
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

Online Abelian Pattern Matching

Tahir Ejaz Sven Rahmann Jens Stoye

Report 2008-01

Impressum: Herausgeber:
Ellen Baake, Robert Giegerich, Ralf Hofestädt,
Franz Kummert, Peter Ladkin, Ralf Möller, Tim Nattkemper,
Helge Ritter, Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831

Online Abelian Pattern Matching

Tahir Ejaz ∗ Sven Rahmann † Jens Stoye ‡

March 31, 2008

Abstract

An abelian pattern describes the set of strings that comprise of
the same combination of characters. Given an abelian pattern P and
a text T ∈ Σn, the task is to find all occurrences of P in T , i.e. all
substrings S = Ti...Tj such that the frequency of each character in S

matches the specified frequency of that character in P .
In this report we present simple online algorithms for abelian pat-

tern matching, and give a lower bound for online algorithms which is
Ω(n).

Key Words: Pattern Matching; String Matching; Abelian Pat-
terns; Online Algorithms; Permutation Patterns; Compomers

1 Introduction

In the past few years, the abundance of completely sequenced genomes has
led to the idea of comparison and analysis of whole genomes at gene level.
Gene clustering is one approach for this type of comparison and analysis. It
is believed that genes with similar functionality tend to occur close to each
other, so gene clustering can help in finding the functionality of genes. More-
over, it can also help in inferring the phylogenetic distance between different
organisms. Gene clustering aims at finding genes that are located in close
proximity of each other, hence it assumes that the order of the occurrence of

∗AG Genominformatik, Technische Fakultät, and Institut für Bioinformatik, CeBiTec,
Universität Bielefeld, Germany. tahir@cebitec.uni-bielefeld.de

†Chair of Algorithm Engineering, Faculty of Computer Science, Technische Universität
Dortmund, Germany. Sven.Rahmann@tu-dortmund.de

‡AG Genominformatik, Technische Fakultät, and Institut für Bioinformatik, CeBiTec,
Universität Bielefeld, Germany. stoye@techfak.uni-bielefeld.de

1

these genes is irrelevant. This phenomenon can be approximately modeled
by abelian pattern matching, as we are not interested in the order of the
occurrence of characters in an abelian pattern, rather we want to find the
substrings matching the specified frequencies of the characters.

Abelian patterns (also known as compomers [1] and permutation patterns
[3]) have also been considered for DNA de-novo sequencing [1]. Abelian
pattern matching also resembles weighted string matching [2]; however, the
set of all the matching weighted strings (i.e. all those strings whose weights
are the same as those of the given string) is a superset of all the abelian
matches of the given string. Moreover, matching weighted strings can be of
different lengths, but exactly matching abelian patterns are always of the
same length.

2 Abelian Pattern Matching

The problem of Abelian Pattern Matching differs from Classical Pattern
Matching in the sense that in case of classical pattern matching we seek
for exact occurrences of a pattern substring in the given input string, and
the order of characters in the pattern substring is preserved while looking
for a match. In case of abelian pattern matching, however, the order of
characters in the pattern substring does not matter. Hence ‘abc’ and ‘bac’
are considered matching (abelian) substrings. Here we are not looking for
an exact (ordered) occurrence of a substring, rather we want to find any
permutation of a given combination of characters that forms our pattern
substring.

2.1 Formal Problem Definition

Formally, given an alphabet Σ, an abelian pattern is a function P : Σ → N

that assigns a multiplicity to each character in Σ. We set ΣP := {c ∈ Σ :
P (c) > 0}, the set of characters occurring in the pattern, and call |ΣP | the
size of the pattern. We write the pattern symbolically as P =

∑

c∈Σ mc c,
where mc = P (c) denotes the multiplicity of character c in the pattern.
We call m := |P | :=

∑

c∈ΣP
mc the length of the pattern. For example,

over the alphabet Σ = {a, b, c, d}, the strings abcb and bbca match the same
abelian pattern P = (1, 2, 1, 0) (function specification in lexicographic order)
or P = 1a + 2b + 1c + 0d = a + 2b + c (symbolic sum specification).

Given an abelian pattern P and a text T ∈ Σn, the abelian pattern match-
ing problem is to find all occurrences of P in T , i.e. all positions of sub-
strings S = Ti...Tj with j − i + 1 = |P | such that the frequency of each

2

character in S matches the specified frequency of that character in P . For
T = ababcccabaccbacdddba, the pattern P = 2a + b + 3c occurs at positions
3, 5 and 10.

2.2 Properties of Abelian Patterns

Abelian patterns are quite different from normal classical patterns. In this
section we shed light on properties of abelian patterns.

