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Animals relocating a target corner in a rectangular space often make rotational errors searching not only
at the target corner but also at the diagonally opposite corner. The authors tested whether view-based
navigation can explain rotational errors by recording panoramic snapshots at regularly spaced locations
in a rectangular box. The authors calculated the global image difference between the image at each
location and the image recorded at a target location in 1 of the corners, thus creating a 2-dimensional map
of image differences. The authors found the most pronounced minima of image differences at the target
corner and the diagonally opposite corner—conditions favoring rotational errors. The authors confirmed
these results in virtual reality simulations and showed that the relative salience of different visual cues
determines whether image differences are dominated by geometry or by features. The geometry of space
is thus implicitly contained in panoramic images and does not require explicit computation by a dedicated
module. A testable prediction is that animals making rotational errors in rectangular spaces are guided
by remembered views.
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Rats, rhesus monkeys, and human children have been trained to
find a reward hidden close to one of the corners of a rectangular
box. In learning the task, they made systematic errors at the corner
diagonally opposite the correct corner (reviews in Cheng, 2005;
Cheng & Newcombe, 2005). Cheng (1986), for instance, trained
rats to find food located at one constant corner of a rectangular
arena. Aside from the shape of the box providing geometric cues,
many visual features were arrayed around the walls. One wall was

white, whereas the others were black, and panels with distinct
patterns stood in the corners. In learning the task, the rats made
systematic rotational errors, with the majority of the errors at
the diagonally opposite corner. This corner stood in the same
geometric relation to the shape of the arena as the target corner,
but it contained different visual features. The rotational error
has also been found in rhesus monkeys (Gouteux, Thinus-
Blanc, & Vauclair, 2001) and in children (Hermer & Spelke,
1994, 1996; Learmonth, Nadel, & Newcombe, 2002; Lear-
month, Newcombe, & Huttenlocher, 2001; reviewed by Cheng
& Newcombe, 2005). Animals make rotational errors even
when the inside of the box contains distinct visual features, such
as differently colored walls or visually distinct objects in the
four corners. One influential idea arising from the observation
of such rotational errors is the concept of a geometric module:
Animals encode the geometry of such experimental spaces in a
dedicated module separately from the features they contain
(Cheng, 1986; Wang & Spelke, 2002, 2003). Others, however,
disagree (Newcombe, 2002).

Similar experimental designs, in which the arrangement of ob-
jects or features has to be memorized in relation to the environ-
ment in which they are placed, also have been used to study the
organization of human spatial memory (e.g., Burgess, 2006). Hu-
mans also make errors of judgment, including rotational errors of
the kind animals make, after disorientation or when environmental
geometry and feature arrangements are put into conflict. These
alignment, spatial updating, and reorientation effects, together with
pointing errors, indicate that both egocentric (view-based) and
allocentric representations are at work in parallel, at least in human
spatial memory (Burgess, 2006).
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Very little attention has been paid to the question of what
visual cues animals, including humans, actually have available
in these tasks and how salient they are. Here, we approach the
question of why rotational errors occur from a purely sensory
perspective by investigating the principal visual cues available
for navigating in rectangular arenas, similar to those used by
Cheng (1986). We used both tools from view-based robotic
navigation and from virtual reality computer modeling to ask
how well a location in a rectangular box is defined by the view
taken from it (see Stürzl & Zeil, 2007; Zeil, Hofmann, & Chahl,
2003). In what follows, we were guided by two hypotheses: (a)
Rotational errors arise from inherent similarities of views in
rectangular spaces, and (b) the visual salience of upper and
lower edges of the experimental environment determine
whether view similarities are dominated by the rectangular
space itself or by its internal visual features. In short, we tested
whether geometric information can be acquired without explicit
computations of surface layout and a fortiori without a dedi-
cated module. In a companion article, we employed virtual
reality simulations and simple performance models to test the
validity of these hypotheses in nonrectangular test spaces
(Cheung, Stürzl, Zeil, & Cheng, 2007).

Experiment 1: Image Differences in a Rectangular Arena

In this experiment, we used a robotic arm to move a camera for
acquiring panoramic images to defined positions in a rectangular
arena like that used in Cheng’s (1986) study. The image at a target
corner served as a reference. Images obtained at any particular
location in the arena were compared with the reference image to
map image differences across the experimental space.

Method

Data Acquisition

Panoramic images were recorded inside a rectangular box that
had similar dimensions to that used in the original experiment by
Cheng (1986). The box was 120 cm long � 60 cm wide and 30 cm
high and was made of white, slightly shiny laminated boards,
which were covered inside with black cardboard if needed (see
Figure 1A). The floor of the box was covered with light brown
wrapping paper. To minimize visual cues from the outside of the
box, a rectangular white cloth screen (180 cm � 90 cm) was
suspended from the ceiling in such a way that it floated about 5 cm
above the upper edge of the box. The box was positioned on a table
symmetrically below a rectangular ceiling light.

