
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

Suffix Tree Construction and Storage
with Limited Main Memory

Klaus-Bernd Schürmann Jens Stoye

Report 2003-06

Impressum: Herausgeber:
Robert Giegerich, Ralf Hofestädt, Franz Kummert, Peter Ladkin,
Helge Ritter, Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831

Suffix Tree Construction and Storage with Limited

Main Memory

Klaus-Bernd Schürmann and Jens Stoye

AG Genominformatik, Technische Fakultät, Universität Bielefeld, Germany
klaus@techfak.uni-bielefeld.de

Abstract. Suffix trees have been established as one of the most versatile index
structures for unstructured string data like genomic sequences and other strings.
In this work, our goal is the development of algorithms for the efficient construc-
tion of suffix trees for very large strings and their convenient storage regarding
fast access when main memory is limited. We present a construction algorithm
which, to the best of our knowledge, is currently the fastest practical construction
method for large suffix trees.
Further we propose a clustered storage scheme for the suffix tree that takes into
account the locality behavior of typical query types, which leads to a signifi-
cant speed up particularly for the exact string matching problem. For very large
strings the query time is faster than that of other recent index structures like the
enhanced suffix array.

1 Introduction

Our application area is the analysis of genomic data like DNA or protein se-
quences. Since the 1990’s when high-throughput technology was introduced to
sequencing of genomic DNA, the amount of such data grows exponentially, simi-
lar to Moore’s law which states that chip density doubles every eighteen months,
just with a shorter doubling interval: Since 1995 the amount of base pairs con-
tained in GenBank [3] doubles about every twelve to sixteen months. This rapid
rise demands the development of more efficient algorithms and data structures
for genomic sequence analysis. In addition, suffix trees are widely used in other
large scale application areas like data mining and information retrieval.

In many applications of string processing it is essential to have an index
on top of the raw string. Commonly used string indices can be divided in two
major fields – word-based and full text indices. Word-based indices like inverted
files [4] are not suitable for our application area, since a DNA sequence does
not consist of natural individual words. Hence, the suffix tree, being the most
powerful full text index available, seems to be the best suited index structure.
Construction and storage for the suffix tree of a text t takes O(|t|) time and
space. It allows the efficient access to all substrings of t and therefore is the basis
for many applications. A typical one is the location of a given substring p in t,
which can be done in O(|p|) time, independent of t, assuming an alphabet of
constant size. The suffix array [11], a related data structure, is also not word
based, but requires O(|p| log n) steps for the same operation.

Even though the linear time suffix tree construction algorithms by Weiner
[18], McCreight [14], Ukkonen [17], and Farach [5] show optimal asymptotic
behavior, they do not explicitly consider the memory hierarchy of multi-level
cache, main memory, and (cached) hard disk, which leads to unfavorable effects
on current computer architectures. If the suffix tree grows over main memory
size, its construction is not feasible any more. With respect to the high memory
requirements of the linear time algorithms it is hardly possible in practice to
construct suffix trees for very large strings like the human genome with about
3.2× 109 bp (base pairs). Therefore practical construction algorithms must take
into account the locality of data access.

Nevertheless, the construction of a large suffix tree can take several hours.
Thus it is not reasonable to build an index for a few search operations only, and
only if the considered string changes very rarely, the construction cost amortizes
over several searches. Thus, our research is directed not only at the development
of efficient construction algorithms, but also at a persistent storage mechanism
that allows fast query processing.

In Section 2 we give some definitions concerning suffix trees. Section 3 is
devoted to existing and new algorithms. In Section 3.1 we review a suffix tree
construction algorithm by Hunt et al. [9] and add a detailed average case analysis.
In Section 3.2 we describe our improvements of this algorithm. In Section 4 we
describe a suitable persistent storage scheme for the fast access of suffix tree
data. Experimental results are presented in Section 5, and Section 6 concludes.

2 Suffix Trees – Definition and Terminology

Let Σ be a finite alphabet of fixed size and t = t1t2 . . . tn ∈ Σn a text over Σ. Let
t+ = t$ denote the extension of string t by a character $ ($ /∈ Σ). For 1 ≤ i ≤ n,
let si(t

+) = ti . . . tn$ indicate the ith (non-empty) suffix of t+.
The suffix tree T (t) of the text t is a rooted tree. VT (t) denotes the vertices

and ET (t) the edges of T (t). Each internal node of the suffix tree is branching,
and each edge is labeled by a non-empty substring of t+. For each internal node
u ∈ VT (t), outgoing edge labels have different initial character. Each of the n+1
leaves is labeled with a unique index i, 1 ≤ i ≤ n+1, such that the concatenation
of the edge labels on the path from the root to that leaf equals si(t

+).
The path label plabel(u) of a node u ∈ VT (t) is defined as the concatenation

of the edge labels on the path from the root of T (t) to u. The depth depth(u) of
a node u ∈ VT (t) is defined as the length of its path label, |plabel(u)|.

For w ∈ Σ∗, the w-branch of T (t), Tw(t) is defined as the induced sub-
graph of T (t) that contains the set of vertices VTw(t) = {u ∈ VT (t) | plabel(u) =
wx+ for some x ∈ Σ∗}. This is the subtree of T (t) that represents all substrings
of t with prefix w. Sw(t) = {i |wx+ = si(t

+) for some 1 ≤ i ≤ n, x ∈ Σ∗} de-
notes the corresponding set of suffix numbers. The partitioning of all suffixes with
respect to a given prefix length d is denoted by Pd(t) = {Sw(t) |w ∈ Σd}, and the

set of corresponding suffix tree branches is indicated by P̂d(t) = {Tw(t) |w ∈ Σd}.

2

The d-trunk of T (t), Rd(t), is defined as the subgraph of T (t) induced by
the set of vertices VRd(t) = {u ∈ VT (t) | depth(u) ≤ d, }. Joining Rd(t) and all

subtrees in P̂d(t) gives the complete suffix tree T (t).

