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Abstract: Substantial evidence suggests that nervous systems simplify motor control of complex body geometries by 

use of higher level functional units, so called motor primitives or synergies. Although simpler, such high 

level functional units still require an adequate controller. In a previous study, we found that kinematic inter-

joint couplings allow the extraction of simple movement synergies during unconstrained 3D catching 

movements of the human arm and shoulder girdle. Here, we show that there is a bijective mapping between 

movement synergy space and 3D Cartesian hand coordinates within the arm’s physiological working range. 

Based on this mapping, we propose a minimal control schema for a 10-DoF arm and shoulder girdle. All 

key elements of this schema are implemented as artificial neural networks (ANNs). For the central 

controller, we evaluate two different ANN architectures: a feed-forward network and a recurrent Elman 

network. We show that this control schema is capable of controlling goal-directed movements of a 10-DoF 

arm with as few as five hidden units. Both controller variants are sufficient for the task. However, end-point 

stability is better in the feed-forward controller. 

1 INTRODUCTION 

The complex biomechanics of limbs like the primate 

arm facilitates the generation of a remarkable variety 

of dexterous and context-dependent behaviors. 

However, the large number of degrees of freedom 

(DoFs), e.g. ten DoFs of the human arm and 

shoulder girdle, complicates the required neural 

control. This issue is known as motor redundancy 

problem (Bernstein, 1967). 

Central nervous systems (CNS) seem to easily 

overcome this problem. One proposed mechanism 

used by the CNS for the solution of the redundancy 

problem is the combination of several DoFs into a 

small set of higher level functional control units, 

typically referred to as movement synergies or 

primitives. There is substantial evidence that this 

general concept is realized in vertebrate nervous 

systems in one way or another (for reviews see Flash 

and Hochner, 2005, and Ting and McKay, 2007). 

Because the complexity of the control problem 

depends on the number of controlled variables, these 

synergies can simplify the control of the limb. Here, 

we propose and evaluate a synergy-based and 

closed-loop control schema that can be implemented 

as a modular artificial neural network. 

Classical studies on human reaching movements 

tended to search for global optimization parameters 

like speed (Atkeson and Hollerbach, 1985), jerk 

(Flash and Hogan, 1985), or torque change (Uno, et 

al., 1989). Most, if not all of these studies were 

based on well-controlled but strongly constrained 

movement paradigms, such as center-out tasks with 

planar movements and fixed shoulder position. 

Although these studies identified movement 

invariants, they did not specify models of how the 

brain could use them to overcome the problem of 

redundancy. Furthermore, these invariants are based 

on predictive strategies, i.e. global parameters that 

are optimized offline and prior to the actual 

movement. In these strategies sensory feedback 

during an ongoing movement plays only a minor 

role. 



 

In contrast, current concepts of goal-directed 

behavior favor prospective strategies that (a) 

explicitly take into account sensory feedback during 

ongoing behavior and (b) define motor goals in a 

task space that is then mapped to motor output 

(Todorov, 2004). Both of these aspects are realized 

in the approach we propose here: (a) It relies on 

continuous sensory feedback and (b) exploits a small 

set of movement synergies, which can be viewed as 

a set of elementary motor tasks as each synergy by 

itself defines a valid movement. 

In a previous experiment (Bockemühl, et al., 

2010) we studied natural and unconstrained arm 

movements during a catching task in a large portion 

of the arm’s workspace and recorded 10-D joint 

angular time courses thereof. Using principal 

components analysis (PCA) for synergy extraction 

we found that the distribution of recorded postures 

that occur during movements can be described 

efficiently by linear combinations of a set of three 

inter-joint couplings. We also found that the 

individual contributions of these kinematic synergies 

varied systematically with catching position in 

external (Cartesian) hand coordinates. Together with 

the fact that three is the minimum number of 

synergies for control of end-effector position in 3D, 

this suggests that neural control of arm movements 

may exploit a simple mapping between synergy 

space and Cartesian space. Here, we show that the 

mapping between synergy space and hand position is 

bijective within a large physiological working range. 

Based on the three movement synergies that 

capture natural inter-joint couplings, we propose a 

simple closed-loop control schema for a 10-DoF 

limb consisting of shoulder girdle, upper and lower 

arm and hand. All elements of this schema are 

implemented as ANNs. We evaluate two alternative 

ANN variants as central controller: a multilayer 

feed-forward network and a recurrent Elman 

network. 

