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A Space Efficient Representation for Sparse

de Bruijn Subgraphs

José Augusto Amgarten Quitzau Jens Stoye

Abstract

De Bruijn graphs are structures that appear naturally in the study

of strings. Therefore the rise of de Bruijn graph based sequence analysis

approaches is not a surprise. The problem with de Bruijn graphs is that

for most of their applications in Bioinformatics they are too large even

for small genomes. A way to overcome this problem is the compression

of branch-free paths to single nodes. Although this compression is a com-

mon first step in many of the de Bruijn graph based approaches, its direct

construction from raw data does not seem to be documented before. Our

experience shows that, though based on simple operations, implement-

ing the construction of such graphs is a tricky and time consuming task.

Therefore we shortly describe in this report our graph construction al-

gorithm and hope that the given details are enough to help the reader

skipping some pitfalls we found by doing this task.

1 Introduction

De Bruijn graphs were first defined in the end of the 19th century, though in
an implicit form, and were explicitly detailed in the year of 1946, by N. G. de
Bruijn [8, Chapter 3]. They are directed graphs with very nice properties. They
have a clear and simple definition, a small diameter, are easy to build, regular,
and both Hamiltonian and Eulerian. Maybe therefore they are used in many
different fields, like network models, pseudo-random number generation, and
DNA analysis algorithms [8]. The first use of such graphs in Bioinformatics is
probably the Eulerian path approach to sequence assembly proposed by Idury
and Waterman [7] and extended by Pevzner, Tang and Waterman [11].

Despite the success achieved by Pevzner and colleagues’ Euler assembler
in assembling bacterial genomes, de Bruijn graphs do not seem to be further
explored in computational biology. De Bruijn graph based approaches found
in the recent literature [1, 2, 3, 4, 13] focus either on improvements in error
correction methods or in adapting such methods to new sequencing data. Other
works present graphs that slightly remember de Bruijn graphs, but miss the
main feature of them, namely, the unique representation of tuples of a given
size [10, 12].
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The main problem with de Bruijn graphs becomes clear as soon as one starts
working with them. As Myers points out [9], de Bruijn graphs are simply space
inefficient. And we believe Myers is right when he says that in the context of
sequence assembly the whole process of cutting reads in small pieces to finally
build the de Bruijn graph may not be necessary. But a hybrid between de
Bruijn and Myer’s string graphs [9] can be constructed without explicitly using
sequence comparisons and still having the property of allowing the representa-
tion of a whole higher order genome in the memory of a common computer.

In many of the approaches using de Bruijn graphs, the graph construc-
tion is followed by the contractions of edges (u, v) for which indegree(u) =
outdegree(v) = 1. The resulting graph is compact in comparison to the original
one. In this report we present a way of constructing the compact form with-
out passing through the memory expensive step of constructing the original de
Bruijn graph. For doing this we define the sequence graph, the compact form
of de Bruijn graphs, and show how to include new sequences in it using two
operations on its set of nodes: cut and merge. We also show how exact repeats
may be identified and marked during the graph construction, so that this pro-
cedure can be easily transformed in a method for marking repetitive regions in
incompletely sequenced genomes.

The following sections are organized as follows: In Section 2 we present def-
initions and the notation used to describe algorithms. The sequence graph is
presented in Section 3. Section 4 presents the algorithm for inserting sequences
and simultaneously marking exact repeats. Section 5 is dedicated to the compar-
ison between time and space used by de Bruijn subgraphs and sequence graphs.
Finally, in Section 6 we present our conclusions and ideas about future work.

2 Notation and Definitions

In the algorithm descriptions, functions and procedures are indicated by small
capital names, like merge() or cut(). For references to data attributes we use
a function-like notation: For instance, label(v) is the label associated to node
v, and statements like

label(v)← "ACGT"

are not only reasonable, but often used. As we will see in Section 2.1, the vertices
of de Bruijn graphs are strings, and the neighborhood of a vertex is well defined
by its content. Nonetheless we separate the type “vertex” from their strings in
the algorithm descriptions. Therefore we may sometimes assign a new string to
a vertex without changing its neighborhood. Strictly speaking, this is impossible
by the definition of de Bruijn graphs, but the algorithms guarantee that every
procedure creates a valid set of vertices at the end.