3 Construction of Suffix Trees

Construction algorithms of suffix trees are well explored in theory. Weiner [18],
McCreight [14], Ukkonen [17], and Farach [5] introduced linear time algorithms.
Unfortunately those algorithms do not explicitly consider the locality of memory
reference which is very important on current computer architectures. Hence, in
practice suffix trees are limited to main memory size. Combined with their large
memory requirements of about 10 bytes per input character on average, it is
currently not possible to build suffix trees for very large strings. On a common
desktop computer with 512 MBytes of main memory size, for example, it is not
feasible to construct, the suffix tree of a text longer than 55 × 106 characters.

An important issue in linear time suffix tree construction is the use of suffix
links. A suffix link connects a node with path label ax (a ∈ Σ, x ∈ Σ∗) with the
node with path label x. All of the mentioned algorithms take advantage of this
information during the construction. Unfortunately their use involves random
memory access and thus leads to a high ratio of cache misses for the linear time
construction algorithms. Further on, suffix links are a waste of space, since many
applications do not require their use and therefore they are just used during
construction.

There are fast practical approaches to construct suffix trees without the use
of suffix links, such as the Hashed-Position-Tree [8] and the write-only top-down
(wotd) algorithm [13]. A strong benefit of the wotd-algorithm is its ideal locality
behavior concerning tree access. It reduces the problem of suffix tree construc-
tion to suffix sorting, which is well understood. Although its worst-case time
complexity is O(n2), in the expected case it takes O(n log n) time.

The Hashed-Position-Tree has the same time bounds as the wotd-algorithm.
As its name promises, it is a hybrid, which combines the advantages of hashing
and the suffix tree index. In addition to that, it uses explicit secondary memory
management.

The construction algorithm we present in this paper is an improvement of
results by Hunt et al. [9] who introduced an algorithm that constructs different
parts of the suffix tree independently. In the following we will describe properties
of their approach and give an average case time analysis of their algorithm. Then
we will discuss further ideas how to modify the algorithm in order to improve
the expected construction time.

3

3.1 A review of the Partitioning Algorithm

The following partitioning algorithm was introduced by Hunt et al. [9]. It sacri-
fices optimal O(n) time complexity for locality of memory reference by omitting
the use of suffix links and performing multiple passes over the text t.

It is based on the property that leaves which correspond to suffixes with
common prefix w are located in the same subtree Tw(t). Suffix numbers are
mapped to sets Sw(t) of the partition Pd(t) concerning the first d = |w| characters
of the corresponding suffix. The prefix length d is fixed and should be chosen long
enough to ensure that the size of each w-branch Tw(t) ∈ Pd(t) does not exceed
the main memory size. Otherwise the algorithm fails. The algorithm proceeds as
illustrated in Figure 1. For each prefix w ∈ Σd, all d-length substrings of t are
scanned (lines 1+2). If an occurrence of w at position i is found, then the suffix
si(t

+) is inserted into the incrementally growing tree T (t) (lines 3-5). After t is
traversed, the subtree Tw(t) is completely built, and the storage management of
the used platform takes care of its persistent storage, indicated by a database
checkpoint. (In their implementation, Hunt et al. [9] use the persistent Java based
platform PJama [15].)

Analysis. Since subtrees Tw(t) and Tw′(t) (w, w′ ∈ Σd, w 6= w′) are disjoint, they
can be built and stored independently. In contrast to the linear time algorithms,
where the size of the suffix tree is limited to main memory size, this approach can
also be applied for very large strings, as long as the partitions can be expected to
be small. Hunt et al. [9] showed that even for moderate size texts their algorithm
has a competitive running time, which is due to its good locality behavior.

However, the average case analysis of the running time of their algorithm
reveals a disadvantage. A simple consequence of a result by Apostolico and Sz-
pankowski [2] and Szpankowski [16] is the expected insertion depth for a suffix
of O(log n). Although this leads to an expected time of O(n log n) to perform
the n insertions, the repeated scan of all suffixes is responsible for an overall
Θ(n2) running time. Since the size of a w-branch Tw(t) must not exceed the
main memory size, a lower bound on the number of sets of the partitioning,
|Pd(t)|, is σn/M , where σn is the size of a minimal main memory instantiation
of a suffix tree of a text of length n, and M is the main memory size. Since
σn ∈ Θ(n) and the memory has fixed size M , the number of partitions |Pd(t)|
grows linearly with the string length n. For each of the |Pd(t)| ∈ Θ(n) parti-
tions Sw(t) ∈ Pd(t), the algorithm scans the whole sequence of length n. Hence
the overall time needed to scan the partitions is Θ(n2). Since the n insertions
can be performed in O(n log n) time, the complete algorithm takes Θ(n2) time,
regardless of the input string t.

3.2 The Clustered Construction Algorithm

In this section we present an algorithm which improves the partitioning algo-
rithm. Our algorithm shows expected time O(n log n), for any d. The worst-case

4

Algorithm - BuildPartitionTree(t,d)

1: for all partitions Sw(t) ∈ Pd(t) do

2: for all i = 1 . . . n + 1 do

3: if i ∈ Sw(t) then

4: insertSuffix(si(t
+))

5: end if

6: end for

7: checkpoint
8: end for

Fig. 1. Partitioning algorithm by
Hunt et al. [9].

Algorithm - BuildClusteredTree(t,d)

1: Pd(t) = computePartitions(d)
2: for all partitions Sw(t) ∈ Pd(t) do

3: Tw(t) = buildSubtree(Sw(t))
4: writeClusterToDisk(Tw(t))
5: end for

6: Rd(t) = buildSuffixTreeTrunk(Pd(t))
7: writeTrunkToDisk(Rd(t))

Fig. 2. Improved clustered algorithm.

time, however, is still O(n2). We call it the clustered algorithm, since we build
the whole tree by constructing independent subtrees that are stored in clusters.

The algorithm is shown in Figure 2. As in the original algorithm, partitioning
starts with a fixed prefix length d = |w|. This d is called the clustering depth. But
here, before actually creating suffix tree branches, in a preprocessing step each
suffix is mapped to its respective partition (line 1). This is performed by a serial
scan of t. Now the independent subtrees can be built. For each set Sw(t) ∈ Pd(t)
our algorithm performs an independent construction of the respective suffix tree
branch Tw(t). This is done via insertion of the respective suffixes si(t

+), i ∈ Sw(t),
into the initially empty branch. The main improvement compared to the basic
algorithm is that the insertions do not start at the root of the suffix tree but
directly in a node that is found at depth d = |w| of the tree. After construction,
the memory representation of the w-branch Tw(t) is converted to its secondary
memory representation and written to disk. Finally, the trunk Rd(t) is built by
inserting the corresponding prefixes w for each non-empty partition Sw(t) ∈ Pd(t)
and stored separately.