We show that both controller variants we 

examine here can generate physiological trajectories 

of goal-directed reaching movements, similar to 

those found experimentally. The networks are also 

capable of generating reaching movements towards 

novel targets, as well as smoothly interpolating 

between two different movements. Internal 

recurrence in the Elman controller improves learning 

of physiological training data. In contrast to the 

multilayer feed-forward network, however, the 

Elman controller shows a tendency to drift and fails 

to maintain a resting posture that keeps the hand at 

the target position. 

2 MATERIAL AND METHODS 

2.1 Kinematic Model 

We use a 10 DoF kinematic model of the human 

upper limb, i.e., arm and shoulder girdle. The model 

comprises 4 segments corresponding to a collarbone 

that moves the shoulder joint with 3 DoFs, a 

shoulder joint that moves the upper arm with 3 

DoFs, an elbow and lower arm with 2 DoFs, and a 

hand with 2 DoFs. Segment lengths within the 

model are adjusted individually for each one of nine 

recorded human subjects (Bockemühl, et al., 2010). 

Consequently, each set of 10 joint angles is 

equivalent to a unique posture, and standard forward 

kinematics can be used to calculate the hand position 

(end-effector). 

2.2 Inter-joint Coupling Gives Rise to 
Movement Synergies 

The inter-joint couplings found in natural human, 

one-handed catching movements are equivalent to 

the first three principal components (PCs) of 10-D 

arm postures (Bockemühl, et al., 2010). Each PC 

constitutes a movement synergy so that each posture 

can be described by a linear combination of the 

mean posture of the original data set and a weighted 

sum of three movement synergies. Because the 

kinematic model, mean posture, and movement 

synergies are fixed for a given subject, any hand 

position in 3-D Cartesian space can solely be 

described by a 3-D vector of scores that scale the 

contribution of each synergy (see Equation 1). 
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Here, p(t) represents a 10-D posture at time t, m 

is the mean posture, si(t) is the score of the posture 

p(t) on the i
th

 synergy, and vi is the i
th

 synergy. 

Modulating the scores in a target-dependent manner 

therefore generates target-dependent hand 

trajectories. 

 

2.3 Control Structure and Artificial 
Neural Networks 

Given the current hand position and a target 

position, e.g., the position of a ball to be caught, our 

main goal is to generate an appropriate time series of 



 

postures that moves the hand from its current 

position to the target. Appropriate means that hand 

trajectories should match the measured ones. Since 

natural movements are marked by substantial inter-

joint couplings, we propose a control structure that 

exploits these natural inter-joint couplings (Fig. 1). 

This control schema contains an ANN module 

that implements motor synergies in the form of a 

feed-forward network (called synergy network in 

Fig. 1). This module maps 3-D score vectors onto 

10-D posture vectors in analogy to Equation 1. 

The output of the synergy network can be 

described by 
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where wji is the weight matrix which is 

equivalent to the 3x10 loadings of the PCs and that 

are used as motor synergies here. The controller 

compares the target position vector with the current 

hand position and calculates the score changes 

necessary to minimize the difference. The result is 

added to the current 3D score vector, thus updating 

the arm posture for the next iteration. 

We evaluate two different ANN controller 

variants. The first is a two-layered feed-forward 

network; the second is a recurrent Elman network 

(Elman, 1990). Both ANNs are identical except for 

the additional recurrent connections comprising the 

context layer of the Elman network (Figure 1). 

 

Figure 1: Control schema with inserts showing the synergy 

network (top insert) and two ANN controller variants 

(bottom insert). Black structures only: two-layer feed-

forward network. Black and gray structures combined: 

recurrent Elman network. For clarity, the number of 

hidden units is set to 3 (h1 to hn). 



 

Owing to the small number of synergies, input 

and output of the controller are minimal and 

equidimensional: both the two input position vectors 

and the output synergy scores are three-dimensional. 

