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ABSTRACT

Markov chain Monte Carlo (McMC) simulation is a popular com-
putational tool for making inferences from complex, high-dimen-
sional probability densities. Given a particular target density p, the
idea behind this technique is to simulate a Markov chain that has
p asits stationary distribution. To be successful, the chain needs
to be run long enough so that the distribution of the current draw
is close to the target density. Unfortunately, very few diagnostic
tools exist to monitor characteristics of the chain.

In this paper, we present a new approach to render sonifica-
tions of McMC simulations. The proposed method consists of
several auditory streams which provide information about the be-
havior of the Markov chain. In particular, we focus on uncov-
ering modes in the target density function. In addition to mon-
itoring, we have found our sonification to be an effective means
for understanding the structure of high-dimensional densities. We
have also applied our method to the exploratory analysis of high-
dimensional data sets. In this case, we take as our target p a non-
parametric density estimate obtained from the data. In this paper,
we present a detailed description of our sonification design and il-
lustrate its performance on test cases consisting of both synthetic
and real-world data sets. Sound examples are also given.

1. INTRODUCTION

This paper illustrates the use of sonification as a tool for monitor-
ing the performance of Markov chain Monte Carlo (McMC) sim-
ulations. Over the last decade, McMC has emerged as one of the
most popular computational tools for making inference about com-
plex, high-dimensional density functions. Suppose that we arein-
terested in atarget density p(x),x € R?. Traditional Monte Carlo
methods for estimating various features of p use an (independent)
sample of points drawn from p. McMC methods are typically em-
ployed when it is not possible to sample directly from p.! Instead,
we generate a sequence of random points {xo, x1, Xz, - . . } whose
distributions converge to p. The samples are drawn sequentially,
often with the distribution of x: depending only on the value drawn
for x;_1; hencethe seriesformsasimplefirst-order Markov chain.
Implicitly, we assume that it is relatively easy to generate samples
from this chain. In Section 2 we present the Metropolis algorithm
for constructing a Markov chain for a target density p. Consider-
able research in the statistics literature has extended McMC tech-
niques to very complex modeling situations. In simple cases, it is
possible to derive the theoretical convergence rate of the McMC

1This situation arises frequently in Bayesian models. An excellent ref-
erenceis[1].
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simulation to the stationary distribution p. In most practically im-
portant settings, however, determining when the chain has con-
verged is a difficult task. If the chain exhibits poor convergence
properties, inference becomes difficult.

In this paper we design severa auditory streamsthat aid in as-
sessing characteristics of an McMC simulation. Our methods can
be applied to virtually any chain, regardless of the dimension of p.
Our sonification tracks the sequence {xo, x1, X2, ... }, SO that at
time ¢ the audio signal provides information about both the value
p(x:) as well as the mode structure of p near x;. In the exam-
ples presented in Section 5, we can easily hear how the sampler
moves between modes. Higher-level dependence is also audible,
as we notice a repeated series of transitions from one mode to the
next. The frequency of transitions provides information about the
neighborhood between modes. This information is not used ex-
plicitly for the sonification but emerges as a consequence of this
specific stochastic process. In addition to information about p, we
also designed an audio stream that conveys more technical details
about how the sequence is constructed. This channel can supply
valuable diagnostics about the efficiency of the McMC simulation.

By experimenting with this sonification model, we found that
our method also provides considerable insight into the structure of
the target density p. For example, we can easily hear the number
of modes of p, aswell astheir size and shape. Thiskind of insight
is extremely helpful in high-dimensional settings. When p is a
function of asmall number of variables (d < 4), one can use tradi-
tional visualization methods to understand the important features
of p. When d > 4, however, visua techniques begin to fail, and
the resulting plots are more difficult to interpret. The output from
aconverged McMC simulation provides valuable insights about p
that are difficult to capture by purely visual means. Carrying these
experiences one step further, we have also applied this sonification
scheme to high-dimensional data sets. Here, the target distribution
p istaken to be anonparametric density estimate. In our examples
we have used a simple kernel estimator, but any nonparametric
technique will work. The auditory streams that track modes in p
now provide direct information about clustersin the data.

Our auditory sense is well suited to help orient and guide us
toward interesting events in the real world. It is able to process
many different information streams and (after minor training) it is
excellent in detecting even subtle acoustic patterns. Both of these
strengths of our hearing system are exploited in our McMC sonifi-
cation. Our approach isahybrid that uses both M odel-Based Soni-
fication (see Section 3.1) and Parameter Mapping [2]. The over-
al design is presented in Section 3. Additional new elements in
this sonification are the concept of Auditory Information Buckets,
which provide away to zoom out acoustically, and nonlinear pitch
mapping to facilitate mode distinction and comparisons. These
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concepts are discussed in Section 4. Section 5 presents some ex-
ample data sets and sounds. The paper ends with conclusions and
prospects for future work.

