as a function
of camera angleθ andr0 = r(0) the distance to the apex (see
Fig. 1).

The advantage of using a reflective surface of constant ele-
vational gain is that one can achieve a large FOV with a single
camera while preserving an uniform angular resolution in the
vertical plane. In the camera image, the angular resolution
per pixel in the radial direction is practically constant, as one



Fig. 2. The viewpoints of a reflective surface with constant elevational gain
lie on a caustic surface (red curve) defined in (4). All principal rays are tangent
to the caustic.

would have with a true spherical sensor.1 This property is not a
feature of other shapes, e.g. hyperboloidal reflective surfaces,
where the angular resolution increases with radial distance
from the image centre.

B. Non-single viewpoint of constant elevational gain surfaces

The viewpoint of a constant-gain surface is not fixed: it
varies with the elevational angle of view, as shown in Fig. 2.
As derived in [4] using an approach described in [5], the
locus of these viewpoints describe a so-called “caustic surface”
whose profile is given by

xc(θ) = xm(θ)− 1

α
r(θ)

(

sin(αθ + β)
− cos(αθ + β)

)

. (4)

Apart from the trivial case of a planar reflective surface that
is obtained from (3) by using the parameter valuesα = 1,
β = 0, i.e. r(θ) = r0/ cos θ resulting in xc = (0, 2r0)

⊤,
surfaces with constant elevational gain do not have a fixed
viewpoint (Fig. 2). Such surfaces can be regarded as a fixed
viewpoint system as long as objects are far away compared to
the size of the caustic surface, and resolution is low. However,
for close objects this assumption is not valid, complicating
the calibration of such catadioptric systems and limiting their
applicability because algorithms in computer vision often
assume a single viewpoint system. Baker and Nayar [2, 6]
describe a family of catadioptric imaging systems that havea

1The perspective mapping of the camera lens will introduce smalldeviations
from the ideal constant angular resolution per pixel for large camera angles.
For a camera lens with perfect perspective mapping, elevationangleε and

distance from image centre̺ are related by̺ = f tan θ
(2)
= f tan[ 1

α
(ε −

β + π
2
)], wheref is the focal length of the camera lens in pixel. Forθ =

1
α
(ε − β + π

2
) ≪ 1 the linear approximation̺ ≈ fθ = f

α
(ε − β + π

2
) is

valid.

single, fixed viewpoint. However, as already mentioned, they
do not offer a constant angular mapping.

In this paper we present a combination of reflective and
refractive surfaces that has both desirable properties (constant
elevational gain and single viewpoint). Recently, it has been
shown that also a combination of two mirrors can be used to
achieve various different “constant resolution” mappingswhile
keeping a single viewpoint [7, 8]. As we will describe in the
following sections, the use of a refractive surface allows to
construct a very compact and rugged imaging system. This
system builds on previous work [9] where a reflective surface
was machined into a curved acrylic globe. However, in that
system the outer surface of the acrylic globe functioned only as
a transparent, protective cover and a visually non-obstructive
support, and had no optical role. There the outer surface was
designed to be orthogonal to the incoming rays and therefore
did not alter their course. Thus, that system, described in [9],
is equivalent to previously described constant-gain surfaces, as
in [1], and therefore has a constant elevational gain but nota
fixed viewpoint.

II. D ERIVATION OF OPTICAL SURFACES

We consider a viewing ray emerging from the nodal point of
the camera that is first reflected at the mirror surface and then
refracted at the Perspex surface, see Fig. 3. All coordinates
will be given in the reference frame of the camera, i.e. the
camera’s nodal point defines the origin and its optical axis
defines thez-axis. Because of the rotational symmetry we can
restrict the derivation to two dimensions. The viewing raysof
the overall system should obey the following equation:

x(λ, θ) =

(

0
zv

)

+ λ

(

cos ε(θ)
sin ε(θ)

)

(5)

(2)
= xv + λ es(θ) , (6)

with es(θ) =

(

sin(αθ + β)
− cos(αθ + β)

)

, λ > k(θ) . (7)

xv = (0, zv)
⊤ is the location of the vision system’s single

viewpoint where all viewing rays, if extended backwards
(see dashed line in Fig. 3), should intersect. As before, the
parametersα and β determine the linear mapping between
camera angleθ and elevation angleε, see equation (2), and
es(θ) is the corresponding direction vector. The functionk(θ)
defines the distance of the outer surface from the viewpoint
(see below).