Along this text, the position 0 is the first position of any array. We denote
by a[i . . . j] the elements of a between the positions i and j, inclusive. The size of
the array a is denoted by |a|. Because we treat strings as arrays of characters, all
the notation used to denote arrays and their properties are extended to strings
and their properties.
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Figure 1: The 4-dimensional de Bruijn graph for the alphabet Σ = {A, T }
(left), and the 4-dimensional de Bruijn subgraph associated to the set
{TTTTATAAT, TATTATAAATT, TTAAAATAT} (right).

The d-dimensional spectrum of a string s, spectrum(s), is the set of all its
substrings of size d. As the spectrum dimension d is always well defined in
this text, we call the d-dimensional spectrum simply “spectrum”. A slightly
different definition is denoted with d-tuples(s), the d-tuples of s, which is the
array of d-tuples found in s in the order they appear in the string, therefore,
d-tuples(s)[i] = s[i . . . i + d− 1], for 0 ≤ i ≤ |s| − d.

Both in de Bruijn and sequence graphs, the size of a node n, size(n), is the
size of the node label, shortly describing, size(n) = |label(n)|.

2.1 De Bruijn Graphs

A d-dimensional de Bruijn Graph G = (V, A) on an alphabet Σ is the graph
defined as follows:

V = Σd

A = {(u, v) | u, v ∈ V and u[i + 1] = v[i], 0 ≤ i < d− 1}.

In words, it is the directed graph that has all the possible strings of length d

over the alphabet as vertices and an arc from vertex u to vertex v if, by deleting
the first character of u and the last character of v, we get the same string.

Strings of length at least d over the same alphabet describe walks on the
d-dimensional de Bruijn graph. Given a set of strings, we define the associated
d-dimensional de Bruijn subgraph as the subgraph of the d-dimensional de Bruijn
graph that contains all the walks described by these strings and no extra vertex
or arc. A vertex in an associated de Bruijn subgraph is called a junction when it
has in-degree greater than 1. A vertex with out-degree greater than 1 is called
bifurcation. Figure 1 shows examples of a de Bruijn graph and a de Bruijn
subgraph associated to a collection of strings. It is also possible to see that
different sets may have the same associated de Bruijn subgraph. For instance,



the set {TATTATAAT, TTTTATAAAATAT, TTAAATT} also has the associated graph
shown in Figure 1.

Sequence associated de Bruijn subgraphs have a nice asymptotic behavior.
Their maximum number of nodes increases linearly with the size of the input,
and even decreases with the dimension of the graph. Their main problem is
that, although they scale well with the sequence set size, graphs corresponding
to genomes as small as bacterial genomes are already huge. This is probably
the reason why, despite the good results presented by the Eulerian assembler in
bacterial genomes, results involving eukaryotic genomes are rare, if existent at
all.

3 Representing Sparse De Bruijn Subgraphs

De Bruijn graphs are by definition sparse, since the number of edges is linearly
correlated to the number of nodes [6, Chapter 7]. They have |Σ|

d
nodes and

|Σ|
d+1

edges, which corresponds to |Σ|
1−d

of the maximum number of edges of
a directed graph with self-loops. Note that for |Σ| = 2 and d = 2 this ratio is
already 1

2
. Therefore storing de Bruijn graphs by adjacency matrices would be

a considerable waste of space. For complete de Bruijn graphs, one could think
about a simplification of adjacency matrices, since every node is connected to
precisely |Σ| other nodes. In our case of sparse de Bruijn graphs, we expect only
a small fraction of the nodes to be connected to more than one node. In this
case, even the simplified adjacency matrix is sparsely filled. We are left with
incidence lists, which may also be improved.