2. MCMC SIMULATION

Traditional Monte Carlo techniques use an independent sample of
datadrawn from atarget density p to estimate various features of p.
In many practical settings, the density under study istoo complex
to be used directly and we areforced to rely on asymptotic approx-
imations, numerical integration or McMC methods. The idea be-
hind McMC is that we generate a sequence {xo, X1, Xz, . . . } that
has as its stationary distribution the target density p. In this sec-
tion, we present a simple McMC scheme known as the Metropolis
algorithm [3]. We dso illustrate how the output from this sim-
ulation can be used to infer properties of p. In the statistics lit-
erature, most applications of McMC are associated with so-called
Bayesian models. Inthiscase, the variable x isavector of parame-
tersin a probability model and p is a posterior distribution for x.
The characteristics of p relate directly to the uncertainty present in
the components of x. McMC can be applied more generally, how-
ever, and throughout this section we refer somewhat generically to
adensity p.

To implement the Metropolis algorithm, we first identify a
suitable jumping distribution, J(x|x,) where x,,x, € R?. We
require that J be symmetric; or rather that J(xs|xe) = J(xa|xs)
for all values of x, and x,.2 To move the chain from x;_1 to x,
we first draw a point x* from the distribution J(x"|x;—1). We
then compute the acceptance ratio

.o P
p(xe-1) @

Finally, with probability min(r,1), we set x; = x*; otherwise we
remain at x; = x:_1. Wetake as our initia state, xg, a random
point for which p(xo) > 0. To be practically useful, we need to
be able to easily draw samples x* from the jumping distribution.
Under this simple scheme, it is not difficult to show that the
distributions of the samples {xo, x1, x2, ... } converge to p [3].
The qualitative properties of this Markov chain depend on J. For
example, suppose welet J be a Gaussian distribution with variance-
covariance matrix o>I, where I isthe d x d identity matrix.

Then,
1\ % — x>
swx) = (g ) e (-2l )

where || - || is the standard Euclidean norm on R, If o2 is small

compared to the variance of p, the probability that our chain moves
between the different modes of p is small; hence we remain near
the same mode for a long time. On the other hand, if o is very

large, the acceptance ratio for each proposed move tends to be
small and we rarely leave our current position. Therefore, while
convergence is guaranteed at least theoretically for many choices
of J, the jJumping distribution has considerable influence on the
finite-sample properties of the chain. Figure 1 shows the output
from several runs of the Metropolis algorithm for atwo-dimensional
target density. The jumping distributions are Gaussians with ¢°

taking small, medium and large values.

20ther technical conditions relating to the support of p must aso be
satisfied, but these are beyond the scope of this paper. See [4]
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Figure 1: McMC random walk in a 2d distribution with 3 clusters.
Grey values represent probability density, data points are plotted
with points. 200 McMC steps are shown asline for jumping distri-
bution with variance (a) 10 %, (b) 80 %, (c) 400% of the data set
variance. (a) shows low mixing, (c) has only few accepted moves.

The Metropolis agorithm is perhaps the simplest technique
for quickly generating a Markov chain with the correct station-
ary distribution. Many other schemes exist in the statistics liter-
ature that extend this approach to much more elaborate modeling
contexts. In general, the samples {xo, x1,x2,...} are used to
estimate properties of p like its mean and variance. When p rep-
resents a statistical model, understanding its mode structure is an
important component in making inferences about the system under
study. While this introduction to McMC has been brief, it is suffi-
cient to motivate our sonification model. Our design is sufficiently
extensible to provide important information about the behavior of
much more complex McMC schemes.

3. MCMC SONIFICATIONS

Mapping numerical datavaluesto attributes of acoustic events, and
superimposing a set of these events for all or part of the recordsin
a data set is a popular approach to sonification. This technique
is known as Parameter Mapping [2]. Because a large number of
sound attributes are available, this idea seems quite promising.
Unfortunately, the more variables we map in this way, the more
difficult it is to relate sound characteristics back to features in the
data, requiring the construction of a code book to draw any con-
clusions from the sonification. In addition, the number of avail-
able sound attributes may be too small for very high-dimensional
data so that only a subset of the variables can be used for soni-
fication. These drawbacks are partly overcome by Model-Based
Sonification, which was proposed recently in [5]. Model-Based
Sonification uses the viewpoint, that sound is better characterized
by its sound source and the sound generating processes than by
isolated attributes of the sound signal like pitch or envelope shape.
A framework for describing sound and hearing based on this per-
spective can be found in [6, 7, 8].

