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ABSTRACT

This paper presents a novel approach for the interactive optimiza-
tion of sonification parameters. In a closed loop, the system auto-
matically generates modified versions of an initial (or previously
selected) sonification via gradient ascend or evolutionary algo-
rithms. The human listener directs the optimization process by
providing relevance feedback about the perceptual quality of these
propositions. In summary, the scheme allows users to bring in
their perceptual capabilities without burdening them with compu-
tational tasks. It also allows for continuous update of exploration
goals in the course of an exploration task. Finally, Interactive Op-
timization is a promising novel paradigm for solving the mapping
problems and for a user-centred design of auditory display. The
paper gives a full account on the technique, and demonstrates the
optimization at hand of synthetic and real-world data sets.

[Keywords: Sonification, Data Mining, Evolutionary Algorithms,
Parameter Mapping Sonification]

1. INTRODUCTION

Sonification, the auditory representation of data as sound, is a par-
ticularly attractive approach to investigate high-dimensional data
since sound allows easily to express a multitude of different char-
acteristics in a single sonic event, like for instance by using pitch,
level, source location and distance, timbre, timbre change, ampli-
tude envelope, etc. as dimensions. A frequently seen (or: heard)
sonification technique is Parameter Mapping Sonification (PMS),
where these attributes are computed by mapping different data fea-
tures [1, 2, 3]. A more generalized approach is Multidimensional
Perceptual Scaling (MPS), where a linear mixture of data vectors
is computed to obtain values to be mapped to acoustic features [4].

However, the more elaborate the techniques are to render data
displays (be it sonifications or visualizations), the more difficult
becomes the task of tuning the display, and/or adjusting the numer-
ous available method parameters. Until now, in most cases these
parameters are subject to manual adjustment by the user (who of-
ten is the same as the programmer of the sonification). However,
the problem here is that those who are able to understand the pa-
rameters and their role within the display are eventually not those
familiar with the data, or those who are best skilled in discerning
structure from the display (e.g. a physician with trained listening
skills and domain knowledge might be an excellent listener but
lack know-how to adjust parameters in a senseful way).

In this paper we introduce a novel approach to automatically
optimize parameters of sonification systems (demonstrated at hand
of a Parameter Mapping Sonification technique), so that the sys-
tem can be operated by the listener alone, without any need of

specific programming knowledge or knowledge about the sonifi-
cation technique. The key idea is to automatically create modi-
fied sonifications starting from either an initial parameter guess or
the previously selected sonification. These sonifications are pre-
sented to the user via a graphical user interface that allows the
user to specify their perceptual quality in terms of a relevance rat-
ing. The system incrementally adjusts an internal relevance map
in parameter space which is in the turn of the optimization loop
used to filter newly generated examples. This relevance-based
guidance towards promising regions in parameter space is com-
plemented by cost function terms for novelty and structural rich-
ness. In summary, a closed-loop adaptive interactive sonification
system emerges that is very intuitive to navigate. It enables an im-
proved work division between the programmer and the user of the
sonification system. A related approach, but applied for subjective
HRTF selection was discussed by Runkle et al. [5].

In detail, we have implemented two optimization techniques
to navigate the parameter spaces of sonification techniques, the
first using Evolutionary Algorithms, and the second using Gradi-
ent Ascend in different variants of a quality function. We introduce
the technique, and demonstrate its successful application at hand
of two data sets. Specifically we will show how clustering struc-
ture in data sets from classification problems can be discovered
and audible contrast can be maximized by using the technique.
We furthermore discuss the use of the technique beyond Parame-
ter Mapping Sonification in the field of exploratory data analysis.

2. RELEVANCE-BASED OPTIMIZATION OF
SONIFICATIONS

Relevance-based optimization aims at allowing users to operate
a sonification system without any knowledge of the sonification
techniques or the available parameters and their proper values.
This is achieved via an iterative optimization system where the
human user is able to concentrate on this judging task, removing
any distractions and other tasks during the interaction. In result,
starting either from an initial sonification or from the previously
selected sonification, modified sonifications are generated, and the
only task given to the user is to rate their quality, their relevance,
or their value to learn something about the data.

