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Abstract. Why an iconic gesture takes its particular form is a largely open ques-
tion, given the variations one finds across both situations and speakers. We present
results of an empirical study that analyzes correlations between contextual fac-
tors (referent features, discourse) and gesture features, and tests whether they
are systematic (shared among speakers) or idiosyncratic (inter-individually differ-
ent). Based on this, a computational model of gesture formation is presented that
combines data-based, probabilistic and model-based decision making.
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1 Introduction

The use of speech-accompanying iconic gestures is ubiquitous in human-human commu-
nication, especially when spatial information is expressed. Current literature on gesture
research states that the question “why different gestures take the particular physical
form they do is one of the most important yet largely unaddressed questions in gesture
research” [2, p. 499]. This holds especially for iconic gestures, for which information
is mapped from some mental image into (at least partly) resembling gestural form.
Although their physical form, hence, corresponds to object or event features like shape or
spatial properties, empirical studies have revealed that similarity with the referent cannot
fully account for all occurrences of iconic gestures [19]. Rather, recent findings indicate
that a gesture’s form is influenced by specific contextual constraints or the use of more
general gestural representation techniques such as shaping, drawing, or placing [17, 4].
In addition to those systematic patterns in gesture use, human speakers are of course
unique and inter-subjective differences in gesturing also hold (cf. [12]). For example,
while some people rarely make use of their hands while speaking, others gesture almost
without interruption. Similarly, individual variations are seen in preferences for partic-
ular representation techniques or low-level morphological features such as handshape
[4]. Such inter-subjective differences in gesture behaviour are common and reflect an
idiosyncrasy of iconic gestures – gestures are created locally by speakers while speaking,
without adhering to any conventionalized standards of good form. McNeill & Duncan
[25, p. 143] conclude that, by this idiosyncracy, “gestures open a ‘window’ onto thinking
that is otherwise curtained”.



In this paper, we look at how systematic and idiosyncratic aspects appear and
interrelate with each other in iconic gesture production. We start with empirically
analyzing their influence in the formation of gestures, given certain visuo-spatial features
of the referent and an overall discourse context. Section 2 introduces the experimental
setting and the data coding methodology, Section 3 presents results from the corpus
analysis. Based on these findings, we describe in Section 4 a computational modeling
account that goes beyond previous systems, which either rely on generalized rule-based
models that disregard idiosyncrasy in gesture use [6, 18], or employ data-based methods
that approximate single speakers but have difficulties with extracting systematicities of
gesture use. These data-based approaches are typically (and successfully) employed to
generate gesturing behavior which has no particular meaning-carrying function, e.g.,
discourse gestures [27] or beat gestures (Theune & Brandhorst, this volume). We propose
to combine probabilistic and rule-based decision-making. Embedded into an integrated
production architecture, this approach allows for generic, yet speaker-attunded gesture
production, which is driven by iconicity as well as the overall discourse context. We
conclude with modeling results from a prototype implementation.

2 Empirical study

We aim at identifying systematic and idiosyncratic patterns in the formation of gestures.
In our experimental setup, two interlocutors engage in a spatial communication task of
direction-giving and sight description, in which they are to convey the shape of objects
and spatial relations between them (Fig. 1).

Fig. 1. Experiment setting: VR stimulus presentation (left) and dialog phase with the speaker
uttering “the left church has two towers” (right).

2.1 Data Coding

We collected a dialog corpus of 25 dyads (∼5000 gestures). In the scope of the work
reported here, we concentrate on descriptions of four different landmarks from 5 dyads
(489 noun phrases, 290 gestures). Multimodal annotation has been carried out on several
different levels as described in the following (see Table 1).

Gesture Form All coverbal gestures have been segmented and coded for their rep-
resentation techniques for transforming perceived object information into a gesture.
Representation techniques capture the aspect that iconic gesturing does not seem to



entirely follow the goal to maximize similarity with the referent model, but also brings
into play conventions, experiences, and habituations, which people seem to have acquired
and apply in their multimodal deliveries (cf. [26, 15, 32]) According to our focus on
object descriptions we distinguish the following five categories: (1) Indexing: pointing
to a position within the gesture space; (2) Placing: an object is placed or set down within
gesture space; (3) Shaping: an object’s shape is contoured or sculpted in the air; (4)
Drawing: the hands trace the outline of an object’s shape; and (5) Posturing: the hands
form a static configuration to stand as a model for the object itself.