3.1. Model-Based Sonification

Model-Based Sonification begins with the observation that our au-
ditory system iswell-optimized for the interpretation of sounds oc-
curring in our physical environment. The source of these sounds
is dways a physical material, whose dynamics allows for mo-
tions which can be perceived as sound. Most materias are in a
state of equilibrium without interaction and thus do not produce
sound. Often, humans themselves excite acoustic systems by hit-
ting, striking or shaking aphysical system and thus put energy into
it. In this case, sound is an important feedback which communi-
cates properties of the material. Arguing that our brain is tuned
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to draw information about material properties from such sounds,
the goal of Model-Based Sonification isto carry this cycle over to
data sonification. A sonification model isaway to build up akind
of virtual data material from the data set by identifying dynamical
elements, providing a recipe for the dynamics and specifying the
types of allowable interactions. The user then might explore the
data set by shaking, plucking or hitting the virtual data material.
The main advantages of this Model-Based Sonification approach
are asfollows:

e Sonification models need only a few parameters whose ef-
fect on the sound is easily understood and that remain the
same independent of the data under consideration.

e Properly designed models can be applied to arbitrary high-
dimensional data. As the data is implicitly encoded into
sound there is no need for prior feature selection or dimen-
sion reduction.

e Knowledge about the model facilitates or even enables an

understanding of the sound —no further code book isneeded.

e |nteraction with asounding object (in this case the data ma-
terial) by excitation is something human users are familiar
with, so they will not be annoyed by the sound.

Examples of Model-Based Sonification include data sonograms,
data set spring meshes and particle trgjectories in a data potential,
all of which are described in [5]. For our McMC sonification,
we extend the particle trajectory model and construct a potential
function based on a target density p. To motivate this approach,
we first review the original particle idea developed in [5].

3.2. Particle Trajectoriesin a Data Potential

In this sonification model, N datarecords {yi,... ,yn~}, aein-
terpreted asfixed massesin ad-dimensional Euclidean space (y; €
R?), contributing to a global potential

V0 =5 D i) ©

with

/2 2
) = 1 lIx — yill
$i(x) = <27r02> exp < 202 ’

Unlike the potential appearing in Newton's law of gravitation, our
expression (3) makes use of aflipped Gaussian to avoid singulari-
ties. In this sonification model, the data points {y1, ... ,y~} are
fixed. The dynamical elements are test particles which are thrown
into that space at random positions with a given kinetic energy.
They are attracted by the data points and thus follow a path ac-
cording to a given dynamics

mx(t) = =ViV(x) —yx() , 4

assuming a mass m and friction coefficient v. The particles’ ki-
netic energy

1 .
Trin(t) = me(t)2 (5)
is high-pass filtered and then taken as audio signal for the data

sonification. Figure 2 shows atypical trgjectory for a data set con-
sisting of data pointsin 3 clusters. The choice of ¢ determines the

T
trajectory -
[data points

(@) (b)

2 %

kin. energy (arb. units)

bl
0 500 1000
X1 time index

Figure 2: Illlustration of particle trgjectory audification. Trajecto-
ries of this kind are later used to sonify single McMC steps. (a)
shows 3 data clusters and 1500 steps of atrgjectory, (b) shows the
corresponding kinetic particle energy T5..,. Obvioudly, the trajec-
tory converges to the cluster in the middle. A sound example can
be found on the Web page [9].

sound: close to the origin, the Gaussian potential can be approxi-
mated by a paraboloid which isknown to lead to damped harmonic
oscillations with constant pitch. Although the sound of an individ-
ual particle moving in V' depends on itsinitial state, a qualitative
behavior emerges from the sonification which can be perceived
when an ensemble of particles is sonified simultaneously: clus-
ters can be discerned as pitch groups. Starting the particles with
velocity 0, they will (depending upon their starting position) con-
verge to different troughs of the potential functions. As the pitch
is determined by the curvature of the trough at the minimum, clus-
ters of different size will give rise to differently pitched sounds.
Besides this, we can make inference about the separation of the
clusters based on the dynamical evolution of the particle sounds:
particles that start with a high potential energy are able to move
around between different clusters. These chaotic trajectories can
be perceived as a noisy sound. The better two clusters are sepa-
rated, the earlier this sound changes into a harmonic pattern. This
sonification model was first introduced in [5] and was shown to be
an effective tool for ng the size and separation of clustersin
adata set.

3.3. McMC Sonification Model

Our model for McM C sonification is based on the construction of
particle tragjectories similar to those explained in the previous sec-
tion. In this case, however, we replace the potential V (x) with a
target density p(x). Also, we change the sign of the force term
in (4) to +V«p(x), so that the test particles are accelerated to-
wards local maxima (or modes) of p. Particles then follow paths
in the domain of p according to the dynamics

mX(t) = Vip(x) —7x(t) , (6)

where we again specify the mass m of a particle and the friction
coefficient . We recover the setup in (4) by taking p to be a ker-
nel estimate of the density of data points {y1,... ,yn~}, using a
Gaussian kernel with bandwidth o.