Figure 1. Experimental arena and recording technique. (A) The experimental box was constructed from
laminated wooden boards, centered under a rectangular ceiling light and lined with black and white cardboard.
In the case shown, the box had one white and three black walls. Panoramic images were recorded at regularly
spaced locations inside the box by moving a panoramic imaging device with the aid of a robotic gantry. During
recording, a white screen was lowered from above to a height of about 5 cm above the upper edge of the box
to exclude any external features. (B) A close-up view of the panoramic imaging device, which consisted of a
digital video camera looking down onto a parabolic mirror surface. (C) The raw panoramic image as seen by the
camera. (D) The same view after the image has been transformed to a cylindrical array of pixels. (E) The
panoramic image after pixels viewing the gantry and recording system have been “cleaned up.” For further
details, see the Method section.
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We recorded panoramic images with a color firewire CCD-
camera (Marlin MF-046C, Allied Vision Technologies, image size
640 � 480 pixels) viewing a convex mirror (see Figure 1B) with
constant gain in elevation (Chahl & Srinivasan, 1997) at regular
positions in a 23 � 11 grid with 5-cm spacing. The viewpoint of
this panoramic imaging system was about 5 cm off the floor of the
box. The imaging device was moved inside the arena (reposition
accuracy � 0.1 mm) with the aid of a computer-controlled robotic
gantry (for details, see Zeil et al., 2003). The vertical field of view
of the imaging system extended from �52.5° (below the horizon-
tal) to �62.5° (above the horizontal). Color images were converted
to 8-bit gray values (Figure 1C) and unwarped to 1° resolution,
resulting in rectangular panoramic images of 360 pixel azimuth
and 115 pixel elevation (see Figure 1D). The images thus represent
the highest spatial frequencies that can be resolved by a rat’s eye
(e.g., Keller, Strasburger, Cerutti, & Sabel, 2000). Unwarping
parameters were chosen in such a way that for an image recorded
at the center of the box the unwarped image and its 180° rotated
version had maximum similarity. The image regions viewing the
four thin vertical blades connecting the mirror to the camera and
those viewing the gantry arm were filled and padded with gray
values obtained by row-wise linear interpolation of neighboring
pixel values. In other words, views of the recording system itself
were removed from the images (Figure 1E).

We recorded three sets of images (23 � 11 � 253 images each)
with different camera settings for three internal box conditions: (a)
box with four black walls, (b) box with three black walls and one
long white wall, and (c) box with three black walls and one long
wall with a pattern of vertical black and white stripes (stripe width
2.5 cm). The camera settings and their consequences were as
follows:

1. Low camera gain (gain 1).1 This results in comparatively dark
images with only slight differences between black and white walls
and between black walls and the ground. The ceiling light outside
the box remains visible in the images (except for images recorded
close to the center of the box).

2. High camera gain (gain 2.25). This setting achieves higher
sensitivity to low light intensities, but also leads to saturation at
high intensities. The difference between black and white walls is
increased, slight differences in brightness of the walls and the floor
become visible, together with weak reflections on the white wall.
The part of the image viewing the ceiling saturates, and the ceiling
light is no longer visible. The brightness difference between the
ceiling and the upper edge of the box is increased. Compared with
gain 1, this camera setting basically tests for effects of quantization
and the visibility of the ceiling light.

3. Gamma correction switched on while camera gain is set to 1.
This setting maps light intensity to pixel values in a nonlinear way.
The 10-bit intensity values of the camera are mapped to 8-bit pixel
values of the image according to I[8bit] � 255 (I[10bit]/1023)0.45

(Allied Vision Technologies, 2004). This compresses the higher
dynamic range and results in higher resolution of low light inten-
sities and lower resolution for high light intensities without caus-
ing saturation. Gamma-corrected images thus have strong differ-
ences between white and black walls, and the ceiling light is still
clearly visible through the cloth screen. We included this camera
setting because biological photoreceptors often have nonlinear
intensity scaling.

Image Preprocessing

In addition to using three different camera settings described
above, we also tested the effect of manipulating the contrast
between the black and white walls by applying a lower threshold
to the 8-bit gray values of images recorded with camera gain 1. All
pixel values less than 32 (out of 256 values) were set to 32. This
operation, which we refer to as threshold 32, simulates the oppo-
site to the high intensity saturation provided by gain 2.25.

We also applied a simple edge detector to the unwarped pan-
oramic images, which can be thought of as mimicking edge en-
hancement by lateral inhibition in the visual system:

1. Images were filtered with a linear Difference of Gaussians
(DoG) filter (size 9 � 9 pixels, standard deviations of the two
Gaussians were �1 � 1 pixel and �2 � 2 pixels). This operation
removes low spatial frequencies, removes all homogeneous sur-
faces from the image, and causes image difference functions
(IDFs) to become flat in the center of the box.