In addition, each gesture has been coded for its morphology in terms of handedness,
handshape, hand position, palm and finger orientation, and movement features (cf. Rieser,
this volume). For the scope of this paper, however, we will consider only one of these
features, namely handedness: each gesture is either performed with the right hand (rh),
with the left hand (lh) or with both hands (2h).

Table 1. Coding scheme for gestures and their discourse context.

Variable Annotation Primitives Agreement Coefficient

Gesture Representation Technique indexing, placing, shaping, drawing, posturing AC1 = .7841

Handedness rh, lh, 2h κ = .924

Discourse
Context

Thematization theme, rheme κ = .917

Information State private, shared κ = .802

Communicative Goal lm, lmDescrProp, lmDescrConstr, lmDescrPos κ = .847

Referent
Features

Subparts 1 or more, none

κ = .91
Symmetry sym, none

Main Axis x-axis, y-axis, z-axis, none

Position 3D vector (left, middle, right)

Discourse Context The transcription of the interlocutor’s words is enriched with fur-
ther information about the overall discourse context. For this purpose, the utterance is
broken down into clauses, each of which holding to represent a proposition. For each
clause we annotated its communicative goal. Denis [8] developed several categories of
communicative goals that can be distinguished in route directions. As we were mainly
interested in object descriptions, we revised and refined these for this case into four
categories: (1) Landmark (lm): a landmark is mentioned without further exploration, e.g.,
‘there is a chapel’; (2) Landmark property description (lmDescrProp): the properties
of an object are described as in ‘the town hall is u-shaped’; (3) Landmark construction
description (lmDescrConstr): an object’s construction is described, e.g., ‘the church
has two towers’; and (4) Landmark Position Description (lmDescrPos): the description
localizes the object as in ‘there is a tree in front of the building’.

Clauses are further divided into two smaller units of thematization partitioning of the
content of a sentence according to its relation to the discourse context. The structuring

1 We employ the first order agreement coefficient AC since the gestural representation techniques
are data of type II according to [10].



of utterances into a topic part and a comment part is a pervasive phenomenon in human
language and there are numerous theoretical approaches describing thematization and its
semantics (cf. [21]). Following Halliday [11] we distinguish between thematization in
terms of theme and rheme on the one hand, and information focus in terms of given and
new on the other hand. According to the former, a sentence’s theme is what the sentence
is about. The rheme is defined as what is being said about the theme. For example, in
the utterance “the church has two towers” the first noun phrase (“the church”) is the
theme and the second noun phrase is the rheme. Focussing on noun phrases and their
accompanying gestures, to which we restrict our annotation, we annotate information
focus following Stone et al. [31] in using the terms ‘information state’ and distinguish
straight-forward between ‘private’ and ‘shared’ knowledge: a referent (or referent feature)
already mentioned in the previous discourse is ‘shared’ between interlocutors, whereas
a discourse referent which lacks an antecedent in the previous discourse, is not part of
the discourse situation is assumed to be ‘private’. For instance, in the utterance “the
church has a dome-shaped roof” the first noun phrase (“the church”) is shared since
the must haven been introduced into the discourse before (use of definite article). The
second noun phrase (“a dome-shaped roof”), on the contrary, is private because the object
(feature) is discourse-new. As suggested in [28], thematization and information focus are
annotated independently as different dimensions of information structure, assuming no
prior relation between them. In particular, rhematic information is not always private as
for instance when content is repeated for better comprehension or in reply to interposed
questions.