2.1. System Overview

For such a system to work we need to define various components
such as (a) a sonification technique to generate data representa-
tions, (b) a parameter space which covers a large set of potential
sonifications, (c) a technique to create descendants (or children)
sonifications for a given sonification, (d) a knowledge representa-
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tion collecting all user feedback during the interaction, (e) a user
interface that closes the loop. In this section, we describe the de-
veloped components with a particular focus on the most critical
component (c) which determines how novel descendants are com-
puted using the available knowledge gathered from user feedback.
Figure 1 shows an information flow diagram and all components.
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Figure 1: Information Flow Diagram of the Relevance-based In-
teractive Sonification System.

2.2. Parameter Spaces for the Optimization of Sonifications

Any sonification technique can be formalized as a function s(X, θ, T )
that determines how a data set X and optional excitory actions T
will cause the creation of the sonification s. For many techniques
like for instance Parameter Mapping Sonification, the action T is
only a trigger. For Model-based Sonification [4], T includes the
detailed excitory interactions. Typically the sonification can be
specified by a parameter vector θ, which for Parameter Mapping
Sonification would include parameters of the mapping function.
Given a data set, optimizing a sonification means to find suited
parameter vectors θ that yield suitable sonifications s.

For the introduction of the technique we here use a generalized
linear Parameter Mapping Sonification: for each data vector �xα

(row α in the data matrix X) an acoustic event φ(t; �p) is computed
using a synthesizer algorithm, so that the resulting sonification is
the superposition of all individual events

s(X, θ, A) =
NX

α=1

φ(t, �p(�xα; θ)) .

The dp-dimensional synthesis parameter vector �p for the synth
φ is here computed via a linear mapping function for every d-
dimensional data vector �x by

�p = A · �x +�b

where A is a dp × d matrix and �b a dp-dimensional offset vec-
tor. For the selected sonification technique, the parameter vector θ
would thus be the tuple (A,�b), and so it would have the dimension
dθ = dp · d+ d. The parameter vector θ takes the interpretation of
a genetic code to characterize the sonification technique. We will
now address the question how we can automatically create good
guesses for locations in parameter space θ that yield informative
sonifications.

2.3. The Quality Function for Optimization

For optimization in general it is valuable to know a quality function
Q(θ) at all possible parameter vectors θ and we would aim at find-
ing maxima of Q. If we would know Q, optimization would still
be difficult since Q could exhibit multiple local optima. However,
we do not have Q and suggest here a technique to iteratively con-
struct estimates for Q from the users’ relevance feedback. Since Q
is used to create guesses for candidates to be heard and reviewed in
the following iteration by the listener, we include besides a quality
term QR additional function terms: (a) a novelty term QN is used
to make unexplored regions of parameter space appealing, (b) a
structural quality term QS is introduced in the spirit of projection
pursuit techniques [6] to reward parameter regions that yield more
”interesting” sonification for the given data set. Altogether, opti-
mization will be performed in a closed loop at hand of a quality
function

Q(θ) = γRQR(θ) + γNQN (θ) + γSQS(θ)

where the functions change on each iteration at hand of the col-
lected feedback. The coefficients (γR, γN , γS) allow to specify
the subjective importance of the terms.

2.3.1. Relevance-based Quality Term

In the course of the iterative optimization, we allow the system
user to rate the quality of any heard sonification on a continuous
scale from -1 to 1, higher values to be given for subjectively bet-
ter sonifications. We thus incrementally collect a data set R =
{(θα, rα) : α = 1 . . . Nr} of scalar ratings rα in parameter space
θ. We now construct a continuous relevance map in θ-space by
using kernel regression with a gaussian multivariate kernel Kσ of
bandwidth σ

QR(θ, R) =

PNr

α=1 Kσ(θα − θ) · rαPNr

α=1 Kσ(θα − θ)
(1)

Thinking of QR as a topographic map, positive rated sonifications
cause smooth hills whereas negative rated sonifications carve val-
leys into the landscape as shown in Fig. 2. With every new rating
the relevance map is adapted to reflect all gained experience.