Similar to the particle model in Section 3.2, the density p is
unchanged during the sonification (corresponding to the fixed data
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set {y1,... ,yn~}). The McMC simulation then provides samples
in d-dimensional space. These are taken as starting points for a
deterministic process which explores the local environment and
represents the modal structure acoustically. Different choices have
been considered for this step:

Method 1: Injecting atest particle with small kinetic energy and
producing an audification of its kinetic energy;

Method 2: Injecting atest particle using high friction coefficient
and using function values along its aperiodic trgjectory to
parameterize complex auditory grains’; and

Method 3: Running a mode search algorithm to find the nearest
local maximum and using parameterized auditory grainsto
present the resullts.

The first method leads to particle trajectories which converge
to the nearest mode, encoding the mode shape implicitly into its
motion and thus into sound as described in Section 3.2. Close to
the local maximum, the function has a pure parabolic shape which
leads to quasiperiodic oscillations and thus to a pitched audio sig-
nal (mixture of discrete lines). The spectrum corresponds to the
eigenvalues of the Hessian matrix at the mode center, and thus
provides information about the shape of p near the mode. The
main advantage of this approach isits conceptual simplicity: only
few parameters need to be adjusted and the interpretation of the
sound is tightly coupled with the process. Method 1, however,
is extremely demanding computationally. For each McMC step,
a complete particle trgjectory must be computed which requires
solving the differential equation (6) numerically. About 10,000
steps of the dynamics are required for asingle Markov step.

Given this substantial overhead, we looked for modifications
to the sonification model that might provide similar local informa-
tion but with less effort. For Methods 2 and 3 we define a compu-
tationally simpler link between the stochastic McMC process and
the rendered sound. However, these approaches require additional
parameters that need to be set, making the auditory representation
dlightly more indirect. Method 2 reduces computation by taking
a high friction coefficient for the particles. This scheme requires
only about 10% of the time used by Method 1 for each McMC
step, because the high friction quickly slows the particlesto a stop.
As each particle sweeps out its trajectory, the shape of the neigh-
borhood close to the nearest local maximum can be perceived as
a pitch variation pattern. Modes can be identified by their pitch
which corresponds to the value of p. (Therefore, only modes with
distinct density values can be discerned; we will address this prob-
lem in Section 3.5.) By using large friction forces, Method 2 is
almost the same as a mode search by gradient ascent. For that rea-
son, we considered Method 3, which finds the nearest mode more
efficiently.

The available information during the McMC process can be
divided into three groups: local data, which isvalid only for asin-
gle step, global data about the McMC process, and mode-specific
data which we compile in a mode database after each iteration.
The mode database provides a summary of our current knowledge
about the modal structure of p. Table 1 summarizes these three
categories.

The tragjectory audification as used in Method 1 provides in-
formation about the modes in an analogic manner, according to the

3The acoustic presentation for McMC step i is given in the sonification
a atimet; = T -4 inform of ashort audio signal of about 20-100 ms.
This short signal is the basic element for granular synthesis [10] which we
refer to as an “auditory grain”.

Local Data

X; McMC step coordinates

p(xi) McMC step function value

Vp(xi) gradient

d; distance to last McMC step

r; acceptance ratio

m; coordinates of nearest mode

m; index of nearest mode in mode database
p(m;) mode density at nearest mode m;

i distance between McMC step and nearest mode
A; acceptance flag

ni nr. of steps until convergence in mode search
Global Data

cf,cr counter for accepted and rejected steps

Ny, number of modes in mode database

Pmax = m]aXp(mj)

Mode Database — for dl j < N,

p(my) mode coordinates and density value

¢ha,rch | counter for acceptedirejected steps

d; average distance of all attracted steps to mode
vl mean of all attracted steps

X covariance matrix of &l attracted steps

Table 1. This table summarizes the available information on the
McMC process.

K
proposition 4

Figure 3: Illustration of 6 McMC steps in a bimodal distribution.
At each McMC step, furthermore the density values p(x;) and the
gradient Vp(x;) isavailable. At step 4, the proposition isrejected,
so the McMC step remains at x5 = x4.

taxonomy of Kramer [11]. However, we can a so identify symbolic
information by making explicit the attracting mode of the particle
started at the current McMC step. Thisisdonein Methods 2 and 3,
where we create a list of mode structures that contains the coordi-
nates of each mode and the of height of p, the number of McMC
steps for which test particles were attracted to each mode, the aver-
age distance attracted particles traveled to reach the mode, and the
covariance matrix of al contributing McMC steps. Most of thisin-
formation is not displayed in the sonification at each McMC step,
but instead is summarized through Auditory Information Buckets
explained below.

Summarizing, the sonification model is a continuously run-
ning stochastic process, where interleaved deterministic steps are
used to explore local attributes of p(x). The sonification superim-
poses relevant information about this process in the domain of p.
Using audification of particle tragjectories like in Method 1, the
sound can be very complex and hard to interpret. If auditory grains
are used like in Methods 2 and 3, the ear seems better able to pro-
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cess the sound. Therefore we enriched the model in this case with
two additional streams.