Referent Features All gestures used in the object descriptions have further been coded
for their referent and some of its spatio-geometrical properties. These object features
are drawn from an imagistic representation built for the VR stimulus of the study (e.g.,
houses, trees, streets). This hierarchical representation is called Imagistic Description
Trees (IDT) [29], and is designed to cover all decisive visuo-spatial features of objects
one finds in iconic gestures. Each node in an IDT contains an Imagistic Description
(IMD) which holds a schema representing the shape of an object or object part. Object
schemas contain up to three axes representing spatial extents in terms of a numerical
measure and an assignment value like ‘max’ or ‘sub’, classifying this axis’ extent relative
to the other axes. Each axis can cover up to three spatial dimensions to account for
rotation symmetries (becoming a so-called ‘integrated axis’). The boundary of an object
can be defined by a profile vector that states symmetry, size, and edge properties for each
object axis or pair of axes. Links in the tree structure represent spatial relations between
parts and wholes, and are defined by transformation matrices. Fig. 2 illustrates how
imagery can be operationalized with the IDT model. The spatio-geometrical features
entered in the corpus are drawn from these visuo-spatial representations (see Table 1).

3 Results—systematicities and idiosyncracies

As reported in [4] individuals differ significantly in the surface level of their gestural
behavior, i.e., in their gesture rate and their preferences for particular representation
techniques or morphological gesture features. Our corpus analysis here investigates
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Fig. 2. A church tower (from the VR stimulus) and IDT representation of its shape.

whether such aspects of iconic gesture production seem to be rather systematic, i.e.
common among speakers in the same situation, or idiosyncratic, i.e. perculiar to a certain
individual. We focus on the following two generation decisions: (1) whether or not a
gesture will be produced, and (2) which hand(s) will be used. Since we are dealing
with data measured on a nominal scale, we employ Pearson’s chi-square test to to judge
whether paired observations on two variables, expressed in a contingency table, are
independent of each other.

One important question arising is whether the individual differences are due to the
fact that different speakers follow different subsets of (possibly shared) dependencies
between contextual factors and gestural features? Or do they rather select different
features for the same factors, i.e. do individuals diverge from the general tendencies
found in the data? We employ two different kinds of measure to investigate these
questions. First, we assessed for each individual if the particular (significant) correlation
found in the whole data is also significant for the individual. Second, as a measure
for individual divergence from the significant common correlations, we assessed for
each speaker if her/his joint distributions coincide with the general distribution. Notably,
we only considered those cells in the contingency tables in which there is at least a
significant difference between observed and expected number of occurrences (p < .05).

3.1 To gesture or not to gesture?

The question whether or not a gesture is produced for a particular object seems to be
highly idiosyncratic. In the whole corpus (N=25) gesture rates differ from a minimum
of 2.34 to a maximum of 32.83 gestures per minute. The mean gesture rate is 15.64
gestures per minute (SD = 7.06). For the five dyads which are analyzed in detail here,
the gesture rates vary between 12.5 to 25.0 gestures per minute. The a priori probability
for gesture occurrence during a noun phrase in speech is 58.0%. This distribution varies
inter-subjectively between a minimum of 44.4% and a maximum of 74.5%.

The choice to produce a gesture is decisively influenced by several other variables, as
displayed in Table 2. For the discourse context we found the thematization to be decisive
insofar as rhematic information is significantly more likely to be accompanied by a
gesture (χ2 = 66.396,d f = 1, p < 0.001). Individuals share this relationship: although
the relation is not significant for one of the speakers, all five speakers agree on the



Table 2. Interrelation of gesture occurrence and influencing variables. Parenthetical values are expected occurrences (*p<.05,
**p<.01, ***p<.001).

Gesture (y/n) Individuals
no gesture gesture significance similar distr.

