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ABSTRACT 

We study cross-correlations in irregularly spiking systems. 
A single system displays spiking sequences that resemble a 
stochastic (Poisson) process. Linear coupling between two 
systems leaves the inter-spike interval distribution qualitatively 
unchanged but induces cross-correlations between the units. For 
strong coupling this leads to synchronization as expected but 
for weak coupling, both a good statistic and sonification reveal 
the presence of “motifs”, preferred short firing sequences which 
are due to the deterministic spiking mechanism. We argue that 
the use of sonification for time series analysis is superior in the 
case where intrinsic non-stationarity of an experiment cannot be 
ruled out. 

1. INTRODUCTION 

The spiking of sensory and cortical neurons is highly 
irregular in general. Numerous investigations have been 
dedicated to the analysis of these firing patterns applying 
methods from univariate time series [1]. Recently, however, 
multivariate recordings become readily available and there is 
increased interest in multivariate time series analysis, i.e. the 
characterization of the relationship between spike trains. For 
example, in the context of auditory information processing the 
degree of coincidence between spike trains leaving the cochlea 
was found to take place in the cochlear nucleus [2] and was 
proposed to contain relevant information [3]. However, while 
perfectly or strongly synchronized time series are rather easy to 
characterize, this is not the case for weakly correlated time 
series. In particular, if the rate of spike coincidences is near the 
level expected for a random process, other means than 
synchronization analysis are required to distinguish weakly 
correlated from uncorrelated spike trains. Here we show in an 
explicit example that the search for preferred intervals between 
spike trains may provide such additional information and 
suggest that sonification provides an efficient medium to detect 
these intervals.  

2. THE MODEL 

We use a system of two chaotically firing oscillators with 
linear reversible coupling. The system composed of extended 
FitzHugh-Nagumo (FHN) models is given by: 
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with a=0.1, b=0.01, c=1.2, I=0.064, d=0.16, and H=0.0001. 

D is the coupling constant and the only parameter varied in the 
present study.  

3. NUMERICAL RESULTS 

With the given set of parameters a single independent 
model exhibits chaotic self-excitation for D=0. This behavior is 
created by starting with the original FHN oscillator given by 
variables X and Y for d=0. As the FHN oscillator contains the 
harmonic oscillator it can be extended to generate a chaotic 
attractor in analogy with the Rössler equation [4]. To achieve 
this, we added a nonlinear switching variable Z and used the 
linear feedback controlled by parameter d to complete the three-
variable autonomous chaotic system. A new property of the 
present system (compared to the standard type of chaos as e.g. 
in the Rössler equation) is that for some sets of parameters (e.g., 
I=0.062, other parameters as above) it is excitable: a short 
suprathreshold perturbation of one of its variables leads to a 
prominent spike (see [5] for an example and for a discussion of 
excitable chaos). The amplitude of this spike (for example in 
variable X) is large compared to the basal chaotic oscillations of 
the unperturbed system. After a single spike the value of 
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variable X returns to the basal oscillations. Adjusting 
bifurcation parameter I to the value given above, the model 
exhibits chaotic self-excitation: spikes with their characteristic 
nonlinear wave-form arise spontaneously from the near-
harmonic basal chaotic oscillations. Fig. 1 shows a time series 
in this regime. Dynamically the behavior is similar to the 
spontaneous spiking in the complex kinetic model in [5,6] 
where self-exciting chaos was introduced.  
 

 

Figure 1. Time series of variable X of a single oscillator as in 
eq. (1) with D=0. Other parameters as given in the text. 

 
Fig. 2 shows the normalized probability distribution of time 

intervals P(s) between successive spikes in a single extended 
FHN model (i.e., eq. (1) with D=0) in the parameter region of 
self-exciting chaos, and of two weakly coupled units 
(D=0.00125). (We call the coupling D weak when it assumes 
values that are less than 10% of the smallest value for which 
complete synchronization is found, in our case about 0.017.) 
For a broad range of next neighbor intervals we find a linear 
relationship for P(s) as a function of the normalised s in a 
semilogarithmic plot for both values of D. This is equivalent 
with an exponential decay of the distribution. As expected for 
an excitable system there is an absolute refractory period that 
leads to a gap with no events for short intervals. The slopes in 
the linear region of the distribution differ but this difference is 
merely due to a change in mean spike frequency: at D=0.00125 
the average firing rate is lower than in the uncoupled case.  
 