Using a kind of parameter mapping technique to drive the
sound attributes of the grains, several problems arise. Sound at-
tributes normally show perceptual couplings, so that the perceived
loudness of tones with identical amplitude strongly depends on
the frequency of the tone. The implications of such perceptual in-
teractions for the design of sonifications are investigated e.g. in
[12]. To mitigate such effects, the selections for assignments from
data attributes to sound attributes are mainly motivated by drawing
analogies with the particle trajectory audification.

3.4. Auditory Information Buckets (AlB)

Information buckets provide away to choose the granularity of in-
formation which is presented acoustically. A bucket can be thought
of as a place where information is collected about certain time
steps. Both a counter for the number of items in the bucket and
the value(s) of the data are stored. Furthermore, a threshold is
defined which limitsthe bucket size. Exceeding the threshold trig-
gers a flushing of the bucket which results in the synthesis of a
sonification for the bucket content. Thus the rate and complexity
of these bucket sonifications can be easily chosen by adjusting the
threshold. Within the McM C sonification model, buckets are used
to summarize the characteristics of the modes. Each McMC step
contributes to its respective mode bucket, where its starting posi-
tion x; is stored. On a flushing event for mode j, the data covari-
ance matrix X; of this sampleis computed and asound is rendered
using the eigenvalues of X; as described in Section 4.3. From the
bucket sonification, we infer the shape and intrinsic dimension of
the mode.

3.5. Nonlinear Pitch Mapping

A very important property of the auditory grainsistheir pitch. We
design the auditory grains so that pitch correlates with the density
value of the nearest mode. Doing this, however, two modes with
very similar densities cannot be distinguished acoustically. This
problem is solved by anonlinear mapping function z = g() from
density values 7 to pitch z which allocates a higher portion of the
available pitch range [pmin, Pmas] in density regions containing
many values. At some fixed point intime, let my,... ,my,, be
the locations of the IV,;, modes discovered by the McMC sonifica-
tion process. A resolution requirement is given by the density of
modes along the 7r-axis which can be estimated from the sample
of mode densities {71, ... ,7n,, } With 7; = p(m;). We then
construct a pitch map via

9(m) = c(7) - (Pmaz — Pmin) + Pmin (7

where
o LR (r=m)? 8
c()—ijﬁ;@( ), @

isthe cumulative distribution function (CDF) derived from akernel
density estimate of the mode distribution using a Gaussian kernel
with bandwidth 2. In this expression, &(-) isthe standard normal
CDF. A reasonable choice for 72 is the average distance between
the ;. Figure 4 shows the transfer function for a simple example.
As a special case of this general approach, we might use the em-
pirical (step function) CDF of the sample {71,... ,7n,, }. If gis

T, | T T
I (@ density estimate - r (®)  density map —e— 1
L g(x) -——-- rang map —=— |
= modes
S 1r T = 7]
g e - =)
g 5
s | , ] s |
S { a
£ /m ] L
0 el I S 0 1 1
0 5 10 0 5 10
density density

Figure 4: Nonlinear pitch mapping for a given sample of modes.
(a) shows the kernel density estimate, the CDF and the modes and
their assigned function values g(\). It can be seen how the non-
linear mapping increased the resolution at densities around 4. (b)
shows the pitch assignment using the index of the density ordered
mode list. Obviousdly, pitch differences are even stronger amplified

only evaluated at the 7r;, thisis equivalent maintaining an ordered
list of modes and assigning pitch with atable lookup. Figure 4, (b)
shows the corresponding pitch values for this approach. The ef-
fect of the nonlinear pitch mapping is to amplify pitch differences
while maintaining the ordering.

4. SONIFICATION DESIGN

The sonification currently uses 3 auditory streams which can be
independently switched on or off. The first stream contains audi-
tory grains using granular synthesis to present the Markov chain
random walk through data space. The second stream provides in-
formation about rejected propositions of the Markov process, and
thus informs the listener about the borders of the modes. The third
stream contains auditory information buckets which summarize in-
formation about the modes in the sense of a zoom out.

4.1. McMC process monitoring stream

The basic element of the McMC sonification is the process moni-
toring stream, which provides transient information about the run-
ning McMC process. On each McMC step, one auditory grain is
added to this stream. Asthe McMC process is a seria evolution
in time, the step index ¢ has the natural meaning of a time axis
and thus “process time” is a linear mapping ¢(:) = T - i, where
T is a user-specified scaling factor. Depending upon the focus of
attention, different scales are useful for inspection of the McMC
process. With T' = 0.1sec/step, individual steps can be resolved,
whereas T' ~ 0.002sec/step yields an overall impression about
different modes of p and their relation to each other. However, ar-
ranging a series of grains on aregular time grid can lead to either
a monatonic rhythmical pattern or the perception of pitch at fre-
quency 1/T. To avoid these effects, we add a random time jitter
of T'/4 for the onset of the grains.