2. We computed a binarized image by applying a threshold: All
pixel values below threshold were set to 0; values greater than
threshold were set to 1. The threshold was chosen so that the upper
edge of the box would be emphasized in all images. This operation
ensures that only strong responses by the linear DoG filter are
regarded as edges. Without thresholding, rotational errors were
less pronounced, but IDFs still exhibited clear minima.

3. We blurred the images with a Gaussian filter with standard
deviation � � �3 pixels. This additional operation enhances the
“smoothness” of the IDF and thereby reduces the number of local
minima that can interfere with successful homing. It also compen-
sates for small errors that are introduced by small remaining
misalignments of the camera system with respect to the box
reference frame.

We investigated what effect other filter parameters than the ones
we used would have on the shape of IDFs for edge images; we
found that results did not appear to be very sensitive to variations
in filter parameters. Edge detection using a “standard” edge de-
tector (Canny, 1986) usually gave similar results.

Determining Difference Functions

The image difference between two images IA and IB, each
consisting of N pixels, was calculated as the mean square pixel
difference (MSPD) over all corresponding pairs of pixels, that is,

MSDP�IA,IB� �
1

N �
i�1

N

�I i
A�I i

B�2

Because we did not make any assumptions about an animal’s
orientation in the box, we computed the MSPD for all possible
relative image orientations (in steps of 1°) and then used the
minimum MSPD as the image difference at that particular location.
The IDF is the two-dimensional distribution of image differences
between a reference image and the other images of the recording
grid inside the box; that is, the IDF is a function of location (for

1 A video camera with a CCD sensor chip maps light intensity (irradi-
ance) linearly to sensor voltage. Before analog to digital conversion, the
voltage is amplified according to the selected gain.
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further details, see Stürzl & Zeil, 2007; Zeil et al., 2003). In
view-based matching, a reference image is taken at the target
location, and the animal or robot uses differences between the
reference image and the images at any particular location (i.e., the
IDF) to determine the next step to take (see Vardy & Möller,
2005).

Homing Algorithm and the Catchment Areas of
Panoramic Snapshots

We wanted to analyze whether an animal, in principle, could use
the distribution of image differences inside a rectangular box to
relocate a target position (the location at which a reference image
was stored). To do this, we estimated the local slope of the IDF by
comparing the difference of all images in a certain neighborhood
with the reference image and by computing the direction of move-
ment for each position on the sampling grid. We chose the neigh-
borhood to be either the eight next neighbors or the 24 nearest grid
positions, including next-but-one neighbors. The local direction of
movement (depicted as vectors in the figures) was then made
toward the position within the local neighborhood with the greatest
drop in image difference. A larger neighborhood reduces the
chance of “getting stuck” in a local minimum of the IDF. We
denote those regions inside the box as catchment areas that, on the
basis of the locally estimated movement directions, lead to a single
minimum of the IDF.

Results and Discussion

The Shape of Image Difference Functions in a
Rectangular Box

Box with four black walls with and without corner features.
We explain our basic results and our conventions in Figure 2.
Panoramic views of the box (camera gain 1) from the training or
target corner are shown in Figure 2A. The pictures are surrounded
by a rectangle to represent the internal condition of the box; in this
case, the box carried four black walls and had either no corner
features (left column) or included corner features (right column).
The IDF (Figure 2B) for the reference image taken in the top right
corner of the box (d in Figure 2C) has a clear maximum in the
center of the box and four minima in the corners for both box
conditions. The IDF is elongated in the x-direction (primary axis)
of the box, as can be seen best in its two-dimensional representa-
tion shown in Figure 2C, together with our labels for the four
corners (a–d), the location of minima (crossed lines), and the
transects through the minima (continuous and dashed lines). Figure
2D displays the IDF across the transects at the locations of minima
with five IDF values shown at 5-cm intervals, except for values
that exceed the y-axis scale. The results of two local homing
algorithms are shown in Figures 2E and F. They differ in the extent
of the local area over which image differences are compared to
establish the direction of the slope of the IDF (next neighbor
homing in Figure 2E and next-but-one neighbor homing in Figure
2F). In Figures 2E and F, the local direction of decreasing image
differences are indicated by arrows. The differently shaded areas
denote the catchment area of a given minimum, that is, the range
over which an agent following the local directions would reach this
particular minimum.