• The number of abelian patterns/strings of length m over an alphabet
Σ can be viewed as the number of integer solutions to the equation

x1 + · · ·+ x|Σ| = m

under the condition that xi ≥ 0 for all i = 1, . . . , |Σ|. This number
is
(

|Σ|+m−1
m

)

[6]. Note that, for large values of m, this number is sig-
nificantly smaller than the number of classical patterns of length m
over the alphabet Σ, which is |Σ|m. This is because of the fact that an
abelian pattern can be spelled by more than one strings.

• Let SP be the set of all strings that match an abelian pattern P , then
we call SP the pattern set of P and |SP | the size of the pattern set of

P . For an abelian pattern P =
∑|Σ|

i=1 mci
ci of length m, the size of its

pattern set can be computed as the multinomial coefficient:

|SP | =

(

m

mc1, . . . , mc|Σ|

)

2.3 Some Definitions

In this section we give some definitions that we use later.

Definition 1. An abelian pattern P ′ =
∑|Σ|

i=1 m′
ci

ci is an abelian sub-pattern

of another abelian pattern P =
∑|Σ|

i=1 mci
ci if and only if m′

ci
≤ mci

for all
i = 1, 2, . . . , |Σ|. Symmetrically, P is called an abelian super-pattern of P ′.

Definition 2. Given an abelian pattern P =
∑|Σ|

i=1 mci
ci and its abelian sub-

pattern P ′ =
∑|Σ|

i=1 m′
ci

ci, the abelian pattern P − P ′ :=
∑|Σ|

i=1 (mci
−m′

ci
) ci

is called the difference pattern between P and P ′.

Definition 3. Given an abelian pattern P =
∑|Σ|

i=1 mci
ci, the multiset {mci

|
ci ∈ ΣP} denoted by MP is called the multiplicity set of P .

3

Observation 1. The length-j abelian sub-patterns of an abelian pattern P of
length m have a many-to-one relationship with the integer partitions of m−j.
For each partition λ of m− j, there exists a distinct class Cλ comprising of
(zero or more) length-j abelian sub-patterns of P such that the elements of
MP−P ′ have a one-to-one correspondence with the elements of λ for each
P ′ ∈ Cλ.

Example: Given an abelian pattern P = 3a + 2b + 2c with m = 7, the
following are its length-4 abelian sub-patterns:

P ′
1 = 2a + b + c P ′

2 = 2a + 2b
P ′

3 = 2a + 2c P ′
4 = 3a + b

P ′
5 = a + b + 2c P ′

6 = 3a + c
P ′

7 = a + 2b + c P ′
8 = 2b + 2c

and the following are the integer partitions of 3 = 7− 4 :

3 = 3 (call this partition λ1)
= 2 + 1 (call this partition λ2)
= 1 + 1 + 1 (call this partition λ3)

The length-4 abelian sub-patterns of P are classified as follows:

Cλ1
= {P ′

8}, as
λ1 = 3 ; and

l
MP−P ′

8
= { 3 }

Cλ2
= {P ′

2, P
′
3, P

′
4, P

′
5, P

′
6, P

′
7}, as

λ2 = 2 + 1 ; and
l l

MP−P ′
i

= { 2 , 1 } for 2 ≤ i ≤ 7

Cλ3
= {P ′

1}, as

λ3 = 1 + 1 + 1 ; and
l l l

MP−P ′
1

= { 1 , 1 , 1 }

Note that in case of length-3 abelian sub-patterns of P , if λ specifies the
partition 4 = 4, then Cλ is empty.

4

Figure 1: A window of length m is slided along the text

2.4 General Setting

In this report we discuss several algorithms for abelian pattern matching that
do not require preprocessing of the text. In these algorithms, as in many
other classical pattern matching algorithms [7], a sliding window of length
m is moved along T and checked for a possible pattern match (Figure 1).
We use three approaches for the procedure of checking for a possible pattern
match inside the window:

Prefix based approach. In this approach we read the characters in the
window one by one starting from the left end of the window. So at any
time we have information about a prefix of the window.

Suffix based approach. Here we read the characters in the window one by
one starting from the right end of the window. So at any time we have
information about a suffix of the window. This approach may allow to
skip some text characters from processing.

Parameterized suffix based approach. We employ the suffix based ap-
proach in a parameterized manner, and at any time we have information
about at most two factors of the window.

In all the algorithms presented in this report, we use a frequency vector
CFV (current frequency vector) which keeps the count of the characters read
in the current window, and another frequency vector P (pattern frequency
vector) which contains the count of the characters in the abelian pattern
that is to be found. Both CFV and P can be implemented using linked lists,
sorted arrays or directly accessible arrays. For a directly accessible array, the
cost of query and increment/decrement operations in these vectors is O(1) in
the RAM model, and the memory requirement depends on the perfect hash
function used for the direct accessibility feature; for a minimal perfect hash
function, the memory requirement is O(|Σ|). From now onwards we assume
that there exists a minimal perfect hash function ρ for the characters in Σ,
and both CFV and P are maintained as directly accessible arrays of size
|Σ|. Note that for the alphabets of English language, ρ is quite simple; it
just subtracts a constant from the ASCII values of the characters.