Figure 2: Illustration of a quality function as relevance map. Here
the parameter vector is 2D. S1, S2, S3 show a gradient-ascend-
based optimization.
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2.3.2. Novelty-based Quality Term

Taking curiousity as principle, we would like the system to be
drawn in a certain amount to those regions of parameter space
where we have no idea yet how the quality is. This can be mod-
elled by a novelty term that gives more positive answers the more
distant a parameter vector is apart from already explored param-
eter vectors. Mathematically a novelty term can be expressed in
different ways, we here suggest and use

QN (θ; R) = 1− 2 · exp

„
−minα �θ − θα�2

2σ2

«

which increases with increasing distance from known parameter
vectors asymptotically to 1.

2.3.3. Structure-based Quality Term

Quality and novelty term alone would already allow a good inter-
active optimization. However, the bottleneck of the approach is
the human resource of providing feedback. How can we reduce
the number of examples to be reviewed (and thus to accelerate the
optimization) by knowledge of the optimizaton goal? Projection
pursuit [6, 7] is a visual technique that automatically generates in-
formative projections of data by maximizing a measure of interest-
ingness. The objective is that high-dimensional projections tend to
be gaussian distributed, and thus, the less gaussian a projection is,
the more informative is it. We here introduce a quality term that
measures the interestingness of a sonification at hand of a simi-
lar index. We can almost directly use structure evaluation indices
from projection pursuit in our specific case since the sonification
technique (linear parameter mapping) is structurally just a projec-
tion, the acoustic attributes being the projection axes. To keep the
approach simple, we focus only on the temporal organization of
the acoustic events. Given a parameter vector θ we obtain for the
data set X a set of onset values t1, t2, . . . , tN . To express their
structuring we use an entropy measure on the distribution of on-
sets. Since the onset range is always normalized to [0, tmax], we
compute a histogram of the onsets with

√
Nr bins and compute the

entropy by H(θ) =
P

i pi ln(pi) over all bins i where pi denotes
the relative frequency of occurrences in bin i. For our structure
measure, we would like low values both for the uniform distribu-
tion (which has the highest possible entropy H = Hmax) and also
the most concentrated distribution (entropy H = 0). We thus use
as structure term the quality function

QS =
8

Hmax

„
H(θ)− H(θ)2

Hmax

«
− 1

which is a paraboloid with a maximum at 0.5Hmax. The following
sections will explain how the structure term is used to improve the
rendering of better candidate sonifications for the next iteration.

2.4. Evolutionary Optimization

Evolutionary algorithms inherit from biological evolution to model
the efficient exploration of ’genetic codes’ (by mutation and sexual
reproduction) that produce species of good ability to survive, of-
ten expressed as ’fitness’. In our case, the parameter vectors can be
interpreted as ’chromosomes’, the sonifications are the described
species, and reproduction under mutation is achieved by copying
the parameter vector θ and adding some random noise vector. Fi-
nally, survival means for a chromosome that its sonification is se-
lected by the user. But even before that selection, we can introduce

evolutionary techniques to create the fittest selection of candidates
to be presented to the user. Assume that we need k parameter vec-
tors to be presented to the user for the next iteration, starting with
the previously selected chromosome θ(t) at iteration t.

!
(t-1)

!
(t)

!
j

(t-1)

selected candidates

Figure 3: Chromosome reproduction with mutation in the Evolu-
tionary Algorithm: assuming k = 2, 14 chromosomes are gener-
ated and the 2 with best quality Q(θj) are selected.

We generate 7k mutations θj as shown in Fig. 3 by

θ(t+1)
j = θ(t) + σ(t) · (θ(t) − θ(t−1)) + Φ(σ(t)

m ) .

This means that we maintain a directional drift (θ(t) − θ(t−1))
observed from the previous two iterations, and continue it while
adding some gaussian noise Φ(σ(t)) of variance σ(t)2 which al-
lows us to control the influence of mutations. Stronger mutations
allow a faster exploration of the parameter space, however, it may
result in many chromosomes unable to survive.

