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ABSTRACT

We introduce a novel approach in EEG data sonification for pro-
cess monitoring and exploratory as well as comparative data analy-
sis. The approach uses an excitory/articulatory speech model and a
particularly selected parameter mapping to obtain auditory gestalts
(or auditory objects) that correspond to features in the multivari-
ate signals. The sonification is adaptable to patient-specific data
patterns, so that only characteristic deviations from background
behavior (pathologic features) are involved in the sonification ren-
dering. Thus the approach combines data mining techniques and
case-dependent sonification design to give an application-specific
solution with high potential for clinical use. We explain the soni-
fication technique in detail and present sound examples from clin-
ical data sets.
Keywords: Sonification, EEG, Data Exploration, Process Moni-
toring

1. INTRODUCTION

The human brain is a highly complex information processing sys-
tem, the comprehension of which is a major challenge of the new
century. Although many new techniques have been added to ob-
serve the brain at work (like PET, fMRT, CT, and others), the
standard electroencephalogram (EEG), the time-dependent, paral-
lel measurement of electric potentials at various sites on the scalp,
allows to record spatio-temporal electric activity at high temporal
resolution (up to 2000 samples per second).

Unfortunately, EEG data provide only indirect spatial infor-
mation about the sources of this activity, because neural activation
at a given location within the cortex creates electric field poten-
tials that are distributed over the scalp and are therefore picked up
by more than one electrode. This leads to correlated time series,
each representing a mixture of contributions from different neu-
ral sources. This makes the interpretation of individual pathologic
features in EEG from standard montages difficult.

Human listening, however, is highly tuned to interpret mix-
tures of signals, to discern noise from patterns, and to make sense
of multi-channel data series, demonstrated for instance by the ’cock-
tail party effect’, or by the so-called synergistic listening that is
applied when attending to complex soundscapes like a performing
orchestra. Thus, the use of sonification to better understand com-
plex EEG features is potentially beneficial but has been tried so far
only in isolated and nonsystematic cases, see Hermann et al. [1],
Baier and Hermann [2], Hinterberger and Baier [3], and references
therein.

It is a basic feature of human listening to automatically cate-
gorize acoustic features by creating auditory gestalts (or auditory

objects) from perceived sounds so that they become connected to
a tangible meaning [4]. This can be observed, for instance, when
listeners describe a newly heard sound as ’footsteps’, ’a smashed
glass’, or as the sound of a particular car. Here we observe two
tendencies: (a) categorization: semantically similar stimuli are
grouped in one class. (b) fovea resolution: frequent listening to
similar sounds causes the listener’s auditory resolution to increase
for the specific sort of stimuli, an effect which can be observed
for instance in experienced car mechanics who are able to diag-
nose the causes of a malfunction even from subtle deviations of
an engine’s sound from normal. Although we assume the under-
lying auditory learning mechanisms to be highly general, we think
that after the human brain has fully matured, its auditory resolu-
tion is biased to the differentiated processing of specific sorts of
stimuli (e.g. language sounds and especially phonology). Thereby
the human brain lacks full plasticity to adapt to other less common
classes of sound signal groups. Evidence for that is given by lan-
guage researchers. Speech is one class of sounds where listeners
are probably more sensitive than with other classes of sounds; this
might be the reason that nowadays listeners are still irritated by
synthesized speech sounds whereas they have high acceptance for
synthesized music instrument sounds.

The sonification technique developed in this paper addresses
particularly the human’s high auditory resolution in discerning vo-
cal transients, by turning the ongoing EEG (in real-time or at any
selected compression) into articulatory speech sounds. While there
are infinite possibilities how this can be achieved, we motivate and
select a highly specific yet generic way, that can be used indepen-
dent of the number of utilized channels, the sampling resolution,
the chosen montage, etc.).

We describe our specific application to epilepsy in Sec. 2, fol-
lowed by an introduction of the sonification technique in Sec. 3. In
Sec. 4 we present clinical data sets and discuss our sonifications.
Since the sounds are in the domain of language we are even able
to describe and reference to auditory objects by using textual de-
scriptions. Finally we discuss our results on the background of a
task-dependent design and conclude with mentioning some possi-
ble future work.

