Universitat Bielefeld

Technische Fakultdt
Abteilung Informationstechnik
Forschungsberichte

Alignment of Tandem Repeats with Excision,
Duplication, Substitution and Indels (EDSI)

Michael Sammeth Jens Stoye

Report 2005-05

Impressum:

Herausgeber:

Robert Giegerich, Ralf Hofestadt, Franz Kummert,
Peter Ladkin, Ralf Méller, Helge Ritter,

Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultit der Universitat Bielefeld,
Abteilung Informationstechnik, Postfach 1001 31,
33501 Bielefeld, Germany

ISSN 0946-7831

Alignment of Tandem Repeats with Excision,
Duplication, Substitution and Indels (EDSI)

Michael Sammeth and Jens Stoye

Technische Fakultit, Universitat Bielefeld, Germany.

Abstract. Traditional sequence comparison by alignment applies a mu-
tation model comprising two events, substitutions and indels (insertions
or deletions) of single positions (SI). However, modern genetic analysis
knows a variety of more complex mutation events (e.g., duplications, ex-
cisions and rearrangements), especially regarding DNA. With the ever
more DNA sequence data becoming available, the need to accurately
compare sequences which have clearly undergone more complicated types
of mutational processes is becoming critical.

Herein we introduce a new model, where in total four mutational events
are considered: excision and duplication of tandem repeats, as well as
substitutions and indels of single positions (EDSI). Assuming the EDSI
model, we develop a new algorithm for pairwisely aligning and comparing
DNA sequences containing tandem repeats. To evaluate our method,
we apply it to the spa VNTR (variable number of tandem repeats) of
Staphylococcus aureus, a bacterium of great medical importance.

1 Introduction

Sequence alignment is a rather well established tool to compare biological se-
quences. To align sequences, so-called edit operations have been defined which
represent the atomic steps of the biological phenomenon called evolution. By
successively applying such edit operations, the compared sequences can be con-
verted into each other and - assuming parsimony as a major characteristic of
evolution - good sequence alignments minimize the number of operations for
these conversions or, more precisely, the assigned costs. In the classical model
of mutation, two different edit operations are considered: the substitution and
the insertion or deletion (together indel) of single characters in a sequence. In
accordance with other literature [2], we will refer to this as the SI model (for
substitution and indels) further on.

In general sequence alignments, the ST model has proven to work well. How-
ever, modern genetics knows more complex sources of mutation, especially when
regarding the evolution of DNA. These mechanisms affect no longer only single
positions but complete subareas of a sequence. Common other edit operations
are duplications (insertions of copied subsequences, in case of tandem dupli-
cations, immediately adjacent to the original), excisions (deletions of subareas
of a sequence), and rearrangements (relocations or reorientations of substrings
within the sequence, e.g. transpositions or inversions).

In recent years quite some work has been invested in the algorithmic inves-
tigation of tandem repeats. Tandem duplications and excisions follow different
rules than regular, character-based indels. On one hand the inserted or deleted
substrings are usually much bigger in duplications and excisions, and on the
other hand they contain the pattern of the tandem repeats in the corresponding
sequence. Preliminary work in this field roughly is categorized into (1) tandem
repeat detection, (2) alignment of sequences containing tandem repeats (with
or without knowledge of their positions), and (3) reconstruction of a tandem
repeat history where the phylogenetic history of the tandem repeats of one se-
quence is tracked down to a single ancestor repeat. (1) concerns the detection
of tandem repeat copies with an unknown pattern [10]. In the context of (2)
various works extended the SI mutation model to additionally respect tandem
duplication events (DSI model), e.g. in [2,4, 1]. The research of (3) investigates
possible duplication histories of the tandem repeats in a sequence. These are
represented by duplication phylogenies which under certain conditions can be
turned into rooted duplication trees, see [3,11,7,5].

Staphylococcus aureus (S. aureus), a bacterium responsible for a wide range
of human diseases (e.g., endocarditis, toxic shock syndrome, skin, soft tissue and
bone infections etec. [17]), contains polymorphic 24-bp variable-number tandem
repeats (VNTRs) in the 3’ coding region of the staphylococcal protein A (the
spa protein) [6]. The tandem repeats in this region undergo a mutational pro-
cess including duplication and excision events in addition to nucleotide-based
substitutions and indels [12], probably caused by slipped strand mispairing [18].
Further on, the microvariation of the spa VNTR cluster [13] seems to support
the phylogenetic signal reported by other methods (e.g., by [15]). Therefore, an
automated method to compare strains of S. aureus and classify them according
to the microvariation of the spa tandem repeats is critical in order to determine
the types of newly acquired sequences rapidly and accurately.

In this paper, we introduce a novel model of evolution, the EDSI model
(excisions, duplicatons, substitutions and indels), which in addition to the DSI
model includes repeat excision operations. Moreover, the restrictions on the order
of mutation events are relaxed: all four edit operations may occur arbitrarily
cascaded with each other. In Section 2 we formalize the EDSI model and give
an overview of the problem addressed. Next, in Section 3, we propose an exact
algorithm to align and compare a pair of sequences under the EDSI model of
mutation. Finally, in Section 4, we give some practical examples for comparing
spa sequences of S. aureus with the novel method and Section 5 summarizes the
benefit of the EDSI model and outlines its potential for accurate phylogenetic
investigations.

2 Description of the EDSI Model

Let s be a sequence of characters over the DNA alphabet ¥ = {A,C,G,T}, and
let s contain tandem repeats. If the boundaries of the repeats are known, s can
be written directly as a sequence s’ over the macro alphabet of the different

repeat types X' = {—, A, B,C, D,...}. The additional gap character (— € X')
is used later on when aligning repeat sequences (Section 3). (X')* denotes the
set of all nonempty strings over the repeat alphabet X’. On s’ we define the
EDSI evolution, allowing duplication and excision of repeats (characters in s’),
as well as substitutions and indels of nucleotides within the repeats. Note that
the commonly used substitution and indel operations work on the DNA bases
of s, and therefore are comprised in the term mutation of a tandem repeat.
In contrast, the duplication and excision events affect complete repeats of s’

(Fig. 1).