The output Δs of the two-layered feed-forward 

network can be calculated by 

 











 





6

1

,7,

1

,1, σ
i

i
in

ij
in
j

n

j

out
jk

out
nkk xwwwws

 

(3) 
 

 

Output of the recurrent Elman network can be 

calculated by the Equations 4 and 5. First, the 

intermediate output y
hidden

 at time t has to be 

determined by 
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Then, the output Δs at time t can be calculated 
according to 
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The input vector x in Eq. 3 and 4 contains the 

coordinates of the target position, tp, and the current 

hand position, cp (see Fig. 1). σ(x) is a hyperbolic 

tangent function used as sigmoid activation function 

of the hidden layer. 

2.3 Network Training 

Training data consist of a series of eight goal-

directed hand trajectories recorded during 

experiments in which participants were instructed to 

catch an approaching ball (Bockemühl, et al., 2010). 

Each trajectory starts at one of two initial positions, 

ends at one of sixteen target positions, and contains 

25 time steps. Half of the data set (eight trajectories) 

is used for training, the other half is used for testing 

generalization (further eight trajectories). In order to 

account for end-point stability, each trajectory is 

extended by a leading initial phase of 5 time steps 

during which the hand remains at the initial position, 

and a trailing target phase of 10 time steps during 

which the hand remains at the catching position. In 

accordance, the target position tp is kept at the 

initial position for 5 time steps and is subsequently 

set to one of the 16 prospective catching positions 

for the remaining trial. 

The goal of the training is to find weight 

matrices for the controller ANNs that generate 

physiologically plausible hand trajectories towards 

the target. The root mean squared error (RMSE) 

between training trajectories and generated 

trajectories was used as the evaluation function. 

Weight matrix optimization was realized via the 

Levenberg-Marquardt algorithm (Levenberg, 1944, 

Marquardt, 1963) implemented in MatLab 7.10 (The 

Mathworks). To avoid local minima, the training 

was repeated 100 times, using different randomly 

initialized weight matrices. As a main objective of 

this study was to determine the minimal size of the 

hidden layer, we tested ANNs with 3, 4, 5, 6 or 10 

hidden units. 

3 RESULTS 

3.1 The Mapping between Synergy 
Space and Cartesian Space is 
Bijective 

As our movement synergies are principal 

components of the joint angle space, they describe 

correlations between joint angles. Owing to the 

PCA, these synergies are orthogonal to each other. 

However, the mapping of synergy space into 

Cartesian space involves non-linear forward 

kinematics of the controlled arm and, therefore, 

needs not be bijective: multiple postures, and 

therefore synergy combinations, could result in the 

same hand position. A bijective mapping is a 

prerequisite for simple control of arbitrary point-to-

point movements though. To ensure that the 

mapping allows arbitrary hand positioning within its 

working range (surjective mapping) and that any 

combination of synergies leads to distinct hand 

positions (injective mapping), Fig. 2 shows the 

mapping of a 3D grid of synergy combinations into 

Cartesian space of hand positions. Although the 

mapping is non-linear, it covers a substantial 

fraction of the physiological range of a human arm 

(surjective) and the warped grid in Cartesian space 

has no overlapping regions (injective). 

 



 

 

Figure 2: Mapping between synergy space (A) and 

Cartesian space (B, C and D) of the right human arm. B: 

Frontal view. C: View from the right. D: Top view. The 

kinematic model as well as a stylized head are depicted in 

gray. Colors in synergy space correspond to the equivalent 

color in Cartesian hand space and vice versa. 

3.2 Training and generalization 

performance 

We find that both controller variants are able to 

adapt to the training data. Figure 3 shows 

representative results for training and generalization 

performance, using data from a single subject and 

initial position. 

During training, the networks with more than 

four hidden neurons reached RMSE values of less 

than 20 mm, regardless of network type. Elman 

networks with six or more hidden units even reached 

values as low as 5 mm. However, generalization 

performance leveled off at hidden layer sizes above 

4 units. As generalization is as important as learning 

performance on trained data, we used 5 hidden units 

for both controller variants in all other experiments. 

 

 

Figure 3: Performance of networks during training and 

during generalization. A: performance of feed-forward 

networks. B: performance of recurrent Elman network. 

 

 
 

Figure 4: Representative trajectories during 40 time steps 

generated by a feed-forward network (A and B) and an 

Elman network (C and D) containing five hidden units. A 

and C: trajectories to target positions encountered during 

training. B and D: trajectories to novel target positions. 