Thematization rheme 103 (142.8) *** 248 (208.2) ** 4/5 5/5theme 96 (56.2) *** 42 (81.8) ***
InfoState private 83 (102.1) 168 (148.9) 2/5 5/5shared 116 (96.9) 122 (141.1)
CommGoal lm 17 (10.6) * 9 (15.4)

2/5 5/5lmDescrProp 67 (65.1) 93 (94.9)
lmDescrConstr 54 (49.6) 68 (72.4)
lmDescrPos 61 (73.7) 120 (107.3)

MainAxis none 44 (47.2) 72 (68.8)

3/5 4/5width 44 (43.5) 63 (63.5)
height 100 (87.9) 116 (128.1)
depth 11 (20.3) * 39 (29.7)

Subparts none 68 (92.8)** 160 (135.2)* 2/5 5/51 or more 131 (106.2) * 130 (154.8) *
SymAxes none 97 (74.5) ** 86 (108.5) * 2/5 5/5sym 102 (124.5) * 204 (181.5)

distribution, i.e. they tend to use gestures for rhematic information whereas for thematic
information gestures are less likely to occur. Regarding the information state, people
are more likely to produce gestures for entities whose information state is private
(χ2 = 12.432,d f = 1, p < 0.001). This is in line with the view that new information
is introduced into the discourse by gesture [24]. Again, all individuals share the same
distribution, although the relation is only significant for two of them. So it seems as
if this link between information state and gesture occurrence is not as strong as the
link between thematization and gesture occurrence. Moreover, the communicative goal
has an impact on the question whether or not to gesture (χ2 = 10.970,d f = 3, p =
0.012). When a landmark is just mentioned (lm), this utterance is not very likely to
be accompanied by a gesture. This dependence between variables, however, is only
significant for two individuals, although all five agree on the distribution by trend. That
is, they use less gestures than expected for landmarks which are just mentioned without
further elaboration of any kind.

As concerns the influence of referent features, three features appear to be decisive.
First, there is a significant relationship between the choice to gesture and the referent’s
main axis: if from the speaker’s point of view the main axis of an object is its depth
(e.g. a tunnel into which one is looking) a gesture is more likely to be produced than
in other cases (χ2 = 10.424,d f = 3, p = 0.015). For three of the five speakers this
relation is significant, and only one speaker does not share the trend. Moreover, the
complexity of the object (part) is influential. Utterances which refer to leaf nodes of the
IDT representation are more often accompanied by gestures than utterances referring to
inner nodes of the tree representation (χ2 = 20.916,d f = 1, p < 0.001). All individuals
share this kind of distribution, however, it is only significant for two of them. Furthermore,
for objects which have at least one symmetry axis, gestures are more likely to occur than
for objects which do not have any symmetry (χ2 = 18.363,d f = 1, p < 0.001). Again,
all speakers share this kind of distribution, but it is only significant for two of them.



In summary, the decision2 to gesture is influenced by two kinds of variables, the dis-
course context and referent features. As concerns the former, gestures are predominantly
produced for rhematic and private information. Regarding the latter, gestures occur
more often for less complex (parts of) objects in the sense that they are symmetrical to
some degree and have no subparts in the IDT representation. These two findings are
rather systematic, i.e., uncontroversial among the five speakers we looked at. However,
a significance of the very correlation is not given for all individuals. In other words,
speakers vary particularly in how strong the link between particular variables is.

3.2 Which hand to use?

A further analysis concerned another fundamental choice in the generation of gestures:
the question which hand(s) to use when referring to an entity. The general distribution of
handedness in our data (in which all speaker describe exactly the same spatial scenes)
is as follows: with 56.6% the majority of gestures is performed two-handed, while
right-handed gestures occur in 28.6% of the cases and left-handed gestures in 14.8%.
Again, this distribution is not shared by all speakers. To illustrate this we contrast two
particular speakers, P7 and P15. P7 prefers two-handed gestures (65.8%). Accordingly,
the number of right-handed gestures (20.5%) and left-handed gestures (13.7%) is reduced.
In contrast, P7 has a strong preference for one-handed gestures: 45.1% of this speakers’
gestures are performed with the right hand and 25.5% are performed with the left hand.
The number of two-handed gestures is accordingly low (29.4%).

Again, we found several correlations in the data constraining this decision (see Table
3). First, there is a significant relationship between the gestural representation technique
and the handedness (χ2 = 50.476,d f = 8, p < 0.001). This positive correlation is due
to the fact that indexing gestures are hardly ever performed with both hands. On the
contrary, shaping gestures are more likely to be performed two-handed. This distribution
is shared among all five speakers, whereas significance is only given in four speakers.