Using this stochastic optimization, we select k chromosomes
out of the 7k by taking those with maxium fitness according to our
quality function Q described above. Certainly, some conditions
must be checked on the generated chromosome, e.g. the parameter
components are restricted to the hypercube [−1, 1]dθ . Details on
these additional constraints can be found in [8]. Obviously, the
longer the interaction continues, the more probable it is to find
suitable, interesting and novel sonifications.

The optimization depends on some hyper-parameters, namely
the number k of sonifications to be reviewed every iteration, the
bandwidth σm for mutations, and bandwidth parameters within
the quality function terms. In general, it is advisable to start with
rather large values and to decrease these values during the ongo-
ing interaction according to an exponential decay schedule. Initial
values can typically be set in terms of parameter and data ranges.

2.5. Gradient-based Optimization

Gradient ascend on a quality function is a frequently used approach
in optimization and allows to find local optima [9]. Given a quality
function Q, we can simply compute an update step ∆θ by

∆θ = � ·∇θQ = � ·
„

∂Q
∂θ1

, . . . ,
∂Q
∂θdθ

«

At small learning rates � we will move up-hill the function Q
and thus create a candidate for a better rated sonification parame-
ter vector. A key difference to the evolutionary approach is, that
here the quality function is directly used to generate candidates,
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while in the evolutionary approach it is merely used to measure
the fitness. Being potentially more direct than the stochastic search
via mutation in the evolutionary algorithm above, gradient ascend
faces in this form some problems: firstly, since there is only one
gradient of Q, how can we generate k different suggestions for the
next iteration?; secondly, gradient ascend bears the risk of getting
stuck in local optima in parameter space; and finally, the quality
function terms defined above are not differentiable, since they em-
ploy non-smooth functions like for instance min.

The key idea for the generation of several candidates using Q
is to balance the terms of Q differently for each descendant. The
descendants are computed by

θ(t+1)
j = θ(t) + � · (γR,j∇θQR + γN,j∇θQN + γS,j∇θQS)

and thus we use diffferent vectors �γj = (γR,j , γN,j , γS,j) to de-
fine variations of quality functions that pronounce different as-
pects. For instance the vector �γ = (0.2, 0.6, 0.2) mainly moves in
direction of increasing novelty in parameter space. For the gener-
ation of k descendants, we use the vectors (1, 0, 0), (0, 1, 0) and
(0, 0, 1) for the first three candidates, followed by random mixture
vectors �γrnd normalized to length 1. As side effect we circumvent
the problem of getting stuck in local optima, since all the different
utilized quality functions have different optima and the functions
are updated with every iteration anyway.

As mentioned before, for the computation of the gradient we
need quality functions that can be differentiated. We have no prob-
lem with the QR as defined in eq. 1, but we need a modified nov-
elty term to simplify differentiation. Instead of a minimum com-
putation, we here use the average distance to all seen parameter
vectors θα as follows:

QN (θ) =
1
N

NX

α=1

„
1− 2 · exp

„
−�θ − θα�2

2σ2

««

For the structure term, we only replace the histogram computation
by a continuous density estimation using kernel density estimation
with a gaussian kernel. The mathematics gets more complex and
the derivations can be found in [8], however, this allows to com-
pute gradients in a straightforward way.

3. SYSTEM IMPLEMENTATION

The system for interactive optimization of sonification techniques
has been implemented in SuperCollider [10] and the free math-
ematics package Octave1. For using octave code within Super-
Collider, an interface class named OctaveSC has been developed
which is available at the OctaveSC website2 [11].

The system consists mainly of three SuperCollider classes:
MasterControl, SonControl and SonOptParMap, illustrated in Fig. 4,
which use a self-built Octave function library. The start script al-
lows interactive textual specification of the data set to be used, the
synthesizer code (as SC Synth) and various parameters of the opti-
mization system. From here, a MasterControl object is instantiated
with data set X , the number of descendants k per iteration, the to-
tal duration of single sonifications, the sc server to be used and a
flag to select the optimization method. Optional arguments are an
own synthesizer definition and a mapping function. By using such
scripts, maximum flexibility is gained, and sonification types can
be stored in a compact textual, human-readible form.