In this basic configuration in which the box either does not
contain any internal features, except for the upper and lower edges,
or does not contain apparently very salient visual features marking
each corner, a number of observations are noteworthy: The image
differences relative to the reference image vary smoothly, with
maximal values forming an elongated “hill” in the center of the
box and decreasing toward the four corners. Minimal values are
reached both in the target corner (d) and in the corner diagonally
opposite (b), corresponding to the corners visited by animals when
they exhibit a rotational error. For the box without internal features
(Figure 2, left column), this is not surprising as the two diagonally
opposite corners are visually indistinguishable. However, even
apparently distinct corner features do not change this basic prop-
erty of panoramic image differences (Figure 2, right column). In
both box conditions, an agent placed in the center of the box and
moving to minimize image differences would clearly end up in one
of the two corners. If released repeatedly in slightly varying
positions, or if allowed to search around the box, such an agent
would show a rotational error: It would end up most often in the
target corner (d) and the one diagonally opposite (b), as these have
larger catchment areas compared with the other two geometrically
incorrect corners (Figures 2D, E, and F), irrespective of whether all
corners are marked by distinct visual features.

Boxes with three black walls. One of the most surprising and
consistent findings in animal studies is that animals continue to
make rotational errors, even if the box carries more dominant
features than individual corner marks (e.g., by having distinctly
colored walls). We set out to test to what extent the IDF in a
rectangular box changes when these features are present. We
therefore collected two further sets of images in a box with three
black walls and one white wall and a box with three black walls
and one wall carrying a pattern of 2.5-cm wide black and white
vertical stripes. The IDFs, their minima, and the catchment areas
for these two situations are shown in Figure 3. The first result to
note is that the conditions for a rotational error are still met in both
cases, but that in the presence of a white wall, the difference
function has two pronounced and one shallow minima. However,
it is still the case that the two deepest minima are at the target
location (d) and the corner diagonally opposite (b). Therefore,
even in a situation when the inside of the box contains large and
conspicuous features (i.e., cues to its orientation and to the identity
of corners), navigation by global image differences still leads to
rotational errors. Most surprising at first sight, a highly structured
and seemingly more salient pattern, such as the vertical stripes in
the second case, actually generates more distinct rotational error
conditions than a homogeneous white wall. Although one would
have thought that more internal visual structure would reduce
rotational errors, this counterintuitive result is due to the fact that
global pixel-by-pixel image differences actually become smaller
with the addition of the black pixels in the striped pattern.

In a box with three black walls, the difference function may
depend on which corner is chosen as the target. As can be seen by
comparing the difference functions in Figure 3 with those shown in
Figure 4, where the target is in corner b, this is indeed true for the
box with a white wall but not for the box with a wall with a stripe
pattern (see Figure 4).

The dependence on target location in the box with one white and
three black walls prompted us to look again at individual data in
Cheng’s (1986) reference memory experiment (Experiment 2).
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Figure 2. The image difference function (IDF) in a box with four black walls without (on the left) and with
distinct corner features (on the right). (A) Panoramic views of the box as seen from the target location. The target
location is marked with a black circle and the condition of the box walls is shown in the color of the frame. (B
and C) The difference function: Global image differences (mean squared pixel differences [MSPDs]) between the
reference image and images recorded at regular grid locations inside the box are shown as a three-dimensional
surface (B) and as a two-dimensional gray-level map (C). In C, the locations of minima are labeled by crossed
lines and letters a–d. The target location d is marked by a small square. (D) Difference functions over the
horizontal (crosses and solid lines) and vertical (circles and dashed lines) transects through the neighborhood of
minima in the four locations a–d, as indicated by continuous and dashed lines in C. For each transect, five IDF
values are shown at 5-cm intervals, except for values that exceed the y-axis scale. Note that the difference
function minimum is most pronounced in the target location d and in the diagonally opposite location b in both
box conditions. (E and F) The catchment areas of the reference image: Local arrows point in the direction of
the largest local decrease of image differences, between the reference image at d and the images taken at different
grid positions. Arrows thus point along the slope of the IDF. The differently shaded areas mark those domains
in the box from which the gradient leads to one minimum. (E) Local image differences are determined only for
the 8 neighboring locations. (F) Local image differences are determined for 24 neighboring locations, including
next-but-one neighbors. Camera gain setting was 1. For further details, see the Method section.



Although individual data were not published, they are available.
When rats were tested in the box with three black walls and one
white wall, target locations were counterbalanced across rats, so
that two rats had targets near a white wall and two had targets at
a corner surrounded by two black walls. We tallied rotational
errors as the proportion of all errors. From Figures 3 and 4 (left),

the errors should be more evenly distributed for rats with all black
corners, as the nontarget minima are more similar. For the two rats
trained to a corner with a white wall, proportions of rotational
errors were 1.00 and 0.94. For the two rats trained to an all-black
corner (excepting the panel at the corner), the proportions of
rotational errors were 0.39 and 0.66. These differences, even with

Figure 3. Difference functions for a box with different internal cues. (Left) Box with one white and three black
walls. (Right) Box with one wall carrying black and white vertical stripes and three black walls. Conventions and
camera settings as in Figure 2. Note that in both cases, the difference function has its most pronounced minima
at the target location d and the location diagonally opposite b.
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the tiny sample, are actually statistically significant ( p � .05,
one-tailed). Thus, view-based navigation might well play a role in
explaining this pattern. However, this dependence on the location
of the target corner also is influenced heavily by the intensity
scaling and preprocessing of the image, as we will show next.