The reflective surfacewill be parametrised as in equation
(3), i.e.

xm(θ) = r(θ) e(θ) , (8)

however with differentr(θ). As derived in appendix, equations
(26) – (29), the normal vector of this surface is given by

nm(θ) =
−1

√

ρ(θ)2 + 1

(

−ρ(θ) cos θ + sin θ
ρ(θ) sin θ + cos θ

)

, (9)
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Fig. 3. Illustration of the constraints for the derivation.

whereρ(θ) = r′(θ)
r(θ) . Thus, the direction vector of a reflected

viewing ray originating from the camera is given by

em(θ) = e(θ)− 2
(

e(θ)nm(θ)
)

nm(θ)

=
1

ρ2 + 1

(

ρ2 sin θ + 2ρ cos θ − sin θ
ρ2 cos θ − 2ρ sin θ − cos θ

)

. (10)

The refractive surfaceis defined by

xs(θ) = xv + k(θ) es , (11)

wherek(θ) is the distance of the refractive surface from the
viewpoint as a function of the camera angleθ. Similar to (9),
the normal vector of the refractive surface (11) is

ns(θ) =
−1√

κ(θ)2+α2

(

κ(θ) cos(αθ + β)− α sin(αθ + β)
κ(θ) sin(αθ + β) + α cos(αθ + β)

)

,

(12)
where we have introducedκ(θ) = k′(θ)

k(θ) .
We will now derive two constraints ensuring that the imag-

ing system has the desired properties of constant elevational
gain and fixed viewpoint.

A. Derivation of 1st constraint

As illustrated in Fig. 3, a viewing ray from the camera, after
reflection at the mirror surfacexm(θ), has to hitxs(θ), i.e.

xm(θ) + λ em(θ) = xs(θ) , (13)

⇐⇒ λ em(θ) = xs(θ)− xm(θ) . (14)

Substituting (8), (10), (11) and dividing the first by the second
vector component on both sides of (14), we can solve fork(θ),

k(θ) = zv(r
′2−r2) sin θ+2r′r (zv cos θ−r)

(r′2−r2) sin[(α+1)θ+β]+2rr′ cos[(α+1)θ+β] . (15)

Remark: It is interesting to examine when the denomi-
nator in (15) will be zero. Solving forr′ yields two solutions,

r′1(θ) = −r(θ) cot(
α+ 1

2
θ +

β

2
) , (16)

r′2(θ) = r(θ) tan(
α+ 1

2
θ +

β

2
) . (17)

The differential equations can be solved in closed form,

r1(θ) = r0
(sin β

2 )
2

α+1

sin(α+1
2 θ + β

2 )
2

α+1

, (18)

r2(θ) = r0
(cos β

2 )
2

α+1

cos(α+1
2 θ + β

2 )
2

α+1

. (19)

The second equation is exactly equation (3) defining a surface
of constant elevational gain. Thus, if the mirror surface isa
constant elevational gain surface,k(θ) is not defined and the
refractive surface can not be computed, i.e. there exists no
refractive surface that can be added in order to achieve a single
viewpoint for the whole system.

B. Derivation of 2nd constraint

Next, we calculate the directionet of an incident light ray
after refraction at the outer surface. If its initial direction is
ei = −es (see Fig. 3) then we obtain from Eq. (32) in the
appendix withni = 1, nt = np (the refractive index of Per-
spex),n = −ns and substitutingγ =

√

1− 1
n2
p

(1− (esns)2),

the normal component of the incident ray after refraction at
the air-perspex interface,

et = −
(

γns +
1

np

(es − (esns)ns)
)

,

⇐⇒
−et −

1

np

es = (γ − 1

np

esns)ns . (20)

As depicted in Fig. 3,−et must be equal toem, the direction
vector of the reflected viewing ray. Thus

em − 1

np

es = (γ − 1

np

esns)ns .

Substituting (12), (10), (7) and dividing again the first by the
second vector component, we can solve forκ(θ),

κ(θ) =
αnp((r

′2−r2) sin[(α+1)θ+β]+2r′r cos[(α+1)θ+β])
np((r′2−r2) cos[(α+1)θ+β]−2r′r sin[(α+1)θ+β])+(r′2+r2) .

