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Abstract. We present a system for sensory classification and segmenta-
tion of motion trajectories. It consists of a combination of manifolds from
Unsupervised Kernel Regression (UKR) and the recurrent neural Competi-
tive Layer Model (CLM). The UKR manifolds hold learned representations
of a set of candidate motions and the CLM dynamics, working on features
defined in the UKR domain, realises the segmentation of observed tra-
jectory data according to the competing candidates. The evaluation on
trajectories describing four different letters yields improved classification
results compared to our previous, pure manifold approach.

1 Introduction

In previous work, we studied the use of UKR manifolds for the representation of
motion capture data for motion production [1]. We have also shown how these
representations can be used for the recognition of the represented motions [2].

The CLM is a layered recurrent neural network consisting of threshold units.
It is able to segment features of processed data into perceptual groups. The
segmentation is based on the evaluation of pairwise compatibilities of the in-
put features (e.g. [3, 4, 5]). The fundamental requirements for the grouping,
therefore, are the preprocessing into appropriate data features as inputs and a
measure for their pairwise compatibilities.

We present how the preprocessing can be performed in the domain of UKR
manifolds and how a corresponding general compatibility measure can be de-
fined. We apply both on observed letter trajectories in order to segment them
according to a set of previously trained candidates. The evaluation on letter
trajectories yields promising results.

2 Competitive Layer Model (CLM)

The CLM is a recurrent neural network for grouping and segmentation of sensory
input features. It has been introduced in [3] for spatial feature linking, further
applied to image segmentation and perceptual grouping (e.g. [4, 5]) and recently
transfered to action segmentation for robot task learning [6].

The fundamental basis of the CLM is an appropriate preprocessing that
extracts input features from the processed data and a corresponding function
that provides a pairwise measure for input compatibilities.

The CLM segments a set of NV input features into groups of mutually compat-
ible features. Each group is represented by one CLM layer. Each layer provides
one neuron for every input feature. The activities of these neurons express the



assignments of the associated features to the corresponding layers. During the
grouping process, each layer competes for the exclusive assignment of all features
that are compatible with the layer. Originally, this compatibility association is
usually not specified beforehand, but dynamically evolves from previous (partial)
assignments of features to the same layer.

The grouping dynamics is driven by two main ingredients: (a) an intra-
layer pairwise compatibility negotiation between the assigned features and (b)
an inter-layer Winner-Takes-All mechanism between the neurons from all layers
that correspond to the same feature. The CLM describes these two ingredients
as terms of a grouping energy function, that provides a measure for the quality of
a specific grouping result. Applying the CLM dynamics minimises this energy
and it can be shown (cf. [4]) that it converges (under certain conditions) to
stable fixed-points representing local minima of the grouping energy and thus to
locally optimal groupings of the input features.

To sum up, the crucial issues in using the CLM are the data preprocessing
and the definition of the compatibility function. In our approach, both issues
are realised in the domain of the UKR manifolds, as described in Sec.4.

For further details on CLM, please refer to [3, 4].

3 Unsupervised Kernel Regression (UKR)

UKR is a recent approach to learning non-linear continuous manifolds, that is,
finding a lower dimensional (latent) representation X = (x1,...,xy) € RN of a
set of observed data Y = (y1,...,yn) € R?*Y and a corresponding functional re-
lationship y = f(x). The method has been introduced in [7] as the unsupervised
counterpart of the Nadaraya-Watson kernel regression estimator. In its basic

form, UKR uses the Nadaraya-Watson estimator f(x) = S~ yi%

smooth mapping f: x € R? — y € R? from latent to observed data space (Ky:
density kernel with bandwidth H). In UKR, X = {x;} now plays the role of
input data to the regression function and is treated as set of latent parameters
corresponding to Y.

UKR training, i.e. finding optimal latent variables X, is realised as gradient-
based minimisation of the reconstruction error R(X) = %>, || yi — f(xi; X) ||,
Most notably, UKR can perform leave-one-out cross-validation without addi-
tional computational cost. In addition, it can easily be initialised with the results
of spectral embedding methods like ISOMAP in order to improve its robustness
against poor local minima.

The inverse mapping x = f~!(y; X) from latent to observation space is not
directly supported. For our approach, we use the approximation x = g(y; X) =
arg miny |ly — f(x; X)||? as it is proposed in [7].

In the original form, UKR is a purely unsupervised approach to continuous
manifold learning. In order to enable to incorporate prior knowledge about
the structure of the training data, we introduced a structured version of UKR
training (e.g. [1]). With Structured UKR, it is possible to represent data with a
temporal context, like trajectories of hand positions, in a very easy and robust
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way. In particular, due to the specific training of Structured UKR, the order
of the represented time series of training observations y; is reflected in their
latent parameters x; and is captured by on specific latent time dimension. In
order to represent periodic motions, we use the periodic kernel K (z; —z;;0) =
exp [—202sin®(z; — x;)]. For further details on UKR, please refer to [7, 8, 1].

