
CLOVA: An Architecture for Cross-Language Semantic
Data Querying

John McCrae
Semantic Computing Group,

CITEC
University of Bielefeld
Bielefeld, Germany

jmccrae@cit-ec.uni-
bielefeld.de

Jesús R. Campaña
Department of Computer

Science and Artificial
Intelligence

University of Granada
Granada, Spain

jesuscg@decsai.ugr.es

Philipp Cimiano
Semantic Computing Group,

CITEC
University of Bielefeld
Bielefeld, Germany

cimiano@cit-ec.uni-
bielefeld.de

ABSTRACT
Semantic web data formalisms such as RDF and OWL al-
low us to represent data in a language independent manner.
However, so far there is no principled approach allowing
us to query such data in multiple languages. We present
CLOVA, an architecture for cross-lingual querying that aims
to address this gap. In CLOVA we firstly make a distinction
between a language independent data layer and a language
independent lexical layer, and show how this distinction al-
lows us to create a modular, exchangeable cross lingual ap-
plications that need to access semantic data. We specify
the search interface at a conceptual level using what we call
a semantic form specification abstracting from specific lan-
guages. On the basis of this conceptual specification, and
show how both the query interface and the query results can
be localized to any supported language with almost no ef-
fort. More generally, we describe how the separation of the
lexical layer can be used with a principled ontology lexicon
model, called LexInfo, to produce application-specific lexi-
calisations of properties, classes and individuals contained
in the data.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: User
Interfaces; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems; I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods; I.2.7 [Artificial
Intelligence]: Natural Language Processing

General Terms
Design, Human Factors, Languages

Keywords
Multilingual Semantic Web, Ontology Localisation, Soft-
ware Architecture

1. INTRODUCTION
Data models and knowledge representation formalisms in

the Semantic Web allow us to represent data without ref-

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

erence to natural language 1. In order to facilitate the in-
teraction of human users with semantic data, supporting
language-based interfaces in multiple languages is crucial.
However, currently there is no principled approach support-
ing the access of semantic data across multiple languages.
To fill this gap, we present in this paper an architecture
we call CLOVA (Cross-Lingual Ontology Visualisation Ar-
chitecture) designed for querying semantic data in multiple
languages. A developer of a CLOVA application can define
the search interface independently of any natural language
by referring to ontological relations and classes within a se-
mantic form specification (SFS), which represents a declar-
ative and conceptual representation of the search interface
with respect to the ontology. We have designed a propri-
etary XML-based language which is inspired by the Fresnel
language [2] for this purpose. The search interface can then
be automatically localised by the use of a lexicon ontology
model such as LexInfo [4], enabling the system to automat-
ically generate the form in the appropriate language. The
queries to the semantic repository are generated on the basis
of the information provided in the SFS and the results of the
query can be localised using the same method as used for the
localisation of the search interface. The CLOVA framework
is generic in the sense that it can be quickly customised to
new scenarios, new ontologies and search forms and addi-
tional languages can be added without changing the actual
application, even at run time if we desire.

The paper is organised as follows. Section 2 describes
state of the art on information access across languages and
points out basic requirements for cross lingual systems. Sec-
tion 3 describes the CLOVA framework for rapid develop-
ment of cross-lingual search applications accessing semantic
data. We conclude in Section 4.

2. RELATED WORK
Providing access to information across languages is an

important topic in a number of research fields. While our
work is positioned in the area of Semantic Web, we discuss
work related to a number of other research areas, includ-
ing databases, cross-language information retrieval as well
as ontology presentation and visualisation.

2.1 Database Systems
1This holds mainly for RDF triples with resources as sub-
jects and objects. String data-type elements are often
language-specific.

Supporting cross-language data access is an important
topic in the area of database systems, albeit one which has
not received very prominent attention (see [9]). An impor-
tant issue is certainly the one of character encoding as we
need to represent characters for different languages. How-
ever, most of the current database systems support Unicode
so that this issue is not a problem anymore. A more complex
issue is the representation of content in the database in such
a way that information can be accessed across languages.
There seems to be no consensus so far on what the opti-
mal representation of information would be such that cross-
language access can be realised effectively and efficiently.
One of the basic requirements for multilingual organisation
of data mentioned by Kumaran et al. is the following:

“The basic multilingual requirement is that the database
system must be capable of storing data in multiple
languages.”