1see http://www.gnu.org/software/octave/
2see http://www.sonification.de/projects/sc

Master
Control

Start 
Script

SonOpt
ParMap

Son
Control

OctaveFunction
Library

OctaveSC

SonOpt
ParMap

Son
Control

Parent 1

1

k Childs

Figure 4: Diagram of the implemented software components for
the Relevance-based Interactive Sonification System.

MasterControl is the main control class which manages the
whole optimization process. It creates the GUI-window which en-
compasses some global control elements like an annealing slider
for a global bandwidth parameter, optimization-specific text fields
for global weights for the quality function terms in evolutionary
optimization, and it furthermore hosts GUI elements for the par-
ent/children sonifications as described next. MasterControl cre-
ates k SonControl objects which are the graphical presentations of
a sonifications. Each one contains one SonOptParMap object and
provides the rating slider and different buttons (play, load, save)
for user interaction, depending on whether the instance represents
a parent or a child. Finally, MasterControl activates the efficient
vector-based computation accomplished by the Octave function
library. This library contains algorithms to compute the quality
function Q(θ) for both gradient-based and evolutionary optimiza-
tion.

SonOptParMap encapsulates all functionality related to a sin-
gle sonification, given a data set, a mapping function and a synths
with dθ parameters. The most important function is to execute the
mapping function row-wise and to generate a score (as instance of
a SuperCollider Score). For further details, see [8]).

For user interaction, we use the standard SuperCollider GUI
elements under OS X, but using the SC GUI wrapper class by de
Campo would make the porting of our system to Linux or Win-
dows OS rather straightforward. Fig. 5 shows the main control
window for interactive optimization using the evolutionary algo-
rithm. On the left side, the user can adjust the optimization param-
eters (γR, γN , γS), or reset the map. The centered buttons at the
top allow to play the ’parent’ sonification, to change its rating via
the horizontal slider, or to save/load the SonOptParMap instances.

The slider on the right side depicts the actual annealing pa-
rameter: the higher the slider, the larger the jumping variance for
mutation, resp. the learning rate for gradient-based optimization.
The row of GUI elements below allows to trigger and review the
next generation of candidate sonifications. The sliders allow a con-
tinuous quality rating and are color coded, from bad ratings (red,
left) to good ratings (green, right). After reviewing the sonifica-
tions, one of them can be accepted using the ’Accept’-button. All
reviewed sonifications are then integrated into the knowledge base
for future quality function computations, and the accepted param-
eter vector is taken as ’parent’ for the next iteration.

Obviously, only very little know-how is required to understand
and use the interface. The simplicity of the interface favours a
full concentration on the sonifications and on the listening part.
Typicial sonifications suited to be explored with this technique last
about some seconds so that the complete sonification fits well into
short term memory and furthermore does not overly disrupt the
smooth flow of interaction.
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Figure 5: Graphical User Interface for Controlling Interactive Op-
timization of Sonifications, GUI for the evolutionary optimization
approach.

4. EXAMPLES

We will now present and discuss some examples of the interactive
optimization process on the basis of different optimization meth-
ods and two different data sets shown in Fig. 6. In both examples
we use discrete parameter mapping where each data item creates
an audible event. Different from the general explanation above,
the mapping itself is in detail a little more complex than apply-
ing an affine linear transformation. The data set is first normal-
ized (scaled to [0,1] along features), and mapping results (which
are constrained as a subset in [0,1]) are then scaled to [min, max]
ranges for each attribute. Only onset receives a special treatment
so that the min/max values after mapping are scaled to [0, total-
duration]. The additional scalings are done for practical reasons,
since some attribute values like frequency vary typically in the
range of 1000 while panning ranges from -1 (left) to 1 (right).