 
Figure 2. P(s) distribution of inter-spike intervals in eq. (1) 
for D=0 (line) and D=0.00125 (dotted). 130000 spikes 

evaluated.(The x-axis is scaled on the average disctance 
between 2 successive spikes).  

 

The most significant deviation from a Poisson distribution 
with absolute refractory period stems from the sharp peaks to 
the left of the maximum of P(s). These maxima for short inter-
spike intervals can be explained by the finite autocorrelation (or 
equivalently, a finite positive Lyapunov characteristic 
exponent) found in a chaotic system. Nearby trajectories of two 
such systems evolve similarly for short time scales and if two 
consecutive spikes occur within a short period (between one 
third and half of the average interval) they are bound to show 
this autocorrelation. In a sense, the spikes amplify these 
intrinsic short-term autocorrelations. Thus, at short time scales 
the deterministic origin of the spike sequence is recognizable in 
the deviation of the distribution from a Poisson behavior. 
However, the important observation for the present context is 
that this deviation from Poisson-type behavior is found with 
both values of the coupling constant and thus the distribution, 
apart from the change of mean firing rate, does not offer 
information about whether the two units are coupled or not. 

To detect the effect of coupling it is advisable to use a 
measure that characterizes spike distances in distinct units 
(rather than in the same unit as in Fig. 2). We therefore evaluate 
the distribution of intervals between units. Fig. 3 shows a zoom 
of the probability distribution of the distances between spikes of 
different time series for D=0 and D=0.00125. For every spike in 
one unit the time interval to the next-nearest spike in the other 
unit was measured. The time interval 't=0 was included and 
thus the height of the first bin at s=0 indicates the probability 
density of synchronized events. Clearly the number of 
coincidences of spikes is greater with finite D: coupling 
increases the probability of synchronized spiking. However, 
with the weak coupling chosen the synchronization is only 
partial. Most spikes do not coincide and visually the time series 
for the two cases cannot be distinguished in this respect.  
 

 
Figure 3. Nearest neighbor spike interval distribution between 
the two units in eq. (1) for D=0 (dotted line) and D=0.00125 

(bins). 130000 spikes evaluated.The first bin reaches 6.2 on the 
y-axis. (The x-axis is scaled on the average distance between 2 

neighboring spikes in different units). 

 
The most obvious difference in the results for the two cases 

displayed in Fig. 3 is found for 0<s<0.5, i.e. for spike distances 
that are less than half of the average “inter-unit spike distance”. 
For D=0 there is a plateau of nearly equal probability for 0<s<1 
which is the expected result for two independent Poisson 
processes (the plateau being the consequence of the refractory 
period that has to be included). For D=0.00125 there is a gap of 
zero probability for 0.04<s<0.017. That is, given a spike in one 
unit, there is a minimum interval for which no spike will occur 
in the other unit. Following this gap there is a range of s with 
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In addition, such an approach enables us to use acoustic 
features of the events to convey detailed information about 
local properties like inter spike time intervals, etc. 

preferred intervals (0.18<s<0.5). For s>0.5 the distribution 
approaches the distribution of a stochastic process and almost 
no deviations are seen for larger spike intervals between units. 
To conclude this analysis we can say that weak coupling 
induces clear signatures of determinism if short inter-unit spike 
distances across units are evaluated. 

 
Timbre Mapping: Specifically, we use additive synthesis 

with energy distributed on N harmonics for the events and - as a 
first example - use the intra-spike distance (time until the other 
time series spikes) to determine N for every spike. The larger 
this time, the more brilliant the sound. Thus rhythmical 
structuring also induces timbral structures. Sound examples S4 
are provided on the website for different coupling constants and 
compression factors. 

