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ABSTRACT

This paper presents a new sonification model for the ex-
ploration of topographically ordered high-dimensional data
(multi-parameter maps, volume data) where each data item
consists of a position and feature vector. The sonification
model implements a common metaphor from thermodynam-
ics that heat can be interpreted as stochastic motion of ’mo-
lecules’. The latter are determined by the data under exami-
nation, and ’live’ only in the feature space. Heat-induced
interactions cause acoustic events that fuse to a granular
sound texture which conveys meaningful information about
the underlying distribution in feature space. As a second
ingredient of the model, data selection is achieved by a sep-
arated navigation process in position space using a dynamic
aura model, such that heat can be induced locally. Both, a
visual and an auditory display are driven by the underlying
model. We exemplify the sonification by means of interac-
tion examples for different high-dimensional distributions.

Keywords: Sonification, Exploratory Data Analysis, Inter-
action, Multi-modal Computer Interfaces

1. INTRODUCTION

The society we live in depends to a significant extend on the
automatic collection and processing of data. Commercial
market analysis as well as many other fields of research use
data ascertainment and analysis to gain insight into market
structures respectively other domain specific coherences.

Whereas conventional exploration methods operate well
on low-dimensional data, nowadays the challenge shifts more
and more to the analysis of large and high-dimensional data
sets as they are subject to the research in Data Mining [1].
New exploratory data analysis technique are required to dis-
cover unexpected or even unknown structure in such data.
While mainly visualization was considered over the last de-
cades, in particular auditory display techniques offer a re-
freshing alternative approach, since our auditory system is
sensitive to a quite complementary set of features, and soni-
fication may augment visual displays so that in the end per-
ceptual limitations in a single modalities can be overcome.

This brings up the question how displays in different
modalities can be bound together so that they are experi-
enced as a whole rather than different parts. We see syn-
chronisation of display activity, and continuous interaction
as key aspects in multi-modal displays to attain this coher-
ence. We start from Model-based sonification which pro-
vides a framework for the definition of interactive explora-
tory sonification systems [2] and generalize this framework
towards multi-modal data displays (cf. Sec. 2). We illus-
trate this approach by means of a new sonification model
for high-dimensional data with topographical organization.
In the presented Local Heat Exploration Model (LHEM,
cf. Sec. 3), we extend Model-based Sonification along two
directions, (i) by introducing dynamic selection models, and
(ii) by allowing parallel displays for different output modal-
ities. In Sec. 4 we give some example sonifications for
synthetically rendered structures, followed by a discussion
about the benefits of LHEM.

2. MODEL-BASED EXPLORATION

The human perceptual system is highly optimized to cope
with a specific mix of modalities (e.g. acoustic, tactile, vi-
sual, olfactoric sensations, etc.) as they usually provide the
sensory image of processes in the world. We observe syn-
chronisation between visual and auditory changes, and stim-
uli are connected in a particularly coherent manner. It is by
interacting with the world how we ourselves cause multi-
modal responses to appear and it is closeby to expect that
the human brain truely makes use of the combined percep-
tions to understand the world.

In contrast we frequently see in current systems for ex-
ploratory data analysis combinations of visualizations and
sonifications that lack this linking, but that are rather arbi-
trary combinations of individual displays.

Model-based Sonification (MBS) proposes a framework
how to bind interaction to informative acoustic responses
about data under analysis, and puts into focus an underlying
dynamic model that mediates between the data in their hos-
tile high-dimensional space, and the sound space our ears
are familiar to analyse [2, 3, 4]. We present a generalization
that puts dynamic models in the center of a multi-modal
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display so that – same as in the real world – the different
displays are fed by model-specific information. Doing this,
above motivated principles like synchronisation, coherent
binding of modalities, etc. are automatically implemented
in the displays. We name this extension Model-based Ex-
ploration (MBE) to emphasize the intrinsically multi-modal
approach.