]

8 A B Cc
s; AAACTTAG 'AAACTTAT 'AGACTTAG

,\’\\ 2-Duplication

s, A B A B c
s, AAACTTAG AAACTTAT 'AAACTTAT AAACTTAT 'AGACTTAG

>

1-Excision

85 4 B 4 c
s, AAACTTAG AAACTTAT AAACTTAT AGACTTAG

Mutation,
1-Duplication

sS4 A D A A c
s, AAACTTAG' 'ACACTTAT 'AAACTTAT 'AAACTTAT "AGACTTAG

Fig. 1. An example for cascaded duplication, excision, and mutation events. Shown
are DNA sequences s; and the corresponding sequences s; on the macro alphabet X’ of
repeat types (superimposed on s; in grey). Some edit operations (as given to the right)
successively are performed on the sequence. It can be easily seen that after a couple of
cascaded operations the sequence of characters is rather scrambled.

Precisely, the duplication events occurring in the evolution of the spa repeat
cluster are multi-copy duplications (1-duplication, 2-duplication, etc.) copying
one or more adjacent repeat copies at a time. The boundaries of the duplicated
repeats are restricted to the boundaries of tandem repeats on the nucleotide
sequence s. However, on s’ the duplication boundaries are free in the characters
of the macro alphabet X’, i.e., duplicated substrings may start and end any-
where in s’. Finally, the duplication operation in the EDSI model is single-step,
denoting that no more than one copy of a duplicated substring is produced in
one evolutionary step. In the same manner, the excision operation of the model
is characterized as multi-copy (1-excision, 2-excision, etc.) with free boundaries
on s’. The order of events in EDSI is unrestricted. To be specific, all four edit
operations described by the model may be applied arbitrarily cascaded with each
other (Fig. 1).

In order to assess the evolutionary distance between two given sequences,
we assign costs to all operations comprised in the EDSI model: cost.(w) for the
excision of the tandem repeat copies in string w, costq(w) for a duplication of
the tandem repeats in string w, and cost,, (w1, ws) for a mutation of a repeat
type wy into the repeat type ws. The cost model of EDSI evolution then can
be freely adjusted! with respect to the following criteria:

— Excision costs should be positive, cost.(w) > 0 for all w € (X')*, since exci-
sion events can replace all other operations. To be specific, any non-identical
pair of sequences (s',t¢') can be derived from a concatenated ancestor string
s't" by two excisions (once excising s’ to reconstruct ¢’ and once exising ¢’
to deduce s’ from the ancestor). Hence, finding the minimum distance for
sequences in a cost model with cost.(w) = 0 is trivial.

— Duplication costs should be non-negative, costy(w) > 0 for all w € (X')*.

— Mutation costs should comply with the properties of a metric: symme-
try (costy, (w1, ws) = costy, (wy,wy) for all (wy,ws) € X'), zero property
(costy, (w, w) = 0 for allw € X’), and the triangle inequality (cost, (w1, w2)+
costy (o, w3) > costy (w1, ws) for all wy, we, ws € (X)T).

The problem of sequence evolution comprising EDSI operations can now be
formulated as an optimization problem with the goal of minimizing the EDSI
distance defined in the following: Given two sequences (s’,t’) and cost measures
coste, costy, and cost,,, find the distance d(s,t') under the EDSI evolution that
is the minimum sum of costs of all series of operations possible to reproduce
one sequence from the other. This can be interpreted such that both sequences
s’ and t' are subjected to evolutionary operations in order to transform them
into a common string — a possible common ancestor according to the biological
model. The operations that produce a common ancestor of s’ and ¢’ with the

least costs define the EDSI distance d(s’,).

Theorem 1 (finiteness). The edit operations under EDSI evolution and their
unrestricted order basically force us to explore an infinite search space of possible
ancestor sequences. However, the space of operation sets to be explored in order
to find the minimal distance between two sequences d(s',t') is finite.

Proof. When reconstructing possible evolutionary histories from a given pair
of sequences (s',t’), theoretically there could have been present an arbitrarily
large number of repeats between two adjacent positions z and z + 1 of s’ (or,
symmetrically, ') which later were deleted with cost cost, > 0. There are two
possible sources for these deleted repeats in the tandem-repeat history: (i) they
may have emerged from duplication events, or (ii) they may have been repeats
from non-duplicated sequence areas. Cnsider case (i). If a deleted repeat has
originated from a duplication event, the corresponding excision can be detected
by investigating all possible duplication events to the left (in s'[1,z]) and to the

! For a definition of the costs used for the Staphylococcus aureus evolution see Section
4.

right (in s'[z +1,]|s|]). The number of single duplication events on a finite string
is limited, and so is the number of possibly excised repeat units between = and
x4+ 1. Moreover, all character insertions between x and x+ 1 induced by possible
duplication events with consecutive excisions are collected (Section 3.1 and 3.2)
and taken into account in the final comparison between s’ and ¢’ (Section 3.3).
Consider now case (ii). If deleted substrings have originated from non-duplicated
sequence areas (or whenever the second repeat copy of a duplication has been
excised as well), they are not relevant in the search for a minimal distance: in
the comparison of s’ with ¢’ an appropriate excision event will be detected (Sec-
tion 3.3), whenever ¢ has a substring that aligns between s'[z] and s'[z + 1].
However, if the alignment with ¢ does not indicate any presumptive excision be-
tween z and z+1 in s, all such theoretically possible excisions are not contained
in the operations determining the minimum distance since additional excision
costs cost, > 0 produced an ancestor sequence that is not closer to ¢’ than the
original sequence s’. a

3 Pairwise Alignment under the EDSI Model

After the definition of the EDSI model, we can describe an exact algorithm
to compare and align sequences with respect to the four edit operations. The
main idea of our method is to find possible repeat histories, assign costs to them
according to the edit operations, and consider them as alternatives during an
alignment procedure. Thereby the alignment possibility between both sequences
with the least cost is selected, regarding the original sequences with all con-
tracted substrings generated by the repeat histories. Assuming the parsimony
principle for nature we take these costs as a distance measure for the compared
sequences. So basically our algorithm works in two steps: first it finds possible
duplications on each sequence under the rules given by the EDSI model. After-
wards, we determine the distance between a sequence pair in a high-dimensional
multiple sequence alignment (MSA) using the duplication events found before
as alternative alignment possibilities between the compared sequences.
Although not observed in biology, we also use the term contraction for the
mathematically inverse process of a duplication. Our technique is based on con-
tramers C = (s',b,m, e, A), representing contraction units. These are substrings
of s’ (the macro alphabet representation of the input string s) on which a con-
traction is performed. The substring to be contracted, s'[b, e], is located within
s’ by its beginning b and its end position e. The meridian m,(b < m < e)
splits the contramer into two segments, also called the prefiz (the first segment
s'[b,m — 1]) and the suffiz (the second segment s'[m, e]). Finally, the alignment
A of the prefix and the suffix describes how the characters of both segments
are evolutionarily related according to the contramer. To be specific, aligned
repeats correspond to each other (with respect to possible mutation events) and
gaps indicate the excision of repeats. An example of a contramer representing a
duplication event (including mutation and excision) is given in Fig. 2.