5

3 Prefix Based Algorithm

In the prefix based algorithm, we set a window of size m at the beginning
of the input text T and process the characters in the window in a prefix
based manner. After we have processed the last character in the window, we
check the current window for a match with the given pattern P. After that,
the window is slid towards the right by one position and checked again for a
match. This way the window is slid through the whole text. As the m − 1
length suffix of the current window equals the m−1 length prefix of the next
window, we can construct the next window from the immediately preceding
window in constant time. Pseudo code of this algorithm is presented in
Algorithm 1.

In the first phase of this algorithm we initialize CFV with the first m char-
acters of T . We also initialize the mismatch for this CFV , where mismatch
counts the number of differences between CFV and P . If mismatch is zero,
we output the first position of the text as starting position of a matching
abelian pattern. In the next phase we proceed incrementally. We construct
the new CFV by performing two operations on the previous CFV . We also
update mismatch in constant time.

This algorithm reads and processes every character in T exactly twice;
for the first time to increment its frequency in CFV , and for the second
time to decrement its frequency in CFV . So the overall time complexity of
this algorithm is Θ(n). At any point in time, this algorithm keeps in memory
only two frequency vectors, P and CFV ; and one integer variable mismatch.
Hence the space complexity of this algorithm is O(|Σ|), in addition to the
space required for the input and the output.

4 Suffix Based Horspool Type Algorithm

This algorithm is an adaptation of Horspool [5] type algorithms. Instead of
reading characters from left to right, here we read characters from right to
left in the search window; thus using a suffix based approach. While reading
characters from right to left inside the window, as soon as an overflow of
frequency in CFV occurs (i.e. the frequency of a character in CFV exceeds
its specified one in P), we stop reading further in the window, as this window
cannot contain the given pattern. In fact, no substring that contains the so
far read suffix of this window can be a matching pattern. So we can safely
shift this window towards the right at the position of the second character of
this suffix (as it was the first character of the suffix that caused the overflow).
After the window shift, we reset the frequencies of all the characters that were

6

Algorithm 1 Prefix based Abelian Pattern Matching

Input: A pattern P of length m, a text stream T = T [1] . . . T [n] and a hash
function ρ

Output: Positions where the given abelian pattern starts in T

⊲ Build current frequency vector (CFV) for the first m characters
1: for i = 1 to |Σ| do

2: CFV [i]← 0
3: for i = 1 to m do

4: CFV [ρ(T [i])]← CFV [ρ(T [i])] + 1
⊲ Calculate the number of mismatching characters between the current
window and the given pattern

5: mismatch← 0
6: for i = 1 to |Σ| do

7: if CFV [i] 6= P [i] then

8: mismatch ← mismatch + 1
9: if mismatch = 0 then

10: output 1
11: i←2
12: while i ≤ n−m + 1 do

13: if T [i− 1] 6= T [i + m− 1] then

14: CFV [ρ(T [i− 1])]← CFV [ρ(T [i− 1])]− 1
15: if CFV [ρ(T [i− 1])] = P [ρ(T [i− 1])] then

16: mismatch← mismatch − 1
17: else if CFV [ρ(T [i− 1])] = P [ρ(T [i− 1])]− 1 then

18: mismatch← mismatch + 1
19: CFV [ρ(T [i + m− 1])]← CFV [ρ(T [i + m− 1])] + 1
20: if CFV [ρ(T [i + m− 1])] = P [ρ(T [i + m− 1])] then

21: mismatch← mismatch − 1
22: else if CFV [ρ(T [i + m− 1])] = P [ρ(T [i + m− 1])] + 1 then

23: mismatch← mismatch + 1
24: if mismatch = 0 then

25: output i
26: i← i + 1

7

read previously. For this, we maintain a list RCList (read characters list)
that holds all the characters read in the window. We also use a binary vector
RCV (read characters vector) to avoid inserting the same character multiple
times in RCList. Note that under the suffix based approach, the number of
characters in RCList at any time is O(|ΣP |).

By using the technique of safely shifting the window, we can skip some
characters from processing, but at the same time there is a danger of read-
ing several characters multiple times. This algorithm is only efficient if the
sparseness of matches holds (i.e. only a few substrings of the input string
match to a given abelian pattern), because if this is not the case (i.e. the
number of matches is significant) then overflows will not occur frequently
and this algorithm will not benefit much. Pseudo code of this algorithm is
presented in Algorithm 2.