4.1. Searching for Clustering Structure

To demonstrate basic operation of our new approach we first use
a 2-dimensional benchmark data set (see Fig. 6.1), which con-
tains of two toppled, somewhat overlapping classes, and a single-
parameter sonification, where onset of granular sound events is
the only parameter. Specifically we use for sound synthesis the
very simple synthesizer code Out.ar(0, Pan2.ar( Blip.ar(440, 4), 0,
EnvGen.kr( Env.perc(0.001, 0.1, -4), 1, doneAction: 2))), so that
short harmonic sounds fill the sonification time. In result, the pa-
rameter space is 2D and visualizations of the resulting relevance
map can easily be depicted without loss.

The following sonification examples accompany the stepwise
assembling of a relevance map in evolutionary optimization, using
the simple 1D-synths described above. Quality ratings have been
given with the aim to emphasize the audible dispartment of clusters
in the Fisher data set and good exploration of the parameter space.
Sonification examples are available at [12].

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2  0  2  4  6  8

Data Fisher

Class 1

Class 2

6.1: Fisher: synthetic 2D bench-
mark dataset
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Figure 6: 2 clustering datasets of different dimensions.

We first used the default weights of the quality function: 0.4
for quality, 0.3 for novelty and 0.3 for structure and a small step
range of 0.3. The first samples were randomly generated and we
heard a basically gaussian structure. This was not very informa-
tive so we assigned a negative rating and selected the parent (hear
sound SF1). In this phase the relevance map was mainly affected
by the novelty term and possessed wide blue regions. The few
negative rated samples have drawn depth cavities in the surface
(shown in Fig. 7.1). Up to step 6 we have heard no good sam-
ples and distributed exclusively bad ratings near −1 (confer figure
7.3). But in step 6 we discovered one sonification which exhib-
ited an audible gap near the center of the sound, and we assigned a
good rating and chose this as following parent (hear example SF7).

In the following steps it was possible to get a more and more
audible break in the sounds: we find a maximum (hear sound SF10
and see Figs. 7.5 and 7.6). In this phase the generated sonifications
exhibited not anymore significant differences. After 24 steps with
no relevant modification, we now increased the range by setting
the vertical slider, and in addition we set the weight of the novelty
term up to 1 to better explore the entire parameter space. In result
we found another maximum (Fig. 7.7) of Q, and in turn the result-
ing relevance map shown in Fig. 7.8 is a complete and expected
representation of quality in parameter space. With sonifications
of 3-4 seconds and 5 children per iteration, the inspection of one
generation takes about 15-20 secs. Adding some time to specify
the quality ratings, one step thus takes around 30 secs. A full opti-
mization with 10 generations is thus completed within 5-6 mins.

4.2. Exploring Structure in the Iris data

The following example demonstrates a more realistic example.
The data set is the well-known 4D Iris data set [13] (see Fig. 6.2),
often used in pattern recognition and clustering. The data set con-
sists of 3 classes, 50 instances each and 4 numeric attributes where
each class refers to a type of iris plant, namely Iris Setosa, Iris
Versicolor, Iris Verginica.

For the Iris data set we utilize a 7-parameter synth with onset,
duration, frequency, brilliance, attack time, release time and stereo
panning as acoustic attributes.

We here chose evolutionary optimization with default weights
of Q set to 0.4 for quality, 0.3 for novelty and 0.3 for structure.
The first set of sonifications are rendered from randomly drawn
parameter vectors. They were not very interesting: a ladder of
decreasing events with little attack and release time (hear SI1).
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7.1: Optimization path after 3 steps
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7.3: Optimization path after 7 steps
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7.4: Relevance map after 7 steps
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7.5: Optimization path after 7 steps
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7.6: Relevance map after 10 steps
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7.7: Optimization path after 37 steps
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7.8: Relevance map after 37 steps

Figure 7: Visualization of an optimization pass using the Fisher
data set after 3 interaction steps ( 7.1), 7 steps (7.3), 10 steps (7.5),
37 steps (7.7) and a 3D visualization of the relevance map after 10
steps (7.6) and 37 steps (7.8). Color indicates the quality of the
parameters in space θ from good (blue) over neutral (white) to bad
(red) as approximated by the quality function Q(θ).