To represent sparse de Bruijn graphs, we use an indexed structure that we
call a d-dimensional sequence graph, or simply sequence graph, shown in Figure 2.
Like a d-dimensional de Bruijn subgraph, every d-tuple over the given alphabet
is represented by at most one vertex. As well as that, a sequence graph may
contain an arc (u, v) only if the d−1 suffix of u is identical to the d−1 prefix of
v. The main difference between sequence graphs and de Bruijn graphs is that
vertices in a sequence graph are not limited to the size d, but may have any size
between d and |Σ|

d
+ d − 1. This allows the representation of non-branching

paths in a single node. The compression, however, depends on the way the
structure is built.

There is an index mapping every d-tuple represented by the sequence graph
to the node in which it is found. Remember that nodes may have size greater
than d, therefore the representation of a tuple may start anywhere in the middle
of a node. In order to precisely identify a tuple, not only the node, but the offset
of the d-tuple is given by the index. We also extend the neighborhood concepts
from nodes to tuples. Consider two tuples a and b in a sequence graph. We
call b the successor of a if either a is the suffix of a vertex u, b is the prefix of
a vertex v, and the graph contains the arc (u, v); or there is a vertex v such
that a = v[i . . . i + d− 1] and b = v[i + 1 . . . i + d], for some non-negative integer
i. We call a the predecessor of b in this case, and a and b may also be called
neighbors. Note that there may exist nodes u with suffix a and v with prefix b
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Figure 2: Sequence graph corresponding to a 3-dimensional de Bruijn subgraph
on the alphabet Σ = {A, C, G, T }. Connectors to the node TAAGATGCATATTGTG

are shown as black arrows with offsets, all other connectors are shown in gray.

without a and b being neighbors. See, for example, the vertices AATT and ATTA

in Figure 1.
Apart from the inclusion of nodes, there are two operations that can be

applied on the set of nodes: cutting and merging. They are described in the
following sections.

3.1 The Cut Operation

The cut operation transforms a single node in two neighbor nodes. It is illus-
trated in Figure 3, and presented in pseudo-code below. During the cut, a new
node is created, and the node prefix is transferred to it. In addition, every
incident edge to the cut node is transferred to the new one. A cut does not
change the set of sequences represented by the graph, since no new tuple of size
d or greater is created, and the new edge binds two tuples that were neighbors
before.

As Figure 3 shows, connectors to the cut part are out-of-date after the
operation. They should be pointing now to the new node u. Updating these
connectors would imply a computational cost of O(log(|Σ|

d
)) = O(d log |Σ|) for

every tuple in the spectrum of the cut part, since all connectors must be first
found in the index. To avoid the search in the index, we postpone the connector
updates until the next time the connector is used. This is done by a link to
one of the incoming nodes, called followMe. This link works like an Ariadne’s
thread, marking the path corresponding to what once was a prefix of the present
node.



Algorithm 1 Cut Procedure

1: procedure Cut(v, cutPoint)
2: create a new node u

3: label(u)← label(v)[0 . . . cutPoint− 1 + dimension]
4: delete the first cutPoint characters of label(v)
5: for each edge (u′, v) do

6: remove the edge (u′, v)
7: create the edge (u′, u)
8: end for

9: followMe(u)← followMe(v)
10: starting-point(u)← starting-point(v)
11: starting-point(v)← starting-point(v) + cutPoint

12: create the edge (u, v)
13: followMe(v)← u

14: for each s ∈ sequence-set(v) do

15: put s in sequence-set(u)
16: end for

17: end procedure

A connector knows that an update is needed thanks to a starting point
associated to each node. Every time a node is cut, its starting point increases
by the size of the prefix the node loses. As a result, the difference between the
connector offset and the node starting point is only non-negative if the tuple
linked by the connector is still represented by the node after the cut. In the case
an update is needed, the correct node is localized by following the trace left by
the followMe links. The connector to the tuple “TAA” in Figure 3 shows how
it works: after the cut, the offset of the tail is set to 4, and the corresponding
difference is −4. This causes the connector to follow the link in the direction
to the head of the original node. At the head, the difference becomes 0, which
shows that the correct node was reached.