However, it is possible to use a different construction method for the trunk
than for the w-branches, for example, the wotd-algorithm [13]. Manzini and
Ferragina [12] proposed a similar approach for suffix arrays, which they call deep-
shallow suffix sorting. They mix an algorithm for sorting suffixes with small
longest common prefix (shallow sorter) with an algorithm for sorting suffixes
with large longest common prefix (deep sorter). In our algorithm the suffixes
with small longest common prefix are considered in the trunk construction, and
the suffixes with large longest common prefix are considered in the construction
of the w-branches.

Analysis. We show the average case analysis of our algorithm. The computation
of all partitions Sw(t) ∈ Pd(t) is done by once shifting a window of width d over
the string t. Using a simple hash function for the prefix w that can be updated in
constant time when the window is shifted by one position, the whole partitioning
can easily be computed in Θ(n) time. If we suppose a uniform distribution of the

5

prefixes, the n suffixes are equally distributed over all partitions, and for each
partition Sw(t) ∈ Pd(t) we construct the appropriate w-branch Tw(t) via insertion
of the |Sw(t)| suffixes. Since the expected insertion time for one suffix is O(log n)
and there are n suffixes to be inserted over all partitions, the computation of
the n insertions can be performed in O(n log n) expected time. The same time
bound of O(n log n) holds for the construction of the trunk Rd(t), since there
are |Pd(t)| ∈ O(n) prefixes to be inserted into it. By adding the expected times
of all three parts of our algorithm, we get an overall expected running time of
Θ(n) + O(n log n) + O(n log n) = O(n log n), for arbitrary d.

There are other algorithms like the wotd-algorithm with the same time
bound. However, the main benefit of our algorithm is the practical efficiency
gained by the direct insertion into the w-branches. Since the search of the inser-
tion position is usually starting at the root and proceeding through the dense
trunk we obtain significant time savings depending on d = |w| for each insertion
operation.

4 Clustered Storage and Substring Search

Despite fast practical construction methods, it is not reasonable to construct suf-
fix trees for a few search operations only. To avoid the repeated construction, the
development of convenient storage schemes for suffix trees is another challenge.
The requirements are fast access and space usage as small as possible. We pro-
pose a storage scheme that stores the independent suffix tree parts constructed
by our algorithm in clusters, such that the w-branches are stored consecutively
with respect to their construction order. The trunk is stored independently. This
storage scheme is due to the behavior of applications which commonly traverse
the suffix tree starting at the root. The standard application we consider is to
decide if a given pattern p is a substring of t. Each search operation touches only
the trunk and exactly one w-branch. During multiple search operations we keep
the repeatedly touched trunk in memory such that just one w-branch has to be
loaded from disk. Each w-branch is expected to fit in one disk block, and thus we
just need one disk access per search operation. To save space for the storage of
the suffix tree, we adopted a suffix tree format introduced by Giegerich et al. [6]
which requires 8 Bytes per internal node and 4 Bytes per leaf. Just the interface
between the trunk and the w-branches adds a few more bytes.

5 Experimental Results

In this section we investigate the practical behavior of our algorithms. We first
analyse the time needed for different suffix tree construction methods for ran-
domly generated strings regarding different sequence parameters like alphabet
size and string length. Moreover, we use these underlying investigations to deter-
mine the optimal clustering depth d = |w|, the only parameter for the clustered

6

construction algorithm. For the experiments on real application data we col-
lected a set of DNA sequences and other real world strings and compared the
suffix trees with an additional data structure.

Concerning the application of suffix trees, we investigate the times needed
for multiple substring searches for different storage schemes.

The experiments were performed on different computers with x86 architec-
ture, running the Linux operating system. Programs were written in C and com-
piled with the gcc-compiler with optimization option ’-O3’. In all experiments
the total construction times in seconds are presented for each program and data
set. The cpu-time is not considered since it just takes less than five percent of
the overall time and therefore is not very informative.

All of our own programs are available from the authors upon request.

5.1 Suffix Tree Construction for Random Texts

The suffix tree construction for the random strings were performed on a computer
with Intel Pentium

�

2 (Klamath) 266 MHz CPU and 128 MB of main memory.

Clustered construction with different clustering depths. In our first
experiment, we investigate the clustered construction algorithm with different
clustering depth 2 ≤ d ≤ 10 for alphabet size 4, the DNA alphabet size, and
clustering depth 1 ≤ d ≤ 3 for alphabet size 90, the usual alphabet size of natu-
ral language text. The length of the randomly generated strings varies between
1 Million and 30 Million characters.

Figure 3 shows a diagram for the construction times with alphabet size 4. The
upper diagram shows the construction times by the clustered algorithm where the
complete construction can be done in main memory, and the lower diagram shows
the construction times for large suffix trees leading to main memory overflow. For
the shortest string length examined, 1 million characters, the construction for d
between 2 and 8 takes between 4 (d = 6) and 12 (d = 2) seconds. Interestingly
with clustering depth 10 the construction takes 25 seconds and diverges from the
other depths. The optimal setting for string lengths up to 23 million characters
is clustering depth 6, 7 or 8. The running times for clustering depth 7 are not
shown in Figure 3, but its maximum deviation is about 1% from the times with
clustering depths 6 and 8. The construction times for all settings rise slightly
above linear with respect to the string lengths. Thereby, the increase for larger
clustering depths is less than the increase for shorter clustering depths. This
almost linear time behavior changes when the string length grows over a value
of 22 million characters. Beyond this value the running time escalates and seems
to increase exponentially. For clustering depth d = 2 the construction times
clearly differ from the other clustering depths. In the beginning the construction
time rises more significantly than for larger depths, but there is no exponential
growth beyond a certain sequence length, such that the clustered construction
for a string of 30 million characters can be performed in less than 40 minutes.