The second sound is divided into 2 parts: a mixture of events with
little attack and release time of akin frequency in middle up to
left direction and a second stage of mixed events (hear SI2). The
first impression leads us to a assumption of 2 separated classes.
In the following samples we tried to increase the differences of
the rattle. After 2 iterations we found a sonification, that contains
some events with a higher brightness (number of harmonics) at the
end of the sound, so that they got a ”blob”-like ringing (SI4). Then
in step 7 we first hear a division of 3 classes: the first and second
class are divided by a small intermission, whereas the third class is
represented by both different frequency and number of harmonics
(SI7). Finally this trait was increasingly optimized until step 10 to
become more salient (SI10).

This is only one way to manifest structure in the iris data. We
can also accomplish the division with other parameters, like stereo
panning or amplitude, as demonstrated in the sonification exam-
ples SPan and SAmp which show the results of an active optimiza-
tion towards the salience of structure in these attributes. Generally,
the classes are represented by the mixture of different parameters,
but it is possible to maximize the influence of one targeted acous-
tic parameter during optimization. The advantage is that each user,
depending on his/her own hearing skills, can optimize the sonifi-
cation as preferred to extract maximal information from the sound
about the data within some minutes time.

5. DISCUSSION AND CONCLUSION

We have introduced a novel approach for interactively optimizing
sonifications by reviewing iteratively derived sonifications. Con-
ceptually relevant, our approach decouples the skills of program-
ming sonifications and judging sonifications. Whereas past ap-
proaches often require the user to bring together knowledge about
the parameters or the sonification technique, this approach frees
the user from such burden, and allows a clear focus on the listening
part. In result, the user acts like a navigator who merely controls
the course of optimization flow by high-level feedback, guiding
the system to parameter space regions with attractive perceptual
qualities.

In this paper, we have presented a special implementation of
this idea using the sonification technique of Parameter Mapping
Sonification (PMS), which is still the most wide-spread sonifica-
tion approach. While, however, in many practically seen (better:
heard) PMSs, data features and acoustic parameters are connected
one-to-one, our generalized approach allows arbitrary linear mix-
tures. We’d like to emphasize that the technique is not only capable
of optimizing general PMSs, but also other types of sonifications,
such as audifications, Model-based Sonifications, or even Parame-
terized Auditory Icons.

A key element in our optimization system is the successive
storage of all considered candidates’ parameter vectors together
with their quality rating. This does not only allow the system to
compute a relavance map to predict the quality of any randomly
drawn sonification parameters, it furthermore allows – as an anal-
ysis target beyond the scope of this paper – to better understand hu-
man listening and the relation of complex auditory stimuli to their
capabilitiy to evoke human perceptions of structured qualities. For
instance, consider that the user is asked to actively create sonifica-
tions where data clusters emerge as perceptual clusters. By using
our approach it can be found to what degree acoustic parameters
best contribute to the creation of this perceptual high-level qual-
ity. While such applications of our system actually represent more
a side-effect than the main goal, we regard the use of interactive
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sonification as an experimental technique for cognitive analysis of
human listening to complex stimuli as highly attractive.

Concerning the optimization, we have demonstrated two com-
plementary approaches for creating useful candidates: (a) an evo-
lutionary approach which generates descendents (or their param-
eter vectors which might be called ’chromosomes’) via mutation:
random changes, followed by a pre-selection of the best (fittest)
descendants give rise to a new generation of sonification to be re-
viewed by the user, and (b) gradient-based optimization, where the
different candidates follow the gradient in different variants of the
quality function created by weighting functional terms specifically.
Thus, there is always a candidate with optimal novelty, quality, and
structure to be reviewed in the set. Both approaches are useful, and
while the latter one may be more goal-oriented in settings where
the quality map is in fact rather smooth, the first approach may be
superior for complex settings and a stronger exploration.