2. FEATURE EXTRACTION FOR GENERIC DATA
DESCRIPTION

The sonification to be developed in the following section uses (a)
personalized features, so that the listener can gain increased per-
ceptual resolution for the subject under analysis, and at the same
time can compare the sonifications between subjects; and (b) generic
features, so that sonifications rendered from data recorded by a dif-
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ferent EEG system (different number of channels, different tem-
poral resolution, etc.) can be compared because they share the
same logic. A current trend in clinical EEG is to increase the num-
ber of channels from the standard 10-20 (19 electrodes) system to
the 10-10 system (32 electrodes) and to include more electrodes
when necessary. Since, however, the interpretation of data soni-
fications requires some learning effort, we believe that the sonifi-
cation techniques that allow ’stabilization’ in the sense of conver-
gence of sound patterns with increasing spatial resolution share a
useful property.

The above requirements impose constraints for the features to
be used for sonification, and this section introduces and explains
the selected features.

2.1. State space analysis to characterize normal EEG behav-
ior

We are interested in transiently abnormal EEG signals that show
significant deviation from the patients ’typical’ or normal EEG.
Typicality can not be defined generally, since each brain ’ticks
differently’. Thus we need to assess this measure at hand from
selected EEG sections of a subject where electric activity can be
assumed normal. The selection of this time series ideally covers
different normal behaviors like relaxing, eyes open/eyes closed,
sleeping, etc.. For the reason of simplicity, however, we here start
by using a time window of normal EEG data that precedes a visu-
ally identified abnormality.

The state space is the Euclidean vector space formed by us-
ing all channel data xi(t) as a vector component of ~x(t). Then
the EEG time series describes a trajectory in state space. Due to
dependencies between the channels and individual properties, this
state space is typically not completely ’filled’ with data, but the
data show variation only along a few subject-specific axes. Princi-
pal Component Analysis (PCA) [5] is suited to identify these lin-
ear dependencies and can be used to define a reference subspace
in state space that covers 98% (α = 0.98) of the variation. This is
done by using only q < d eigenvectors ûi of the data set covari-
ance matrix C belonging to the largest eigenvalues λi so that

qX
i=1

λi > α · trace(C) . (1)

In our examples, typically q = 5 . . . 7 principal components suf-
fice. Practically, we compute the normal subspace via singular
vector decomposition (SVD) using octave1. Several features de-
scribed next interpret the state space on the background of this
PCA-defined normal activity.

2.2. Features to characterize transient pathologic activity

Figure 1 shows 6 representative EEG time series that include epilep-
tic activity, and all features derived from the recording as described
below.
Orthogonal distance from normal subspace. The first interest-
ing feature is the instantaneous distance of the state space position
to the linear subspace defined by normal activity:

dS(~x(t)) =

dX
i=q+1

~x(t)T ûi (2)

1http://www.octave.org

which already provides a good measure of abnormality of the brain
state as compared to the background. dS starts at label 1 on the y-
axis of Figure 1. We see that activity in this feature correlates with
epileptic activity in the time series.
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Figure 1: Top: 6 representative EEG time series including an
epileptic episode. Below: The extracted feature variables de-
scribed in the text. The feature’s y-shift corresponds to the feature
index given in Table 1.

The velocity of orthogonal components in state space is an inter-
esting second feature since it detects rapid transients and thereby
reflects sudden changes of the dynamics. The feature is computed
by

vS =
1

∆t

‚‚‚‚‚‚
dX

k=q+1

ûk(~xk(t) − ~xk(t − 1))

‚‚‚‚‚‚
The derivative of distance from normal subspace is the distance
change vd = ∂dS/∂t with which the trajectory deviated from nor-
mal behavior.
The data vector velocity is the overall velocity of the movement
of the state in state space. It is computed by

vx =
1

∆t
‖~x(t) − ~x(t − 1))‖ (3)

The curvature in state space as is a feature that quantifies the
change of direction a trajectory is taking at each point in time.
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Practically this is done by computing the scalar product of succes-
sive normalized velocity vector estimates. Values around 1 corre-
spond to straight motion, smaller values indicate stronger curva-
tures, up to -1, when the direction is reversed.
The abnormality flags are counters Aγ that describe at each point
in time how many of the normal subspace components ûq~x ex-
ceed a threshold γσq , where σq measures the standard deviation
along axis ûq . We compute this feature for different thresholds
(γ = 3, 5, 7) corresponding to different degrees of probability that
a given deviation qualifies as abnormal. Along the same line of
reasoning we define the number of amplitude outliers Atotal,
which now operates on all electrode channels. These last four fea-
tures are normalized so that their maximum is 1.