Second, there is a significant relationship between the referent’s main axis and
the gesture’s handedness (χ2 = 54.645,d f = 6, p < 0.001): for objects whose major
extent is oriented horizontally, two-handed gestures are likely to occur, whereas left- and
right-handed gestures occur less often than expected. On the contrary, objects with a
main vertical axis are predominantly accompanied by left- or right-handed gestures. The
number of two-handed gestures is decreased in these cases. Here we have four speakers
sharing this kind of distribution in a significant way.

And finally, as one would expect, the referent’s position is influential for handedness
(χ2 = 50.893,d f = 4, p < .001). Referents which are on the right from the speaker’s
point of view are more likely to be accompanied by right-handed gestures and referents
which are on the speaker’s left tend to be referred to by left-handed gestures. Addition-
ally, for referents which are centered, the number of two-handed gestures is increased
compared to expectation. Four of the five individuals agree on the distribution which is
significant in three speakers.

In conclusion, we found that a gesture’s handedness is not independent from the
representation technique used as well as the referent’s main axis and position. Individual

2 The term ‘decision’ is not meant to imply a conscious process here.



differences, as we measured them, are not very strong in these relations. As we have
already seen in the previous section, individuals tend to agree on the general distribution,
but may differ in how strong the links are.

Table 3. Interrelation of handedness and influencing variables. Parenthetical values are expected occurrences (*p<.05,
**p<.01, ***p<.001).

Handedness Individuals
2H LH RH significance similar distr.

Technique indexing 3 (20.4) *** 12 (5.3) ** 21 (10.3) ***

4/5 5/5
placing 41 (38.5) 12 (10.1) 15 (19.5)
shaping 81 (65.0) * 13 (17.1) 21 (32.9) *
drawing 27 (25.4) 2 (6.7) 16 (12.9)
posturing 12 (14.7) 4 (3.9) 10 (7.4)

MainAxis none 47 (40.7) 8 (10.7) 17 (20.6)

4/5 4/5width 56 (43.6) *** 1 (9.3) ** 6 (18.0) **
height 39 (65.6) *** 27 (17.2) * 50 (33.2) **
depth 22 (22.1) 7 (5.8) 10 (11.2)

Position left 42 (44.1) 16 (11.6) 20 (22.3)
3/5 4/5right 32 (56.0) *** 21 (14.7) 46 (28.3)***

middle 90 (63.9) *** 6 (16.8) ** 17 (32.3) **

3.3 Which representation technique?

Another interesting question in gesture generation is the choice of representation tech-
niques. The distribution of representation techniques in our data is as follows: shaping
(39.7%), placing (23.4%), drawing (15.5%), indexing (12.4%) and posturing (9.0%).
As described in [4], the choice of representation technique is influenced by the commu-
nicative goal of the utterance: descriptions (lmDescrProp) come along with significantly
more depicting gestures (shaping, drawing, posturing), while the spatial arrangement
of entities is accompanied by indexing and placing gestures in the majority of cases.
Moreover, complex objects (without symmetry, or with further subparts) are likely to
be positioned gesturally, while less complex objects are more likely to be depicted by
gesture. Individuals tend to agree on this general distribution for the most part, but differ
in how strong the relations between correlated variables are. Fore a more detailed analy-
sis of the interrelation between use of gestural representation techniques and correlated
variables see [4].

4 Computational Modeling

In the previous section we have shown that decisions in the generation of iconic gestures
are influenced by a number of variables. Most of the correlations are shared among
individuals, whereas for some there is considerable variance among individuals. For a
computational model of speech and iconic gesture production three major conclusions
can be drawn: first, iconic gestures are not solely implied by the object they are referring
to. Rather, ‘thematization’ as a variable characterizing (part of) the linguistic context
into which a gesture is embedded is decisive. This correlation goes with empirical
findings that speech and gesture production mutually influence each other. On the one