This requirement seems definitely too strict to us as it as-
sumes that the representation of data is language-dependent
and that the database is supposed to store the data in mul-
tiple languages. This rules out language-independent ap-
proaches which do not represent language-specific informa-
tion in the database at all.
The following requirement by Kumaran et al. is one we can
directly adhere to:

Requirement 1 (Querying in multiple languages)
Data must be queriable using query strings in any (sup-
ported) language.

In fact, we will refer to the above as Requirement 1a and add
the following closely related Requirement 1b: “The results
of a query should also be presented in any (supported) lan-
guage. Figure 1 summarises all the requirements discussed
in this section. However, it does not strictly follow from this
that the data should be stored in multiple languages in the
database. In fact, it suffices that the front end that users in-
teract with supports different languages and is able to trans-
late the user’s input into a formal (language-independent)
query and localise the results returned by the database man-
agement system (DBMS) into any of the supported lan-
guages.

A further important requirement by Kumaran et al. we
subscribe to is related to interoperability:

Requirement 2 (Interoperability)
The multilingual data must be represented in such a way
that it can be exchanged across systems.

This feature is certainly desirable. We will come back
to this requirement in the context of our discussion of the
Semantic Web (see below). The next two requirements men-
tioned by Kumaran et al. are in our view questionable as
they assume that the DBMS itself has built-in support for
multiple languages:

• String equality across scripts: Multilingual database
system should support lexical joins allowing to join in-
formation in different tables even if the relevant at-
tributes of the join are in different scripts.

• Linguistic equivalences: Multilingual database sys-
tems should support linguistic joins which exploit pre-
defined mappings between attributes and values across
languages. For example, we might state explicitly that
the attributes “marital status” (in English) and “Fam-
ilienstand” are equivalent and that the values “mar-
ried” and “verheiratet” are equivalent.

In fact, those two requirements follow from Kumaran et
al’s assumption that the database should store the data in
multiple languages. If this is the case then we certainly
have to push all the cross-language querying functionality
into the DBMS itself. This is rather undesirable from our
point of view as every time a new language is added to the
system, the DBMS needs to be modified to extend the lin-
guistic and lexical equivalences. Further, the data is stored
redundantly (once for every language supported). There-
fore, we actually advocate a system design where the data
is stored in a language-independent fashion and the cross-
lingual querying functionality as well as result localisation
is external to the DBMS itself and implemented as pre- and
post-processing steps.

In fact, we would add the following requirement to any
system allowing to access data across languages:

Requirement 3 (Language Modularity)
The addition of further languages should be modular in
the sense that it should not require the modification of the
DBMS or influence the other languages.

As a consequence, the capability of querying data across
languages should not be specific to a certain implementation
of a DBMS but work for any DBMS supporting the data
model in question.

One of the important issues in representing information in
multiple languages is avoiding redundancy (see [7]). Sayed
et al. indeed propose a schema to give IDs to every piece
of information and then include the language information
in a dictionary table. This is perfectly in line with Seman-
tic Web data models (RDF in particular) where URIs are
used to uniquely identify resources. Dictionaries can then be
constructed expressing how the elements represented by the
URIs are referred to across languages. This thus allows to
conceptually separate the data from the dictionary. This is a
crucial distinction that CLOVA also adheres to (see below).

2.2 Cross-language Information Retrieval
In the field of information retrieval, information access

across languages has also been an important topic, mainly
in the context of the so called Cross-Language Evaluation
Forum2 (see [11] for the proceedings of CLEF 2008). Cross-
language information retrieval (CLIR) represents an extreme
case of the so called vocabulary mismatch problem well-
known from information retrieval. The problem, in short, is
the fact that a document can be highly relevant to a query
in spite of not having any words in common with the query.
CLIR represents an extreme case in the sense that if a query
and a document are in different languages, then the world
overlap and consequently every vector-based similarity mea-
sure will be zero.

In CLIR, the retrieval unit is the document, while in
database systems the retrieval unit corresponds to the in-

2http://www.clef-campaign.org/

formation units stored in the data base. Therefore, the re-
quirements with respect to multilinguality are rather differ-
ent for CLIR and multilingual database systems.