Many of the connectors may never be used. The ones that are used can
only be accessed via the index, and any operation that uses them must pay the
computational cost of searching for them. When we create the followMe link,
we combine two searches in one. The computational cost of finding a connector
is payed by the operations that need to access nodes via the index, and must
do the search anyway. Therefore avoiding connector updates reduces the cost
of each update to O(1).

In lines 14 to 16 of Algorithm 1, we need to duplicate the sequence set
of v. This can be done in Θ(|sequence-set(v)|) time. Since both the number
of connectors to update and the number of characters to transfer to the new
node are bounded by the size of the node, the time needed for a cut is O(|v|+
|sequence-set(v)|). In a general case, |sequence-set(v)| may be as large as the
number of sequences inserted in the graph. In our application, we expect to
have much smaller sequence sets, since the genome coverage is small.
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Figure 3: Example of the cut operation applied to position 4 of the central
node in the graph of Figure 2. Numbers in parentheses correspond to the node
starting points after the cut.

3.2 The Merge Operation

If the arc (u, v) is the only one separating the nodes, and both have identical
sets of sequences, they may be merged. The merge operation is the inverse
of the cut. It removes (u, v) by merging its nodes into a single node. This is
done by transferring the information from v to u, and updating the edges and
connectors, so that the node v may be removed from the graph afterwards. The
operation is presented in pseudo-code in Algorithm 2.

Because a node is completely removed, and all connectors pointing to it must
be updated, the merge operation is asymptotically more time consuming than
the cut. Since each connector pointing to the second node must be found in
the index, each merge operation takes O(|v| d log |Σ|) time, where d is the graph
dimension, Σ is the alphabet, and v is the second node.

Algorithm 2 Merge Procedure

1: procedure Merge(u, v)
2: label(u)← label(u) + label(v)[dimension . . . size(v)]
3: for each edge (v, v′) do

4: remove the edge (v, v′)
5: create the edge (u, v′)
6: end for

7: for each tuple t ∈ d-tuples(v) do

8: update connector(t)
9: end for

10: discard the node v

11: end procedure



3.3 Implementation Details

We assume that the index is implemented by a balanced tree table [5, Chapter
12]. The index maps d-tuples to simple data structures called connectors. A
connector is a pair formed by a pointer to a node and an integer number. The
integer node in the connector is the key to find the d-tuple representation in
the node: summing up this number to the node starting point either gives the
d-tuple offset in the node, or indicates that the connector is out-of-date. In the
second case, the connector can be easily updated by following the followMe

links until the sum becomes non-negative.
In many applications, it is necessary to store in each node the sequences

which are represented by it, as well as the number of occurences of the node
label in each sequence. We assume that sequences can be uniquely identifyed
by an integer number. And each node has a sequence multiset, where pairs
<sequence identifyer,multiplicity> are stored in balanced binary search trees [5,
Chapter 12]. If s is the number of sequences inserted in the graph, these trees
have at most s nodes, and insertions and searches may be done in O(log s) time.

Node adjacencies are stored by arrays of size |Σ|. Both the edges going from
and to the vertices are stored, so that any path in the graph looks like a doubly
linked list.

4 Finding Repetitive Sequences in DNA

Molecules

The main challenge in using de Bruijn subgraphs as a starting point for se-
quence assembling is that, even for high dimensions, the subgraph associated to
a collection of reads is very tangled. Fortunately, finding exact repeats is much
simpler than assembling a genome, since we do not need to untangle graphs, but
only to identify the tangled parts. Sequence graphs allow a compact representa-
tion of sparse de Bruijn subgraphs, but the representation efficiency depends on
how cuts and merges are done. In this section, we show how to insert sequences
in an initially empty sequence graph in such a way that the number of nodes is
minimized, at the same time that nodes corresponding to repeats in the inserted
sequences are identified.