s=[ABCDADD A: |ABCD
| 1
c=(s',1,5,7,4) A-DD

Fig.2. A contramer C = (s',1,5,7, A) that implies the duplication of substring
s'[1,4] = ABCD and its post-duplicational modification into ADD. The alignment
(grey box) shows that repeat B was excised while repeat C' mutated to repeat D.
All vertically adjacent repeat pairs (i.e., non-gap characters) in an alignment layout
correspond to each other w.r.t. possible mutations. These links (black lines) are not
explicitly visualized in further representations of an alignment.

3.1 Primary library of contramers

The initial set of contramers is extracted directly from the repeat sequence s’. For
each meridian position in ', 1 < m < |s/|, all alignment possibilities of available
non-empty prefixes s'[b,m — 1], 1 < b < m, and non-empty suffixes s'[m, e], m <
e < |¢|, are generated. The contramers inferred thereby form the primary library.
Note that at this stage the similarity of the aligned segments is not optimized
by any objective function since links between amalgamated contramers later on
can involve new repeat copies (i.e., characters of s’). Contramers in the primary
library represent possible duplication events, i.e. links of positions in neighboring
segments.

Algorithm 1 (Generate the contramers for the primary library L)
1: L0
2: for m «— 2 to |s’| do
3: forb«1to(m—1)do

4: for e — m to |s'| do

5: AP[] «— GENERATEPOSSIBLEALIGNMENTS(b, m, €)
6: for all A in AP[] do

7: STORE(L, C = (s',b,m, e, A))

8: end for

9: end for

10: end for

11: end for

Algorithm 1 outlines the technique used to assemble the primary library of
contramers. As input serves a sequence s’ on the alphabet of tandem repeats X".
The resulting list L contains each possible contramer C' = (s',b,m,e, A) of 5.
The cost of a contramer may be derived directly from the associated alignment A
by adding, for each column of the alignment, the costs of mutations or excisions.
In addition, to reflect the costs for the duplication event, costq(s'[b, (m — 1)]) is
added, yielding the final cost of contramer C' = (s', b, m,e, A):

cost(C) = costq(s'[b, (m — 1)])
|A] (costy, (A1, Ag;) for each mutation (Ay; # — # Ay)
+ Z coste(Ay;) for each excision in the prefix (Ay; # —, Az = —)
i=1 | cost.(Ag;) for each excision in the suffix (A1; = —, Ag; # —).

Theorem 2 (completeness of the primary library). Contramers contained
in the primary library exhaustively generate all ancestor strings that can be de-
rived from a sequence by reversing exactly one duplication event.

Proof. The exhaustive search over possible starts b, meridians m and end points
e of contramers guarantees that for any pair of non-overlapping repeat sub-
strings (s'[z1,v1], §'[22,y2]), y1 < x2 there exists at least one contramer C' =
(s',b,m,e, A) in the primary library that contains both substrings in different
segments b < z1 < y1 < m < 2 < Yy < e. Since furthermore all possible
alignments between the segments are generated (Algorithm 1), all possibilities
to map characters from one segment s'[x1,y1] on positions of the other segment
s'[x2,y2] are taken into account. It should be stressed that the segments s'[x1, y1]
and s'[x2, y2] need not match each other’s lengths, since by gap characters in the
alignment (excision events) substrings of different lengths (y1 — 1) # (y2 — 72)
can be mapped on each other. The argumentation for the redundancy of con-
tramers with an empty segment is similar to the one for limitation of the search
space given in Theorem 1.

3.2 The secondary library

In order to infer cascaded duplication histories, overlapping primary contramers
C; and C5 are to be merged to form cascaded duplication events. Abusing no-
tation, we define a contramer intersection (union) as the intersection (union)
of the corresponding segments of s', i.e. C1 N Cy = {b1,...,e1} N {ba,... e}
(C1UCy ={b1,...,e1} U{bs,... e2}).

If Cy N Cy comprises positions of both segments of Cy, we call C; a con-
tained contramer (and Cy a containing contramer). Otherwise, Cy and Cy are
connected contramers. However, not all overlapping duplication events are nec-
essarily compatible with each other. The precondition for a pair of compatible
contramers (Cp,C5) is that they can be realized in a common evolutionary or-
der, i.e., there exists at least one repeat history tree comprising both described
duplication events.

Evolutionary order of compatible contramers. The common evolu-
tionary realizability can be deduced from analyzing the intersection of the two
contramers C7 N C5. In evolution, the duplication events described by contained
contramers must have happened before the duplication events of the contramer
they are contained in (Fig. 3a), whereas for a pair of connected contramers the
evolutionary order does not matter (Fig. 3b). Two contramers mutually con-
tained in each other are not realizable in a common repeat history (Fig. 3c),
even if they share the same meridian position m (Fig. 3d).

ABAB
C=(s,2,5,7,4,)
ABABBAB
C=(s'1,4,6,4,) ABC ABC

b) s=[ABCABCBC| NN S
(b) s<l4BCABC ABCBC ABCABC

ABCABCBC ABBABCBC

Clz(s"l,3,4,Al) A?\Bm BA
c = ;
(€ s n BRIYY B?\K
C=(s,2,4,5,4
" ABABA® @ABABA
¢=(s,1,3,3,4,) TIIB\ A ?\
d) s=[ABB
@ s nﬁﬂ, ABB ABB
¢=(s,2,3,3,4,) |
ABB® ABB®

Fig. 3. Restrictions on compatible contramer pairs C; = (s’, b1, m1,e1, A1) and Cz =
(s, b2, ma, €2, A2) (grey boxes, meridian position indicated by a dashed line). Possible
repeat histories expressed by the amalgamation C1UC> are depicted on the right. (a) C1
is contained in Ca, therefore the evolutionary order is fixed and the duplication captured
in C1 must have happened before the one described by C2 (only one possible repeat
history). (b) Merging two connected contramers imposes no order on the evolution
(i-e., the duplication of Cy or C3 may have happened first). (c¢) and (d) If none of
the contramers has a non-intersecting segment, {m1 — 1, mi, ma — 1,ma} ¢ C1 N Cy,
no repeat history can be found incorporating both duplication events captured by the
contramers. This holds even if the meridians coincide, mi1 = ma, see (d).