7

0

50

100

150

200

250

300

0 5e+06 1e+07 1.5e+07 2e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Clustered, d = 2
Clustered, d = 4
Clustered, d = 6
Clustered, d = 8
Clustered, d =10

0

500

1000

1500

2000

2500

3000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Clustered, d = 2
Clustered, d = 4
Clustered, d = 6
Clustered, d = 8
Clustered, d =10

Fig. 3. Construction times of the clustered algorithm for alphabet size 4 and different clustering
depths with linearly growing string length.

8

0

50

100

150

200

250

0 5e+06 1e+07 1.5e+07 2e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Clustered, d = 1
Clustered, d = 2
Clustered, d = 3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Clustered, d = 1
Clustered, d = 2
Clustered, d = 3

Fig. 4. Construction times of the clustered algorithm for alphabet size 90 and different cluster-
ing depths with linearly growing string length.

9

Figure 4 illustrates the construction time of the clustered algorithm for alpha-
bet size 90. The upper diagram again shows the times for shorter input sequences,
while the lower diagram shows the running times at the borders of main mem-
ory. For a string with 1 million characters the construction with clustering depth
3 takes 26 seconds. Hence, it is significantly slower than the construction with
clustering depth 1 (10 sec.) and 2 (4 sec.). For the shorter clustering depth 1
the increase of the construction time is initially steeper than for the clustering
depths d = 2 and d = 3, but similar as in the case of d = 2 at alphabet size 4,
d = 1 is the only choice where still suffix trees for string lengths of 30 million
characters could be constructed within reasonable time.

The escalating construction times for larger clustering depth (≥ 4 for al-
phabet size 4; ≥ 2 for alphabet size 90) beyond a sequence length of about
22 million characters is due to the increasing memory requirements exceeding
the main memory size. The most space consuming structure is an array which
stores the mapping of suffixes to clusters. In practice such construction times are
not tolerable.

The slower construction time for large clustering depths and short sequences
is due to the effort for the bookkeeping of clustering information such that, for
example, with alphabet size 4 and clustering depth 10 there are 410 = 1, 048, 576
w-branches to be processed. In addition, the clustering depth has influence on the
size of the d-trunk and the number and size of w-branches. A smaller clustering
depth results in a smaller d-trunk and smaller number of larger w-branches.
Whereas a larger clustering depth leads to a larger d-trunk and higher number
of small w-branches. To determine the optimal choice of d one has to find the
balance between the size of the d-trunk, the size of the w-branches and the effort
for the bookkeeping of clustering information to get an optimal running time.

Clustered construction for different alphabet sizes. The alphabet size
does not directly influence the structure of the suffix tree. But for the clustered
construction algorithm the clustering depth combined with the alphabet size de-
termines the numbers of w-branches. In the previous experiment we investigated
different values of the clustering depth. Here we investigate the behavior of the
clustered algorithm concerning the alphabet size. The strings have length 5–20
million characters. The alphabet sizes are 4, 8, 16 and 64. The clustering depth
was chosen such that there are 4096 w-branches to be constructed, independent
of the alphabet size. Given an alphabet of size 4, for example, we have chosen a
clustering depth of d = 6 such that 46 = 4096.

Figure 5 visualizes the results of this experiment. Given an input string of
5 million characters, the clustered construction with alphabet of size 4 takes
37 seconds. This is significantly slower than for alphabet size 8, where the algo-
rithm takes 32 seconds or for alphabet sizes 16 and 64 where the construction
takes 29 seconds. Increasing the string length has a negative effect on the con-
struction time for alphabet size 64 compared to smaller alphabet size. For a
string of 20 million characters and alphabet size 64 the construction time takes

10

215 seconds, though the times for alphabet sizes 4, 8 and 16 just take 209, 191
and 186 seconds, respectively. The fastest construction is performed for strings
with alphabet size 16 independent of the string length.

0

50

100

150

200

250

0 10 20 30 40 50 60

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

alphabet size

20 mill. characters
15 mill. characters
10 mill. characters
5 mill. characters

Fig. 5. Construction times of the clustered algorithm for alphabet sizes between 4
and 64 and string lengths between 5 and 20 million characters.

The faster clustered construction for strings with alphabet size 16 compared
to alphabet size 4 resp. 8 is due to the structure of strings with smaller alphabet.
With smaller alphabet there is a higher probability for longer repeats in the
string, such that there are comparatively many nodes in the suffix tree, since
the average number of children per node is small. Compared to strings with
alphabet size 64 the suffix tree construction for strings with alphabet size 16 is
faster for increasing string length, due to similar reasons. In this case also the
expected number of children per node is bigger for the larger alphabet, since for
each insertion of a suffix into the tree the list of children have to be scanned for
each node on the path from the root towards the insertion position to find the
right insertion point. So there are two aspects of a larger alphabet size and thus a
larger number of children for the internal nodes. On the one hand this reduces the
expected number of internal nodes, but on the other hand the expected number
of nodes to be touched during insertion is higher.

Comparison of different suffix tree construction algorithms. In our next
experiment we compare different suffix tree construction algorithms for random

11

strings of increasing length. The investigated suffix tree construction methods
are Ukkonen’s algorithm [17] a representative of the linear time construction
methods, in an implementation by Stefan Kurtz supplemented by our storage
management, the wotd-algorithm [13], and the clustered construction algorithm,
the latter two in our own implementation. The partitioning algorithm by Hunt
et al. [9] could not be considered since their implementation in Java using a high-
level interface for persistent memory management is not comparable to the other
C implementations. Figures 6 and 7 illustrate the results of the investigation for
random strings with alphabet size 4 resp. 90. The clustering depth is chosen
as proposed optimal by the previous investigation for the clustered algorithm.
Hence, for alphabet size 4 we chose the clustering depth 2 for very large strings
or 8 for medium sized strings, and for alphabet size 90 the clustering depth 1
respectively 3.

With alphabet size 4, Ukkonen’s algorithm takes 4 seconds for a string of
1 million characters. Thus, it is about twice as fast as the clustered algorithm
taking 12 resp. 7 seconds and the wotd-algorithm needing 8 seconds. But with
increasing length of the input string the running time of Ukkonen’s algorithm
increases tremendously. For a string length of 15 million characters it needs more
than 15 hours.