2.3 Semantic Web
Multilinguality has been so far an underrepresented topic

in the Semantic Web field. While on the Semantic Web we
encounter similar problems as in the case of databases, there
are some special considerations and requirements. We will
consider further important requirements for multilinguality
in the context of the Semantic Web. Before, we introduce
the crucial distinction between the data layer (proper)
and the lexical layer. We will see below that the con-
ceptual separation between the data and the dictionary is
even more important in the context of the Semantic Web.
According to our distinction, the data layer contains the
application-relevant data while the lexical layer merely con-
tains information about how the data is realised/expressed
in different languages and acts like a dictionary. We note
that this distinction is a conceptual one as the data in both
layers can be stored in the same DBMS. However, this might
not always be possible in a decentralised system such as the
Semantic Web:

Requirement 4 (Data and Lexicon Separation)
We require a clear separation between the data and lexicon
layer in the Semantic Web. The addition of further lan-
guages should be possible without modifying the data layer.
This means that the proper data layer and the lexical layer
are cleanly separated and data is not stored redundantly. It
also implies that the same data is available for all languages.

In the Semantic Web, the parties interested in accessing
a certain data source are not necessarily its owners (in con-
trast to standard centralised database systems as considered
by Kumaran et al.). As a corollary it follows that if a user
requires access to a data source in language x he might not
have the permission to enrich the data source by data rep-
resented in the language x.

Requirement 5 (Sharing of Lexica)
Sharing language-specific lexica: Lexica should we rep-
resented declaratively and in a form which is independent
of specific applications such that it can be shared.

It is very much in the spirit of the Semantic Web that
information should be interoperable and thus reusable be-
yond specific applications. Following this spirit, it seems
desireable that (given that data representation is language-
independent) the language-specific information how certain
resources are expressed can be shared across systems. This
can be accomplished by declaratively described lexica which
can be shared.

The need to separate the “data layer” from the lexical
layer has been recognised in a number of extant models pro-
posed which allow information about lexical realisation (in
multiple languages) to be added to ontologies. The most
prominent models are the Linguistic Information Repository
(LIR) and LexInfo (see [4]). Also in the DALOS Project a
separation between the data layer and the lexicon layer is
clearly fostered (see [5]). RDF provides a simple solution
for multilinguality through the use of its label property,

which can assign labels with language annotations to URIs.
The SKOS framework[10] further expands on this by use of
prefLabel, altLabel, hiddenLabel. These formalisms are
sufficient for providing simple representation of language in-
formation. However as more complex lexico-syntactic infor-
mation is required, in turn more complex representations
are necessary.

2.4 Ontology Presentation and Visualisation
Fresnel [2] is a display vocabulary that describes meth-

ods of data presentation in terms of lenses and formats. In
essence the lens in Fresnel selects which values are to be
displayed and the format selects the formatting applied to
each part of the lens. This provides many of the basic tools
for presenting semantic web data. However it does not rep-
resent multilinguality within the vocabulary and it is not
designed to present a queriable interface to the data. There
exist many forms of ontology visualisation methods through
the use of trees, and other more structures display the data
contained within the ontology, a survey of which is provided
in [8]. However, for very large data sources, it is impractical
to visualise the whole ontology at one time and hence we
wish only to select a certain section of it and hence require
a query interfaces to perform this task.

3. MULTILINGUAL ACCESS AND QUERY-
ING USING CLOVA

CLOVA addresses the problem of realising localised search
interfaces on top of multilingual data sources, abstracting
the work flow and design of a search engine and providing
the developer with a set of tools to define and develop a new
system with relatively little effort. CLOVA abstracts lexi-
calisation and data storage as services, providing a certain
degree of independence from data sources and multilingual
representation models.

The different modules of the system have been designed
with the goal of providing very specific, non overlapping and
independent tasks to a team of developers working on the
system deployment concurrently. User interface definition
tasks are completely separated from data access and lexical-
isation, allowing developers of each module to use different
resources as required

CLOVA as a system does not fulfil any of the aforemen-
tioned requirements (as they should be fulfilled by lexical-
isation services), but provides a framework to fully exploit
cross-lingual services meeting these requirements. The ap-
plication design allows to separate conceptual representa-
tions from language dependant lexical representations, mak-
ing user interfaces completely language independent in order
to later localise them to any supported language.

3.1 System Architecture
The CLOVA architecture is designed to enable the query-

ing of some semantic data in a language of choice, while
still presenting queries to the data source in a language-
independent form. CLOVA is modular, reusable and exten-
sible and as such is easily configured to adapt to different
data sources, user interfaces and localisation tools3.