Lemma 1 (merging conditions). Two contramers Cy; = (s',b1,my,e1, A1)
and Cy = (8',ba, ma, €2, A3) are compatible and can be merged if:

1. they overlap, C1 N Cy # () (connectibility) and

2. one of the reflected duplication events has happened after the other one.
Therefore at least the contramer Cy needs to have a segment outside of the
intersection area, (my — 1) ¢ C1 N Cy or my ¢ C1 N Cy (compatibility).

Lemma 1 describes the preconditions that are to be met to merge a pair of
contramers. Afterwards, C; and Cs are merged into C; U C by combining their
respective alignments: any repeat s’[z] in the overlapping area Cy N Cy may be
linked to two other repeat copies §'[y] € (C1 \ C2) and §'[z] € (Cy\ Cy) by the
alignments A; and As. Thereby a transitive link between both of the not directly
associated repeats s'[y] and s'[z] is created. All three repeats (s'[z], s'[y], s'[2])
are then written in one column of the merged alignment (Fig. 4a). Problems arise
when both contramers comprise excisions in between corresponding positions of
the overlapping area (Fig. 4b). In this case the contramers do not provide a

() c=(s1,4,6,4) AB

Al
s={ABCABCDBCD IA!BCDA
) 1|4
C,=(s,5,8,10,4) BCD

(b) c=(s,1,5,6,4)
s'=/ABCD/AD[AX YD
c,=(s,5,7,9,4)

Fig. 4. Transitive links when merging contramers. (a) A pair of partially overlapping
contramers where e.g. C1 connects the positions (2,5) and C» links position 5 with
8. The transitive link created when merging A; with As links all three B-characters
together (2nd column of the merged alignment to the right). (b) The amalgamation
of a pair of contramers (C1,C2) which are both inducing characters in the same area.
Consequently, the phylogenetic relation of the characters (lowercase) cannot be exactly
determined (possible relations are indicated by the dotted grey lines).

unique information about the transitive relation between the excised characters.
One possibility would be to exhaustively generate all the alignment possibili-
ties between the respective characters. However, since we are only interested in
finding a "good” combination of characters minimizing the distance to another
sequence, we let these ambiguous repeats unaligned for the moment and search
for a combination similar to the compared sequence later on in the comparison
step (Section 3.3).

The merging strategy is straightforwardly extendable to deal with more than
two contramers. A set of combinable contramers {C4,Cs, ..., Cj} obviously re-
quires that each of the contramers C;, i € {1,2,...,k} has to fulfill the precon-
dition of connectibility with at least one other contramer j € {1,2,...,k},j # 1.
Otherwise C} is isolated and cannot be joined. Furthermore, it is required that
each pair of overlapping contramers (C;,C}), i,j € {1,2,...,k}, is compatible.
The order in which the contramers are joined is not important since the merge
operations are commutative:

Theorem 3 (commutativity). The pairwise merging steps of multiply joined
contramers are commutative, (C1 U Cq) = (C2 U Ch).

Proof. Two contramers Cy; = (s',b1,m1,e1, A1) and Co = (s',ba, ma, €2, A3)
when joined merge the links realized in A; and in As to form transitive links.
A transitive link joining positions (s[z], s'[y], s'[2]) is equally created either by
taking the link (s'[z], s'[y]) and extending it by the link (s'[y], s'[z]) or by starting
with (s'[y], s'[z]) and joining it to the link (s'[z], s'[y]). O

Figure 5 demonstrates that when performing a multiple amalgamation with
all preconditions met by the contramers {C4,Cs,...,Ck}, we perform succes-

C,=(s,8,10,12,4,) A,

C=(s,1,6,9,A) “ABxy
s=|ABXYBIAAIABBCDED F| g <>
C=(s,6,7,7,1) AaB- -
C,=(s,12,14,15,A) A, il 5 e =
pFl

Fig.5. A set of multiply merged contramers (C1 U C2 U Cs U Cy4) and the respective
concatenated alignment. Note that lowercase characters are not uniquely aligned by
the transitive links of the contramers, and their position is determined later during the
comparison process (Section 3.3).

sively the merging step for each pair of overlapping contramers (Cj;, C;) such
that ¢ # j, C; N C; # 0.

Algorithm 2 describes the construction of contramers in the secondary li-
brary. Initially, L comprises the contramers already included in the primary
library. The set of contramers with beginning b, meridian m, and end e can be
accessed via the function GETC(L, b, m, e). The functions FINDCONNECTEDC()
and FINDCONTAINEDC() extract contramers in a given subarea (specified by the
start and end point). For each pair of overlapping contramers the preconditions
are checked before returned (set DP[]). In the end, compatible contramers F' are
merged with C, and the result is added to L.

Theorem 4 (completeness of the secondary library). Contramers con-
tained in the secondary library generate all ancestor strings that can be de-
rived from a sequence under the EDSI model containing one or more duplication
events.

Proof. The iteration order (over ascending meridian, start and end positions) of
Algorithm 2 guarantees to (i) find all cascaded duplication events of contained
contramers by investigating only the prefix area of any iterated contramer C.
Additionally, (ii) all overlapping chains of connected contramers are found by
looking in the suffix of C.

(i) When processing a certain contramer C' = (s’,b,m, e, A), all contramers
C’ that can be contained in the prefix of C' have already been processed earlier.
Since A links the characters of the prefix s'[b,m — 1] with characters in the suffix
s'[m, €], contramers contained in the suffix of C are implicitely induced by their
counterparts contained in the prefix of C'. The same argumentation holds for
already concatenated groups of contramers.