hand, information packaging for iconic gestures parallels linguistic packaging (cf. [16,
9, 3]); on the other hand, representational gesturing can have a significant impact on
conceptualization as well as lexical access for language (cf. [1, 13]). An adequate model
for speech and gesture production, therefore, should allow for a close interaction between
content planning and formulation of speech and gesture. Second, generation decisions
are influenced by the overall discourse context. For a computational model this means
that a discourse record is necessary to distinguish between private and shared knowledge
about a referent. Such a discourse record is indispensable for speech formulation to,
e.g., decide for the adequate type of determiner (definite or indefinite), and it must
be accessible for gesture formulation too. Third, an adequate model of how speakers
produce iconic gestures must account for both types of influential patterns, general and
individual ones. Previous modeling attempts either ignored idiosyncrasy coming up
with generalized model-based approaches [18], or they employ statistical data-driven
techniques which have problems with identifying and explicating systematicities from
corpora of managable size [27].

We have proposed and described elsewhere [17, 4] a production architecture that is
inspired by psycholinguistic models [16, 7] and accounts for our first two requirements.
As outlined in Fig. 3 (right) it consists of interacting, modality-specific modules at
each of three stages: (1) an Image Generator and a Preverbal Message Generator are
concerned with content planning; (2) a Speech Formulator and a Gesture Formulator
compose and specify, on-the-fly, natural language sentences and gesture morphologies;
(3) Motor Control and Phonation turn them into synchronized speech and gesture ani-
mations. This production model adopts a dual-coding approach to multimodal content
representation in that an imagistic description (IDT), propositional knowledge, and an
interfacing representation out of so-called multimodal concepts are composed and main-
tained simultaneously. These semantic representations are also utilized for a multimodal
discourse model that is available to both speech- and gesture-specific content planning
modules, thus meeting the second requirement.

Gesture Formulator

Preverbal Message 
Generator

Speech Formulator

PhonationMotor Control

Multimodal
Concepts

Visua-
spatial

Propo-
sitional

Discourse 
Model

Communication 
Planner

Image Generator

Referent 
Features

Previous 
Gesture

Discourse 
Context

Gesture Features

Fig. 3. Overview of the speech and gesture generation model (right), and a zoom in onto the
Bayesian decision network for gesture formulation (left).



Accounting for the third requirement, the challenge of considering general and
individual patterns in gesture formulation, we employ Bayesian decision networks
(BDN) which supplement standard Bayesian networks by decision nodes [14]. This
formalism suitably provides a representation of a finite sequential decision problem,
combining probabilistic and rule-based decision-making. Each decision to be made in
the formation of an iconic gesture, e.g., whether or not to gesture or which representation
technique to use, is represented in the network either as a decision node or as a ‘chance
node with a probability distribution. All factors which potentially contribute to these
choices are also entered in the model.

Bayesian networks can be built from the corpus data, both for the whole data corpus,
or, for each individual speaker seperately. In either case, the structure of the Bayesian
network is learned using the Necessary Path Condition (NPC) algorithm [30]. The NPC
algorithm is a constraint-based structure learning algorithm that identifies the structure
of the underlying graph by performing a set of statistical tests for pairwise independence
between each pair of variables. That is, the independence of any pair of variables given
any subset of other variables is tested. The result of structure learning is a network
containing all links between variables that are significant for the modeled individual.
Once the structure of the network has been found, its maximum likelihood estimates
of parameters are computed employing the EM (Estimation-Maximization) algorithm
[22].However, not all variables of a complete gesture specification can be learned from
the data. This is due to the large set of values some of the variables have. Variables
specifying a gesture’s morphology, e.g., values for palm and finger orientation, are
combined out of six basic values which can moreover be concatenated into sequences to
describe dynamic gestures. It is therefore necessary to formulate additional rules and
constraints in decision nodes of the network to specify these values adequately.