The worst case complexity of this algorithm is O(nm), as we may need
to read the same character m times. The best case occurs when, on average,
we detect an overflow after reading a constant number of characters in each
window; thus giving a best case time complexity of Ω(n/m).

The average case analysis of this algorithm depends heavily on the pat-
tern. We begin with a lemma.

Lemma 1. If on average we read ǫm characters in each window, then the
time complexity of the suffix based abelian pattern matching is O(nǫ

1−ǫ
).

Proof. We read ǫm characters in the window and advance the window by
(1 − ǫ)m + 1 positions. This gives us an O(ǫ

1−ǫ
) cost for processing one

character, and for the whole text this cost becomes O(nǫ
1−ǫ

).

Theorem 1. Let us assume that P is fixed and that the characters of the
input text are independently and identically distributed, with probability 1/|Σ|
for each character at each position. Then the average case time complexity
of the suffix based abelian pattern matching algorithm is

O

(

n
∑m−1

k=0 |ASP(P, k)|

m|Σ|k −
∑m−1

k=0 |ASP(P, k)|

)

where ASP(P, k) denotes the set of strings of length k that match abelian
sub-patterns of P .

Proof. If the overflow occurs after exactly k characters, we have read k char-
acters and advanced the window by m− k + 1 characters. Let J denote the
random variable that describes the number of characters read in a window.
Thus on average, in each iteration of the algorithm, the window is advanced
by m + 1− E[J] characters while examining E[J] characters.

8

Algorithm 2 Suffix based Abelian Pattern Matching

Input: A pattern P of length m, a text stream T = T [1] . . . T [n] and a hash
function ρ

Output: Positions where the given abelian pattern starts in T

1: for i = 1 to |Σ| do

2: CFV [i]← 0
3: RCV [i]← 0
4: RCList← ∅
5: i← 1
6: while i ≤ n−m + 1 do

7: overflow ← 0
8: for all c ∈ RCList do

9: CFV [ρ(c)]← 0
10: RCV [ρ(c)]← 0
11: remove c from RCList
12: j ← i + m− 1
13: while j ≥ i and overflow = 0 do

14: CFV [ρ(T [j])]← CFV [ρ(T [j])] + 1
15: if RCV [ρ(T [j])] = 0 then

16: insert T [j] in RCList
17: RCV [ρ(T [j])]← 1
18: if CFV [ρ(T [j])] > P [ρ(T [j])] then

19: overflow← 1
20: j ← j − 1
21: if overflow = 1 then

22: i← j + 2
23: else

24: output i
25: i← i + 1

9

The probability that an overflow occurs after ≤ k characters equals the
probability that the rightmost k characters in the window are not an abelian
sub-pattern of P :

P(J ≤ k) = 1− |ASP(P, k)|/|Σ|k

Since E[J] =
∑m

k=0 k P(J = k) =
∑m

k=1 P(J ≥ k) =
∑m

k=1 [1 − P(J ≤
k − 1)] =

∑m−1
k=0 |ASP(P, k)|/|Σ|k; by applying Lemma 1, the theorem is

proved.

Now we show how |ASP(P, k)| can be computed using partitions of k̄ :=
m−k. We can generate all the partitions of k̄ by using any algorithm for gen-
erating integer partitions [4, 8]. For a partition λ := 〈1α1, 2α2 , . . . , k̄α

k̄〉 ⊢ k̄
(that is, k̄ = α11 + α22 + · · ·+ αk̄k̄), we construct the abelian sub-patterns
belonging to Cλ, and sum |SP ′| for all P ′ ∈ Cλ. By iterating this procedure
over all the partitions of k̄, we obtain |ASP(P, k)|. The procedure for doing
this is outlined in Algorithm 3.

The main processing of Algorithm 3 is done in the Partition sub-routine.
In line 1 of this sub-routine, we select all those characters in P for which a
value of l can be deducted from their multiplicities. If the number of such
characters is less than αl, we cannot decrement the multiplicities of the char-
acters according to the given partion λ; hence cannot generate any length-k
abelian sub-patterns of P corresponding to λ (i.e. Cλ is empty). At line 5 we
have an abelian pattern of length m′ (m′ = m for the first call of Partition
sub-routine) and we fix exactly αl characters from the characters that were
selected at line 1. At line 6, we create a local copy of the abelian pattern
received from the calling program and then decrement the multiplicities of
each of the fixed characters by l in this copy; by doing so, we obtain an
abelian pattern of length m′ − αll. If l = 1, we have obtained an abelian
pattern of length m − k̄ = k, and in line 10, we compute the size of the
pattern set corresponding to this length-k abelian pattern.

5 Lower Bounds

The following can be stated regarding the lower bounds for online abelian
pattern matching.

Theorem 2. A lower bound for best case time complexity of any oblivious
algorithm of abelian pattern matching in a given text of length n with pattern
size m is Ω(⌊n/m⌋).