(ii) Connected contramers are only to be searched in the suffix s'[m, €] (i.e.,
the suffix with the biggest end position case of already merged chains con-
tramers). A contramer C' = (s',b',m/,e’, A”) connected to the suffix of C' will
be iterated later in the cascaded loops of Algorithm 2 since m < m/. Formulated

Algorithm 2 (Amalgamate contramers to build the secondary library L)

1: L «— PrimaryLibrary()
2: for m < 2 to |s'| do
3: forb«—1to(m—1)do

4: for e «— m to |s'| do

5: CPJ[| «— cETC(L,b,m,e€)

6: for all C' in CPJ] do

7 DP|] «— FINDCONNECTEDC(L, m, €)
8: for all D in DP[] do

9: F — MERGE(C,D)

10: STORE(L,F)

11: end for

12: DP[] — FINDCONTAINEDC(L, b, m)
13: for all D in DP[] do

14: F — MERGE(C,D)

15: STORE(L,F)

16: end for

17: end for

18: end for

19: end for

20: end for

the other way round, all contramers connected to the prefix of C' have already
been processed when investigating C'.

Note that in either case ((i) or (ii)) the product of amalgamation, C' U ", is
inserted in L at a position that will be iterated again, so that chains of multiple
connected contramers are merged step by step from left to right. a

3.3 Contramer Alignment

In the final alignment phase, the possible tandem repeat histories of two se-
quences (s',t") are used as alternative character combinations when comparing
s’ to t'. To this end, we extend the well established technique of dynamic pro-
gramming (DP) for sequence alignment to additionally take into account the
(cascaded) duplications. The contramers found along both sequences to be com-
pared serve as additional alignment possibilities, i.e., cells extending the regular
DP matrix. For each cell (4, 7) to be computed in the DP recursion of the main
matrix M of size |s'| x |t/|, (merged) contramers ending at position ¢ in s’ (or at
position j in ¢, respectively) are considered. The alignment profile of each com-
primer C' = (s,b,m, e, A) can substitute the characters of the original sequence
in the area s'[b, e]. Note that each cell (4, j) of the matrix M is connected by mul-
tiple contramers with any of the cells computed earlier during the DP process.
Therefore, the resulting alignment is high-dimensional with multiple alternative
submatrices for each contramer in both sequences (Fig. 6).

The matrix M can be computed by the following recursion formula:

M(i—1,7— 1) + cost, (s8], t'[4]) // mutation
M(i—1,7) + cost.(s'[i]) // excision in s’
M(i,j — 1) + cost.(t'[i]) // excision in t'
M (i — by, 0) + cost(Cy) + align(t'[0, 5], Az)
o . for all Cy, = (8, by, My, 1, Ay) //duplication in s’
M) =min g 110, b,) + cost(C,) + align(s'[0., A,)
for all Cyy = (s, by, my, j, Ay) // duplication in t'
M (i — by, j — by) + cost(Cy) + cost(Cy) + align(Az, Ay)
for all Cy, = (8, by, My, i, Ay)
| and Cy = (5", by, my, j, Ay) //duplication in s’ and t'

1
2
3
4
|5
|6
|7
|8
{9
—1 10
= 111
12
13

Fig. 6. An example for an alternative submatrix within a DP matrix M = |s'| x
[t'|. C2 = (t',5,10,11, A3) substitutes the substring #'[5,11] with the alignment A,.
Projected into M, C5 spans the submatrix shown. During the DP process paths within
the original and within the submatrix are taken into account when determining the
optimum of the cells in column 12. Note that only contramers of one possible repeat

history are depicted here, but all cascaded duplication events of the secondary library
are investigated.

At each stage (i,7) of the alignment, the minimum cost is calculated for
all edit operations of the EDSI model: mutation (line 1) of repeats (comprising
substitutions and indels on the DNA alphabet X), excisions (lines 2 and 3) of

repeat copies (on the macro alphabet ") or duplication events (lines 4, 5 and 6).
The preference of the algorithm is in the same order as given, and to optimize
the performance a bounding step was added to only assess the alignment of
contramers C' which are not already exceeding the costs found earlier for a cell
(i,7) by their cost cost(C).

@ C=(s,1,3,4,4,)

s'=|AAlA B| AA
C,=(s,1,2,2,4) RN
2 AAAB
®) C=(s,1,3,4,4,) B E AXB
s=[AXAYBXB "A[Y[Bl AXBXB
C,=(s,4,6,7,4) el RN
? AXAYBXB
AX

(©) 01:(521’3!4"41)

s=la Yl ZIA x]
c,=(s,3,5,6,4,)

7

AY

=5

>
b e

AXAZAY
cost, (X,Y) = cost (Y,Z) < cost, (X,Z)

Fig. 7. Tandem duplication histories for contramer sets joined in different manners.
Shown are the contramers on the linear sequence (left), the concatenated alignments
(center), and a repeat history producing minimal cost (right). (a) A contained con-
tramer always represents a duplication event that happened before the duplication of
the contramer it is contained in. Note that the history displayed is the only one possible
for the amalgamated contramers C7 and Ca. (b) In partially overlapping contramers
the cost-optimal list of evolutionary steps is to be found. Every segment has to be
investigated as possible root from where the repeats evolved in order of their location
within the sequence. The lists generated can produce different costs since it is not spec-
ified in the contramers, in which direction a substitution event happened and whether
mutations happened before or after the duplication event. The given repeat history
with costm(X,Y) is cheaper than all other possible histories with 2costm,(X,Y) (in
addition to 2costq(s’[x,y]) common to all histories inferred on the given contramers).
(¢) When overlapping completely, finding the history of connected contramers is a tan-
dem repeat history problem first described by Fitch [9]. In the optimal history given
here, w.r.t. the triangle inequality assumption for cost,,, the last evolutionary segment
evolves directly from the first one. For only partially overlapping contramers such a
non-linear evolutionary order is not possible.

As found earlier (Section 3.2, Fig. 4), in merged contramers not necessarily all
of the transitive relations are clear. These positions are to be aligned within the
amalgamated contramer taking also into account the sequence the contramer

is compared to. To this end we use a stable re-implementation of the hyper-
space multiple sequence alignment procedure [16], which was modified to use
the scoring function for repeat evolution, when aligning the amalgamated con-
tramers with the corresponding compared sequence: all positions already aligned
between the duplication events of the contramers are provided as constraints,
whereas the ambiguous positions finally are aligned optimally according to the
sequence information.

Costs of merged contramers. Joined contramers may contain concate-
nated alignment areas of three or more lines, corresponding to transitive links
in the overlapping area of contramers. The sum-of-pairs-score normally used to
measure multiple alignments is not suitable since it does not reflect the order
of the segments, i.e., the lines in the alignment; in a regular alignment, the
sequences (the lines) are independent of their order while the lines of contramer-
alignments represent the order of evolutionary fragments within the input se-
quence. The scoring function has to respect this order of the evolutionary frag-
ments, and all possible repeat histories are to be explored to find the minimum
cost, for transitively linked areas.