The Effects of Nonlinear Intensity Scaling

Our results so far indicate that the geometry of a rectangular box
is not necessarily a distinct set of cues that is separable from other
features and requires special computations to extract. Rather, ge-
ometry is contained in the views animals have of the box as
demonstrated by the fact that view-based image matching can
result in rotational errors. Our second hypothesis was that the
relative salience of the visual cues determines whether the features
or the shape of the box dominate the image transformations expe-
rienced by an animal searching within such an experimental space.
We investigated this conjecture by testing the influence of simple
image preprocessing strategies on the shape of the IDFs. This also
allowed us to check how sensitive our results are to the distribution
of pixel values in panoramic images.

We investigated the effects of different ways of coding intensity
on the IDFs in two of the cases considered earlier: for the box with
three black walls and one white wall, with the target location in
two different corners (top and bottom panel, Figure 5). For each of
these conditions we compared four different settings of gain,
threshold, and gamma transformation (as indicated in the first
column of Figure 5; see Method section for details). The results are
expressed as before as a gray-level coded map of image differ-
ences (Figure 5, second column), as transects through IDFs across

the corner minima (Figure 5, third column), and as a map of local
slopes (Figure 5, fourth column).

The results show that image contrast matters in the box with one
white wall for both target locations: For location d (top right box
corner, flanked by a white and a black wall), the rotational error
condition persists across different ways of coding intensity,
whereas for location b (bottom left corner in the box, flanked by
two black walls), only the threshold 32 operation produces rota-
tional error conditions both in terms of depth of minimum and size
of catchment area. Note that this operation minimizes any shading
variations on the black walls and effectively decreases the differ-
ence in pixel values between the black and white walls. As a
consequence, the visual salience of the internal cues is reduced.

We conclude from these results that, in certain conditions, the
distribution of image contrast does not significantly change the
shape of IDFs, but that in other box conditions, slight variations in
nonlinear intensity scaling, especially of the gray levels of black
walls, do lead to qualitative differences (e.g., in the case of target
location b in a box with one white and three black walls).

The Effects of Image Preprocessing

Next, we asked how well corner locations are defined when
edges provide the only salient cues in the box. We reasoned that
this would also allow us to disentangle the effects of geometric and
featural cues. We find indeed that the more internal contours are
emphasized, the weaker rotational error conditions become be-
cause the views in different corners become unique. In turn,
rotational error conditions are more pronounced when the edges of
the box are more salient.

Figure 4. How difference functions depend on the target location. Compared with the situation in Figure 3, the
target location is now at location b. Conventions and camera settings as in Figure 2. Note that for the box with
one white wall (left), the two most pronounced minima are now located at the target location and location c, but
not in the diagonally opposite corner. This is not so for the box with a striped wall.
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The images in the second row of Figure 6 show the reference
images with gain 1 after edge detection for the four standard box
conditions (shown schematically in the first row, Figure 6). Before we
applied our edge-detection algorithm, we preprocessed the images by
applying gain 1 (top row of images), which emphasizes box contours;
gain 2.25, which increases the contribution of small intensity values;
or a gamma transformation, which does so in a nonlinear way (images
in the bottom row). The transects through the IDF across the corner
minima in Figures 6A to C show that gain 1 images produce the most
pronounced conditions for rotational errors (clear minima at diago-
nally opposite locations, Figure 6A), whereas these conditions be-
come weaker or disappear with gamma-processed images in which
internal features contribute to the image (Figure 6C).

Experiment 2: Virtual Reality Simulations

There are limits to how far we can test our hypotheses in
“real-world” experiments. This is especially true when we ask how
different visual cues in experimental boxes contribute to image
differences and how these cues may be used to drive behavior.
Manipulations addressing these questions are difficult to imple-
ment in real arenas (e.g., swapping the brightness levels of the
white wall and the ceiling). In virtual reality, such manipulations
are straightforward. We therefore reconstructed a rectangular box

in a virtual reality environment to test whether it would allow us to
answer these questions. We designed these virtual reality experi-
ments in two steps: We first asked whether IDFs have the same
properties in the real world and in virtual reality, and then went on
to test our second hypothesis, namely that the visual appearance of
the edges of the box is primarily responsible for rotational errors.

Method

All virtual reality simulations and subsequent data processing
were carried out using a Moebius PC with an Intel Pentium 4 CPU
(3.2GHz, 1GB RAM) and an nVidia GeForce 6600 graphics card.
Virtual environments were generated using software written in
OpenGL (open source graphics library), developed in a Visual
C�� programming environment (Microsoft Visual Studio .NET
2003). Image transformations and subsequent data processing were
carried out using software written in MATLAB R13 (Mathworks,
Natick, MA).