The clustered algorithm with clustering depth 2 is slower than the wotd-
algorithm up to a string length of 10 million characters. For string lengths be-
tween 11 and 17 million characters it is faster than the wotd-algorithm and above
a string length of 17 million characters it performs like the wotd-algorithm.

Concerning clustering depth 8 the clustered algorithm is significantly faster
than the wotd-algorithm up to a string length of 23 million characters. For string
lengths between 13 and 22 million characters it is even 3 times faster. Only for
input strings of size more than 24 million characters the running time for the
clustered construction increases tremendously.

For the larger alphabet size 90 the wotd-algorithm performs up to 2 times
faster than the clustered algorithm with clustering depth 3 for strings shorter
than 12 million characters. But for string lengths between 13 and 23 million
characters the clustered construction is again significantly faster than the wotd-
algorithm until the construction time escalates by building suffix trees for strings
larger than 23 million characters. For smaller clustering depth 1 and string length
between 17 and 22 million characters the construction times by the clustered
algorithm are similar compared to those by the wotd-algorithm. But again, for
larger strings the construction time of the clustered algorithm escalates.

The time curves for the clustered algorithm have been analysed before. To
explain the different running time behavior it is necessary to go into the structure
of suffix tree construction algorithms.

The suffix tree representation for Ukkonen’s algorithm takes 20 bytes per
node. Hence, the suffix tree grows over main memory size quickly. Combined
with the non-local access of suffix tree nodes due to the usage of suffix links, the

12

0

500

1000

1500

2000

2500

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Ukkonen
Wotd

Clustered, d=2
Clustered, d=8

Fig. 6. Suffix tree construction times of different algorithms for alphabet size 4 and increasing
string length.

0

200

400

600

800

1000

1200

1400

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Ukkonen
Wotd

Clustered, d=1
Clustered, d=3

Fig. 7. Suffix tree construction times of different algorithms for alphabet size 90 and increasing
string length.

13

running time seems to increase exponentially, since repeated disk access slows
down the processing.

The clustered algorithm does not need to hold the complete suffix tree in
main memory during construction. On the other hand the wotd-algorithm con-
structs the suffix tree en bloc. But it achieves its fast construction by a good
locality of memory access and by using a suffix tree representation which needs
small space. For alphabet size 4 and clustering depth 8 the clustered algorithm
is significantly faster than the wotd-algorithm as long as the largest w-branch
and the bookkeeping data structures completely fit into main memory. This be-
havior is due to the independent construction and storage of parts of the whole
suffix tree. The construction of w-branches is done via direct insertion of suffixes
into the w-branches. Since the clustered algorithm just performs one insertion
per w-branch into the d-trunk this is a significant improvement. Additionally,
the expected density of nodes in the d-trunk is bigger than in the w-branches
such that during insertion more nodes of the d-trunk are touched than of the
w-branches. In practice, this leads to additional speed up.

For alphabet size 90 and short input strings the wotd-algorithm is faster
than the clustered construction since the performance of the clustered algorithm
depends on the out-degree of internal nodes, but the wotd-algorithm does not.
Additionally, the main memory representation of the suffix tree required by the
clustered algorithm needs to be serialized before it can be stored on disk, while
the representation for the wotd-algorithm is in storable form. But with increasing
string length the clustered algorithm outperforms the wotd-algorithm due to the
advantages of the clustered algorithm and since the suffix tree in the wotd-
algorithm grows over main memory size.

For very large strings, if also the memory requirements for the clustered algo-
rithm exceed main memory size, the wotd-algorithm outperforms the clustered
algorithm due to its very good behavior of local memory access.

The clustered algorithm benefits from the independent construction and stor-
age of suffix tree parts. These parts can be built completely in main memory. On
the other hand, the wotd-algorithm benefits from its excellent locality of memory
access, also allowing the construction of suffix trees for very large strings, even
if the hard disk has to be accessed during construction

5.2 Suffix Tree Construction for Fibonacci Strings

The previous investigations have been performed for randomly generated strings.
The resulting suffix trees for these strings are expected to be balanced. But
strings in practical applications do not necessarily have random structure. Some-
times there are long repeats leading to an unbalanced tree structure. Hence, in
this section we investigate Fibonacci strings: f(i) is the i-th Fibonacci string
where f(i) is recursively defined as follows: f(1) = a, f(2) = b and f(i) =

14

f(i− 2)f(i− 1) for i > 2. These strings have alphabet size 2 and are well known
for their long repeated substrings. See [10] for further information.

The system settings are the same as in the previous experiments. The ex-
periments have been performed for Fibonacci strings of lengths between 50,000
and 1 million characters and the same construction algorithms as in the previous
investigation. For the clustered algorithm we have chosen the clustering depths
10 and 16 since the alphabet is smaller than for previous investigations.

Figure 8 illustrates the construction times. For a Fibonacci string with 500,000
characters, Ukkonen’s algorithm takes about 3 seconds while the suffix tree con-
struction by the wotd-algorithm respectively the clustered algorithm takes about
2560 resp. 1550 seconds. For 1 million characters Ukkonen’s algorithm takes
about 8 seconds while the wotd-algorithm and the clustered algorithm did not
terminate within the first 2 hours. By watching the time curves for the clustered
algorithm, one recognizes that it is almost independent of the clustering depth.

Additional observations for a string length of 500,000 characters have shown
some additional information. Although the expected size for a set of suffix num-
bers Sw(t) in the partitioning is 488.28 for clustering depth 10, the largest set
has size 72,948. For clustering depth 16 the expected size is 7.63, but the largest
set contains of 45,084 suffixes.

Overall the clustered algorithm is significantly faster than the wotd-algo-
rithm.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1e+06

co
ns

tr
uc

tio
n

tim
e

(s
ec

.)

string length

Wotd
Clustered, d=10
Clustered, d=16

Ukkonen

Fig. 8. Construction times of different algorithms for Fibonacci strings of increasing
length.

15

It is easy to see that neither the clustered algorithm nor the wotd-algorithm
are competitive for the construction of degenerated suffix trees, since their per-
formance depends on the suffix tree structure. The parabola shape of the con-
struction time curves indicates that the construction reaches its worst case time
bound. Ukkonen’s algorithm is independent of such degeneration and is thus
the fastest construction method for unbalanced suffix trees. In this manner the
clustered algorithm and the wotd-algorithm are not suitable for the construc-
tion of degenerated suffix trees. But Giegerich et al. [7] suggest a variant of the
wotd-algorithm allowing the reuse of already computed longest common prefix
information. It would be interesting to measure, if this technique leads to a sig-
nificant speed-up of the wotd-algorithm since it uses some kind of suffix links
and hence trades algorithmic improvement for locality of memory reference.