2.3. Spatial distribution features

Since we are interested in features that describe the electric poten-
tial distribution on the scalp in general terms, we here regard the
data set as a limited sample of a continuous scalar potential field
from which we can (theoretically) compute interpolated activity at
each position, usually referred to as brain mapping. Feature vari-
ables are defined by scalar products of the interpolated function
with characteristic spatial distributions, like for instance a hemi-
spheric gradient. The central benefit of defining features according
to this rationale is that it delivers defined features for any number
and selection of electrodes.

Currently we use only two spatial features, namely the hemi-
spheric disbalance and the anterior-posterior disbalance, de-
fined as x and y-components of the dipole vector

D(t) =
X

i

~rixi(t) (4)

where ~ri is the location of electrode i in space. Note that the
weighted sum can be interpreted as a scalar product of a spatial
basis function b(~v) with the spatial brain mapping,

〈b, ~x〉 =

Z
v

b(~v)~x(v)d2v, (5)

integrated over the scalp surface. Fig. 2 shows our basis functions
plus one example for more complex basis functions which might
be interesting for future sonifications, particularly if the spatial res-
olution increases. We suggest Gabor wavelets and multipole ex-
pansion series as particularly good starting points for such basis
functions. Along the same line of argumentation are closely re-
lated features like the total potential Xtot (corresponding to a con-
stant basis function) and derivatives of the scalar product. How-
ever, at present we only use the change of the dipole moment ∆D
as a potentially interesting variable for sonification.

2.4. Correlation Matrix Features

Recent research results [6, 7] give evidence that the transition to
absence seizures is accompanied by a characteristic change in the
spectrum of the eigenvalues of the correlation matrix Cw(t) of the
windowed sphered data series, computed by

Cw(t) =

t+wX
i=t

~y(i)~y(i)T ,

where ~y are transformed ~x, shifted to zero mean and scaled to unit
variance in the window. As the correlation changes are principally

Dipole-yDipole-x more complex 
basis functions

-1 +1

Figure 2: Basis functions for spatially distributed features, (a)
hemispheric disbalance, (b) anterior-posterior disbalance, (c) an
example for a more complex basis function.

reflected at the edges of the spectrum, we use the two largest and
the two smallest eigenvalues λ1, λ2, λd−1, λd as features, all of
which we normalize to [0, 1]. The standard deviation in the chosen
running window completes our list of features.

With the above introduced set of feature variables we obtain
a generic and task-oriented representation that abstracts from the
detailed data sources (see Table 1). These variables are used within
the sonification as described in the following section.

nr. var description
1 ds(x(t) Distance from normal subspace
2 vs Velocity of orthogonal components
3 vd Derivative of distance
4 vx Velocity of data vector
5 as Curvature of data trajectory
6 A3 Abnormality flag threshold=3
7 A5 threshold=5
8 A7 threshold=7
9 Atotal Outliers in data space (2σ-out ch.)
10 Xtotal Overall potential of data (0th moment)
11 Dx Hemispheric disbalance (dipole)
12 Dy Anterior-posterior
13 ∆D Change of dipole
14 λ1 largest eigenvalue of C
15 λ2 second largest eigenvalue of C
16 λd−1 second smallest eigenvalue of C
17 λd smallest eigenvalue of C
18 σwin Standard deviation of window

Table 1: Summary of feature variables

3. VOCAL SONIFICATION TECHNIQUE

Using sounds from the domain of articulatory speech siarticulato-
rygnals enables listeners to make use of their highly adapted and
well-trained speech perception skills for sound interpretation. Due
to the sound production process, articulatory sounds cover a wide
range of possible timbres, from noise-like transients over quasi-
periodic fricatives to pitched and colored vowel sounds. The rich-
ness of speech sounds is not only created by the number of dif-
ferent timbre forms, but also due to the temporal structure, which
is a result of acute rhythmical transitions between different vocal

ICAD06-3



Proceedings of the 12th International Conference on Auditory Display, London, UK June 20 - 23, 2006

tract activities. Our listening is well adapted to constitute an audi-
tory gestalt from well-formed spectro-temporal forms and denotes
that as ’word’. Our approach is to connect articulatory synthesis
parameters with data-driven feature variables in such a way that
human listeners can make good use of their listening skills.

In this section we first explain our current approach to sound
synthesis, then we motivate a mapping, which needs to be a good
compromise between highest directness and adequate temporal sound
structure.