Physical systems may offer many inspirations for such
multi-modal exploration systems, think for instance of a
wind chime, or a tree. Yet MBS/MBE is able to describe
even unphysical systems which may, however, be more suited
to intermediate abstract structures in high-dimensional spaces
to a balanced mix in different displays. Conceptually we in-
herit most aspects from Model-based Sonification, extend-
ing it by replacing the uni-modal sonification rendering with
a multi-modal display rendering. We now introduce a new
sonification model Local Heat Exploration Model to give an
example for MBS/MBE system design.

3. LOCAL HEAT EXPLORATION MODEL

In many situations the high-dimensional data under analysis
can be divided into two parts: (i) topographically ordered
attributes xp, referred to as position, and (ii) measured fea-
tures at that position xf . Examples are medical volumetrical
data, computer tomographics, geologic measurements, or
satellite images. Even if there is no topographical informa-
tion given, techniques like Kohonen’s Self Organizing Maps
(SOM, [5]) can be used to assign a positional dimension in a
principled way. Such a data set is sufficiently described by

X =
{(

xα
p ,xα

f

)}
α∈{1...m} , with xα

p ∈ Rdp ,xα
f ∈ Rdf ,

(1)
Given a data set X the local distribution in feature space

of an environment around a given point in position space
can lead to possibly interesting structures such as clustering
or locally linear dependencies in feature space. A standard
method to examine the conditional distribution is to esti-
mate it in an offline analysis process, and present the results
by using data display tools like glyphs or scatter plots [6].
In contrast to this discretized examination, our approach en-
ables the user to experience local distributions interactively
and in real-time. For this the user navigates a selection aura
(cf. Sec. 3.2) in position space with the help of a scat-
ter plot which dynamically highlights selected items. At
the same time, a sonification model processes user inter-
actions and renders the acoustic response due to LHEM’s
evolution. Specifically the excitory process is metaphori-
cal given by induction of heat to the selected data (cf. Sec.
3.3). Motivated by the physical model of heat, this local
heat causes interactions between the data items in feature
space, depending on their local vicinity. Sound is the re-
sponse to heat induced activity. In result the model allows

to explore neighborhood structures by listening to its output
without any need for any dimensional reduction.

3.1. Exploration System Architecture

The LHEM description above suggests to discern three mod-
ules in the system’s design:

Data Selection The interactive process of navigating posi-
tion space. Selected data are subject of exploration.

Exploration Model The dynamical model whose configu-
ration is determined by the selected data.

Exploration Display The perceptual front-end to the user,
links temporal evolution of the exploration model to
perceivable units.

By design, interaction is an integral part of LHEM. Lack of
interaction will cause the system to come to rest at a stable
state, producing no audible output. It therefore does not
disturb the user while possibly working on other things.

Selection and Exploration are separated interactions, for
which generally any kind of continuous input device could
be chosen, but preferably an intuitive coupling should be
achieved. In LHEM we use a dynamic selection aura con-
trolled by a graphics tablet with software velocity prepro-
cessing allowing the user to push the aura literally. For the
exploratory interaction we decided to use a finger pressure
sensitive device such as the Audio-Haptic Ball described in
[7].

One advantage of the current architecture is that inter-
faces can be easily exchanged due to the clear modularity.

3.2. Selection Aura

One goal of the module described here is to provide an easy
to use but also highly interactive selection tool to mark the
currently examined data items, since the later described ex-
ploration process should be the main focus of the user. For
this a close link between the user’s intention and the data
selection process has to be accomplished.

Inspired by the work of Fernström [8] who uses an aura
to compute the general amplitude of a sonified data record,
in LHEM an aura is used to interactively focus on parts of
the data. This is done by providing a movable location and
a radius in the position space of the data set to the user. For
this let C = (c, r) ∈ (Rn×R) describe a sphere (the aura)
inRn centered at c with radius r. An item xα then is called
selected, if ‖c− xα‖ ≤ r.

Instead of direct control of the position c, we propose a
dynamic aura, so that it performs a damped motion if pushed
into a certain direction pu. Technically this is achieved by
the computation of the new aura center by

c[t + ∆t] = c[t] + v[t] ∆t (2)
v[t + ∆t] = λv[t] + pu ∆t
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In fact we use a slightly modified model, which prevents the
aura from running wildly through the data set by pushing it
multiple times into the same direction [9].