5.3 Suffix Tree Construction for Real Sequences

The experiments so far were useful to investigate the dependency of the suffix tree
construction algorithms on particular parameters. In this section we investigate
their behavior on strings as they occur in practice. This is done on the same
computer system as before. First we analyse the suffix tree construction for
different DNA sequences, then we investigate the construction for other kinds of
strings like natural language text and source code.

Suffix tree construction for DNA sequences. We investigate different DNA
sequences: The complete genome of the bacterium Escherichia coli (E. coli) con-
sisting of about 4.6 Mbp (mega base pairs) as well as the third and fifth chro-
mosome of the nematode Caenorhabditis elegans (C. elegans) with approximate
length 12.8 respectively 20.5 Mbp.

The running times for the different suffix tree construction algorithms and
different settings are shown in Table 1. Dashes indicate that on the C. elegans
chromosomes, Ukkonen’s algorithm did not terminate within 24 hours. For the
clustered algorithm the clustering depths 6 and 8 were confirmed to be the opti-
mal settings. They are given in Table 1. Additionally the construction times are
illustrated in Figure 9, normalized to a string length of 1 million characters.

string string alphabet
construction time (sec.)

length size Clustered Clustered Wotd Ukkonen
d=6 d=8

E. coli genome 4,638,690 4 34 38 48 10,237
C. elegans chr. 3 12,836,730 4 132 122 283 –
C. elegans chr. 5 20,551,922 4 282 265 1,125 –

Table 1. Suffix tree construction times for different DNA sequences by different al-
gorithms.

16

The clustered algorithm clearly shows the fastest construction among the
different methods. The normalized construction times for the clustered algorithm
do not highly increase with rising string length. In contrast, the wotd-algorithm
takes 48 seconds for the construction of the E. coli suffix tree. Hence, it is little
slower than the clustered algorithm. But for larger input strings the construction
times highly increase. Ukkonen’s algorithm takes more than 2 hours for the suffix
tree construction for E. coli. Hence it is clearly the slowest construction method.

Fig. 9. Running time in seconds of different suffix tree construction algorithms
for the DNA sequences normalized with respect to string length 1 million.

The results of the experiments for different DNA sequences mirror the results
of the experiments for the randomly generated sequences. Hence, we assume
that also the suffix trees for DNA sequences are balanced. Whenever the data
necessary for the construction by the clustered algorithm completely fits into
main memory and the string is too large for Ukkonen’s algorithm, the clustered
algorithm is the fastest construction method for suffix trees of DNA sequences.

Suffix tree construction for different strings. Next we investigate strings
important for other application areas. The texts are four bibles of different lan-
guage, the source code of the robocup team (robocup) of the Free University
in Berlin, the source code of the gcc-compiler (gcc), a part of the linux source
code (linux), a part of a protein database (protein DB), the ftp-index of the web

17

server of the Technical University in Berlin (ftp), consisting of file and directory
paths, and the CIA World Fact Book (cia), containing facts of all countries of
the world. All these strings have larger alphabets than DNA sequences. Thus the
dedicated clustering depths are 2 and 3.

The running times for the different suffix tree construction algorithms are
given in Table 2. It shows the name of the sequence, its length and alphabet size,
and the construction times of the different construction algorithms. As above,
there are missing values for Ukkonen’s algorithm with the large data files.

For the given set of sequences, the clustered algorithm is the fastest among
all suffix tree construction algorithms. Only the construction for the robocup
source code needs unexpectedly long time. For the clustered method it takes
2620 respectively 2638 seconds and for the wotd-algorithm 5417 seconds. In con-
trast, the linux source code is nearly 3 times bigger than the robocup source
code, but the construction by the clustered algorithm just takes 322 respectively
316 seconds, and by the wotd-algorithm it needs 1219 seconds.

string string alphabet
construction time (sec.)

length size Clustered Clustered Wotd Ukkonen
d=2 d=3

bible (danish) 3,838,509 83 32 32 42 71
bible (english) 4,047,392 63 32 35 46 151
bible (german) 4,638,707 91 40 42 56 4,785
bible (french) 5,122,590 78 48 48 64 15,143

robocup 7,243,042 108 2,620 2,638 5,417 –
gcc 14,893,334 99 187 185 427 –
linux 20,775,894 105 322 316 1,219 –

protein DB 20,000,000 83 221 232 824 –

ftp 4,862,809 88 51 51 88 –
cia 2,473,400 94 16 15 26 18

Table 2. Running time in seconds by different suffix tree construction algorithms
for different kind of strings.

The reason for the long robocup time is the structure of this file, consisting of
several concatenated C++ source code files. Besides the usual .cpp respectively
.h files the code consists of .ui files for the description of the graphical user
interface. These files are generated automatically by an IDE. Hence, these files
consist of many long repeated patterns. By considering the result for the suffix
tree construction of Fibonacci strings, it is obvious that this is the reason for the
slower running times of the clustered and the wotd-algorithm.

The construction times for the other strings accord to the time seen for the
suffix tree construction for random strings. All these texts result in balanced
suffix trees. Thus, they can be built fast by the clustered respectively wotd-
algorithm. The clustered algorithm is the fastest construction method for all

18

strings of the given data set. This observation holds as long as the main memory
space requirements for our clustered construction, which are about six bytes
per input character, do not exceed the main memory size. Exceeding this limit
escalates the construction time. Until this boundary, our construction algorithm
is the fastest practical suffix tree construction algorithm we are aware of.

5.4 Comparison with the Enhanced Suffix Array

In the previous experiments, we have compared different suffix tree construction
algorithms and stated that, in practice, the clustered construction is the fastest
construction method. But suffix trees are not the only data structure for full text
indexing. Thus, in this section, we compare the different suffix tree construction
algorithms with an additional index structure, the enhanced suffix array (Esa),
which was introduced by Abouelhoda et al. [1]. The enhanced suffix array is
based on the suffix array [11] and reaches the same functionality as the suffix
tree by the addition of a few annotations. The programs concerning this data
structure that were used in our tests were kindly provided by Stefan Kurtz.