For the particle trajectory approach in Method 1, there is no
need for further sonification design, as the sound is canonically
derived from the particle’s kinetic energy. The only parameters
are the mass of the particle, the friction coefficient, and the sam-
pling rate of the trgjectory computation which can be adjusted
by the system user. However, given currently available computa-
tion power, this audification approach is unsuited to inspect larger
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datasets, so we will shift our discussion to the proposed aterna-
tives which use auditory grains. Thiskind of sonification requires
anumber of design decisions which we now describe.

The auditory grain signals for Methods 2 and 3 are nonhar-
monic periodic functions which are multiplied with an envelope
function having smooth attack and decay. The parameters of the
grain synthesis are pitch, duration, volume and timbre (spectral
composition, which is a multidimensional parameter). The choice
of mapping is inspired by the acoustic properties of the audifica-
tion, in order to maintain the meaning of the sound related to an
imaginary process. In particle trgjectory audification, the duration
is dependent upon its initial energy E? = p(m;) — p(x;). We
truncate thisvalue viamax (0, min(E?, pimaz)) and then apply the
linear map that carries [0, pmae] t0 [0.27, 3T7]. In functional nota-
tion, the transformation is given by

duration = map(EY, [0, pmaz], [0.2T, 3T7]) . 9)

For Method 1, pitchisvarying while a particle convergesto the
nearest mode, m;, say. At some point, the motion of the particle
stabilizes and the audification can be used to identify the mode
by its pitch. Thisis maintained in Method 2 and 3 by driving the
pitch of the the grains by p(im;). Because this pitch depends on
the density value p(my), it can be difficult to distinguish between
modes of similar height. Therefore, we apply the nonlinear pitch
mapping described in Section 3.5,

log, (freQuenW) = map(c(p(ml)), [Oa 1]) [8a 10]) (10

with ¢(-) given in equation 8. As ¢(-) is a monotone function,
different modes can be compared with respect to their densities.

In the particle sonification of Method 1, volume istightly cou-
pled with E2. For Methods 2 and 3, however, we are free to assign
amplitude in adifferent but intuitive way: we use the amplitude of
the grains to communicate the relevance of the mode, using loud
grainsfor modes which arevisited rarely. Thisisachieved by map-
ping S = ¢*! /i to the grains amplitude

10log,, (amplitude) = const + map(S~*, [0, Nyn], [0, 30])
(11

Thus amplitude corresponds to the “interestingness’ of the event.
New modes are introduced with loud grains, while the relative
variation of amplitude heard as the McMC random walk moves
around a mode provides information about how far we are from
equilibrium. Figure 5 illustrates this stabilization process.

4.2. McMC detailsstream

This stream aims to provide more insight into the McMC process.
Currently, a decaying white noise of 2 msec duration is added for
all regjected propositions. From that, the listener gets a coarse im-
pression about the efficiency of the McMC process.

Furthermore, for all accepted McMC steps some information
is given about the distance to their nearest mode relative to the
average distance of all steps which where attracted by the mode.
This provides clues about whether the McMC random walk is ex-
ploring the center or the edge of amode. Let ¢ denote the index of
the accepted step and let j be the index of the nearest mode. We
use d? to denote the distance between the position of the chain at
¢+ and the location of the mode m;. Finaly, let §; be the average
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Figure 5: log(amplitudes) of the auditory grainsin the McMC pro-
cess monitoring stream for a density p with 3 modes of different
probability mass. Whenever the McMC process moves around in
one of the modes, the grain amplitude decreases. These volume
differences get smaller if convergence is reached.

distance traveled by particles finding mode j. We map d{ /d; to
the amplitude of agrain using

10 log, o (amplitude) = map(d] /6;,[1,2],(0,30)  (12)

and use grains whose pitch is the same as in the McMC process
stream but shifted 2 octaves higher. In so doing, we modify the per-
ceived timbre of the grains in the McMC process stream: McMC
steps from the tails of a mode are perceived as brighter sound.