3.1. Articulatory speech synthesis / Formant-Synthesis

From the physical basis, speech sounds can be explained as an
exciter-resonator system with the lung as pressure/energy reser-
voir, the larynx (vocal folds) acting as nonlinear oscillator or source,
and the mouth and nose channel acting as filters which are mod-
ulated by muscle activations of the tongue and lips [8]. Synthesis
approaches thus start with a separation of signal source and fil-
ters. While periodic impulse (glottal pulses) lead to voiced speech,
noise as source leads to unvoiced speech.

On the filter side, implementations range from cascaded band-
pass filters to a detailed modeling of the throat and mouth shape
using digital waveguides. The filters reshape the frequency profile
of the harmonically rich source signal by attenuating or amplify-
ing certain frequency ranges which are called formants. The first
two formants suffice to distinguish the basic vowels a,e,i,o,u as
in ’bath,bed,bin,bottle,boot’. Higher formants may support vowel
distinction, but they typically contain cues for speaker identifica-
tion. In this paper we keep the synthesis fairly simple by using a
source-filter chain, yet we believe that more complex articulatory
speech engines may increase discrimination and perceptibility of
auditory gestalts. Basically the sound is defined by

s(t) = L ·
4X

i=1

Hbp((λz(t) + (1 − λ)η(t); fi, dfi, gi)

where η is bandpass noise, z(t) the impulse sequence, and Hbp(s, f, df, g)
a bandpass filter with center frequency f , bandwidth df and gain
g. Voiced/unvoiced signals are obtained by adjusting λ ∈ [0, 1].

While being only a very coarse model, this sound model al-
ready offers a reasonably high number of control parameters which
now have to be fed in a reasonable way from features.

3.2. Mapping Design

The introduced sonification belongs to the class of indirect contin-
uous parameter mapping sonification. The mapping is indirect in
the sense that not data, but data-driven features are used to con-
trol synthesis parameters; it is continuous, since here a continuous
sound signal is computed so that only a single speaker is perceived.

In the infinite space of mapping possibilities we try to mo-
tivate a specific choice at hand by plausibility arguments based
on the type of data, the typical variability of parameters or task-
oriented arguments. We hope that better mappings emerge during
our ongoing process of model refinement, yet we believe that in
the interest of the intended users (clinicians), at some point the
mapping needs to be fixed in order to promote the listeners audi-
tory learning processes. A concise representation of the mapping
is given in Table 2.

One of the key interests is to rapidly identify abnormal EEG
patterns, and to discern their dynamical properties. This suggests

parameter feature source dest. range scal.
L ds(~x(t)) [0, 1] [-15, -5])
λ ds(~x(t)) [0, 0.3] [0, 1])
f vs [0, 2] [100, 150])

f1 3Xtotal [-1, 1] [150, 1000] tanh
f2 3Dx [-1, 1] [ 300, 2500] tanh
f3 3Dy [-1, 1] [2000, 3800] tanh
f4 3∆D [-1, 1] [2500, 5000] tanh
g1 Atotal [0, 1] [-15, -0])
g2 A3 [0, 1] [-15, -0])
g3 A5 [0, 1] [-15, -0])
g4 A7 [0, 1] [-15, -0])

Table 2: Mapping for the vowel EEG sonification

to associate the abnormality features with an acoustic parameter
that is able to switch from an inaudible (or nearly inaudible) to a
clearly audible signal. In our synthesis this is the overall level (cor-
responding to the lung pressure), and the voice/noise ratio. This
mapping basically causes the sonification to appear from a noisy
background when signals are being regarded interesting enough
require special attention. As a result the listener is not (or less)
distracted by timbral variations in those parts that are explained
from standard data variability, and is thus free to focus on the tim-
bre evolution caused by the abnormal transients.

Pitch is a highly salient attribute, as is perhaps best evident
from a singing voice. However, since here the main focus is to
create rhythmical and vocal sounds, a too pronounced variation of
pitch interferes destructively with timbral changes and even ob-
scures timbral changes. From the currently employed features, we
think that a velocity intuitively matches to frequency: the faster a
repetition, the higher the frequency. We here choose the velocity
in abnormal subspace for pitch control.

Next we control the formants from the spatial distribution fea-
tures. The mapping from hemispheric disbalance to the first for-
mant center frequency and anterior-posterior disbalance to the sec-
ond formant center frequency is rather arbitrary, yet it is relevant
that a mapping is not changed between sonifications since these
mappings are needed to guarantee comparability. Finally we use
the abnormality flags to drive the gains of the formants. This will
basically allow better differentiation if a signal is likely to be ab-
normal. For mapping details see Table 2.