(21)

C. Differential equation forr(θ)

Sinceκ(θ) was defined ask
′(θ)
k(θ) we have

κ(θ)k(θ) = k′(θ) . (22)

Substituting (21) and (15) into the left side of (22) and the
derivation of (15) w.r.t.θ into the right side of (22) results in
a (second order) differential equation that depends onr, r′,
r′′ andθ. So far, we have not been able to find an analytical
solution and thus will use numerical integration to solve for
r(θ), which defines the reflective surface.k(θ), defining the
refractive surface, is then obtained from (15). Solving forr′′

we find,

r′′ = fr(θ, r, r
′) ,

fr(θ, r, r
′) =

αnpg(θ,r,r
′)2h(θ,r,r′)−m(θ,r,r′)b(θ,r,r′)

m(θ,r,r′)2r (r2+r′2)c(θ,r) ,
(23)



where we have used the definitions

b(θ, r, r′) = b1(θ, r, r
′)g(θ, r, r′)− h(θ, r, r′)b2(θ, r, r

′) ,
b1(θ, r, r

′) = zv((3r
′2 − r2) cos θ − 4rr′ sin θ)− 4rr′2 ,

b2(θ, r, r
′) = ((r′2 − r2)(α+ 1) + 2r′2) cos ξ(θ)

−2rr′(α+ 2) sin ξ(θ) ,
c(θ, r) = (r sin((α+ 1)θ + β)− zv sin(αθ + β)) ,

g(θ, r, r′) = (r′2 − r2) sin ξ(θ) + 2rr′ cos ξ(θ) ,
h(θ, r, r′) = zv((r

′2 − r2) sin θ + 2rr′ cos θ)− 2r2r′ ,
m(θ, r, r′) = np((r

′2 − r2) cos ξ(θ)− 2rr′ sin ξ(θ))
+r′2 + r2 ,

ξ(θ) = (α+ 1)θ + β .
(24)

For numerical integration we have to determine starting values
θ0, r(θ0), r′(θ0) and fix parametersα, β andzv. Furthermore
we transform (23) into a system of two coupled first order
differential equations by introducingq = r′,

r′ = q ,
q′ = fr(θ, r, q) ,

(25)

wherefr(θ, r, q) is defined in (23).

III. PROTOTYPE OFIMAGING SYSTEM

For the first realisation of an omnidirectional imaging
system with constant elevational gain and single viewpoint
the following parameter values were used: For the mapping
between camera angleθ and elevation angleε, equation (2)
we choseα = 5 (elevational gain) andβ = 10 π

180 rad. The
z-position of the viewpoint was set tozv = 30mm. The
initial values for numerical integration wereθ0 = 5 π

180 rad,
r0 = 27.5mm, q0 = r′0 = 9.6mm/rad. Starting values
for θ0 close to zero proved to be problematic for numerical
integration. However, this does not pose a serious problem
as it is likely to be in the ’blind zone’ of the system where
the camera sees its own reflection. For the refractive index of
acrylic glass we usednp = 1.5.
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Fig. 4. Raytracing (blue continuous lines) using the calculated reflective and
refractive surfaces (thick black curves). The dotted linesshow that all rays
appear to emerge from a fixed viewpoint at(0, zv). The dashed curve depicts
the concave shape of the perspex surface facing the camera. This surface is
spherical, to ensure that it does not refract rays entering the camera.

Fig. 4 shows the profiles of the optical surface that were
plotted using the resultsr(θ) and r′(θ) = q(θ) of the nu-
merical integration of (25) for the specified parameter values.
The shape of the reflective surface is given by (8), the shape
of the refractive surface is calculated from (11) withk(θ)
defined in (15). Using simple raytracing we verified that the
viewing rays emerging from the outer refractive surface have
the desired constant elevation gain. Extending these viewing
rays backwards, they intersect in a single point (see dotted
lines) proving the single viewpoint property of the system.

So far we have implicitly assumed that the rays from the
nodal point start inside the acrylic body. As indicated by
the dashed curve in Fig. 4, the course of the rays would be
unaffected2 if we used a concave spherical shape at the camera
facing surface (with the nodal point of the camera in the centre
of the sphere). However, for simplifying the manufacture ofthe
acrylic body, we decided to use a planar surface. As we will
show by raytracing, this affects the system’s characteristics
only marginally.
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Fig. 5. Shape of the acrylic body as manufactured for our prototype, Fig. 6.
The cylindrical shaft and the planar surface facing the camera are depicted
by dashed lines.