Figure 2 depicts the general architecture of CLOVA and
its main modules. The form displayer is a module which

3A Java implementation of CLOVA is available at http:
//www.sc.cit-ec.uni-bielefeld.de/clova/

Req. No Implication Status
Req. 1a Querying in multiple languages REQUIRED
Req. 1b Result localisation in multiple languages REQUIRED
Req. 2 Data Interoperability REQUIRED
Req. 3 Language modularity REQUIRED
Req. 4a Separation between data and lexical layer DESIRED TO SUPPORT Req. 3
Req. 4b Language-independent data representation DESIRED TO AVOID REDUNDANCY
Req. 5 Declarative Representation of Lexica DESIRED FOR SHARING LEXICAL INFORMATION

Figure 1: Requirements for multilingual organisation of data

translates the semantic form specification into a displayable
format, for example HTML. Queries are performed by the
query manager and then the results are displayed to the
user using the output displayer module. All of the modules
use the lexicaliser module to convert the conceptual descrip-
tions (i.e., URIs) to and from natural language. Each of
these modules are implemented independently and can be
exchanged or modified without affecting the other parts of
the system.

As an assumption we shall assume that we have a data
source consisting of a set of properties referenced by URIs
and whose values are also URIs or language-independent
data values. We shall also assume that there are known la-
bels for each such URI and each language supported by the
application. If this separation between the lexical layer and
the data layer does not already exist, we introduce elements
to create this separation. Often no separation is needed as
the only language-dependent elements of the database will
be the name of each element, however if for example a prop-
erty “marital status” has string values “married”, “single”
etc., then it would necessary to refactor these values to URIs.

We introduce an abstract description of a search inter-
face in XML document we call a semantic form specification
which specifies the relevant properties that can be queries by
referring to URIs in the data source, thus abstracting from
any natural language. We show how this can be used to
display a form to the user, and develop appropriate queries.
The query manager provides a back-end that allows us to
convert our queries using information in the form into stan-
dard query languages such as SPARQL and SQL. Finally, we
introduce a lexicalisation component, which is used to trans-
late between the localised forms presented to the user, and
the language-independent forms specified by the developer.
We describe a lexicaliser, which builds on a complex lexicon
model and demonstrate that it can provide more flexibility
with respect to the context and complexity of the results we
wish to lexicalise.

3.2 Modules

3.2.1 Semantic Form Specification
One of the most important aspects of the architecture is

the Semantic Form Specification (SFS). This specification
contains all the necessary information to build a user in-
terface to query the ontology. The SFS is specified by the
developer in order to determine the ontology properties to
be queried by the application. This consists of a form, for
which we specify a domain, i.e., the class of objects we are
querying as defined in the database by an RDF type dec-
laration or similar. If this is omitted we simply choose all
individuals in the data source. The SFS essentially consists
of a list of fields which are to be used to query the ontology.

Figure 2: CLOVA general architecture

Each field contains the following information:

• Name : An internal identifier, used for example to
name the input fields for HTML and HTTP requests.

• Query output: This defines whether this field will
be included in these results. Valid values are always,
never, ask (the user could decide if include the field or
not), if empty (if the field has not been queried it is in-
cluded in the output), if queried (if the field is queried,
it is included in the output) and ask default selected
(the user decides, but as default the field will be shown).

• Property: The URI for the ontology property to be
queried through the field or reference=self, meaning
we are querying the domain of the search. Such queries
are useful for querying the lexicalisation of the object
being queried or limiting the query to a fixed set of
objects.

• Property Range: We define a number of types that
describe the data that a field can handle, which differs
from the data types of RDF or similar in that we also
wish to describe how the data should be queried as
well. For example it may be possible to describe both
the revenue of a company and the age of an employee
as integers in the database, however it is not sensible
to query revenue as a single value, while it is often
useful to query age as a single value. These property
ranges provide an abstraction of these properties in
the data, which simplifies the generation of forms and
queries. The following property ranges are built-in into
CLOVA:

– String, Numeric, Integer, Date: Simple data-type
values. Note that String is intended for repre-
senting language-independent strings, e.g. IDs,

not natural language strings. The numeric and
date ranges are used to query precise values like
“age” and “birth date”.

– Range, Segment, Set : These are defined relative
to another property range and specify how a user
can query the property in question. Range spec-
ifies that the user should query the data by pro-
viding an upper and/or lower bound, e.g. “rev-
enue”, “number of employees”. Segment is similar
but requires that the developer divides the data
up into pre-defined intervals. Set allows the de-
veloper to specify a fixed set of queriable values,
e.g. “marital status”.