10

Algorithm 3 Algorithm for computing |ASP(P, k)|

Main Algorithm

Input: k̄ := m− k; abelian pattern P =
∑|Σ|

i=1 mci
ci of length m

Output: Number of strings in Σk that match abelian sub-patterns of P

1: n← 0
2: for each integer partition λ of k̄ do

3: C ← {c1, . . . , c|Σ|}
4: M← {mc1, . . . , mc|Σ|

}

5: n← n+ Partition (k̄, λ,M, C)
6: return n

Partition (l, λ, M, C)

1: C ′ ← {ci ∈ C |mci
≥ l}

2: if |C ′| < αl then

3: return 0
4: num← 0
5: for each distinct Csub = {c1, c2, . . . , cαl

} ⊆ C ′ do

6: M ′ ← {m′
ci
; such that m′

ci
= mci

∈M for 1 ≤ i ≤ |Σ|)
7: for each c ∈ Csub do

8: m′
c ← m′

c − l
9: if l = 1 then

10: num←
(

k

m
c
′
1

,...,m
c
′
|Σ|

)

11: else

12: num← num+ Partition(l − 1, λ, M ′, C \ Csub)
13: return num

A lower bound for worst case time complexity of any oblivious algorithm
of abelian pattern matching in a given text of length n with pattern size m is
Ω(n).

Proof. The best case bound is straight forward using a classical adversary
argument.

For the worst case bound, assume that there exists an abelian pattern
matching algorithm A that processes less than n/k characters of the input
text, where k is an arbitrary constant. Given an abelian pattern P , consider
an input text T such that there are at least n/km non-overlapping matching
substrings in T . Then there exists at least one matching substring S in T
such that not all of its characters are processed by A. As the algorithm is
claimed to be correct, it must have output the starting position of S. Now if

11

x

text
shift

overflow character

Figure 2: The gray area shows the information in CFV transferred from the
previous window to the new window.

we replace any of the unread characters of S with an invalid character c (i.e.
c /∈ ΣP) the output of A should remain unaffected; hence A is not a correct
algorithm.

6 Parameterized Suffix based Algorithm

The main disadvantage of the suffix based algorithm is that it has to reset
CFV after every overflow. In this section we present a parameterized suffix
based algorithm that resets CFV only if the number of the characters read
before an overflow does not exceed ǫm, where ǫ is a user defined parameter.

6.1 The Algorithm

Like the suffix based algorithm, we slide a search window of size m from
left to right along the input text T and process the characters inside the
window in a right to left manner. In case an overflow occurs in this process,
we stop further processing the current window and decrease the frequency of
the current character, call it x, by 1 in CFV , so that CFV again becomes
compatible with P (i.e. CFV [i] ≤ P [i] for all i, 1 ≤ i ≤ |Σ|). We also
shift the window to the right such that its new starting position coincides
with the character next to x. So far the processing of this algorithm is the
same as that of the suffix based algorithm with the difference that we have
decremented the frequency of x (which caused the overflow) by 1 in CFV in
this algorithm. Note that CFV contains the information of the whole suffix
(except x) that was read in the previous window, and this suffix is now a
prefix of the current window (Figure 2).

In the parameterized suffix based algorithm, we do not reset CFV blindly
after an overflow has occurred. Instead, we consider the amount of informa-
tion contained in CFV , and if this information is less than or equal to ǫm
(where ǫ is a user defined parameter) then we reset CFV , otherwise we keep

12

box1 box2

Figure 3: CFV contains collective information of a prefix and a suffix of the
current window

without an oveflow
Two boxes unite Current window is

advanced towards right
by one position

box 1 box 2 box 1 box 2 box 1

Figure 4: Box 2 unites with box 1 without an overflow. After reporting
the current window as a matching substring, the current window is moved
towards right by one position. The CFV contains information about an
m− 1 length prefix (representing box 1) of the new current window

the information in CFV and start reading characters from the end position
of the new current window. This latter case is illustrated in Figure 3: We
have two information boxes in the window, box 1 contains the information
of a prefix of the window and box 2 contains the information of a suffix
of the window, whereas CFV contains the collective information of both
boxes. Note that every time we read a new character in the window, box 2
is extended towards the left.

If in this process both boxes unite without an overflow, then the current
window is a matching abelian substring and we output the starting position
of the current window. We also decrement the frequency of the first char-
acter of the current window by 1 in CFV and advance the current window
towards the right by one position (Figure 4). However, if an overflow occurs
while reading characters in the window, then the current window does not
contain a matching substring and we search for the leftmost occurrence of
the overflown character in the current window. We start reading the char-
acters in the current window from its left end, and decrement the frequency
of each read character by 1 in CFV until we read the overflow character.
We shift the new starting position of the current window next to the latest
read character. Note that CFV now does not contain information about any
character outside the new current window.