A resulting decision network is illustrated in the left of Fig. 3. Influences of three
types of variables manifest themselves in dependencies (edges) between the large groups
of respective chance nodes (drawn as ovals): (1) referent features, (2) discourse context,
and (3) the previously performed gesture. Although not in the scope of the current
paper, some generation decisions are related to the previous gesture context, i.e., whether
the hands have been in a rest position before, and, if already gesturing, which gesture
features were found in that gesture (handedness, representation technique). The network
is supplemented with decision nodes (drawn as rectangles) which are defined universally,
i.e., they do not vary in the individual networks. Nevertheless, each decision node has
chance nodes as predecessors so that these rule-based decisions depend on chance
variables whose (individual) values have been determined previously. BDNs are suitable
for gesture formation since they provide a way to combine probabilistic (data-driven)
and model-based decision-making. Moreover, two sources of individual differences
are explicated: first, individual ‘local preferences for certain aspects are reflected in
the respective conditional probability distributions. Second, individuals that do not
share significant correlations between variables have a different link structure in their
respective networks .



4.1 Modeling Results

A prototype of the previously described generation model has been realized using a
multi-agent system toolkit, a Prolog implementation of SPUD [31], the Hugin toolkit
for Bayesian inference [23], and the ACE realization engine [20]. In this prototype
implementation a virtual agent explains the same virtual reality buildings that we al-
ready used in the previously described empirical study. Being equipped with proper
knowledge sources, i.e., communicative plans, lexicon, grammar, propositional and
imagistic knowledge about the world, the agent randomly picks a landmark and a certain
spatial perspective towards it, and then creates his explanations autonomously. Currently,
the system has the ability to simulate five different speakers by switching between the
respective decision networks built as described above. The resulting gesturing behavior
for a particular referent in a respective discourse context varies in dependence of the
decision network which is used for gesture formulation. In Figure 4, examples are given
from five different simulations, each of which based on exactly the same initial situation.
All gestures are referring to the same round window of a church and are generated in
exactly the same discourse context (‘lmDescrConstr’, ‘rheme’, ‘private’). The resulting
gesture hence varies depending only on the employed decision network.

Fig. 4. Example gestures simulating different speakers, each of which produced for the same
referent (a round window of a church) in the same initial situation.

In a first evaluation, we measured the model’s prediction accuracy by computing how
often the models assessment agreed with the empirically observed gesturing behavior.
To evaluate the decisions for those four variables we currently assess as chance nodes,
we divided the corpus into training data (80%) and test data (20%) and used the training
set for structure learning and parameter estimation of the decision networks. In total, we
achieved a mean of 62.4% (SD=11.0) highly accurate predictions with the individual
networks. The mean accuracy for the rule-based choices made in the network’s decision
nodes is 57.8% (SD=15.5) (see [5] for details). A perception-based evaluation study is
underway to investigate how the generated behavior is judged by human observers.

5 Conclusion

Our objective in this paper was to shed light on the question how systematic (inter-
individual) and idiosyncratic patterns interrelate with each other in iconic gesture pro-
duction. Our empirical corpus analysis has shown that major decisions in the forma-
tion of speech-accompanying gestures are influenced by a number of variables, either



referent-features or variables characterizing the overall discourse context. Some of the
correlations are found among individuals, suggesting systematicity, whereas for others
there is considerable variance among individuals, hence suggesting a more idiosyncratic
nature. Note, however, that these latter patterns may well be the result of the very dialog
situation (including, e.g., the recipient), rather than being hard-wired in the individual
speaker. Nevertheless, the reason that different speakers overlap in some features of
iconic gestures while they tend to differ in others, suggests that the use of iconic gestures
is governed by a number of rather stable systematicities and, at the same time, allows for
flexible attunements that may result from a personal or context-sensitive use of iconic
gesture by the speaker. A computational model has been developed and the results from
a prototype implementation are promising, so that we are confident that our approach is a
step forward towards a comprehensive account of iconic gesture generation. Future work
in this direction will need to look at a larger spectrum of factors: from individual cogni-
tive skills (as suggested in [12]) to features of the current state between interlocutors.
Furthermore, the limitation to five individuals and a set of 290 gestures has to be lifted.
Nevertheless, this data suffices to get a first impression of the interrelation of systematic
and idiosyncratic patterns and provided a proof of concept for our modeling approach.
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