Construction of Virtual Reality Environments

The virtual reality images of experimental boxes were con-
structed as follows: Texture bitmaps were created in MATLAB for
all surfaces (including ground and sky), using desired gray pixel

Figure 5. How the relative depth of difference function minima depends on the nonlinear intensity scaling in
a box with one white wall. The target location is either at d (top four rows) or b (bottom four rows). Conventions
as in Figure 2, with the catchment areas (right column) determined over 24 nearest neighbor locations. Settings
vary along rows in both cases (for details, see the Method section), as indicated in the first column. Note that
gain settings have little influence on difference functions in the case of target location d, but do affect the results
qualitatively in the case of target location b.
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values (0–255). The textures were single homogeneous gray val-
ues for each entire rectangular surface. In-house software (Allen
Cheung, The Australian National University) was developed in
OpenGL (in a Visual C�� environment), which allowed relevant
shapes (e.g., triangles, rectangles) to be drawn at specified three-
dimensional locations and orientations and the predefined textures
to be pasted onto these shapes. No light source was added so that
there was no possibility of distortion of the pixel values.

To capture a fully panoramic view of this environment, we used
six perpendicular viewports, each spanning 100o with 200 � 200
pixel resolution in a manner similar to Neumann (2002). The result
may be described conceptually as a “viewing cube.” The OpenGL
software was compiled into a MATLAB executable file (MEX
file) and took position and orientation values as input, returning the
image as its output.

Further software was developed in MATLAB that allowed the
viewing cube image to be unwarped into spherical coordinates to
mimic as closely as possible the experiments in the real box.
Unwarping involved a single mapping between viewing cube pixel
values and the final image (in spherical coordinates). Pixel values
at noninteger positions were bilinearly interpolated from the near-
est four pixels (forming a square). The final panoramic image
extended 180o in elevation and 360o in azimuth, with 1o resolution.
The viewpoint of the imaging apparatus described previously was
estimated to be approximately 5 cm from the ground surface. This
was the viewing height adopted for the virtual reality simulations.
The reference and sampling positions were identical to that of

experiments in the real box. All further processing of virtual
images were identical to that of real images unless otherwise
specified.

Procedures for Simulations

We first simulated the standard rectangular box with one white
wall and three black walls. The procedures for generating IDFs and
catchment areas followed those of Experiment 1, except that pixel
values were derived from virtual reality rather than a gantry-
controlled camera system. We then used virtual reality to radically
alter the salience of external and internal cues to test our hypoth-
esis that this may have a crucial effect on the IDF in rectangular
spaces. A standard virtual reality environment was compared with
a manipulated environment that increased the salience of internal
walls and box shape-related cues. This was done by interchanging
the brightness levels of the ceiling and the white wall. This
operation enhances the internal (featural) cue of the white wall and
reduces the salience of the external (geometric) cue of the upper
edge of the box. We thus predicted that it would reduce the
proportion of rotational errors.

Results and Discussion

Comparison of Virtual and Real Boxes

Figure 7 shows panoramic views of the standard box with one
white and three black walls from the center of the box (Figures 7A

Figure 6. Difference functions after edge detection and their dependence on gain. Box conditions are shown
in top row pictograms. Images have been processed (for details, see the Method section) to contain mainly the
edges of the scene (top row are gain 1 images, bottom row are gamma-transformed images). A–C show
difference functions over transects through the minima for three different image preprocessing regimes. Note that
with the top edge of the box dominating the scene (A), the most pronounced minima of the difference function
lie at the target location and at the diagonally opposite corner. The top edge thus produces conditions favoring
rotational errors. Gamma transformation (C) highlights in addition the internal edges of the box and the grating
pattern to the extent that conditions leading to rotational errors become weaker (columns 1 and 3) or even
disappear (columns 2 and 4). For further details, see text.
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and B) and from the target corner (Figures 7C and D). Figures 7A
and C are images taken inside the real box, and Figures 7B and D
are the equivalent views in the virtual box. Comparing these
images demonstrates clearly that the virtual environment allowed
us to remove spurious cues inside the box because we could make
surfaces completely homogeneous.