We add a bounding box to the selection model which
surrounds the data items. When the aura touches an edge it
bounces back like a ball, so it remains within the data set.

The resulting aura selection model than consists of the
user’s input, a data set to operate on, an initial internal state
(being no speed and radius zero, resulting in no initial se-
lection), the update algorithm of the internal states (Eq. (2))
and its output being the current selection.

3.3. Heat Model

The selected data items are processed by an exploration
model. The here described Local Heat Exploration Model
only considers the feature part of the selected data items.
For each feature xα

f a point mass is attached in model space
at coordinates xα

f . In addition a heat parameter hα is associ-
ated with it indicating the amount of external heat affecting
it. It decays exponentially over time to hα = 0, and can be
interpreted as proportional to stochastic movement of a vir-
tual element from its center position xα

feature. If hα is big
enough collisions between neighboring data elements oc-
cur at a rate that depends on their summed heat parameters.
Modelling this behavior results in a so-called heat vector for
each pair of selected elements (xα

f ,xβ
f ) given by

hα,β =

{
(2r−d)2

2r d < 2r
0 d ≥ 2r,

(3)

where d = d(xα
f ,xβ

f ) is an arbitrary but fixed distance
function defined on D 3 eα controlling the sonification de-
scribed in the next subsection. The computation is system-
atically shown in Fig. 1.

As shown in Sec. 4, using the computational heat results
in distinguishable output depending on the actual data den-
sity of the current data selection. Feature vectors similar
to each other produce high heat values, whereas dissimilar
features result in lower ones.

3.4. Sonification Display

Instead of modeling stochastic interactions of the data mole-
cules explicitly, we render the audio stream by superimpos-
ing lots of short grains to compose a grain cloud [10, 11].
Each of the cloud forming grains lasts for approx. 5 ms,
approaching the minimum time for frequency and ampli-
tude discrimination. In a superposition of hundreds of these
short-duration grains even minor variations in their duration
can cause strong side effects in the spectrum of the cloud
sound texture. Grain clouds therefore are predestined to be
used as a synthesis technique for auditory displays of com-
plex data sets where the availability of discriminating sound

d

h

b

a

r

c

Figure 1: The heat of an object is expressed by a radius r
(red) of a surrounding sphere (cf. Sec.3.4). The overlap of
two heats results in output h > 0 (green).

controlling parameters are appreciated. The advantage of
using grain clouds over other sound rendering techniques
is the ability to change the sound quality according to a
mass of nearly arbitrary definable low level parameters in
short time intervals. This is because the source of the sin-
gle grains can be rendered using approximately all possible
synthesis techniques modulated by the multiplication of an
amplitude envelope, e.g. a triangle function forming a short
time lasting grain. The rendering technique, its control val-
ues and the envelope’s quality can be controlled for every
rendered grain. For LHEM an additive grain cloud is syn-
thesized by superimposing grains

g(t) =
m−1∑
i=0

ai(e(t)− oi) sin(2πfit) (4)

where

m ∈ N number of mixed sine oscillators,
e(t) : R→ R the amplitude envelope,
fi ∈ R oscillators frequencies,
ai ∈ [0, 1] maximum amplitude of frequencies,
oi ∈ R times delaying the amplitude envelopes.

The linking of LHEM to synthesis then proceeds over the
following controls:

Cloud Density d average number of grains per seconds.1,

Grain Duration u the time, in which e(t) 6= 0,

Grain Oscillator Frequencies fi

1definition according to [11]
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Grain Amplitudes ai

Onset Delays oi the onset of the amplitude envelopes of
the single frequencies could be delayed from the real
triggering event.