As described earlier, for contained contramers the evolutionary order is fixed,
and they happened earlier than the contramers they are contained in (Fig. 7a).
In case of connecting contramers, there are two possibilities. Either, the merged
neighboring contramers C; and Cy may overlap partially, i.e. s'[m1,e1] # s'[bz, ma—
1]. Here, some of the characters of C or Cs are not transitively linked with the
other contramer, implying that the evolutionary order must be a subsequent
chain, starting at any of the involved evolutionary fragments (Fig. 7b). AL-
ternatively, two connected contramers may overlap completely, to be specific,
s'lmy,e1] = s'[ba, ma — 1]. In this case the evolutionary order is arbitrary and all
possible duplication tree topologies have to be investigated to find the history
with least cost (Fig. 7c).

Figure 8 demonstrates that not only the topology of the repeat history, but
also the time when a mutation event took place is crucial when calculating the
costs. Specifically a mutation event performed before the corresponding duplica-
tion event creates a different pattern than if the same position is mutated only
in one of the tandem copies after duplication. In a similar manner, the minimal
costs of excisions in overlapping duplication events can be smaller than adding
up the excision costs from the merged comprimers, respectively.

Therefore the scoring function for merged contramers has to explore all possi-
ble repeat histories w.r.t. the restrictions as set by the overlaps of the contramers
(Fig. 7). Additionally, each modification (i.e., excisions and mutations) in the
amalgamated contramers has to be tested before or after the respective dupli-
cation event. This exhaustive search yields the minimum cost for a cascade of
contramers (Theorem 5). However, time and space complexity of the method
are exponential w.r.t. the sequence length. Note that the input of the algorithm
are sequences of already annotated repeats and the input size therefore is much
smaller than the original sequences.

(a) ABA (b) ABA
T T
7 7
’Z I I
ABA |ABA ABA*| ABA
. e ﬁl_ A T
- -
7
A'B'A A B ! A48 AAB !
| | | T T |
1y 1y
BBA AAB ABA BBA AAB ABA

Fig. 8. Depicted is a repeat history for 3 repeats originating from two tandem duplica-
tion events (grey boxes). Although the topology of the repeat history is the same in (a)
and (b), the calculated costs diverge when changing the time point a certain mutation
(grey asterisk) happens. In (a), three mutation events are used (3costq+3costm (A, B)),
whereas in (b), in total five mutations are performed (3costq + 5costm (A, B)).

Theorem 5 (correctness of the method). The distance d(s',t") found by
the DP recursion is the minimum distance possible in the comparison of s’ and
t', assuming the model of EDSI evolution.

Proof. In the primary library all possible links between repeats of s’ and ¢’ that
can originate from single duplication events, are generated (Theorem 2). Thus,
by merging overlapping duplication events in the secondary library, we explore
all possible cascades of duplications collected in the primary library (with restric-
tions to the biological model as given in Lemma 1, Theorem 4). On each of these
cascades, excision events are tried before and after the respective duplication
in order to yield the minimum costs according to the EDSI evolution (Fig. 7).
Finally, in a high dimensional alignment all contramers extracted from s’ and ¢’
are used as alternative substrings imposing replacement costs as calculated. The
minimum distance is then finally found by a DP recursion in a high dimensional
alignment (Section 3.3). O

4 Results

To test our method, we applied it to the DNA sequences of Staphylococcus
aureus. To be specific, the 5-VNTR clusters in the gene encoding the spa-
Protein were used as input for pairwise alignment under the EDSI model. Since
the repeat patterns for all hitherto isolated strains (so-called spa-types) are
known, the sequences are provided in characters of the macro alphabet X'.
To this point, we use the Kreiswirth notation defined by identify the repeats
Y ={A As,B,By,C,Co,...,V,Vo, W, X, Y, Y5, Z, Z5}. In addition to the sim-
plified alphabet used to introduce the model, in the Kreiswirth notation each
letter may be used more than once in conjunction with a unique index [13].

Comparison of ST-254 Spa-types. Figure 10 shows an alignment of the spa repeat
that we used to set up a simple cost scheme for the comparison of spa-types:

(a) ST254:

t036 YGFMBQBLPO
t048 YGFMBLPO

t115 YGFMBQBLQBLQBLPO
t139 YFMBQBLQBLPO
t146 YFMBQBPO

(b) | t036 YGFMBQBLPO cost—1 (2) t048 YGFMBL--—-- PO| i 3 ©6)
048 YGFM--BLPO t139 Y-FMBQBLQBLPO
t036 YGFMBQBL------ PO| (ost—9 6) 048 YGFMBL-PQ cost=2 (2)
t115 YGFMBQBLQBLQBLPO t146 Y-FMBQBPO
t036 YGFMBQBL---PO| . .. o (4) t115 YGFMBQBLQBLQBLPO| .. o)
139 Y-FMBQBLQBLPO t139 Y-FMBQBLQBL---PO
t036 YGFMBQBLPO| . .. o @) ©t115 YGFMBQBLQBLGBLPO| ../ (g)
t146 Y-FMBQB-PO t146 Y-FMBQB------- PO
048 YGFMBL------—- PO

cost=3 (8) t139 YFMBQBLQBLPO| . o (4)

t115 YGFMBQBLQBLQBLPO t146 YFMBQB----PO

Fig. 9. Sequence comparison of the MLST sequence type ST-254. (a) a list of Spa-types
found to have the ST-254 pattern. The data was acquired by sequencing from the same
laboratory strains the VNTR cluster of the spa-protein and the MLST loci [14]. (b)
One alignment that scores minimal costs for each pair of Spa-types from the ST-254
group. Substrings involved in duplication events leading to the minimum distance are
underlined. To the right of the alignments the costs are given w.r.t. the EDSI model and
in parentheses the costs under the SI model (without taking into account duplications).
Under the EDSI model, the costs in the comparison of 1036 and t048 are composed of
a duplication event of the substring t048[5, 6] = BL and the mutation of repeat L into
t036[6] = Q, yielding the distance d(t036,t048) = costq(t048[5,6]) + costm(L,Q) =
1+0=1.