For these experiments we collected DNA sequences of different length: the
three DNA sequences we used before (E. coli and C. elegans chr. 3 and 5) and
additionally sections of 40 respectively 80 Mbp of the human chromosome 10.
In these experiments the index construction was performed on a computer with
AMD Athlon

�

1.3 GHz CPU and 512 MBytes of main memory.

The results are illustrated in Table 3. For the clustered suffix tree construction
the clustering depth has been set to 8 respectively 10. 10 is a suitable value for
the following search operations. The enhanced suffix array uses an additional
bucket table on top of the suffix array, which is needed to access the bucket
of suffixes with equal prefix in constant time. This prefix length is also set to
d = 10.

construction time (sec.)

data set Clustered Clustered Wotd Ukkonen Esa
(d = 8) (d = 10) (d = 10)

E. coli genome (4.6 Mbp) 9 17 16 16 8
C. elegans chr. 3 (12.8 Mbp) 40 59 54 169 40
C. elegans chr. 5 (20.6 Mbp) 103 117 147 54434 97
H. sapiens chr. 10 (40 Mbp) 177 209 466 – 151
H. sapiens chr. 10 (80 Mbp) 461 520 2171 – 358

Table 3. Construction time in seconds of the different algorithms for the DNA
sequence files.

As before, among the suffix tree construction algorithms, our clustered con-
struction is by far the fastest method for large sequences. For the 80 MB part

19

of human chromosome 10, for example, with d = 10 it takes 520 seconds which
is a speed-up by a factor of four compared to the wotd-algorithm. Ukkonen’s
algorithm took even longer than 24 hours.

Comparing the construction times of the clustered algorithm with d = 10
which is used for the search experiments and the enhanced suffix array shows
that the enhanced suffix array construction is about 20% faster for the mid-sized
sequences of the C. elegans chromosomes and for the 40 MB part of the human
chromosome 10, and it is about 45% faster for the 80 MB part of the human
chromosome 10.

Furthermore, for the clustering depth 8 the time difference is smaller. For the
short sequences E. coli and C. elegans chr. 3 the clustered algorithm is as fast as
the construction of the enhanced suffix array. For C. elegans chr. 5, human chr.
10 (40 Mbp) and human chr. 10 (80 Mbp) the enhanced suffix array is about 6,
17 resp. 29 % faster.

5.5 Disk Space Requirements

The space requirements for the persistent representations of the clustered suffix
tree, the enhanced suffix array, and the unclustered suffix tree are illustrated in
Table 4. The persistent space requirements are given in bytes per input character.
The enhanced suffix array consists of various tables, and we just collected the
size of data which are essential for our dedicated application, the exact substring
search. The space requirements are between 9.14 and 9.51 bytes per input char-
acter for the suffix trees. The clustered storage scheme adds a few bytes for the
interface between the trunk and the w-branches. The space requirements for the
enhanced suffix array are between 6.14 and 7.87, where the size of the previously
mentioned bucket table depends on the respective prefix length d. Due to the
choice of d = 10, the size of the bucket table is |Σ|d = 410 bytes. However, to get
the full functionality of the enhanced suffix array, tables have to be added and
thus the space requirements would rise.

space per character (bytes)

data set clustered unclustered esa
(d = 10) (d = 10)

E. coli genome (4.6 MB) 9.51 9.14 7.87
C. elegans chr. 3 (12.8 MB) 9.39 9.32 6.69
C. elegans chr. 5 (20.6 MB) 9.34 9.32 6.50
H. sapiens chr. 10 (40 MB) 9.39 9.37 6.25
H. sapiens chr. 10 (80 MB) 9.37 9.36 6.14

Table 4. Space requirement for the different indices per input
character for different s sequence files.

20

5.6 Substring Search

Since the index is built just once but repeatedly used, the amortization of con-
struction cost mainly depends on the effectiveness of the applications the suffix
tree serves. For our experiments, we have chosen a classical application of suffix
trees, the determination if a pattern p is a substring of t. We investigated this
application by measuring the time for 105 search operations for the unclustered
suffix tree, the enhanced suffix array, and our clustered suffix tree. Patterns were
randomly chosen substrings of t of varying length. These experiments were per-
formed on a laptop computer with Intel Pentium

�

4 Mobile 1.6 GHz CPU and
256 MB of main memory.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

Se
ar

ch
 ti

m
e

(s
ec

.)
 f

or
 1

00
,0

00
 s

ea
rc

he
s

Pattern length

unclustered
esa, d=10

clustered, d=10
esa, d=1

Fig. 10. Time for 105 search operations on the complete E. coli genome (4.6 MB).

Figure 10 illustrates the search times for different pattern lengths on the
complete genome of E. coli, and Figure 11 shows the same information for the
80 MB part of the human chromosome 10. For the clustered suffix tree scheme
the depth d = 10 of the trunk is such that the trunk of size about 1.1 MB for the
80 MB part of the human chromosome fits easily into the main memory of most
currently used computers. Other values of d would result either in longer search
times (d < 10) or clearly higher construction times (d > 10), therefore results
for such values are not presented. The search times for the enhanced suffix array
are shown with respect to the prefix lengths d = 1 and d = 10. For d = 10, only

21

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40 45 50

Se
ar

ch
 ti

m
e

(s
ec

.)
 f

or
 1

00
,0

00
 s

ea
rc

he
s

Pattern length

unclustered
esa, d=1

esa, d=10
clustered, d=10

Fig. 11. Time for 105 search operations on the H. sapiens chromosome 10 (80 MB).

patterns longer than 10 could be tested, since the enhanced suffix array requires
a pattern length of at least the prefix length.

For E. coli (Figure 10) the search with the different suffix trees is faster than
with the enhanced suffix array, as long as the pattern is short enough to ensure
that the searched part of the suffix tree completely fits into main memory. For
the clustered suffix tree the search times jump up at a pattern length of 10,
when the clusters below the trunk have to be accessed. The search times for the
enhanced suffix array are initially slower than for the suffix trees. However, with
increasing pattern length the increase is less drastical than for the suffix trees,
such that beyond a pattern length of 10 searching the enhanced suffix array with
prefix depth d = 1 is about 25% faster than searching the clustered suffix tree.