Input xα = (xα
h ,xα

d , xα) ∈ Rdh+dd

Grain gα =
(
sα
0 , . . . , sα

m−1

)
Cloud Density dα =

λd∑m−1
i=0 xα

d,i + 1
Sub-Grain sα

i = (fα
i , oα

i , uα
i , aα

i )
Grain Partial
Frequencies

fα
i = exp

(
λf0 +

(
λf1x

α
d,i

))
Grain Partial
Attack

oα
i = λo0 + λo1

(
1− e−λo2p̂(xα

h,i)
)

Partial Ampli-
tude

aα
i =

λa xα
h,i

maxj(xα
h,j)

Table 1: Summary of grain cloud parameters and
its corresponding functions customized to LHEM.
λd, λf0, λf1, λo0, λo1, λo2, λa are scaling factors ensuring
that the resulting sound is in an audible range.

Despite its only few controls, this simple grain cloud
technique is able to produce a wide range of dynamical
changing sounds. The actual mapping of heat vectors to
sound parameter is shown in Tab. 1.

3.5. Implementation

LHEM was implemented in EmSie [9], a framework for
distributed computation of multi-modal and interactive ex-
ploratory data analysis tasks with special focus on Model-
based Sonification and Model-based Exploration.

The architecture of EmSie enforces a modulated struc-
ture of LHEM by dividing it into the parts listed next. The
resulting application structure is illustrated in Fig. 2.

Selection Model Input Module to connect controllers with
a selection model. As example we use a graphics
tablet to push the selection aura.

Exploration Model Input Only two parameters, the induced
heat and its damping factor are needed to be fed into
the system. We currently use a haptic controller [7].

Selection Model For LHEM this module implements the
dynamic selection aura (cf. Sec. 3.2). As input it pro-
cesses the Selection Model Input.

Exploration Model Here the Heat Model described in
Sec. 3.3 is located.

Selection Model Display We currently display the selec-
tion in a dynamic scatter plot visualization.

Haptic
Ball

Selection
Aura

Dataset

Heat 
EM

Grain 
Cloud 
EMD

Graphic
Tablet

Screen
data-flow

interaction-flow

Scatter 
Plot

Loud-
speaker

Figure 2: Schematic figure of LHEM.

Exploration Model Display This module implements sound
rendering, so in LHEM the grain cloud sonification.

An advantage of using EmSie for LHEM is the opportu-
nity to reuse the implemented modules in other exploration
tasks.

The actual implementation of these modules was done
by creating classes in SUPERCOLLIDER [12], an object-
oriented programming language designed primarily for al-
gorithmic interactive composition and sound rendering, but
also very suitable for rapid prototyping of sound based ex-
ploration systems. Additional modules, e.g. the input layer
model using the Audio-Haptic Ball are build up in NEO/NST,
a graphical programming environment developed at Biele-
feld University [13]. The communication between the sin-
gle modules is realized by a network interface defined in
EmSie and based on Open Sound Control (OSC, [14]).

3.6. Convergence of Sonifications in Performance Scal-
ing

A data set can be regarded as a limited sample of an under-
lying unknown distribution. The field of statistics provides
means to estimate unknown parameters (like densities, vari-
ances etc.) with the nice property of convergence: the larger
the sample, the better the estimate. We propose to orient the
design of sonifications along the same principle so that soni-
fications converge with increasing sample size acoustically
towards a sound that represents the exact distribution. This
principle is applied here to decouple the sonification of large
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data sets from the available computation power, and is a key
ingredient to ascertain real-time operability of LHEM.

Specifically, a problem occurs on the computation of the
local heat for all records, which requires to evaluate all pair
distances and thus O(N2) operations where N is the cardi-
nality of the current selection. Since the Local Heat Explo-
ration Model should enable the user to change the controls
like the induced heat at control rate, this computationally
complex task has to be done in real-time. When exploring
a large data set, the ’just-in-time’ computation is infeasible.
Motivated by the fact that in data exploration accentuating
on data inherent parameters such as the local feature density,
only a qualitative view on the data is intended, a simplifica-
tion of the algorithm can be made, by computing only a
limited number of heat values for each data item like shown
exemplary in Fig. 3. Altering the subset of corresponding
data records each time step in a random manner assures only
limited artifacts that converge acoustically with subset size
to the original task. Setting the number of computed heats to
the number of given data items results in the computation of
all heats, i.e. the task equals to the one without performance
scaling.

fe
at

ur
e 

2

feature 1

Figure 3: Choose n arbitrary points out of all available and
compute the distances between them and the actual data
item. For each item this process is done for different ran-
domly chosen data items. The light painted cross marks the
actual processed data item.