– Lexicalised Element : Although we assume all data
in the source is defined by URIs, it obviously de-
sirable that the user can query these resources
using natural language. This property ranges ac-
complishes exactly this: allowing to query for
URIs through language-specific strings that need
to be resolved by the system to the URI in ques-
tion. The strings included in this field are pro-
cessed by the lexicaliser to find the URI to which
they belong, and then these URI(s) are queried in
the data source. For example, locations can have
different names in different languages, e.g. “New
York” and “Nueva York”, but the URI in the
data source should be same, as the data source is
language independent.

– Complex : A complex property is considered to
be a property composed of other sub-properties.
For example searching for a “key person” within
a company, can be done by searching for prop-
erties of the person, e.g., “name”, “birth place”.
This nested form allows us to express queries over
the structure of an RDF repository or other data
source.

– Unqueriable: For some data, methods for efficient
querying cannot be provided, especially binary
data such as images. As such we provide this
field to allow the result to still be extracted from
the data source and included in the results.

The described property ranges are supported natively
by CLOVA, but it is also possible to define new prop-
erty ranges and include them in the SFS XML docu-
ment. The appropriate implementation for a form dis-
play element that can handle the newly defined prop-
erty range has to be provided of course (see Section
3.2.2).

• Rendering Properties: There is often information
for a particular rendering that cannot be provided in
the description of the property ranges alone, and so
we allow for a set of context specific properties to be
passed to the rendering engine. Examples of these in-
clude the use of auto-completion features or an indi-
cation of the type of form element to display, i.e. a
Set can be displayed as a drop-down list, or as a radio
button selection.

The SFS document is in principle similar to the concept
of a “lens” in the Fresnel display vocabulary [2], in that it
describes the set of fields in the data that should be used

Figure 3: HTML form generated for a SFS docu-
ment

for display and querying. However, by including more in-
formation about methods for querying the data, we provide
a description that can be used for both presentation and
querying of the data.

Example: Suppose that we want to build a small web ap-
plication that queries an ontology with information about
companies stored in an RDF repository. The application
should ask for company names, companies revenue, and
company locations. The syntax of a SFS XML document
for that application is shown below:

<!--xmlns:dbpedia="http://dbpedia.org/ontology/"-->
<form domain="dbpedia:Company">

<fields>
<field name="Name" output="ALWAYS">

<property reference="self"/>
<property-range>

<lexicalised-property-range/>
</property-range>
<rendering context="html">

<property name="autocompletion" value="yes"/>
</rendering>

</field>

<field name="Location" output="ASK">
<property uri="&dbpedia;Organisation/location"/>
<property-range>

<lexicalised-property-range/>
</property-range>

</field>

<field name="Revenue" output="ASK_DEFAULT_SELECTED">
<property uri="&dbpedia;Organisation/revenue"/>
<property-range>

<ranged-property-range>
<continuous-property-range>

<min>0</min>
</continuous-property-range>

</ranged-proprety-range>
</property-range>

</field>
</fields>

</form>

3.2.2 Form Displayer
The form displayer consists of a set of form display ele-

ments defined for each property range. It processes the SFS
by using these elements to render the fields in order. The
implementation of these elements is dependent on the out-
put method, and we present our results by using Java code
to convert the document to XHTML4.

Figure 3 shows an example of rendering of an SFS which
includes the fields in the example above. In this rendering
the field “name” is displayed as a text field as it refers to
the lexicalisation of this company. The location of a com-
pany for instance is represented as a text field. However,

4The CLOVA project also provides XSLT files to perform
the same task

in spite of the fact that the data is represented in the data
source as a language independent URI, the user can query
by specifying the name of the resource in their own language
(e.g., a German user querying “München” receives the same
results as an English user querying “Munich”). Finally, the
revenue is asserted as a continuous value which is queried
by specifying a range and so is rendered with two inputs
allowing the user to specify the upper and/or lower bounds
of their query. A minimum value on this range allows for
client-side data consistency checks. In addition check boxes
are appended to fields in order to allow users decide if the
fields will be shown in the results, according to the output
parameter in the SFS.

3.2.3 Query Manager
Once the form is presented to the user, he or she can fill

the fields and select which properties he or she wishes to
visualise in the results. When the query form is sent to the
Query Manager, it is translated into a specific query for a
particular knowledge base. We have provided modules to
support the use of SQL queries using JDBC and SPARQL
queries using Sesame [3]. We created an abstract query in-
terface which can be used to specify the information required
in a manner that is easy to convert to the appropriate query
language allowing us to change the knowledge base, ontol-
ogy and back end without major problems. The query also
needs to be preprocessed using the lexicaliser due to the
presence of language-specific terms introduced by the user
which need to be converted to language independent URIs.