Two properties are important when identifying nodes corresponding to repet-
itive regions:

marked(v): A node is marked when it is part of a repeated region.

sequence-set(v): The set of sequences that has label(v) as substring.

After each sequence insertion we want the following invariants to hold:

• The value of marked(v) is true if and only if label(v) is a repetitive se-
quence.

• If (u, v) is an edge, then either the out-degree of u or the in-degree of v is
greater than 1, or sequence-set(u) 6= sequence-set(v).



4.1 Special Operations

Other minor functions and procedures are used to transform sequence graphs
or access their nodes. They are:

cutLeft(c) This procedure cuts the node linked to the connector c exactly
at the beginning of the tuple the connector points to. As a result, after the cut,
the node begins with the tuple pointed by the given connector.

cutRight(c) Similar to cutLeft, this procedure cuts the node to which the
connector c points, creating a node where the tuple is in one of its extremities.
However, in this case the corresponding tuple is in the last characters of the
node pointed by followMe(node(c)) after the cut.

getConnectors(s, path, i, j) Let s be a string, path be an array of connectors
of length |spectrum(s)|, and 0 ≤ i ≤ j < |spectrum(s)|. This procedure acts on
the content of path[i . . . j] in the following way:

a. Let R = spectrum(s)[i′ . . . j′], i ≤ i′ ≤ j′ ≤ j, be a maximal region such
that there is a node n in the sequence graph representing all the d-
tuples in R, and in which for every pair of tuples a, b such that b is
successor of a in R, b is a successor of a in n. After the execution
of getConnectors, path[i′] = connector(spectrum(s)[i′]), path[j′] =
connector(spectrum(s)[j′]), and path[k] = null, for i′ < k < j′.

b. For every index i such that the d-tuple spectrum(s)[i] is not represented in
the sequence graph, create connector(spectrum(s)[i]), and let path[i] =
connector(spectrum(s)[i]).

The changes on path after calling getConnectors is schematically repre-
sented by Figure 4.

getNodes(path) This operation assumes that the operation getConnec-

tors updated the whole array path, so that the entire array looks like the
scheme in Figure 4. The function returns the list of nodes containing the re-
gions in path, one copy by contiguous region.

contiguous(path, i, j) Let path be an array of connectors. This boolean func-
tion returns true if the connectors in path[i . . . j] correspond to a substring of
a node.

Both cut operations clearly have the same running time as the cut operation
described in Algorithm 1. getConnectors only uses the index to localize the
desired connectors, therefore it runs in O((j − i)d log |Σ|) time. The function
getNodes simply accesses the nodes of a collection of connectors, updating the
connectors. However, the computational cost for updating a connector was al-
ready “payed” by the cut operation that caused this cost. Therefore we consider
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Figure 4: Schematic representation of the array path after the procedure
call getConnectors(s, path, i, j). New connectors are represented by white
headed arrows. The old connectors are divided in two regions, R1 and R2.

that the connector update is made in constant time, and the function getN-

odes runs in O(|path|) time. contiguous can clearly be calculated in O(j− i)
time.

4.2 Sequence Insertion

The insertion of a string, shown in pseudo-code in Algorithm 3, is done in three
phases, which are described below.

4.2.1 Phase One: Changes in the Set of Nodes

In the first phase, the graph is prepared for the sequence insertion. In this phase,
existing nodes are cut in order to represent the common substrings that the new
sequence shares with already inserted sequences. At the same time, new nodes
are inserted in the graph, so that the unique new parts can be represented as
well. This phase is preceded by a short initialization step, where the connectors
to the sequence tuples are either found or created and inserted in the index. At
the end of the initialization step, we have an array of connectors which looks
like the one shown in Figure 4. This structure guides the creation of new nodes,
as well as the adaptation of old nodes to the new sequence. Nodes are created
or adapted while the sequence spectrum is analyzed from left to right, that is,
from the first to the last d-tuple.