To explore how the properties of our virtual environment com-
pare with those of the real box, we determined the IDF in the
virtual box by using the reference image, taken with gain 1 setting,
from the real box (Figure 8, left column) and comparing it with the
IDF using the reference image from the virtual box (Figure 8, right
column). Two results are noteworthy first: Both the overall shape
of the IDFs in these two cases (compare left and right panels of
Figures 8B and C) and the relative differences of the minimum
MSPD values of corner minima (compare left and right panels of
Figures 8C and D) are similar. However, there are also differences:
The gradients of image differences in the vicinity of minima are
steeper in the IDF determined with the virtual compared with the
IDF determined with the real reference image (Figure 8D), which
is a consequence of the fact that brightness transitions at the edges
are harder in virtual compared with real images. Furthermore—and
surprisingly—the IDF for the virtual reference image has two
additional shallow local minima at locations marked by circles in

Figure 8E. These properties also are reflected in the catchment
areas for the two situations (Figure 8E). These local minima do not
occur with the real reference image (and are also absent in the real
box; see Figure 3, left column), possibly because slight variations
of brightness on the walls (see Figure 7) make real box views more
distinct compared with the homogeneous surface brightness in the
virtual box, which can lead to spurious local image similarities.
We concluded that the conditions in real and virtual experimental
spaces are sufficiently similar for virtual reality experiments to be
a useful tool for the investigation of view-based homing in such
simple visual environments.

Altering the Salience of Internal and External Cues

Figure 9 compares the standard box with one white and three
black walls (left column) and the same virtual box in which the
brightness of the “sky” and the brightness of the white wall have
been interchanged (right column). As predicted, the data in Fig-
ure 9 show that increasing the salience of internal cues reduced
rotational errors. In the box with the brightness values of the sky
and white wall interchanged, the IDF has only one minimum,
which is located in the target corner. The catchment area of the
reference image practically spans the whole box (Figures 9E and
F), with the two remaining shallow minima located along the same
white wall. Most significant, there is no detectable minimum at the
diagonally opposite corner. In short, salience of external, box-
related cues produces conditions favoring rotational errors,
whereas salience of internal cues eliminates rotational errors.

General Discussion

We have shown in robotic experiments and in virtual reality
simulations that panoramic snapshots contain information about
the geometry of rectangular experimental arenas as they are used
in many studies of spatial memory in animals. Our results suggest
that an animal that is sensitive to image transformations in such
rectangular spaces, and that moves to minimize image differences
when relocating a goal, would exhibit rotational errors on the basis
of purely pixel-by-pixel global image matching. The assumption is
that animals memorize the panoramic view at the target location
and use it as a reference when moving around the rectangular
space. Relocating the target location would then be achieved by
moving in such a way as to minimize image differences (Cart-
wright & Collett, 1983; Franz, Schölkopf, Mallot, & Bülthoff,
1998; Vardy & Möller, 2005; Zeil et al., 2003). We have shown
that no feature extraction is needed for this process to work. The
processing of the images is simple and does not go beyond edge
detection, a characteristic of early visual processing in many
animals. In particular, there is no need to explicitly compute or
extract geometric properties such as shape parameters or fea-
tural cues. Results varied, but under many conditions, espe-
cially those that de-emphasized internal features, the conditions
for rotational errors were prevalent. The depth of the local
minimum at the location of rotational errors, and hence the
extent to which the rotational ambiguity may affect searching
animals, depends on the visual salience of the top and bottom
edges of the box relative to internal visual cues arrayed on the
walls. Our analysis thus suggests that panoramic image differ-
ences may explain why some animals make rotational errors in

Figure 7. Comparison of “real-world” (gain 2.25) and virtual (computer-
generated) views of a rectangular box. (A) View from the center of the real
box. (B) The corresponding view in the virtual box. (C) View from the
target location in the real box. (D) The corresponding view in the virtual
box. Note the effects of illumination and wall reflections in the real images.
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these rectangular boxes when attempting to relocate a hidden
reward close to one of the corners. Therefore, it is not necessary
to invoke a distinct geometric module for computing and rep-
resenting geometric properties to account for the rotational
errors of animals in these simple environments.

Although the empirical literature on the use of geometry in
navigation has burgeoned, the question of how information on the
geometry of a space is extracted and encoded has been little

addressed. Gallistel (1990) hypothesized that animals in experi-
mental spaces use the principal axes of space for orientation by
extracting a global shape parameter, whereas others (Pearce, Good,
Jones, & McGregor, 2004; Tommasi & Polli, 2004) recently have
suggested that local geometric cues such as corner angles deliver
the geometric cues. So far, experimental results are ambiguous on
this issue, and Cheng (2005) therefore proposed that geometric and
featural cues are encoded together, but that some computational

Figure 8. Difference functions in a virtual reality box, with the reference image (A) taken in the real box (left
column, gain 1) or in the virtual box (right column). The left image in Figure 8A is the same image as the one
in Figure 3A, but it appears brighter because of different gray value mapping to make comparison easier.
Conventions as in Figure 2. Note the presence of additional local minima in the fully virtual case. Virtual images
were clipped to 115o elevation range to match real image size. For details, see text.
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process based on shape parameters produces rotational errors. Our
present, entirely view-based interpretation is simpler and more
parsimonious than current theories that explicitly extract local
features or global geometric properties. It is more parsimonious
because no image segmentation is needed, and the early visual
processing used in our simulations are known for most visual

systems, including those of all the animals studied in the geometry
literature.