3.2.4 Output Displayer
Once the query is evaluated, the results are processed by

the output displayer and an appropriate rendering shown
to the user. The displayer consists of a number of display
elements, each of which represents a different visualisation
of the data, including not only simple tabular forms, but
also graphs and other visual display methods. As with the
form displayer, all of these elements are lexicalised in the
same manner as the form displayer.

In general we might restrict the types of data that com-
ponents will display as not every visualisation paradigm is
suitable for any kind of data. For example, a bar chart
showing foundation year and annual income would be both
uninformative and difficult to display due the scale of values.
For this reason we provide an Output Specification to define
the set of available display elements and sets of values they
can display. These output specifications consist of a list of
output elements described as follows:

• ID: Internal identifier of the output element displayed.

• URI: A reference to the output resource specified as
a URI.5

• Fields: The set of fields used by this element. These
should correspond by name to elements in the SFS.

• Display properties: Additional parameters passed
to the display element to modify its behaviour. Some
of these parameters include the possibility to ignore
incomplete data, or to define the subtypes of chart to
display. These parameters are class dependant so that

5These can reference Java classes by linking to the appro-
priate class file or location in a JAR file

Figure 4: HTML result page for the example

 Noun : LexicalEntry

 SyntacticBehaviour

 Lemma

 hasWrrittenForm="product"

 WordForm

 hasWrittenForm="products" [number=plural]

 NounPP : SubcategorizationFrame SemanticPredicate

 http://dbpedia.org/ontology/productOf : Sense

 SynSem Arg Map 2

 SynSem Arg Map 1 Subject : SyntacticArgument

 PObject : SyntacticArgument

 Domain : SemanticArgument

 Range : SemanticArgument

Figure 5: A simplified example of a LexInfo aggre-
gate

each output element has its own set of valid parame-
ters.

The following output specification defines two output el-
ements to show results.

<!-- xmlns:clova="jar:file:clova-html.jar!/clova/html/output/"
xmlns:dbpedia="http://dbpedia.org/ontology/"-->

<output>
<elements>

<element id="HTable" URI="&clova;HTableDisplayElement">
<fields>

<all/>
</fields>

</element>
<element id="PieChart" URI="&clova;GraphDisplayElement">

<fields>
<field name="revenue"/>

</fields>
<display>

<property name="Type" value="pieChart"/>
</display>

</element>
</elements>

</output>

The first element displays a table containing all the re-
sults returned by the query, while the second output element
shows a pie chart for the property “Revenue”. The HTML
output generated for a given output specification containing
the above mentioned descriptions is shown in Figure 4.

3.2.5 Lexicaliser
Simple lexicon models can be provided by language anno-

tations, for example RDF’s label and SKOS’s prefLabel,
and developing a lexicaliser is then as simple as looking up

these labels for the given resource URI. This approach may
be suitable for some tasks, however we sometimes require
lexicalisation using extra information about the context and
would like to provide lexicalisation of more than just URIs,
for example lexicalising triples. While RDF labels can be
attached to properties and individuals for instance, there is
no mechanisms that allows to compute a lexicalization for a
triple by composing together the labels of the property and
the individuals in the domain and range of the triples (see
[4] for a more detailed overview of the limits of the RDF
label system with respect to lexicalization of triples).

Furthermore, it is often desirable to have fine control over
the form of the lexicalisation, for example the ontology label
maybe “company location in city”, however we may wish to
have this property expressed by the simpler label “location”.
By using a lexicon ontology model we can specify the lexi-
calisation in a programmatic way, and hence adapt it to the
needs of the particular query interface. For these reasons
we primarily support lexicalisation through the use of the
LexInfo [4] lexicon ontology model and its associated API 6,
which is compatible with the LMF Vocabulary[6].
The LexInfo model:

A LexInfo model is essentially an RDF model describing
the lexical layer of an ontology specifying how properties,
classes and individuals are expressed in different languages.
We refer to the task of producing language-specific repre-
sentation of elements in the data source including triples as
lexicalisation of the data. The corresponding LexInfo API
organises the lexical layer mainly by defining so called aggre-
gates which describe the lexicalisation of a particular URI,
specifying in particular the lexico-syntactic behaviour of cer-
tain lexical entries as well as their interpretation in terms of
properties, classes and individuals defined in the data. An
aggregate essentially bundles all the relevant individuals of
the LexInfo model needed to describe the lexicalization of a
certain URI. This includes a description of syntactic, lexical
and morphological characteristics of each lexicon entry in
the lexicon.