Red: trajectories generated by networks. Blue: trajectories 

measured during experiment. At the same time, blue 

trajectories seen in A and C are the training trajectories. 

View from the rear right side of the kinematic model. 

To illustrate overall controller performance, 

Figure 4 shows representative trajectories produced 

by a feed-forward network and an Elman network. 



 

Whereas trajectories of both controller variants are 

similar during the first half of the corresponding 

movements, differences occur toward the end of the 

trajectory. Here, the feed-forward network produces 

a small, terminal curvature in the vicinity of the 

target position. In comparison, the terminal 

trajectory of the Elman network shows less deviation 

from the physiological reference data, except for a 

small but distinct kink near the end. 

3.2 End-point Stability 

An important aspect of target-directed movement is 

the ability to keep the end-effector at the target after 

reaching it. We tested this ability of both controller 

variants by extending the presentation of target 

inputs by 70 time steps. A representative result is 

depicted in Figure 5. The prolonged holding phase 

emphasizes the differences in end-point stability. 

The feed-forward controller is much better in 

keeping the end-effector at the target, though the 

spirals at the end of high trajectories indicate 

damped oscillations of the posture, beginning with 

an overshoot followed by a gradual decline towards 

a stable endpoint. In contrast, the trajectories 

generated by the Elman controller tend to terminate 

in a drifting hand position, indicating a constant 

error output that slowly accumulates. The Elman 

controller seems not to be able to compensate for 

errors that occurr after the target is reached. 

 

 

Figure 5: End-point stability. A: Trajectories generated by 

a feed-forward ANN variant after 110 time steps (see also 

Fig. 4B). B: Trajectories generated by an Elman ANN 

variant after 110 time steps (see also Fig. 4D). 

 

 

4 DISCUSSION 

We have shown that goal-directed movement of a 

human-like limb consisting of arm and shoulder-

girdle can be modelled by a comparatively simple 

closed-loop control schema that comprises small 

neural network modules and physiological 

movement synergies. 

In classical studies, only artificial or reduced data 

have been used as a basis for the training of neural 

networks for motor control (e.g., Massone and Bizzi, 

1989, Kawato, et al., 1990, Massone and Myers 

1994, Karniel and Inbar, 1997). More recent efforts 

to model reaching movements based on ANNs do 

take a physiologically oriented approach (Koike, et 

al., 2006, Choi, et al., 2009) but still somewhat 

neglect the importance of motor primitives or 

synergies. 

In contrast, numerous studies find evidence in 

favor of a modular organization of the nervous 

system (e.g. Mussa-Ivaldi, et al., 1994, d'Avella, et 

al., 2006). Although these studies propose potential 

CNS structures that might be important for motor 

primitives, these studies often keep silent with 

regard to more concrete neural models and how 

exactly movement modules might be combined in a 

task- or goal-dependent manner in order to produce 

meaningful behavior. 

The approach presented here tries to 

accommodate both aforementioned aspects: We 

combine a connectionist approach based on ANNs 

with experimentally observed movement synergies 

during a natural reaching task. Combining several 

DoFs within one synergies and thereby reducing the 

complexity of the control problem allows us to 

exploit a bijective mapping between movement 

synergy space and task space. 

Comparative evaluation of the two controllers 

indicates that, for the present problem, the recurrent 

Elman network is less appropriate, owing to 

insufficient end-point stability. Given, that the 

context layer could be interpreted as an internal 

model, and that internal models are assumed to be an 

important computational element central to nervous 

motor control (Wolpert & Ghahramani, 2000), this is 

somewhat surprising. 

Another notable aspect of the control schema 

presented here is the low number of necessary 

neuronal units. A feed-forward network with five 

hidden units seems to be sufficient for the task of 

accurately controlling three movement synergies. 

There are two possible explanations for this: On the 

one hand, the dissociation of the neuronal substrate 

into two distinct modules, i.e. into a controller ANN 



 

and a synergy network, might be more efficient that 

a monolithic architecture of similar size. On the 

other hand, the approach described here is solely 

based on joint angle kinematics and neglects a 

further potential source of complexity: 

transformation of movement kinematics into a 

muscle activation pattern. Again, this transformation 

is a one-to-many mapping and might exacerbate the 

necessary computations. 
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