4.3. AlB stream

The AIB stream provides a summary of what is known about the
modes during the run of the McMC simulation. On each McMC
step, avalue of 1 isthrown into the respective AlIB. If the bucket's
content exceeds a threshold T, an AIB event is generated. We
choose T; to be a constant, so that the average number of bucket
events per minuteisso small that overlays arerare. The AIB events
have a duration of about 0.5 sec, starting with a pitched tone whose
pitch is a 2-octave downshifted version of the mode pitch. The
duration of this mode marker isamapping of the average distance,
relative to the square root of the trace of the variance-covariance
matrix associated with p, 2. We can estimate this matrix using the
McMC samples themselves. (When our target density p isakernel
smooth of aset of data{y, - .. , y~}, wecan estimate this matrix
directly.) Thussmall clusters or narrow modes are introduced with
short tones, using

duration = map(d;, [0, /trace(X)], [0.3,1]) . (13)

After 100 msec, an uprising chain of percussive tones is started.
These represent the ordered eigenvalues A, 1 < k < d of Xy,
the sample variance-covariance matrix of all McMC observations
having mode 5 astheir nearest mode. The number of tones played
within this chain is given by

l
n = min (Z Ak < 0.9 trace(E,—)) (14)

k=1

Thus, the number of tones provides insight into the intrinsic di-
mension of the mode. The tones within the arpeggio are located
on a50 msec time grid. The pitch of the kth tone is given by

log, (frequency) = pitch = map(k/d, [0,1],[12,13])  (15)

where d is the dimension of the domain of p.
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Figure 6: Short Time Fourier Transform of asound signal obtained
by sonifying 100 McMC steps in a distribution p which is a mix-
ture of 3 Gaussians with different variances. The three different
pitches correspond to the curvature of the modes as described in
section 3.2.

5. EXAMPLES

In this section, we present examples of our sonification method
applied to both synthetic and real world problems. Sound files for
these examples can be found at the Web site [9]. We begin with
a short demonstration of sound examples using an audification of
particle trajectories as described in Method 1. All further exam-
ples are generated using auditory grains as in Methods 2 and 3.
For the purpose of learning the sonifications, we split the sound
examples in different pieces so that it gets easy to follow the dif-
ferent streams.

5.1. McMC Sonification using Trajectory Audification

This example (E1) presents a sonification using direct audifica-
tion of the kinetic particle energy as described in Method 1. We
demonstrate this sonification with a density p which is a mixture
of 3 Gaussians with different variances and mixing proportions.
For the example, every 10th McMC step is audified, so that the
samples are amost uncorrelated. Figure 6 shows a spectrogram of
the resulting sonification. The particle audifications are perceived
as percussive sounds with rich spectra during the attack phase due
to the nonharmonic shape of the attracting mode of p.

5.2. Cluster-Analysis

In this example, McMC sonification is used to explore clustersin
a 6-dimensional data set. The data were drawn from a mixture
of some spherical Gaussian distributions in 6d space. The mixing
proportions, the covariance matrices, the cluster centers and the
number of clusters are chosen randomly. In this simple example,
the clustering can be easily depicted from a 2d-plot, as shown in
Figure 7. Our target density p isakernel density estimate derived
from the sampled data using a Gaussian kernel with covariance
matrix 0.2V, where V' isthe sample 6 x 6 covariance matrix esti-
mated from the data. The jumping distribution J isasimple Gaus-
sian as in (2) with o taken to be 80% of the data set variance.
This example is given to present the different streams and the in-
formation they provide. The first data set contains 3 clusters, one
of them in a3 dimensional submanifold, the othersin a5 dimen-
sional subspace. All 3 clusters have a different probability mass.
The time per step isT = 0.01 sec/step. Figure 8 shows a signal
plot of the different streams.

Figure 7: Clustered data in 6d space. The plots show 5 clusters,
projected onto () axis zp and 1, (b) first two principal axis. Plots
depend strongly upon the selection of the axis. McMC sonification
isindependent upon rotations of the coordinate system.
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Figure 8: The signal plot of Example E2.a gives a course orienta-
tion about the content of the different streams and may be a help
for the novice listener to distinguish partsin the mixed sound track.

On the Web page you find separate sound files for this sonifi-
cation. Listen to first to example E2.a. In stream 1, we present the
McMC process monitor. You can hear 3 different pitches which
aternate. These are the pitches related to the modes as described
above. You hear how the amplitude changes while the McMC
steps move around in one mode. At the beginning you notice some
high pitched percussive sounds: we add this marker whenever a
new mode is found. From the absence of such sounds you know
that all modes were found after the first 100 steps. Listening to
the McMC details stream you observe that the noisy sound keeps
rather constant. This means, that the rejection rate is independent
of where the McMC step is. Thisis due to the large jumping vari-
ance. Reducing the variance of J, the noisy ticks get more infre-
guent. Also in this stream, you can hear pitched auditory grains,
whose pitch corresponds to the mode. They are played when the
sampler moves around in the tails of a mode. Together with the
first stream thisresultsin the brighter sound of the grain. The AIB
stream contains the buckets. Here you can hear 3 different pitches.
The middle one is the most frequent, and thus this mode has the
highest probability mass (mixing proportion). From the eigenvalue
arpeggio you can conclude that this cluster also exhibits variability
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Figure 9: 5 instances of the digit classes ‘1’ and ‘2'. Each record
consists of the 64 dimensional vector of intensity values. The
eigenvalue spectrum of the covariance matrix of al instances in
class ‘1 and ‘2’ are shown in figures (a) and (b). Obviously the
instancesin class ‘2’ show a higher complexity.

along more than 3 directions. Example E2.b sonifies the same data
set, thistime with 7 = 0.002. We hear 6000 McMC steps in 12
secs. You can hear that transitions between the middle pitched and
the higher pitched clusters are very frequent. Indeed, the cluster
centers have a smaller distance. Example E2.c sonifies a different
data set where 6 clusters are found in dataspace. Using 7' = 0.008
secs/step and an appropriate variance for J we can discern al 6
clusters.