Figure 5 illustrates three possible positions of the leftmost occurrence of
the overflow character in the current window. It also shows the resulting
window when the current window is shifted next to the leftmost occurrence

13

leftmost occurrence
of the overflow character

leftmost occurrence of the overflow character

Figure 5: Three possible positions of the leftmost occurrence of the overflow
character and the resulting windows after shifting the current window next
to the overflow character

start reading here

box 1 box 2

Figure 6: Filling the gap between two information boxes

of the overflow character. The dark gray regions in the figure show those
characters whose count has been decremented in CFV . Note that after this
step, box 2 is no longer a suffix of the resulting current window.

Here once again we have to decide whether or not to reset CFV . In case
the collective information contents of both boxes (box 1 possibly empty)
are less than or equal to ǫm then we reset CFV , otherwise we keep the
information in CFV . However, in the latter case, if we start reading from the
end position of the window, then we could have to manage three information
boxes in the situations where box 2 is not a prefix of the current window.
To avoid this, we start reading characters from the last position of the gap
between box 1 and box 2 in these situations, so that CFV once again contains
information about only a prefix of the current window (Figure 6).

After this gap is filled, CFV once again contains information about only
a prefix of the current window and then we start reading from the right end
of the window creating box 2 to hold information for the rightmost characters
of the window (Figure 3). However, an overflow can occur before the gap
is filled and it can lead to a loop situation until the information in CFV

14

Overflow occurred while filling
the gap between box 1 and box 2

Gap is filled
without an overflow

box1 box 2

leftmost occurrence of the overflow character

Figure 7: A loop situation while the gap between box 1 and box 2 is being
filled

becomes less than ǫm (Figure 7). Nevertheless, we never have more than two
information boxes at hand at any time.

In this way we keep on sliding the window along the input text until we
reach the end of the text. Figure 8 illustrates this whole phenomenon.

6.2 Examples

To get a better understanding of the working of the parameterized suffix
based algorithm, we present two examples and show how the algorithm works
for each example using the transition graph presented in Figure 8.

In the following examples, we show different paths taken by the parame-
terized suffix based algorithm in the transition graph of Figure 8 for certain
input strings and abelian patterns.

6.2.1 Example 1 (1→ 2→ 3→ 2→ 3→ 4→ 6)

Consider an input string abcccacbb and an abelian pattern a + b + 3c. Fig-
ure 9 shows how the parameterized suffix based algorithm proceeds along the
transition graph presented in Figure 8 to find the matching abelian patterns
in the text.

15

10

11

9

8

76

1

2

4

3

5

(If sum total of the light gray regions ≤ ǫm)

(If the light gray region ≤ ǫm)

(If the light-
gray region ≤ ǫm)

(If sum total of the
light gray regions ≤ ǫm)

overflow occurred

overflow occurred

overflow

overflow

occurred

occurred

Figure 8: Complete transition graph of the parameterized suffix based algo-
rithm with labeled states. In the figure, the light gray regions in a rectangle
represent the characters read in the corresponding search window, hence the
frequencies of these characters are incremented in CFV . The white regions
in a rectangle represent the unread characters of the corresponding window.
The dark gray region in a rectangle represents the characters that occur
before the leftmost occurrence of the overflown character in the window, it
also includes the overflown character; the frequencies of these characters are
decremented in CFV , and the current window is shifted next to the leftmost
occurrence of the overflown character.

16

3 b+3c a+b+3cccb c

2 a+b+3cccb c a a+b+3c

a+b+3ccc a+3cc a3

character
overflow

character
overflow

a+b+3ccc a+4cc a4 c

1 a+b+3c

a+b+3cc a+3cc6 a c

a+b+3cc a+b+3cc2 a c b

a+b+3ca+b+2cc3 a c b

a+b+3cc4 a c b b a+2b+2c

character
overflow

character
overflow

1 a+b+3c

State CFV P

P

Input String

0.4

=
=
=

Current Window

(window is shifted towards right by one position)

2 a+b+3c a+b+3ca b c cc

leftmost occurrence of the oveflow character

(window is shifted next to the leftmost

occurrence of the overflow character)

(window is shifted towards right by one position)

leftmost occurrence of the oveflow character

(window is shifted next to the leftmost

and reset)

occurrence of the overflow character

CFV is reset

abcccacbb

a+b+3c
ǫ

Figure 9: The path taken by the parameterized suffix based algorithm in
the transition graph of Figure 8 for an input string abcccacbb and an abelian
pattern a + b + 3c with ǫ = 0.4.

17

6.2.2 Example 2 (1→ 5→ 6→ 7→ 8→ 9→ 10→ 11→ 9→ 6)

Now consider a different input string abcdeacabecabababcde and an abelian
pattern 2a + 3b + 3c + d + e. Figure 10 shows the transitions between states
made by the parameterized suffix based algorithm in an attempt to find the
matching abelian patterns in the text.