Indeed, each aggregate describes a lexical entry together
with its lemma and several word forms (e.g. inflectional
forms such as the plural etc.). The syntactic behaviour of a
lexical entry is described through subcategorization frames
making the required syntactic arguments explicit. The se-
mantic interpretation of the lexical entry with respect to
the ontology is captured through a mapping (“syn-sem ar-
gument map”) from the syntactic arguments to the semantic
arguments of a semantic predicate which stands proxy for
an ontology element in the ontology. Finally the aggregate
is linked to the URI it represents through a “sense” link to
the URI in the data layer. An example of an aggregate is
given in figure 5. For details the interested reader is referred
to [4].
LILAC:

In order to produce lexicalisations of ontology elements
from a LexInfo model we use a simple rule language included
with the LexInfo API called LILAC (LexInfo Label Analysis
& Construction). A LILAC rule set describes the structure
of labels and can be used for both generating the lexicon
from labels and generating labels from the lexicon. In gen-
eral we assume that lexicons are generated from some set
of existing labels, which may be extracted from annotations

6Available at http://lexinfo.googlecode.com/

in the data source, e.g., RDFS’s label, from the URIs in
the ontology or from automatic translations of these labels
from another language. The process of generating aggre-
gates from raw labels requires that first the part of speech
tags are identified by a tagger such as TreeTagger, and then
these results are then parsed using a LR(1)-based parser (see
[1]). The API then handles these parse trees and converts
them into LexInfo aggregates.

LILAC rules are implemented in a symmetric manner so
that they can be used to both generate the aggregates in
the lexicon ontology model (e.g. by analysing the labels of
a given ontology) as well as lexicalise those aggregates.

A simple example rule for a label such as “revenue of” is:

Noun_NounPP -> <noun> <preposition>

This rule states that the lexicalisation of a Noun NounPP

Aggregate is given by first using the written form of lemma
of the “noun” of the aggregate followed by the lemma of
“preposition” of the aggregate. LILAC also supports the
insertion of literal terms and choosing the appropriate word
form in the following manner

Verb_Transitive -> "is" <verb> [participle,

tense=past] "by"

This rule can be used to convert a verb with transitive
behaviour into a passive form (e.g., it transforms “eats” into
“is eaten by”).

LILAC can create lexicalisations recursively for phrase
and similar, for example to lexicalise an aggregate for “yel-
low moon”, the following rules are used. Note that in this
cases the names provided by the aggregate class are not
available so the name of the type is used instead.

NounPhrase -> <adjective> <NounPhrase>

NounPhrase -> <noun>

Triples and more complex structures can be lexicalised by
specifying the syntactic arguments. For example given a
triple (Sumida,flowsThrough, Tokyo), LILAC lexicalises the
subject by using the Syn-Sem argument map to get the
domain and then applying this to the domain of the triple.

Verb_IntransitivePP: <subject> <verb>

<preposition> <pObject>

If the syntactic arguments are not specified like this but
the lexicalisation is dependant on the mapping of syntactic
arguments to semantic arguments we may specify the appli-
cability of the rule as follows it also possible to choose the
rule by its argument map.

The process for lexicalisation proceeds as follows: for each
ontology element (identified by a URI) that needs to be lex-
icalised, the LexInfo API is used to find the lexical entry
that refers to the URI in question. Then the appropriate
LILAC rules are invoked to provide a lexicalization of the
URI in a given language.

As this process requires only the URI of the ontology
element, by changing the LexInfo model and providing a
reusable set of LILAC rules the language of the interface
can be changed to any suitable form.

Another issue is that we desire that our users are capable
of searching for terms by their lexicalised form. LexInfo can
support this as well. This involves querying the lexicon for

all lexical entries that have a word form matching the query
and returning the URI that the lexical entry is associated
to. Once we have mapped all language-specific strings to
URIs, the query can be handled using the query manager as
usual. For example if the user queried for “food” then the
LexInfo model could be queried for all lexical entries that
have either a lemma or word form matching this literal. The
URIs referred to by this word can then be used to query the
knowledge base. This means that a user can query in their
own language and expect the same results, for example the
same concept for “food processing” will be returned by an
English user querying “food” and a Spanish user querying
for “alimento” (part of the compound noun “Procesado de
los alimentos”).