The reader may have the impression that such sonifications are
so strongly tuned to the subjective preferences of the user that they
may not be particularly ’objective’ to communicate structural fea-
tures in the data. However, sonification is actually always the re-
sult of strongly subjective tuning of parameters. Furthermore, each
mapping is equally valid as true representation of the data. Only
the combination of different (sonic) ’views’ may yield a more ’ob-
jective’ overall impression of structures in the data. The following
example may show in what way the optimization is highly useful
besides the subjective exploratory value for the subject: Consider
for instance the optimization of perceptual contrast between the
first and second half of a EEG time-series sonification, e.g. for a
situation where some particular event occurs. The maximization
of perceptual contrast may yield sonification parameters that are
suited to be used with other data, e.g. to discover similar events
in non-labeled data reviewing. Thus the aim is not to ’mis-tune’
one sonification in order to express whatever you like, but to create
highly specific, contrast-maximizing sonifications that are likely to
operate particularly well for other data sets of comparable typol-
ogy.

Finally, we have demonstrated the system’s capability to find
structure in a low-dimensional clustering benchmark data set, so
that the relevance map can easily be visually inspected, and shown
operation on a real-world data set. We currently work towards real-
world application of Interactive Contrast Maximization for com-
plex time series, and we particularly continue our research towards
the development of more tightly coupled human-computer interac-
tive sonification systems by means of continuous interactions.

Acknowledgement

We thank Christian Mertes and Thorsten Stocksmeier at Bielefeld
University for their programming work in context of the project
seminar ’Optimization of Sonification Techniques’.

6. REFERENCES

[1] C. Scaletti, “Sound synthesis algorithms for auditory data
representations,” in Auditory Display, G. Kramer, Ed., Read-
ing, MA, 1994, pp. 223–248, Addison-Wesley.

[2] Thomas Hermann, Jan M. Drees, and Helge Ritter, “Broad-
casting auditory weather reports – a pilot project,” in
Proceedings of the International Conference on Auditory
Display (ICAD 2003), Eoin Brazil and Barbara Shinn-
Cunningham, Eds., Boston, MA, USA, 2003, International

Community for Auditory Display (ICAD), pp. 208–211,
Boston University Publications Production Department.

[3] G. Kramer, “An introduction to auditory display,” in Auditory
Display, G. Kramer, Ed. ICAD, 1994, pp. 1–79, Addison-
Wesley.

[4] Thomas Hermann, Sonification for Exploratory Data Analy-
sis, Ph.D. thesis, Bielefeld University, Bielefeld, Germany, 2
2002.

[5] P. Runkle, A. Yendiki and G. H. Wakefield, “Active Sensory
Tuning for Immersive Spatialized Audio,” in Proc. Int. Conf.
on Auditory Display (ICAD 2000) P.R. Cook (Ed.), Atlanta,
GA, 2000, pp. 141-145.

[6] J. H. Friedman and J. W. Tukey, “A projection pursuit algo-
rithm for exploratory data analysis,” IEEE Transactions on
Computers, vol. 23, pp. 881–890, 1974.

[7] P. J. Huber, “Projection pursuit (with discussion),” Annals of
Statistics, vol. 13, pp. 435–525, 1985.

[8] Kerstin Bunte, “Interaktive relavanzkartenbasierte Opti-
mierung der Sonifikation von Daten,” Diplomarbeit, Biele-
feld University, Bielefeld, Germany, Sepp., 2006.

[9] B. D. Ripley, Pattern Pecognition and Neural Networks,
Cambridge University Press, 1996.

[10] James McCartney, “Supercollider: a new real time synthesis
language,” in Proc. ICMC ’96. Int. Comp. Music Assoc.,
1996, http://www.audiosynth.com/icmc96paper.html.

[11] Thomas Hermann, “OctaveSC - a Su-
perCollider interface class for Octave,”
http://www.sonification.de/projects/sc3/index.shtml, Mar.
2006.

[12] Thomas Hermann, “sonification.de - Publications -
enline examples” http://www.sonification.de/
publications, 2007.

[13] R. A. Fisher, “UCI repository of maschine learn-
ing databases,” ftp://ftp.ics.uci.edu/pub/
machine-learning-databases/iris, 1999.

ICAD-467