Problems arise when the available time series are not as 
long as those in the above simulations. Evaluation of short time 
series leads to a significant blurring of the distributions and if 
one calculates the variance of the P(s) values it becomes clear 
that one can no longer distinguish easily between the two cases 
by this type of analysis. Both the homogeneous distribution at 
D=0 and the gap at D=0.00125 are corrupted. The statistics 
requires a large number of events to clearly show the 
differences. 

 
Non-stationary Time Series: Finally, as an important 

application for the analysis of experimental time series, we 
sonify the dynamics of the system with temporal variation of 
the coupling constant. This introduces non-stationarity to the 
spike pattern. Since the ear is particularly sensitive to changes 
of rhythmic patterns, we expect this strategy to yield insight 
(better: in-sound) into the resulting qualitative changes of 
behavior. 

4. SONIFICATIONS 

At this point we turn to sonification of the time series as a 
means to detect the cross-correlations induced by finite 
coupling. The ear is particularly suited to detect rhythms and 
rhythmical changes in acoustic signals.  Since the given data are 
time series that show structure along the time axis it is an 
obvious strategy to maintain the time stamp as sonification 
time. 

Examples S5 and S6 illustrates this behavior.  It can be 
perceived directly when the coupling changes (after one third 
from beginning). This should be compared to the statistics, 
where at least 10000 interspike intervals are required before 
details of the correlations can be significantly shown. If 
correlations are evaluated from the complete time series where 
a change of parameter took place, the details are blurred due to 
this non-stationarity.  

However, the chosen temporal compression has a 
significant influence on the perceived structure and we 
therefore start with examples using audification to demonstrate 
the useful range of compressions. With high compression 
factors, spikes merge similar to granular synthesis to an 
acoustic texture, and features like roughness or timbre changes 
emerge. Dominant inter spike intervals can be perceived as 
pitch cues.  This can be heard in the audification examples (all 
examples are to be found on our website [7]) S1c, rendered for 
compression factor 50. At lower time compression (example 
S1b, factor 6, S1a, factor 2), rhythm is perceived as the main 
structure and rhythmical changes can be followed. With even 
lower compression factors the time resolution would even allow 
to perceive phase differences, but this can't be heard in 
audification but in the amplitude modulation examples 
described next. Here we are particularly interested in the middle 
compression range of rhythmical structures.  

 
Sound Examples: 
 

http://www.techfak.uni-
bielefeld.de/~thermann/projects/index.html 

 
S1: Audifications of time series from eq. (1) with D=0. 

Compression rates a) 2, b) 6, and c) 50. 
 
S2: Amplitude modulation of time series from eq. (1) with 

D=0. Rates are a) 0.1, b) 0.2, and c) 1. 
 
S3: Event-based rhythm with temporal compression 1 for a) 

D=0, and b) D=0.00125; and compression 5 for c) D=0, and d) 
D=0.00125.  

Amplitude Modulation: A fundamental sonification idea is 
to simply use the amplitude of variable X to modulate the 
intensity of a given stationary sound. Thus spikes describe the 
amplitude envelope. Examples for this amplitude modulation 
technique are available for rates 0.1, 0.2 and 1.0 as examples 
S2a-c on our website. It can be heard that the small-amplitude 
oscillations between spikes cause a clear rhythm, and this 
obscures perceptually the spike rhythms between time series. 

 
S4: Timbre mapping at three different speeds (20, 60, and 

240 sec) for D=0 (S4a-c), and D=0.00125 (S4d-f). 
 
S5: Time series with time dependent coupling protocol: 

First third: D=0, second third: linear rise from D=0 to D=0.005, 
last third: D=0.005. a) Event-based rhythm sonification; b) as in 
a) but with additional timbre modulation; c) as in a) but with 
pitch deviation instead of timbre changes.  

Event-based Rhythms: For this reason, and, since the 
major information lies in the accurate time point of spikes, we 
first extract the exact time when the signals exceed a threshold, 
X=0.65, and schedule acoustic events at the corresponding 
(mapped) time. To facilitate the perception of rhythms in the 
two units of eq. (1), we assign them a different pitch, and also 
route them to different audio channels. Examples in Sound S3 
present such sonifications for the uncoupled and weakly 
coupled system. This event-based approach allows us to use 
more percussive sounds than for the original spike signals 
which have a non-zero transient. This assists the perceptual 
detection of rhythm.  