For the machining of the acrylic body, we extended the
profile of the reflective surface in the range|θ| < θ0 using
an arc tangent to the surface at±θ0. In addition, a short
cylindrical shaft (length 9 mm, diameter 20 mm) was intro-
duced for mounting the acrylic body onto the CNC lathe to
facilitate machining and subsequent attachment to the body
of the camera lens. The resulting shape of the acrylic body
is shown in Fig. 5. As can be seen from the raytracing for
this profile (Fig. 5), the single-viewpoint property still holds
in quite good approximation. However, due to the refractionat
the planar surface, the effective FOV of the camera is reduced
and the effective nodal point is shifted inz by approx.−4mm,
as is the viewpoint. As a result the camera lens has to be
placed 4 mm closer to the reflective surface, compared to
when a spherical concavity is used. In addition, although the
elevational gain is still constant in very good approximation,

2Of course, depth of focus would change because only principal rays would
hit the surface perpendicularly.



it is reduced fromα = 5 to αeff ≈ 3.2. The elevation range
of our prototype is approximatelyε ∈ [−35◦, 32◦]. Thus, the
camera lens has to have a vertical FOV of about70◦ (since
αeff × 70◦/2 + β − 90◦ = 32◦).

A. Manufacture

After CNC-machining, the acrylic body was hand-polished
on a lathe and the reflective surface was produced by a vapour-
deposited layer of aluminium. For mounting onto the camera
lens a cylindrical element was machined from plastic. A plastic
cap was fitted over the concave opening at the top to protect
the thin aluminium layer and prevent unwanted light entering
the camera from above, see Fig. 6. Images captured with the
omnidirectional imaging system are shown in Fig. 7.

Fig. 6. Picture of the first prototype of an omnidirectional imaging
system with constant elevational gain and single viewpoint. Diameter of the
transparent globe is 48 mm.

B. Calibration Results

In order to examine the imaging properties of our prototype,
we calibrated the imaging system using the “OCamCalib”
Matlab toolbox [10]. Since the camera model of this toolbox
assumes a single viewpoint, a large reprojection error for
points of the calibration pattern, in particular for imageswhere
the calibration board was held close to the camera, would be a
good indicator that the single viewpoint property is violated.
However, mean reprojection error (for 12 images) was low,
approximately 0.47 pixels. The image with the highest average
reprojection error (0.57 pixels) is shown in Fig. 8. The sizeof
the calibration pattern (a9 × 7 checker board printed on A4
paper that was glued onto a Perspex plate) was216mm ×
168mm.

As illustrated in Fig. 9, the mapping of elevation angleε
to radial distance from image centre̺is almost linear. Note
that a slight deviation from a perfect linear mapping is to be
expected for larger̺ values since the perspective projection
of the camera lens maps̺ to camera angleθ according to

Fig. 7. Two examples of captured images (480× 480 pixels).

Fig. 8. Illustration of the good fit of the single viewpoint camera model
of the OCamCalib calibration toolbox [10] for our prototype.Distance of the
calibration board to the imaging system was about 15 cm. Small red crosses
mark the automatically detected corners of the calibration pattern. Blue circles
show the reprojected points computed from the known geometry and the
estimated calibration parameters. The small red circle depicts the image centre
as estimated by the calibration toolbox.
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Fig. 9. Result of calibration, showing the measured mapping between
elevation angleε and radial distance̺ from the image centre for̺ varying
from 75 to 225 pixels. The dashed red line shows, for comparison a perfectly
linear mapping represented byε = −38◦ + 0.5◦/pixel (̺− 75 pixel).

θ = arctan(̺/f), wheref is the focal length of the lens in
pixels. Thus, using Eq. (2) and ignoring distortions introduced
by real lenses, the mapping with respect to elevation angle is
ε = α arctan(̺/f) + β.

We conclude from the results of the calibration procedure
that our prototype is indeed, at least in good approximation,
a single viewpoint imaging system with constant elevational
gain.

IV. SENSITIVITY TO SHIFTS ALONG z-AXIS

For the derivation of the surfaces and the results presented
in the previous section we assumed that the nodal point of the
camera is located at the origin of the coordinate system. In
the following we investigate the effect of a shift of the nodal
point along thez-axis. This is of particular interest since the
exact position of the nodal point of the camera lens along the
optical axis is often hard to determine.