New nodes Lines 7 to 17 of Algorithm 3 detect and fill places where new
nodes are needed. The necessity of a new node is identified by the presence of
empty connectors, which are connectors that are not associated to any node.
Empty connectors are represented by white headed arrows in Figure 4. When
the leftmost in a series of empty connectors is found, a node is created (line 9)
and labeled with the first d− 1 symbols of the corresponding d-tuple (line 10).
Neighboring empty connectors are iteratively found, and the necessary updates
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Figure 5: Snapshots of a de Bruijn subgraph in three different moments of
a sequence insertion. In I, we see the graph before the insertion. In II, the
contiguous regions already in the graph are identified. Finally, III shows the
graph after the cuts, with the new repeated regions marked.

both in the new node and in the connectors are done (lines 11 to 16). This step
continues until the first non-empty connector or the end of the string is reached.

Old nodes Any node connected to a non-empty connector is an old node.
Even newly created nodes can be considered old if they contain tuples which
are duplicated in the new sequence. The importance of distinguishing between
new and old nodes is that only old nodes may be repetitive. This fact is used
in Phase Three (Section 4.2.3) to mark repetitive nodes.

If only a part of an old node matches the new sequence, the node must be
cut. Any pair of neighboring d-tuples in the new sequence may force a node cut.
It is only necessary that at least one of the two tuples is already represented,
and that the tuples are not neighbors in the graph. A cut is necessary every
time at least one of the cases described below is observed. (Figure 5 illustrates
these cases.)

Case A: Let a and b be two tuples in the string to be inserted, such that a is
the predecessor of b. Suppose b is already represented in the graph by the
node n. If a is not the predecessor of b in n and b is not the leftmost tuple
of n, then n must be cut in two nodes, creating the arc (n1, n2), in such a
way that b is the leftmost tuple of n2.

Case B: Let a and b be two tuples in the string to be inserted, such that a is
the predecessor of b. Suppose a is already represented in the graph by the
node n. If b is not the successor of a in n and a is not the rightmost tuple
of n, then n must be cut in two nodes, creating the arc (n1, n2), in such a
way that a is the rightmost tuple of n1.

Case C: Let a be the leftmost tuple in the string to be inserted. Suppose a is
already represented in the graph in the node n. If a is not the leftmost



tuple of n, then n must be cut in two nodes, creating the arc (n1, n2), in
such a way that a is the leftmost tuple of n2.

Case D: Let a be the rightmost tuple in the string to be inserted. Suppose a

is already represented in the graph in the node n. If a is not the rightmost
tuple of n, then n must be cut in two nodes, creating the arc (n1, n2), in
such a way that a is the rightmost tuple of n1.

In Algorithm 3, we use the boolean function contiguous to identify the
longest substring that matches an existing node (line 20). Once this substring
is found, we are able to analyze the extremities of the corresponding node region,
so that the necessary cuts may be done (lines 21 and 22).

4.2.2 Phase Two: Walk Connection

The set of nodes may have been modified by cuts in phase one. Therefore phase
two also starts with two initialization steps: the update of the connectors in
cPath (line 26), and the conversion of cPath into the corresponding vector of
nodes nPath (line 27). Phase two begins with the connection of the nodes in
nPath (line 28) and the insertion of the sequence identifier in each of the nodes’
sequence sets (line 29).

If nodes may be merged, this is done in lines 30 to 32. It is only possible to
merge two nodes if they have the same set of sequences and are neighbors. Nodes
with the same set of sequences are either created in the same insertion or are
two parts of a cut node. If they are created during the same sequence insertion,
they are not neighbors by construction. If they are parts of a cut node, they
can only remain with the same set of sequences if the rightmost portion of the
node corresponds to the beginning of the sequence, and the leftmost portion
corresponds to the end of the sequence. Any other disposition would create
either a difference between the sequence sets or a prohibitive degree greater than
one. Therefore the only nodes that may be merged after a sequence insertion
are the first node in the sequence walk and its previous node.