Fig. 3 shows a typical trajectory in formant space as it results
from our technique. We see that the most frequent activity pattern
is around the relaxed ’æ’ sound near the center. Epileptic activ-
ity takes a trajectory which is almost circularly shaped and covers
a more articulated range of vowels in the lower half of the figure.
However, two formants do not suffice to fully explain the perceived
auditory gestalt, and we think that with listening experiences pat-
terns can be discerned beyond the obvious vocal transients.

3.3. Implementation

The sonification is programmed in two languages: octave and Su-
perCollider3 [9]. Octave, a free matlab clone, is ideal for efficient
matrix computations. We use octave to generate a data set of the
above described feature vectors from the input EEG data set. The
sonification matrix is stored in a comma separated values file for
manual inspection, plotting, and sonification.

The player routine in SuperCollider3 is a task (TDef), that
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Figure 3: Formant space scatter plot, showing f1 vs. f2. Typical
vowels are integrated as reference.

processes vectors in equidistant time steps, allowing control over
the temporal compression and with the ability to navigate inter-
actively in the data. Since the sonification is a continuous update
of a single instance of a synthesizer, appropriate /n_set OSC
messages are sent to the sound server.

For comfortable use we wrapped the core functions with some
GUI controls as shown in Figure 4. The GUI currently allows to
see a feature variable in synchronization with the sonification, to
navigate the time axis and to adjust compression. We will provide
the full sonification source on our website at [10].

Figure 4: Graphical User Interface for Vocal EEG Sonification.
The position and step delay (playback compression) can be ad-
justed interactively.

4. EXAMPLES

We now exemplify the proposed strategy with clinical EEG record-
ings from patients with epilepsy. In particular, a set of EEGs from
children with generalized absence seizures was selected. The ab-
sence seizures are characterized by typical spike-wave patterns in
the EEG that are picked up from all or most sites at the scalp. An
important feature of this type of epilepsy is that the characteristic
EEG abnormalities are often seen in a standard clinical recording
even in the absence of a clinical seizure. They are thus likely to
be found in short EEG segments during routine recordings and do

not necessarily require long-term recordings which are only made
in exceptional cases.

The recordings are 19 electrode standard EEGs in the 10-20
convention. Current source density montage was used as a spatial
high-pass filter. The chosen segments contain groups of general-
ized spike-wave patterns with an average frequency of about 3 per
second. This activity is spontaneous in the cases discussed here,
i.e. no hyperventilation was ordered and no photic stimulation was
applied.

Figure 5 shows the onset of epileptic activity from normal ac-
tivity. The onset is nearly spontaneous, i.e. there is no visually
evident “precursor” activity. However, upon closer inspection the
onset of the first spike is earlier in some electrodes than in others.
In the time series shown in the Figure, the epileptic activity sets in
with a wave component and then continues with dominant spike-
wave activity of large amplitude (as compared with background
activity, c.f. the left half of the figure).

Figure 5: Potential of EEG channel Cz at the transition to absence
seizure as a function of time.

Our first example is the sonification for the data shown in
Fig. 1. The sonification covers only the first half which contains
a sequence of spike wave formations. The real-time sonification
of the 1500 steps lasts about 7.5s since the recording rate was 200
Hz. In S1, arising from a noisy background with low volume, a
fast sequence of ‘oiii-oiii-oiii-oiii’ can be heard and a strict rhyth-
mical pattern is very salient. Then after a short break the pattern
changes to a second sequence of bursts that are better described as
‘ya oiii ya oiii’, with decreasing strength and dissolving regularity,
until finally the pattern breaks down. Doubling the step delay (ex-
ample S2), the vowel transitions are resolved better, and it can be
heard that near the end ‘i’ as in ‘bee’ and ‘e’ as in ‘bed’ dominate
over the darker vowels a or o. In S3 (4 times slower than real-
time), even the temporal evolution of single spike wave patterns is
resolved and the amplitude and its variation can be followed easily.
Here, we can assign the ‘ya’ part of the repetitive complex to the
slow-wave component and the ‘oi’ part to the sharp spike. In sum-
mary, we hear a rather continuous signal during epileptic activity
and get a holistic impression about the dynamics via the sound.