3.3 CLOVA for company search
We developed a search interface for querying data about

companies using CLOVA, which is available at http://www.
sc.cit-ec.uni-bielefeld.de/clova/demo. For this appli-
cation we used data drawn from the DBPedia ontology,
which we entered into a Sesame store. We used the labels
of the URIs to generate the lexicon model for English, and
used the translations provided by DBPedia’s wikipage links
(themselves derived from WikiPedia’s “other languages” links),
to provide labels in German and Spanish. As properties were
not translated this way, translations for these elements and
for interface elements were manually provided. These trans-
lation were converted into a LexInfo model, through the use
of about 100 LILAC rules. About 20 of these rules were
selected to provide lexicalisation for the company search ap-
plication. In addition, we selected the form properties and
output visualisations by writing a SFS and a output spec-
ification. These were rendered by the default elements of
the CLOVA HTML modules, and the appearance was fur-
ther modified by specifying a CSS style-sheet. In general,
the process of adapting CLOVA involves creating a lexicon,
which could be a LexInfo model or a simpler representa-
tion such as with RDF’s label property, and then writing
the SFS and output specification. To adapt CLOVA to a
different output format, or data back end, it requires imple-
menting only a set of modest interfaces in Java.

4. CONCLUSION
We have presented an architecture for querying semantic

data in multiple languages. We started by providing meth-
ods to specify the creation of forms, the querying of the
results and presentation of the results in a language inde-
pendent manner through the use of URIs and XML specifi-
cations. By creating this modular framework we provide an
interoperable language independent description of the data,
which could be used in combination with a lexicalisation
module to enable multilingual search and querying. We then
separated the data source into a language independent data
layer and a language dependent lexical layer, which allows
us to modularise each language and made the lexical infor-
mation available separately on the semantic web. In this
way we achieved all the requirements we set out in Figure 1.
We described an implementation of this framework, which
was designed to transform abstract specifications of the data
into HTML pages available on the web and performed its
lexicalisations by the use of LexInfo lexicon ontology mod-
els [4] providing fine control on the lexicalisations used in a
particular context.

Acknowledgements
This work has been carried out in the context of the Monnet
STREP Project funded by the European Commission under
FP7, and partially funded by the “Consejeŕıa de Innovación
Ciencia y Empresa de Andalućıa” (Spain) under research
project P06-TIC-01433.

5. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

principles, techniques, and tools. Reading, MA,, 1986.

[2] C. Bizer, R. Lee, and E. Pietriga. Fresnel: A
browser-independent presentation vocabulary for rdf.
In Proceedings of the Second International Workshop
on Interaction Design and the Semantic Web, Galway,
Ireland. Citeseer, 2005.

[3] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and
querying rdf and rdf schema. Lecture Notes in
Computer Science, pages 54–68, 2002.

[4] P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek.
Towards linguistically grounded ontologies. In
Proceedings of the European Semantic Web
Conference (ESWC), pages 111–125, 2009.

[5] E. Francesconi, P. Spinosa, and D. Tiscornia. A
linguistic-ontological support for multilingual
legislative drafting: the DALOS Project. Proceedings
of LOAIT 07, page 103, 2007.

[6] G. Francopoulo, N. Bel, M. George, N. Calzolari,
M. Monachini, M. Pet, and C. Soria. Lexical markup
framework (LMF) for NLP multilingual resources. In
Proceedings of the workshop on multilingual language
resources and interoperability, pages 1–8. Association
for Computational Linguistics, 2006.

[7] A. S. M. L. Hoque and M. Arefin. Multilingual data
management in database environment. Malaysian
Journal of Computer Science, 22(1):44–63, 2009.

[8] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis,
and E. Giannopoulou. Ontology visualization
methods: a survey. ACM Computing Surveys (CSUR),
39(4):10, 2007.

[9] A. Kumaran and J. R. Haritsa. On database support
for multilingual environments. In Proceedings of the
IEEE RIDE Workshop on Multilingual Information
Management,, 2003.

[10] A. Miles, B. Matthews, M. Wilson, and D. Brickley.
SKOS Core: Simple knowledge organisation for the
web. In Proceedings of the International Conference
on Dublin Core and Metadata Applications, pages
12–15, 2005.

[11] C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G. F.
Jones, M. Kurimo, T. Mandl, A. Peñas, and V. Petras.
Evaluating Systems for Multilingual and Multimodal
Information Access, volume 5706. Springer, 2008.