4.2.3 Phase Three: Repeat Identification

After phase two, there is a walk representing the new sequence in the graph, and
this walk is stored by the array nPath. This last phase identifies nodes in this
walk which correspond to repetitive sequences, we call these repetitive nodes.
Each repetitive node was found in the graph during phase one and marked as
old in line 23. Algorithm 3 differentiates repetitive nodes from common old
nodes by comparing each sequence set to the set of sequences that either enter
the new sequence’s walk through a junction or leaves it through a bifurcation.

In the third phase, every maximal contiguous region formed only by old
nodes is separately analyzed (lines 33 to 45). For each node v in such a region,
we find the set of sequences which access v through an alternative walk (line 37).
These are all the sequences belonging at the same time to the sequence set of v

and the sequence set of the neighbors of v which are not in the newly created



Algorithm 3 Sequence Insertion
1: procedure InsertSequence(s)
2: index← 0
3: last← |s| − d + 1
4: cPath is an empty array of connectors of size last

5: getConnectors(s, cPath, 0, last) ⊲ Phase One

6: while index < last do

7: if node(cPath[index]) = null then ⊲ new node
8: start← index

9: create a new node n

10: label(n)← d-tuples(s)[start][0 . . . d− 1]
11: repeat

12: node(cPath[index])← n

13: offset(cPath[index])← index− start

14: append the last symbol of d-tuples(s)[index] to label(n)
15: index← index + 1
16: until index = last or node(cPath[index]) 6= null
17: end if

18: if index < last then ⊲ old node
19: start← index

20: index← min(x : x ≥ start ∧ ¬contiguous(cPath, start, x))
21: if Case A or Case C then cutLeft(cPath[start])
22: if Case B or Case D then cutRight(cPath[index− 1])
23: mark node(cPath[start]) as old

24: end if

25: end while

26: getConnectors(s, cPath, 0, last) ⊲ Phase Two

27: nPath← getNodes(cPath)
28: for each pair of neighbors u, v in nPath, create the edge (u, v)
29: for each node n ∈ nPath, insert s in sequence-set(n)
30: if sequence-set(nPath[0]) = sequence-set(followMe(nPath[0])) then

31: merge(followMe(nPath[0]), nPath[0])
32: end if

33: for each maximal contiguous region old nodes nPath[i . . . j] do ⊲ Phase Three

34: R← ∅
35: for each v in nPath[i . . . j],
36: and its left and right neighbors, u and w, both possibly null do

37: U ←
S

u
′∈in(v)\{u} sequence-set(u′) ∪

S

w
′∈in(v)\{w} sequence-set(w′)

38: R← R ∪ (sequence-set(v) ∩ U)
39: end for

40: for each unmarked node n ∈ nPath[i . . . j] do

41: if sequence-set(n) ∩ R 6= ∅ then

42: marked(n)←TRUE

43: end if

44: end for

45: end for

46: end procedure



walk. In Algorithm 3, these sequences are cumulated in a set R (line 38).
Finally, each node containing one of the sequences in R is for sure a repeat, and
may be marked (lines 40 to 44).

Not that every time the walk of a new sequence passes through an old node,
the node may be a repetitive node. However, two walks sharing nodes are not
always evidence of repeat. When the end of a walk corresponds exactly to the
beginning of another one, the common part between them corresponds to a
portion of the genome which was sequenced twice. The same is true if one walk
is completely contained in another one.

4.3 Running Time

In this section, l is the length of the inserted sequence, s denotes the number of
sequences inserted so far, and L the maximum length among the s sequences.