This shall be compared with the second example where an-
other child’s data are sonified. In example S4 we hear the features
of the EEG signal in real time and immediately perceive a much
higher roughness in the activation. This segment consists of nor-
mal behavior that is interrupted in a burst like fashion by sequences
of very fast spikes. Interestingly the bursts manifest themselves al-
most as a fricative ’r’ or ’ch’ sound. The vowel pattern is like an
’eyaaa eyar eyar eyar’ and then, in the middle takes an unexpect-
edly slow ’ooo-ee-yaa–ee’ sequence. When listening to the bursts
at slower speed, as in S5 and S6, the source of this roughness be-
comes apparent: each burst consists of a sequence of very short
and small spikes. We hear both the variation of velocity in state
space as pitch and only minor vowel transitions. The last sound
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example (S7) resolves 4 bursts much higher and allows to discern
that the vowel form itself modulates between the individual spikes
in a burst. This, however is almost inaudible in real-time, and such
fast tongue movements corresponding to the changes in timbre are
impossible to execute with a human mouth.

Finally we present another sound example, S8, from a differ-
ent EEG segment of the same patient. Again we hear the rough-
ness, and feel immediately reminded of the patterns heard in the
previous example (S4-S7). The sound is also similar, although the
vocal transients now display a combination that might described
rather by ’eyooo-eyooo-eyooo’.

A much more elaborated auditory investigation in collabora-
tion with clinical experts is now needed to move from this first
approach to the desired result: that EEG abnormalities like epilep-
tic activity can be discerned, recognized and differentiated from
muscle-induced artifacts under different background conditions by
trained listening to the vocal EEG sonification.

5. DISCUSSION

The presented sonification exploits a highly promising field of acous-
tic signals, speech sounds, for the data-driven sonification of EEG
recordings. In the design of the sonification, which is essentially
an indirect continuous parameter mapping sonification, particular
attention has been payed to generality in the sense that the sonifi-
cation can be computed for all sorts of EEG data, independent of
the number of available channels, the recording frequency, or the
exact location of electrodes on the scalp. To achieve this, features
have been computed which describe general properties of the un-
derlying dynamics in state space. Particularly novel features in the
context of sonification are the use of brain mapping scalar prod-
ucts with basis functions and the use of the windowed eigenvalues
of the correlation matrix as quantifiers of time-dependent cross-
correlations.

The sonification offers some means of interaction, concern-
ing navigation and compression, and fuses sonification with a syn-
chronized visual display which greatly supports orientation in the
overall data set. Since the sonifications operate in a time resolu-
tion around real-time (although some features are better audible at
slightly slower sonification), the technique may even be useful for
online sonification.

Since data variations affect instantaneously the sound, the whole
dynamics of sound variation is a direct consequence of variations
in the data, and thus we attain a high temporal resolution. How-
ever, temporal sequences as they occur in verbal utterances (e.g.
when saying words like “sonification”, with voices/unvoiced parts
interleaved, with plosives and fricatives, are rare in this mapping.
We are not sure whether more severe manipulations of the tem-
poral structure would be beneficial since this would go hand in
hand with a degradation of directness. However, we would en-
joy to enrich the current sonification in the direction of a higher
variability of consonant particles. We think that this would be an
important progress since it will enable human researchers to adapt
to the sounds and to increase their understanding by tuning their
listening to the rhythms and transients they might find characteris-
tic in the sonifications.

6. CONCLUSION

In conclusion, our technique provides the basis for a more system-
atic use of sonification for browsing and scanning of EEG data,

even for online applications. The fact that the sonifications occupy
the sound space of vocal sounds with which human listeners are
particularly familiar offers both the chance of a better sensitivity
to changes in the dynamics, and the potential that researchers can
more easily communicate structures and patterns in EEG data by
mimicking the patterns with their own voice.

An essential condition for sonification to be successful is that
the technique can be used without manual modifications in a large
set of contexts, since only then, clinicians or other listeners can
really tune to the sound space and apply auditory learning. Our
approach favors such generality since it defines carefully a set of
features which can be computed independent of the montage, num-
ber of channels, etc.

We are sure that improvements are possible and feasible, firstly,
concerning the definition and selection of features; secondly con-
cerning the mapping between these features and the sound synthe-
sis techniques; and finally, in the implementation of more flexible
and convincing articulatory speech models. These are the main
three lines of research activities that we are facing for our ongoing
research in Vocal EEG Sonification.
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