5.3. Sonification of Handwritten Digits

In this example, the high-dimensional function is a kernel den-
sity estimate for a data set of bitmaps showing hand-written digits.
Samples are given in Figure 9. We used the MNIST database [13]
which offers a large data set of images of size 28x28 which we
sampled down to 8x8. Each image can thus be represented as a
point in a 64-dimensional data space, using the pixel intensities
as features. The data set contains 1135 instances of class’1’ and
1032 instances of class '2'. Using kernel density estimation, a
64-dimensiona function p is generated which is sonified in Ex-
ample E3.a. The sonification of the digits showing an ‘1’ show
less complexity than the distribution of the ‘2’. Listening to the
AIB stream, the intrinsic dimension seems to be smaller as well.
This isin agreement with the eigenvalue spectrum of the sample
covariance matrices of these data sets (shown in Figure 9).

5.4. Convergence of McMC Simulations

With this example, we demonstrate how McMC sonification can
be used to assess convergence of the Markov chain. We consider a
Bayesian model and use McMC to simulate from the posterior dis-
tribution. The simplicity of the Metropolis algorithm introduced
in Section 2 is ideal for motivating Markov chain methods, but is
not sufficiently rich to cover most modern statistical applications.
As the purpose of this paper is to highlight the audio representa-
tion, we will begin with audio streams derived from several runs
of McMC. The underlying problem involves a Bayesian formula-

tion of Poisson regression. The goal of the origina analysis was
to ascertain the effects of pollution on daily mortality counts in
Philadel phia, Pennsylvania between the years 1974 and 1988. Be-
cause this is a Bayesian model, our target density is a posterior
distribution on the model parameters. In this case, we have 186
parameters, leading to a Markov chain in 186-dimensional space.
Our sound examples illustrate how changes in the form of the
model, estimates for the hyperparameters as well as the proposal
distribution (similar in spirit to the jumping distribution introduced
in Section 2) effect the audio display. We also illustrate how the
audible dependence in a chain effects variance estimates based on
the samples {zo, z1,z2,...}. See Example E4 on the Web site
for the sounds and further description.

5.5. Sonification of the lris Dataset

This example presents sonifications for the 5-dimensional irisdata-
set, which contains 3 classes of 50 instances each, where each class
refers to atype of iris plant. Removing the class |abels, 4-dimen-
sional data vectors remain. Two clusters can be easily discerned.
The presented McM C sonification also finds this structure.

This example discusses the influence of o2 on the sonification.
Asexplained above, p isderived from the data set by kernel density
estimation using a Gaussian kernel of bandwidth o%. Thus o2 can
be adjusted to select a specific resolution while inspecting the data.
Taking large values for o, p shows only one mode, as can be
heard in sound Example E5.a and E5.b. Reducing o2, p is slowly
transformed to a bimodal distribution. This can be clearly heard
in Example E5.c to E5.f. Obviously, the bimodal structure is quite
stable under variation of o2. However, decreasing ¢ further, a
modal substructure of the main clusters gets apparent, which can
be heard in Examples E5.g and E5.h.

6. CONCLUSION

We have presented a new tool for monitoring the convergence of
McMC simulations. Markov chain methods are extremely popular
for making inferences about complex, high-dimensional densities.
Unfortunately, it can be difficult to assess important characteristics
of asimulated chain with visual displays. Through a multi-stream
sonification model, we are able to directly infer rather complex
dependencies evident in achain. After experimenting with this ap-
proach, we found that the sonification also provides information
about the target density itself. Furthermore, by taking the target to
be a nonparametric density estimate, this sonification tool can be
applied to explore the local features of data sets. Using a Model-
Based Sonification approach, the McMC sonification can be used
for arbitrary densities/data and must only be learned once. It has
only a few control parameters, which can easily be understood.
While our current auditory display isaready quiteinformative and
gives a lot of interesting information about the function at hand,
there are lots of possibilitiesto enrich it even further. For example,
we are considering the use of spatialization, speech annotations
and additional auditory streams. Another sensible enhancement
involves pairing our sonification with a visual display. A projec-
tion of the data may be used as a map where certain regions may
be highlighted aiming to amplify the amplitude of all grainsrelated
to McMC steps within the selected region. These and other exten-
sions are the subject of our ongoing research and will be reported
elsawhere.
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