Phase one takes O (lL + ld) time. In the worst case, the O(l) tuples in
the sequence are individually analyzed, and all operations, but the cut, can be
executed in constant time. Notice that every l-tuple may cause at most 2 cuts,
both bounded by the maximum vertex size, which is bounded by the length of
the longest sequence already inserted. At the same time, each tuple may force
a search in the index at most two times (in lines 5 and 26). Each search in the

index takes O(log |V |) = O(log |Σ|
d
) = O(d log |Σ|) time. Since the alphabet

size is constant for us, each search requires O(d) time.
In phase two, the running time is dominated by the insertions of sequences

in the nodes’ sequence sets (iterative statement in line 29), and by the merge
in line 31. The update is done in O(l log s) time, since insertions in balanced
search trees with size at most s require O(log s) time, and at most l insertions
are done. Since the only nodes that may be merged are the first and the last
nodes of the new sequence walk, merges are done in O(l log l) time. Summing
up, phase two is executed in O(l log s + l log l) time. Notice that observing the
factor l log l is unlikely, given that situations where the merge is allowed are
rare.

The third phase is executed inO(ls log s) time. The union in line 37, together
with the intersection in line 38 (in parentheses), requires traversing at most
2(|Σ| − 1) + 1 trees, with at most s nodes each. This cannot result in a set
with more than s distinct elements. The union with R is done by inserting the
elements of the resulting set in R. The whole computation is done in O(s log s)
time, and at most once for each tuple, giving the proposed running time bound.
The overall running time of a sequence insertion is therefore bounded by

O(lL + ld + ls log s).

Remarks on the Running Time Analysis. The reader might have noticed
that the time for duplicating the sequence set in the cut operations was not
added to the running time of phase one. Since the cuts are responsible for the
lL factor in the overall insertion running time, one could argue that the upper
bound should be larger. In fact, the time for duplicating the set is covered by
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Figure 6: Time and space required by the two representations of de Bruijn
subgraphs.

the upper bound for the sequence sets update in line 29. To understand why,
consider cutting a node v with σ sequences in its sequence set. Since v can be
cut, it must represent τ > 1 tuples. And the σ sequences in its sequence set
show that for σ times we computed τ − 1 times an unused cost of O(log s). We
have therefore a “credit” of O(τσ log s), whereas at the time of the cut, the
sequence set duplication can be done in O(σ) = O(τσ log s). Therefore we may
ignore the duplication in the overall running time.

5 Empirical Results

We compared the space usage and time required by both the usual and the
proposed representation of de Bruijn subgraphs. This was done by constructing
subgraphs based on sets of DNA sequences. The data sets were created based on
the first chromosome of the plant Arabidopsis thaliana. We artificially created
20 sets with sizes varying between 2,000 and 40,000 reads. The reads had length
750bp and were normally distributed along the chromosome. For each set we
built both the de Bruijn subgraph and the sequence graph using dimension 19,
and measured time and space requirements. This whole procedure is called a
round. We ran a total of 20 rounds. The average measures are presented in
Figure 6.

Although the worst case analysis for the running time shows that the se-
quence graph construction may take much longer than the corresponding de
Bruijn graph, we may expect to construct such a representation faster than the
normal de Bruijn graph, as we see in the graphics. This happens because the
worst case not only requires a very peculiar data set, but also requires the se-
quence insertions to be done in a very specific order, which is very seldom the
case. Usually, the reduced number of nodes in the sequence graph diminishes the
time needed to localize a node or transverse a path in the graph. This explains
the reduction of time proportional to the reduction of required memory.



6 Conclusion and Future Work

We presented a representation of de Bruijn subgraphs with long non-branching
paths that is able to represent exactly the same content of a de Bruijn subgraph
using less than 25% of the space required by the traditional representation. We
also presented empirical results showing that the reduction of the required space
also implies a proportional reduction in the running time for the sequence graph.

More work can still be done to both reduce and understand the structures of
the proposed graph. The discrepancy between the theoretical and the practical
running time analysis shows that this is a case where an average case analysis
could be very helpful. A more precise analysis may not be done while the length
of induced paths, as well as the number of bifurcations and junctions, cannot
be estimated.

Concerning the use of sequence graphs for representing DNA sequences, we
may also explore the complementarity of these sequences to reduce even more
the graph size, since in graphs representing DNA sequences the information is
stored twice: as the sequence itself and as its complement.
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