6.3 Analysis

The parameterized suffix based algorithm has the same best case complexity
as the suffix based algorithm which is Θ(n/m). However, its worst case
complexity is better than that of the suffix based algorithm.

Theorem 3. The upper bound for worst case time complexity of the param-
eterized suffix based algorithm for abelian pattern matching in a given text of
length n with pattern size m is O(n/(1− ǫ)).

Proof. If, for a given input text, the parameterized suffix based algorithm
operates in such a manner that the search window moves along the whole
text without resetting the contents of CFV , then the time complexity of the
algorithm on that input would be similar to the time complexity of the prefix
based algorithm, which is O(n).

However, if during the execution of the algorithm a window is reset after
an overflow, then we would have to process the reset characters again. In the
parameterized suffix based algorithm, two type of resets occur:

1. The resets corresponding to a transition from state 5 to state 1 (Fig-
ure 8), and

2. The resets corresponding to a transition from any of the states 4,8, or
11 to state 1 (Figure 8).

In the resets corresponding to the transition from state 5 to state 1, we read
at most ǫm characters and advance the window by at least (1−ǫ)m positions,
thus giving us a cost of O(ǫ/(1− ǫ)) per character.

In the resets corresponding to transitions from states 4,8, or 11 to state
1, the cost to process one character can be computed as follows:

We start with a search window with no entry in CFV . Now we read X
characters in the window and advance the window by m−X positions. Note
that X > ǫm, otherwise a reset corresponding to the transition from state 5
to state 1 would have taken place. We continue executing the algorithm and
let Y be the number of characters processed (in addition to X) before the
algorithm decides to reset the window. Let Z be the amount of information

18

character
overflow

character
overflow

b eacae5 2a+3b+3c+d+e2a+b+c+2e

b eaca 2a+3b+3c+d+e6 2a+b+c+e

character
overflow

character
overflow

b eaca 2a+3b+3c+d+e7 a b 3a+2b+c+e

b eaca 2a+3b+3c+d+ea b 3a+2b+c+e8

b eac 2a+3b+3c+d+e9 a b 2a+2b+c+e

character
overflow

character
overflow

b eac 2a+3b+3c+d+ea b10 a b 3a+3b+c+e

b eac

b e 2a+3b+3c+d+e9 a ba b 2a+3b+e

b e

State Current Window CFV P

1 2a+3b+3c+d+e

(window is shifted next to the overflow character)

leftmost occurrence of the oveflow character

(window is shifted next to the leftmost
occurrence of the overflow character)

leftmost occurrence of the oveflow character

2a+3b+3c+d+ea ba b 3a+3b+c+e11

(window is shifted next to the leftmost
occurrence of the overflow character)

2a+3b+3c+d+ea ba b6 2a+3b+c+ec

 abcdeacabecabababcde

 2a+3b+3c+d+eP

Input String

0.4

=
=
=ǫ

Figure 10: The path taken by the parameterized suffix based algorithm in
the transition graph of Figure 8 for an input string abcdeacabecabababcde
and an abelian pattern 2a + 3b + 3c + d + e with ǫ = 0.4.

19

contained in CFV at the time of reset (clearly Z ≤ ǫm). During this whole
process, the window is advanced by (m−X) + (X + Y − Z) = m + Y − Z
positions along the input text. So we read X + Y characters to advance the
window by m + Y − Z positions.

This gives the following cost per character:

(X + Y)/(m + Y − Z)

≤ (m + Y)/(m + Y − Z) (since m ≥ X)

≤ (m + Y)/(m + Y − ǫm) (since Z ≤ ǫm)

≤ m/(m− ǫm) (since (m/m− ǫm) > 1 and Y > 0)

= 1/(1− ǫ)

Hence the complexity of the parameterized suffix based algorithm is bounded
by O(n/(1− ǫ)) in the worst case.

7 Future Directions

Pattern matching in strings is an already established research area, however,
abelian pattern matching is quite a new direction of research. The study of
methods and algorithms for abelian pattern matching is still in its infancy
and only little literature is available on this topic.

In this report we have presented two fundamental approaches to solve
this problem and further showed how we can parameterize the suffix based
approach to limit its disadvantage. We have also given a tight lower bound
for this problem.

Now when we have algorithms for abelian pattern matching that run in
linear time, the next step is to find algorithms that run sub-linearly with
some preprocessing of the text. So we can think about indexing strategies
for a given text in which we want to find abelian patterns.

References

[1] Sebastian Böcker. Sequencing from Compomers: The Puzzle. Theory of
Computing Systems, 39(3):455–471, 2006.