The advantage of this method consists in the reduction
of computational steps to be done in one time step: It is now
in linear complexity concerning the involved data records.
On average all pairs of data records are minded in the explo-
ration process, and therefore observed by the user. There-
fore it could be interpreted as a time domain load balancing.

The performance scaling can easily be mapped onto other
computationally expensive data processing algorithms to adapt
them to a real-time task for exploration.

4. INTERACTION EXAMPLES

For evaluation, synthetically rendered test data sets are used,
since they allow to control accurately the data distribution
being the basis of the analysis process of the systems dy-
namic behavior. In addition the user can learn to interpret
LHEM’s output for later exploration of unknown data sets.

4.1. Test Data Sets

A test data set X is created in two steps.

Position Rendering Due to the fact that the selection pro-
cess is less important to evaluate, since its functional-
ity is easy to understand by using it, the data positions
are two-dimensional uniform drawn from a distribu-
tion on [0, 1]× [0, 1].

Feature Rendering The feature vectors xf have to be cho-
sen independent from each other, but depending on
their position. So a transfer function f : Rdp → M
(with a suitable set M ) must be defined such that it is
possible to generate a probability density pf on Rdf

via f .

Let f : Rdp → [0, 1] be well defined. The probability
density pf may be defined as

pf (xf) = θ0,f(xp)(xf), (5)

with θa,b the uniform distribution density on [a, b].

All following data sets consist of 2000 data items with a
three-dimensional feature part and are rendered according
to Eq. (5).

4.1.1. Gaussian Feature Distribution

(a) (b)

Figure 4: The transfer functions f(x) of (a) a Gaussian fea-
ture distribution and (b) a hollow sphere distributed test data
set. Darker points represent lower variances. The red line
shows the moving center of a selection aura (cf. Sec.4.2).

The Gaussian distributed data sets are rendered using

f(x) = 1− e−(λ‖x−x0‖)2 , (6)
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where x0 defines the center of the distribution and λ ∈ R is
proportional to the width of the Gaussian’s bell. It is shown
in Fig. 4(a). The nearer a vectors position is to xc, the more
similar a feature vector is to its neighbors. Therefore the
feature distance between two likely centered vectors is even
lesser than the distance between two vectors far away from
x0.

4.1.2. Hollow Sphere Feature Distribution

The hollow sphere distributed data sets are computed ac-
cording to

f(x) = 1− e−(λ(‖x−x0‖2−r2))2

(7)

with r ∈ R being the radius of the resulting dp-dimensional
sphere shown in Fig.4. Although the rendered data sets look
similar to the Gaussian distribution, the feature parts of data
records located near the origin are less similar to their neigh-
bors. Near the sphere surface data records are rendered sim-
ilar to the Gaussian distributed data set at this location. This
leads to a distance hole in the middle, whereas viewed from
outside it looks like a Gaussian data set (cf. Fig. 4).

4.2. Test Scenarios

Different interaction scenarios are used to explore the data
sets. The sounds and their belonging spectrograms described
next are provided on our web site [15].

4.2.1. Determined Selection Aura Path

To illustrate the system’s ability to distinguish between fea-
ture vector distances, this scenario varies the selection’s po-
sition in time, i.e. the Selection Aura’s center. For all ex-
amples listed below the same trajectory was used, shown
in Fig.4. All other input parameters remain fixed, i.e. the
aura’s radius is r = 0.04, the positional damping factor
dp = 0, the induced heat h = 1 and the heat damping factor
dh = 0. This controlling scheme was applied to the follow-
ing data sets:

Gaussian Distribution with λ = 3 The selection of vectors
near the center results in higher sounds separable from
each other, while selections far away from the center
are more deep and fuzzy.

Gaussian Distribution with λ = 30/λ = 300 The smaller
the Gaussian, the smaller is the region in which the
exploration system calms down, and its sound is low-
ered. For λ = 300 only a really small area of equally
distances can be recognized.