Our analysis brings the novel insight that geometry and features
are contained in the same, early visual representation, namely
panoramic snapshot views, and that how animals search in rect-
angular boxes may depend on the relative salience of those cues.

Figure 9. A test for the role of salience, by emphasizing or de-emphasizing the top edge of the box.
Conventions as in Figure 2. (Left) Difference function with the top edge of the box seen against a bright “sky”
(see A). (Right) Difference function after pixel values between “sky” and the white inner wall of the box have
been swapped. Note that conditions favoring rotational errors prevail when the top edge of the box is most salient
(left), whereas a unique minimum develops at the target location when internal box features are most salient
(right). The gray levels in both images were scaled linearly, and they maintained the full elevation range of 180o

possible in the virtual environment.
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The explicit extraction of any kind of information on environmen-
tal shape is not necessary. Instead, the IDFs in rectangular or
elongated boxes are oriented reflecting the geometry of the space
in which they are determined (see also Collett & Zeil, 1997; Zeil
et al., 2003). Thus, complicated schemes of geometric representa-
tion are not needed when the geometry of space is implicitly
represented in the orderly transformations of images as an animal
moves through that space (e.g., Gibson, 1950).

In our modeling, we have used panoramic views. Some animals
may not have panoramic views, and this may have implications for
the relative salience of geometric and featural cues. Sovrano and
Vallortigara (2006), working with chicks, argued that restricted
visual fields lead to relatively more salience for geometry in
smaller spaces and relatively more salience for features in larger
spaces. At a given distance from a corner, a narrow visual field
takes in less of the geometry of larger spaces because it may view
only one or two corners. In a smaller space, the same visual field
may view more corners and, hence, more geometric characteristics
(see Sovrano & Vallortigara, Figure 3). Indeed, chicks learn ge-
ometry better in a smaller than in a larger space, and they learn
features better in a larger than in a smaller space (Chiandetti,
Regolin, Sovrano, & Vallortigara, 2007). Modeling the informa-
tion content of restricted visual fields, however, requires informa-
tion on the viewing directions of searching animals, which is not
available at the moment.

Outlook

The information content of panoramic images will not account
for all experiments done in enclosed spaces. However, the possi-
bility that search in these spaces is dominated by view similarities
does generate eminently testable predictions. As we have demon-
strated, the detailed distribution of light and contrast in these
experimental environments plays a crucial role in modifying the
relative salience of cues specifying geometry and features. This
observation immediately suggests systematic ways of manipulat-
ing the salience of internal and box-related cues. For instance, the
salience of roof and floor may be reduced by making them the
same intensity as the majority of the walls. Our prediction would
be that reducing the salience of internal cues would increase the
proportion of rotational errors. Given that view-based homing
strategies in visually cluttered and complicated environments have
been very successful in modeling insect search behavior and in
robotic implementations (e.g., Cartwright & Collett, 1983; Franz et
al., 1998; Stürzl & Zeil, 2007; Vardy & Möller, 2005; Zeil et al.,
2003), it would be important in future studies to specify carefully
the visual input given to animals, including considerations of type,
position, and intensity of illumination, all of which influence the
visual salience of cues in these experimental spaces. In addition, it
will be important to accurately monitor how animals actually move
in these environments on a moment-to-moment basis and to learn
more about early visual processing in animals involved in these
experiments. As we have shown, the extent to which view-based
navigation can explain how animals orient in rectangular arenas
depends heavily on how they process, store, and recall remem-
bered views.

We also have shown that virtual reality experiments are a
powerful tool for testing view-based explanations of animal search
behavior in simple experimental spaces. We have provided a proof

of concept and show in the companion article (Cheung et al., 2007)
how this tool can now be used to probe many variants of experi-
ments designed to unravel the contributions of space shape and
feature cues to the task of localizing a goal. It will be especially
useful to understand and predict the search behavior of animals in
nonrectangular spaces, the visual appearance of which is difficult
to analyze in any other way (e.g., Graham, Good, McGregor, &
Pearce, 2006; Pearce et al., 2004; Tommasi & Polli, 2004). This
topic is the subject of the companion article (Cheung et al., 2007).

Conclusions

In artificially constructed spaces, animals sometimes confuse
locations that stand in the same geometric relation to the shape of
the space, even when the two locations differ in many local
features. We have shown that explicit computations of the geom-
etry of space are not needed to explain such rotational errors.
Instead, under a range of conditions, the information contained in
panoramic views can lead to rotational errors. By comparing the
information content of real images with virtual reality simulations,
we have demonstrated that the latter provide a powerful technique
for exploring the potentials and the limits of view-based search
strategies in confined experimental spaces.
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