since we are interested in a distance to measure evolutionary steps, we assign
a unit cost u corresponding to the number of operations needed to perform the
change. A duplication costs one operation (costq(s’[z,y]) = u), regardless of
its length. The objective function to score mutation events (substitutions and
indels of nucleotides) is based on a multiple alignment of all repeat types (Fig.
10). In order to contribute to the fact that the repeat cluster is coding, nucleotide
substitutions changing effectively the corresponding codon are weighted with a
cost of u, while silent mutations are omitted. In the same manner indels are
penalized according to the number of codons x missing (zu). If not further
specified, we set u = 1 in the tests. The mutation costs cost,,(z,y) for x,y € X’
are summed up along the pairwise DNA alignment of z and y which is projected
from the global alignment of all repeats. Excisions are treated differently, we
penalize them according to their length, such that cost.(s'[z,y]) = (y — x). The
linear cost function prevents the algorithm from replacing all evolutionary events

§

AAA, AAG (Lys)
GAA, GAG (Glu)

GAC, GAT (Asp)

AAC, AAT (Asn)
GGC, GGT (Gly)
AGC, AGT (Ser)
CCT (Pro)
CAA (GIn)

E0EEOOON

NN <X [EILISIcHBRloIZEIF IRl

Fig. 10. DNA sequences of the Spa repeat types known hitherto. To the left, the letter
denoting the repeat type in the Kreiswirth notation is given. The 24-bp repeats are
grouped in triplets according to the reading frame. Shaded boxes indicate the different
amino acids that are translated from the codons. Data adapted from [13].

by excisions when repeat copies are no longer exact. From another point of view,
the scoring biases the algorithm to favor duplications and mutations and prefer
them — up to a certain threshold — over possible excisions.

Since, to our knowledge, this is the first time the VNTR, data of Spa-types is
used to infer distance measures, we focus on one sequence type (ST-254), which
by definition pools strains with the same types of the seven housekeeping genes
used for MLST [8]. However, the resolution of STs found by MLST is lower
than the microvariation within the spa repeat cluster. Thus, a ST group with
an identical MLST pattern can pool several strains with diverging Spa-types
(named by ”"t” and a 3-digit code), while the other way around a Spa-type may
have evolved in different ST groups. Spa-types used in here to investigate the
micro-variation of the repeats (i.e., t036, t048, t115, t139, and t146) were isolated
in the laboratory from identical strain stocks [14]. Therefore, the microvariation
of these Spa-types can be assumed to bear a phylogenetic marker (Fig. 9a).

Figure 9b summarizes the differences of applying the novel method based
on the EDSI evolution in contrast to standard scoring functions for SI model
comparisons. In order to compare the results, we adapted the scoring function
of the SI alignment to the same values given for the EDSI evolution (zu for the
insertion of x gaps and substitution costs according to non-synonymous muta-

tions, Figure 10). We want to stress on the fact, that the alignments shown are
only one example from a set of alignments that can reproduce the minimal costs
shown. As can be seen clearly, the distribution of the costs varies substantially
between the EDSI model and the SI model of evolution. This results from the
simple fact that the SI scoring scheme is not capable to distinguish duplication
events from excisions and cannot score them differently. The resolution of the
EDSI events is therefore higher, which results in a more subtle analysis when
comparing the distances.

For instance, the minimal costs of the alignments in Fig. 9b can be calculated
as follows. (Note that mutation costs with cost,, = 0 are omitted. Therefore,
character changes are possible between repeats that do only differ by silent
mutations.)

d(t036,1115) = 2costy(t036[6, 8]) = 2
d(t036,t139) = cost4(t036[6, 8]) + cost.(t036]2, 2]) = 2
d(t036, £146) (t036[2, 2]) + cost, (1036]8, 8]) =
d(t048,t115) = costy(t048[5, 6]) 4+ 2costq(QBL) = 3
d(t048,t139) = cost.(t048[2,2]) + cost4(t048[4, 5]) + costd(QBL) =3
() = cost(t048]2,
() (t115[2
() (t146[2
() (t139[7

= cost,

]
d(048, 1146 + cost. (1146[6, 6]) =
d(t115,1139) = coste(t115[2,2]) + coste(t115[6,8]) =
d(t115,1146) = costq(t146]2, 2]) + cost.(t115]8, 8]) + 2('09td(QBL) =4

— — ~— ~— ~— ~ ~— —

(
d(t139,t146) = cost4(t139 + costy(QBL) =

5 Conclusion

The EDSI model of evolution joins the events of tandem duplication, tandem
copy excision, point mutation and deletion that may happen in arbitrary order
throughout evolution. To our knowledge, this is the first time an evolutionary
model of that complexity has been described for sequence comparison. Taking
into account operations as captured in the EDSI model, we described an exact
method to compare a pair of repeat sequences and to assign them a distance. In
first tests we could show that the pairwise comparison under the EDSI model
efficiently captures cascades of duplication events and expresses them in the dis-
tance measure. Regular (based on the SI model) scoring functions cannot resolve
duplication events, and scoring schemes based on the DSI model do not support
cascaded cycles of duplications, excisions and mutations. However, in vivo stud-
ies demonstrated how essential these mechanisms are, when investigating the
evolution of S. aureus [12].

Acknowledgments

The work of Michael Sammeth was supported by a doctoral scholarship of the
Ernst-Schering Research Foundation.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Behzadi and J.-M. Steyaert. The minisatellite transformational problem re-
visted. In Proc. of WABI 2004, volume 3240 of LNBI, pages 310-320, 2004.

G. Benson. Sequence alignment with tandem duplication. J. Comput. Biol., 4:351
367, 1997.

G. Benson and L. Dong. Reconstructing the duplication history of a tandem repeat.
In Proc. of ISMB 1999, pages 44 53, 1999.

S. B/’erard and E. Rivals. Comparison of minisatellites. In Proc. of RECOMB
2002, pages 67-76, 2002.

D. Bertrand and O. Gascuel. Topological rearrangements and local search method
for tandem duplication trees. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
2:1-13, 2005.

M. de Macedo Brigido, C. R. M. Barardi, C. A. Bonjardin, C. L. S. Santos,
M. de Lourdes Junqueira, and R. R. Brentani. Nucleotide sequence of a vari-
ant protein a of Staphylococcus aureus suggests molecular heterogeneity among
strains. J. Basic Microbiol., 31:337-345, 1991.

O. Elemento, O. Gascuel, and M.-P. Lefranc. Reconstructing the duplication his-
tory of tandemly repeated genes. Mol. Biol. Evol., 19:278-288, 2002.