Figure 11 illustrates times for the repeated search in the large 80 MB data
set. Here neither the enhanced suffix array nor the suffix tree representations
completely fit into main memory. For patterns of length 20 the search times for
the 105 patterns are 1306 seconds for the clustered suffix tree, 1737 seconds for the
enhanced suffix array with prefix depth 10, and 5250 seconds for the unclustered
suffix tree. Hence the clustered suffix tree representation leads to a speedup of
about 33% compared to the enhanced suffix array and 400% compared to the
unclustered representation for the 80 MB part of human chromosome 10.

In summary, one can say that as long as both indices, the clustered suffix tree
and the enhanced suffix array, fit completely into main memory, the search times
slightly favor the enhanced suffix array with prefix length d = 1. For medium

22

sized texts, where only the enhanced suffix array fits into main memory, the
search times of the enhanced suffix array are faster than for the clustered suffix
tree. As soon as none of the data structures fits in main memory, the clustered
suffix tree shows the fastest search times. Comparing the absolute times, one can
easily see that the gain of about 400 seconds for searching a large text 105 times
more than compensates for the small loss in time (by less than 5 seconds) when
searching a small text.

6 Conclusion

We have presented a suffix tree construction method with expected time com-
plexity of O(n log n). Our algorithm is well suited for the construction of large
suffix trees in bioinformatics and other applications, as long as the main mem-
ory size is six times as big as the sequence length. For other types of strings
it is faster than other approaches including the wotd-algorithm or Ukkonen’s
algorithm. Hence, it is the currently fastest practical suffix tree construction al-
gorithm and even competitive with construction algorithms for other practical
index structures like the enhanced suffix array.

Concerning the exact string matching problem, the clustered suffix tree rep-
resentation is the most efficient storage scheme for suffix trees when the searched
part of the suffix tree exceeds the main memory size. If also the size of the en-
hanced suffix array grows over main memory size, the search operations are faster
using the clustered suffix tree compared to the enhanced suffix array.

Besides the substring search there are many other applications on suffix trees.
For these applications it has to be investigated if our clustered suffix tree repre-
sentation also leads to an efficiency gain. Moreover, there are some applications
for suffix trees for which the usage of suffix links is essential, like the matching
statistics. Thus we have to find practical ways to enrich our suffix tree with suffix
links.

Acknowledgment. We thank Stefan Kurtz for providing his library for the en-
capsulation of the gcc-mmap functions and his programs for the enhanced suffix
array.

References

1. M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on
suffix arrays. In Proceedings of the 9th International Symposium on String Processing and
Information Retrieval, volume 2476 of Lecture Notes in Computer Science, pages 31–43.
Springer Verlag, September 2002.

2. A. Apostolico and W. Szpankowski. Self-alignments in words and their applications. Jour-
nal of Algorithms, 13(3):446–467, 1992.

3. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. Genbank.
Nucleic Acids Research, 31(1):23–27, 2003.

4. A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete inverted
files for efficient text retrieval and analysis. Journal of the ACM (JACM), 34(3):578–595,
1987.

23

5. M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th
Annual Symposium on the Foundations of Computer Science (FOCS 97), pages 137–143,
October 1997.

6. R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees. In
Proceedings of the 3rd International Workshop on Algorithm Engineering (WAE 1999),
volume 1668 of Lecture Notes in Computer Science, pages 30–42. Springer Verlag, 1999.

7. R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees. Software:
Practice and Experience, 33(11):1035–1049, 2003.

8. K. Heumann and H. W. Mewes. The hashed position tree (HPT): A suffix tree variant
for large data sets stored on slow mass storage devices. In Proceedings of the 3rd South
American Workshop on String Processing, pages 101–115, 2002.

9. E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological sequences.
In Proceedings of the 27th International Conference on Very Large Databases (VLDB 2001),
pages 139–148. Morgan Kaufmann, 2001.

10. C. S. Iliopoulos, D. Moore, and W. F. Smyth. A characterization of the squares in a
Fibonacci string. Theoretical Computer Science, 172(1-2):281–291, February 1997.

11. U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

12. G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.
In Proceedings of the 10th Annual European Symposium on Algorithms (ESA 2002), volume
2461 of Lecture Notes in Computer Science, pages 698–710. Springer Verlag, September
2002.

13. H. M. Martinez. An efficient method for finding repeats in molecular sequences. Nucleic
Acids Research, 11(13):4629–4634, 1983.

14. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262–272, April 1976.

15. T. Printezis, M. Atkinson, L. Daynes, S. Spence, and P. Bailey. The design of a new
persistent object store for PJama. In Proceedings of the 2nd International Workshop on
Persistence and Java, pages 61–74, 1997. Published as SunLabs Technical Report TR-97-
63.

16. W. Szpankowski. Asymptotic properties of data compression and suffix trees. IEEETIT:
IEEE Transactions on Information Theory, 39(5):1647–1659, 1993.

17. E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3):249–260, 1995.
18. P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Annual

Symposium on Switching and Automata Theory, pages 1–11, 1973.

24

Bisher erschienene Reports an der Technischen Fakultät
Stand: 2003-08-19

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)

2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)

2002-01 Persistent Objects with O2DBI
(Jörn Clausen)

2002-02 Simulation von Phasenübergängen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, Ulf Schiller, Jan
Stallkamp)

2002-03 Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04 Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zöllner, Gerhard Sagerer)

2002-05 ElMaR: A Protein Docking System using Flexibility Information
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-06 Calculating Residue Flexibility Information from Statistics and Energy based
Prediction
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-07 Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glöckner)

2002-08 Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glöckner)

2003-01 On the Similarity of Sets of Permutations and its Applications to Genome
Comparison
(Anne Bergeron, Jens Stoye)

2003-02 SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry
(Sebastian Böcker)

2003-03 From RNA Folding to Thermodynamic Matching, including Pseudoknots
(Robert Giegerich, Jens Reeder)

2003-04 Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt
(Sebastian Böcker)

2003-05 Systematic Investigation of Jumping Alignments
(Constantin Bannert)