 
S6: Time series with time dependent coupling protocol: 

First third: D=0, second third: linear rise from D=0 to 
, last third: DfinalDD  finalD .  for S6a,b; 

and  for S6d,e. Speed: 20 sec for S6a,c; and 30 

sec for S6b,d. 

00125.0 finalD
005.0 finalD

http://www.techfak.uni-bielefeld.de/~thermann/projects/index.html
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5. DISCUSSION 

Irregular spike sequences may appear to be random in 
univariate time series analysis and yet be correlated to some 
extent. The presence or absence of cross-correlation is not 
necessarily reflected in univariate methods of analysis and 
requires the application of bi- or multivariate methods. Methods 
based on bi-spectra and two-point cross-correlations have been 
developed for this purpose but we have focused on inter-spike 
intervals to highlight the usefulness of sonification in this 
context.  

Topologically the extended FHN model in eq. (1) is related 
to other 3-variable FHN-type of equations like the Hindmarsh-
Rose model [8]. The important feature at the given parameters 
was that spikes are simple (i.e., do not show the typical bursting 
pattern) and that their next neighbor interval distribution 
resembles a Poisson process independently of the value of the 
coupling constant D. This makes eq. (1) an ideal deterministic 
process where cross-correlations can be induced without 
affecting autocorrelations.  

Two effects are found if coupling is introduced between 
two units. First, the number of spike coincidences increases. 
And second, there appear pronounced preferred short intervals 
of neighboring spikes in different units. If a good statistics is 
available both features can be quantified by means of the 
distribution as in Fig. 3. If such a statistics is not available, 
rhythmic sonification in a bivariate setting can be employed to 
search for the preferred intervals and other characteristic 
changes of the rhythmic pattern due to the coupling.  

The important first step for a successful sonification of 
irregular rhythms is the choice of time scale. There is a clear 
optimum for the perception of temporal relationships as 
evidenced in our audifications and event-based sonifications. 
The optimum is in agreement with empricial findings on rhythm 
perception [9] but we have to take into account that our model 
time series with their broad-band Fourier spectra contain 
patterns on different time scales. Consequently, the choice of 
time scale depends on the task. For instance, considerable 
slowing down is required if the attention is not centered on the 
mean spiking rate but rather on the short inter-unit intervals of 
Fig. 3 (compare the event-based sonifications Sound S3). 

In the analysis of long time series a constant timbre and 
pitch in the sonification tend to appear dull. However, this 
means that timbre and pitch offer auditory niches that can filled 
with additional information. In our case we exploit this 
possibility to offer information about “local properties”, e.g. the 
recent past of the time series. Whereas for simple periodic 
rhythms this is merely an aesthetic improvement, for highly 
irregular rhythms as the one chosen the representation of the 
local properties improve the understanding of the dynamics 
(listen to Sound S5). This will be beneficial for the study of 
long time series where the changes of temporal patterns are 
complex and subtle as in the case of time-dependent weak 
cross-correlations (Sound S5 and S6). 

Recently, a method of EEG analysis was proposed that is 
based on the conversion of the time series into spike trains 
[10,11]. Obviously the proposed sonification approach is 
equally applicable to the results of such an analysis. A rhythmic 
representation of results obtained from epileptic EEG data was 
presented in [12] but no emphasis was put on the inter-electrode 
spike intervals. We would like to stress that in the case of EEG 
analysis sonification might prove particularly valuable as the 
recordings are notoriously non-stationary and one is interested 
in transitions between the degree of cross-correlation, for 
example, when searching for precursors of epileptic seizures. 

For the special case of electric activity in the range from 1 to 12 
Hertz (the delta, theta and alpha bands) the rhythmic 
representation can even be done in real-time as the intervals fall 
into the range of human rhythm perception [13]. 
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