Fig. 10 shows raytracing results using the same shape of the
optical surfaces as in Fig. 4 but with the nodal point shifted
by ∆z = ±15mm. Despite these quite large shifts there
are only very small deviations visible from a fixed viewpoint
system. However, the position of the (approximate) viewpoint
changes, as does the elevational gainα of the whole system.
As depicted in Fig. 11, the over-all elevational gain increases
for ∆z < 0 and decreases for∆z > 0. While elevational gain
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Fig. 10. Raytracing results for a shift of the nodal point along the optical
axis by an amount∆z = −15mm (left) or∆z = +15mm (right).
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Fig. 11. Elevation angleε versus camera angleθ for (from left to right)
∆z = −15mm,−10mm,−5mm, 0mm,+5mm,+10mm,+15mm. ε
andθ are as defined in Fig. 1. For∆z = 0mm, we have the linear mapping
ε = αθ + β.

is nevertheless almost constant for small shifts (see curves for
∆z = ±5mm) significant deviations from a linear relationship
between angleθ and elevation angleε become visible for
|∆z| ≥ 10mm.

V. CONCLUSION

The use of an additional refractive surface gives the oppor-
tunity to incorporate additional desirable properties in an om-
nidirectional imaging system. In this paper we have used this
approach to construct a single-viewpoint system with constant
elevational gain. In addition, the machining of the reflective
surface into a globe of acrylic glass enables the construction
of compact, rugged omnidirectional imaging systems without
any obstructing parts. Future work will include analysis of
image blur and optimal focus settings.
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APPENDIX I: SURFACE NORMAL VECTOR

For a surface in 3D that is parameterised by two parameters,
xs(s, t), the normal vector is given by

ns(s, t) =
∂
∂s
xs(s, t)× ∂

∂t
xs(s, t)

‖ ∂
∂s
xs(s, t)× ∂

∂t
xs(s, t)‖

. (26)

For surfaces of revolution parameterised in spherical coordi-
nates,

xs(φ, θ) = r(θ) e(φ, θ) ,

e(φ, θ) = (cosφ sin θ, sinφ sin θ, cos θ)⊤
(27)

we obtain from (26):

ns(φ, θ) =
xn

‖xn‖
,

xn =





cosφ (r′(θ) cos θ − r(θ) sin θ)
sinφ (r′(θ) cos θ − r(θ) sin θ)

−r′(θ) sin θ − r(θ) cos θ



 , (28)

‖xn‖ =
√

r′(θ)2 + r(θ)2 .

If we consider just the radial direction and thez-direction this
simplifies to

ns(θ) =
−1

√

r′(θ)2 + r(θ)2

(

−r′(θ) cos θ + r(θ) sin θ
r′(θ) sin θ + r(θ) cos θ

)

=
−1

√

ρ(θ)2 + 1

(

−ρ(θ) cos θ + sin θ
ρ(θ) sin θ + cos θ

)

, (29)

where we have definedρ(θ) = r′(θ)
r(θ) (assumingr(θ) 6= 0).

APPENDIX II: REFRACTION

In order to calculate the direction vectoret of the transmit-
ted ray, it is split into components parallel and orthogonalto
the surface of refraction, see Fig. 12,

ei

er
ni

nt

φt

et

n

φi φr

Fig. 12. Hitting a surface of different refraction index, a light ray with
direction vectorei is partly reflected into directioner and partly transmitted
into directionet.

et = et|| + et⊥ . (30)

Snell’s law,

nt sinφt = ni sinφi , (31)

is equal to

ntet|| = niei||

⇐⇒ et|| =
ni

nt

(

ei − (ein)n
)

.

The component orthogonal to the surface is

et⊥ = γn ,

whereγ can be calculated from the constraint

e
2
t = e

2
t|| + γ2 = 1

⇐⇒ γ2 = 1− n2
i

n2
t

(

ei − (ein)n
)2

= 1− n2
i

n2
t

(

1− (ein)
)2

.

Thus, the direction of the refracted ray is (forein > 0)

et =

√

1−
(ni

nt

)2
(

1− (ei n)2
)

n+
ni

nt

(

ei − (ei n)n
)

.

(32)