[2] Mark Cieliebak, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye, and
Emo Welzl. Algorithmic Complexity of Protein Identification: Com-
binatorics of Weighted Strings. Discrete Applied Mathematics (DAM),
137(1):24–26, 2004.

20

[3] R. Eres, G. M. Landau, and L. Parida. Permutation Pattern Discovery in
Biosequences. Journal of Computational Biology, 11(6):1050–1060, 2004.

[4] T.I. Fenner and G. Loizou. An Analysis of Two Related Loop-free Algo-
rithms for Generating Integer Partitions. Acta Informatica, 16:237–252,
1981.

[5] R. N. Horspool. Practical Fast Searching in Strings. Software: Practice
and Experience, 10(6):501–506, 1980.

[6] S. Jukna. Extremal Combinatorics With Applications in Computer Sci-
ence. Springer, 2001.

[7] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cam-
bridge University Press, 2002.

[8] A. Zoghbi and I. Stojmenovic. Fast Algorithms for Generating Integer
Partitions. International Journal of Computer Mathematics, 70:319–332,
1998.

21

Bisher erschienene Reports an der Technischen Fakultät
Stand: 2008-05-07

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)

2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)

2002-01 Persistent Objects with O2DBI
(Jörn Clausen)

2002-02 Simulation von Phasenübergängen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, Ulf Schiller, Jan
Stallkamp)

2002-03 Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04 Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zöllner, Gerhard Sagerer)

2002-05 ElMaR: A Protein Docking System using Flexibility Information
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-06 Calculating Residue Flexibility Information from Statistics and Energy based
Prediction
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-07 Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glöckner)

2002-08 Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glöckner)

2003-01 On the Similarity of Sets of Permutations and its Applications to Genome
Comparison
(Anne Bergeron, Jens Stoye)

2003-02 SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry
(Sebastian Böcker)

2003-03 From RNA Folding to Thermodynamic Matching, including Pseudoknots
(Robert Giegerich, Jens Reeder)

2003-04 Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt
(Sebastian Böcker)

2003-05 Systematic Investigation of Jumping Alignments
(Constantin Bannert)

2003-06 Suffix Tree Construction and Storage with Limited Main Memory
(Klaus-Bernd Schürmann, Jens Stoye)

2003-07 Sequencing from compomers in thepresence of false negative peaks
(Sebastian Böcker)

2003-08 Genalyzer: An Interactive Visualisation Tool for Large-Scale Sequence Matching
– Biological Applications and User Manual
(Jomuna V. Choudhuri, Chris Schleiermacher)

2004-01 Sequencing From Compomers is NP-hard
(Sebastian Böcker)

2004-02 The Money Changing Problem revisited: Computing the Frobenius number in
time

O(k a1)
(Sebastian Böcker, Zsuzsanna Lipták)

2004-03 Accelerating the Evaluation of Profile HMMs by Pruning Techniques
(Thomas Plötz, Gernot A. Fink)

2004-04 Optimal Group Testing Strategies with Interval Queries and Their Application to
Splice Site Detection
(Ferdinando Cicalese, Peter Damaschke, Ugo Vaccaro)

2004-05 Compressed Representation of Sequences and Full-Text Indexes
(Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, Gonzalo Navarro)

2005-01 Overlaps Help: Improved Bounds for Group Testing with Interval Queries
(Ferdinando Cicalese, Peter Damaschke, Libertad Tansini, Sören Werth)

2005-02 Two batch Fault-tolerant search with error cost constraints: An application to
learning
(Ferdinando Cicalese)

2005-03 Searching for the Shortest Common Supersequence
(Sergio A. de Carvalho Jr., Sven Rahmann)

2005-04 Counting Suffix Arrays and Strings
(Klaus-Bernd Schürmann, Jens Stoye)

2005-05 Alignment of Tandem Repeats with Excision, Duplication, Substitution and
Indels (EDSI)
(Michael Sammeth, Jens Stoye)

2005-06 Statistics of Cleavage Fragments in Random Weighted Strings
(Hans-Michael Kaltenbach, Henner Sudek, Sebastian Böcker, Sven Rahmann)

2006-01 Decomposing metabolomic isotope patterns
(Sebastian Böcker, Zsuzsanna Lipták, Anton Pervukhin)

2006-02 On Common Intervals with Errors
(Cedric Chauve, Yoan Diekmann, Steffen Heber, Julia Mixtacki, Sven Rahmann,
Jens Stoye)

2007-01 Identifying metabolites with integer decomposition techniques, using only their
mass spectrometric isotope patterns
(Sebastian Böcker, Matthias C. Letzel, Zsuzsanna Lipták, Anton Pervukhin)

2007-02 2-Stage Fault Tolerant Interval Group Testing
(Ferdinando Cicalese, José Augusto Amgarten Quitzau)