Hollow Sphere Distribution with λ = 5, λ = 50, λ = 100
When moving through the sphere surface into the cen-
ter (t = 15secs) the exploration sounds like flying

through a curtain of deeper pitched sounds, caused
by the high similarity of the feature vectors in the se-
lection aura, followed by a much clearer sound. The
smaller the sphere’s rim, the more salient the effect.

The advantage of LHEM over classic visualization dis-
plays is emphasized in the last scenario. Since the visual-
ization techniques only let the user see the surface of the
sphere, and therefore do not show the inner distribution of
feature vectors, a Gaussian-like distribution is expected (c.f.
Sec. 4.1.2). With the selection aura of LHEM the user is
able to navigate right into the center of the sphere, and hear
the significantly different sounds comparing to a Gaussian
distributed data set.

4.2.2. Interactive Exploration

(a) (b)

Figure 5: (a) Interactive exploration of a Gaussian data set.
(b) The induced external heat as a function of time. Each
peak indicates a new heat induction.

This scenario shows how the system behaves, when used
interactively. Here a Gaussian distributed data set with λ =
30 was explored, using a graphic tablet for pushing the aura
and the Audio-Haptic Ball for inducing heat. As can be
seen in Fig. 5 the trajectory produced by the interaction of
the user with the system is not that straight as in the sce-
nario described in Sec. 4.2.1. This is caused by the fact that
the user has refined his activity by means of the system’s
auditory feedback to navigate the selection aura.

There are at least two different principles, how to ex-
plore a data set using LHEM, like shown in this exploration
example. They differ in the way, how the user induces ex-
ternal heat to the exploration model. One possibility is to
continuously vary the external heat and therefore neglecting
the systems ability of changing the heat dynamically (4s-
11s). Another possibility is to induce only at one time a
heat value and then let the system fading it out. This pro-
duces a sound feedback varying according the heat damping
parameter (11s to 50s). If the heat damping factor is set to
dd = 0 (50s to end), a sound similar to the one described in
the variable position scenario is produced. In this case the
user’s main control is given by the navigation of the aura.
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5. DISCUSSION

We have presented a new technique for interactive sonifi-
cation of topographically structured high-dimensional data.
The design shares with other sonification models that the
sonification can be computed without any manual parame-
ter tuning for all such data, independent upon dimension-
ality or size. This generality is a particular benefit which
enables the user to profit from learning effects that automat-
ically appear during ongoing use.

We’d like to stress the high interactivity in LHEM, all
interactions result in immediate auditory feedback within
few milliseconds. The user can at any time profit from in-
sights and refine the exploratory activity by means of the
continuously increasing knowledge. Performance Scaling
has been motivated as one principle to achieve this. The
model-based sonification approach offers the chance of au-
tomatically create action-responses that we are familiar with
from everyday interactions (like here the decay after inter-
action stops). Particularly if physical dynamics are adapted
for use in the model, sound structures usually result that we
even denote as natural – and we expect that this has an pos-
itive influence on learning time, interpretation effort, error
rate, etc. The extension from sonification models to multi-
modal exploration models has been motivated in Sec. 2.
LHEM makes first steps towards this goal by combining a
visual selection model display and an auditory exploration
model display by means of an underlying model. An ob-
vious benefit is that the modalities mutually support each
other (here sound and spatial navigation are coupled). The
user can attend spatial structures and acoustic structures si-
multaneously whereas in uni-modal displays the display se-
lection disrupts the exploratory flow of interactions.

Modeling LHEM with EmSie is advantageous since it
demands clear logical separation and enforces a modular
implementation of software components for specific sub-
tasks. While this may be harder during implementation we
profit from (i) a continuously growing set of reusable soft-
ware classes, and (ii) a clearly facilitated distribution on
several computers in the network, which is particularly de-
sirable in MBS/MBE due to the typical high computational
complexity. The application of LHEM to real-world data,
and the extension of EmSie by diverse interfaces and inter-
action types is subject to our ongoing work.
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