M. Enright, N. Day, C. Davies, S. Peacock, and B. Spratt. Multilocus sequence typ-
ing for characterization of methicillin-resistant and methicillin-susceptible clones
of Staphylococcus aureus. J. Clin. Microbiol., 38:1008-1015, 2000.

W. Fitch. Phylogenies constrained by cross-over process as illustrated by human
hemoglobins in a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein
a-i. Genetics, 86:623-644, 1977.

R. Groult, M. Léonard, and L. Mouchard. A linear algorithm for the detection of
evolutive tandem repeats. In The Prague Stringology Conference 2003, 2003.

D. Jaitly, P. Kearney, G.-H. Lin, and B. Ma. Reconstructing the duplication history
of tandemly repeated genes. J. Comput. Sys. Sci., 65:494-507, 2002.

B. Kahl, A. Mellmann, S. Deiwick, G. Peters, and D. Harmsen. Variation of the
polymorphic region X of the protein A gene during persistent airway infection of
cystic fibrosis patients reflects two independent mechanisms of genetic change in
Staphylococcus aureus. J. Clin. Microbiol., 43:502-505, 2005.

L. Koreen, S. V. Ramaswamy, E. A. Graviss, S. Naidich, J. M. Musser, and B. N.
Kreiswirth. spa typing method for discriminating among staphylococcus aureus iso-
lates: implications for use of a single marker to detect genetic micro- and macrovari-
ation. J. Clin. Microbiol., 47:792 799, 2004.

Ridom nomenclature server. http://www.ridom.de/spaserver/nomenclature.
shtml.

D. A. Robinson and M. C. Enright. FEvolutionary models of the emerge of
methicillin-resistant staphylococcus aureus. Antimicrob. Agents Chemother.,
47:3926-3934, 2003.

M. Sammeth, J. Rothgéinger, W. Esser, J. Albert, J. Stoye, and D. Harmsen.
Qalign: quality based multiple alignments with dynamic phylogenetic analysis.
Bioinformatics, 19:1592-1593, 2003.

N. N. I. S. System. National nocosomial infections surveillance (nnis) system
report, data summary from january 1990-may 1999. Am. J. Infect. Control, 27:520—
532, 1999.

A. van Belkum, S. Scherer, L. van Alphen, and H. Verbrugh. Short-sequence dna
repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev., 62:275-293, 1998.

Bisher erschienene Reports an der Technischen Fakultat
Stand: 2005-08-08

94-01

94-02

94-03

94-04

94-05

94-06

94-07

95-01

95-02

95-03

95-04

96-01

96-02

96-03

Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

Die Verwendung unscharfer MaBe zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

Searching Correspondences in Colour Stereo Images — Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Biitow, Stephan Thesing)

PaNaMa User Manual V1.3
(Bernd Butow, Stephan Thesing)

Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Giisgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Gléckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glockner, Alois Knoll)

97-06 DFS — An Axiomatic Approach to Fuzzy Quantification
(Ingo Gloéckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems fir
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalkile
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Hohl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glockner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie fir situierte Robotersysteme — Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glockner)

2000-02 A Broad Class of DFS Models
(Ingo Gloéckner)

2000-03

2000-04

2000-05

2000-06

2000-07

2000-08

2001-01

2001-02

2001-03

2001-04

2001-05

2002-01

2002-02

2002-03

An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Gloéckner)

Affix Trees
(Jens Stoye)

Computergestiitzte Auswertung von Spektren organischer Verbindungen
(Annika Buscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zoliner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlitzum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Graf, Gerhard Steger)

Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Biischking)

Standard Models of Fuzzy Quantification
(Ingo Glockner)

Causal System Analysis
(Peter B. Ladkin)

A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zéllner, Gerhard Sagerer)

Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Kohler, Henning Mersch, Holger Weiss)

Hierarchical Termination Revisited
(Enno Ohlebusch)

Persistent Objects with O2DBI
(Jorn Clausen)

Simulation von Phasenlibergangen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, UIf Schiller, Jan
Stallkamp)

Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04

2002-05

2002-06

2002-07

2002-08

2003-01

2003-02

2003-03

2003-04

2003-05

2003-06

2003-07

2003-08

Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zéllner, Gerhard Sagerer)

EIMaR: A Protein Docking System using Flexibility Information
(Frank Zollner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

Calculating Residue Flexibility Information from Statistics and Energy based
Prediction

(Frank Zollner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glockner)

Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glockner)

On the Similarity of Sets of Permutations and its Applications to Genome
Comparison
(Anne Bergeron, Jens Stoye)

SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry
(Sebastian Bocker)

From RNA Folding to Thermodynamic Matching, including Pseudoknots
(Robert Giegerich, Jens Reeder)

Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt
(Sebastian Bocker)

Systematic Investigation of Jumping Alignments
(Constantin Bannert)

Suffix Tree Construction and Storage with Limited Main Memory
(Klaus-Bernd Schiirmann, Jens Stoye)

Sequencing from compomers in thepresence of false negative peaks
(Sebastian Bocker)

Genalyzer: An Interactive Visualisation Tool for Large-Scale Sequence Matching
— Biological Applications and User Manual
(Jomuna V. Choudhuri, Chris Schleiermacher)

2004-01

2004-02

2004-03

2004-04

2004-05

2005-01

2005-02

2005-03

2005-04

Sequencing From Compomers is NP-hard
(Sebastian Bocker)

The Money Changing Problem revisited: Computing the Frobenius number in
time O(k ay)
(Sebastian Bdcker, Zsuzsanna Lipték)

Accelerating the Evaluation of Profile HMMs by Pruning Techniques
(Thomas Plotz, Gernot A. Fink)

Optimal Group Testing Strategies with Interval Queries and Their Application to
Splice Site Detection
(Ferdinando Cicalese, Peter Damaschke, Ugo Vaccaro)

Compressed Representation of Sequences and Full-Text Indexes
(Paolo Ferragina, Giovanni Manzini, Veli Mékinen, Gonzalo Navarro)

Overlaps Help: Improved Bounds for Group Testing with Interval Queries
(Ferdinando Cicalese, Peter Damaschke, Libertad Tansini, Soren Werth)

Two batch Fault-tolerant search with error cost constraints: An application to
learning
(Ferdinando Cicalese)

Searching for the Shortest Common Supersequence
(Sergio A. de Carvalho Jr., Sven Rahmann)

Counting Suffix Arrays and Strings
(Klaus-Bernd Schirmann, Jens Stoye)