4 Combining UKR and CLM

In the combination of the two methods, the CLM performs the segmentation
of observed trajectory samples according to a set of candidate patterns. These
candidates are represented by UKR manifolds. The CLM input features of the
observed trajectory, which are required by the CLM dynamics, are defined in
the UKR manifold domains of these candidates.

Whereas the CLM has been designed in a general fashion, it usually uses
global layer-independent features and therefore focusses on the pure pairwise
mutual compatibilities of these features. On the contrary, in order to segment
according to a known set of candidates, we associate every CLM layer with
one specific UKR manifold and the layers’ input features are computed on the
basis of the layer-specific UKR manifolds. Every CLM layer therefore has its
own input features and the CLM dynamics focusses on the segmentation of the
features into coherent groups which are compatible with the assigned CLM layer.

The main issue of the UKR/CLM combination is to define both a preprocess-
ing function and a compatibility measure in the UKR manifold domain. This
procedure decouples the CLM from the structure and the characteristics of the
data itself, and only focusses on their UKR representations. Since these rep-
resentations are designed to be unified for a broad range of applications, we
retrieve a more general approach for any data represented in UKR manifolds.

The manifold features are inspired by our initial, purely manifold-based ap-
proach which did not include competition of the candidates [2]. The features are
based on (a) the order of the UKR latent representations x; = g(y;, -) of the ob-
served trajectory samples {y;} and (b) the normalised UKR self-reconstruction
errors (sre) e = ATS 1A with A =|| y; —f (%;,-) || and X being the diagonal
matrix of the dimension-wise UKR training data variances (cf. Sec.3 for details
on f(-) and g(-)). Due to the temporal context of the sequences, we usually
restrict the mutual interactions to a limited time horizon by only considering a
temporal neighbourhood N; = {y, | 0 <||i—j||< H} of each input feature y,. H
is the neighbourhood parameter of the method: large values of H focus on more
global structures whereas small values are rather sensitive to local structures.

(a) can be directly used as compatibility indicator of observed and repre-
sented motion: since the latent space of a Structured UKR manifold reflects
the temporal order of the represented pattern, the time components of the la-
tent projections X; of compatible observations are in correct chronological order.
Vice versa, observations whose latent projections are not correctly ordered are
likely to be incompatible. Taking the period 7 of the latent time dimensions
into account, we define the latent order compatibility (loc) of two observations



Fig. 1: 2D training (bright) and test (dark) data for A- B-,C-,D-trajectories.

yiand y; (i < j;j € Ny) as:

loe = e = H7 (% — %) 1)

Cij 7t

and Vi: cl2°=0. HZ(-) = sgn(cos(mod,(-))) serves as a Signum function for pe-
riodic data. The mod, realises a direction sensitivity in the periodic dimension.

(b) can also be used directly as compatibility measure (cf. [2]). Indeed,
considering the average self-reconstruction error in the temporal neighbourhood
N of the evaluated y; turned out to be more robust (again for observations y;
and y,;, whereas i < j and j € N;):

1 A (k)
= =—-142exp | — H H (2)

T NGl kz,:v Ax (k)
where A (k) = e® — ei®, and Ag(k) = Tk,4, — Tk—1,4, With d; being the latent

time dimension and A.(1) = Ag(1) = 0.

The matrix F of CLM compatibilities can be denoted as a balanced combina-
tion of both measures, with components f;; = %(cﬁ‘}c + ¢i) € [=1;1] describing
the compatibility of the observations y; and y; with each other and with the

underlying layer-corresponding UKR manifold.

5 Evaluation

The evaluation focusses on the recognition abilities of the combined CLM/UKR
system. The training and test data (cf. Fig. 1) each consist of five tra-
jectories for each of the letters 'A’, 'B’, C’, and ’D’. Each trajectory corre-
sponds to the path of a tracked hand drawing a letter in the air and is ex-
tracted from monocular camera pictures from an orthogonal view onto the vir-
tual drawing plane. The tracking has been done with the ARToolkit system
(http://artoolkit.sourceforge.net) only utilising the x/y-components correspond-
ing to the 2D projections onto the drawing plane.

In preparation of the evaluation, one Structured UKR manifold for each of the
letters is trained, each on the basis of five training sequences of the corresponding
letter and each with a one-dimensional periodic latent space (cf. Sec.3). The
trained manifolds then are associated with one of the four CLM layers.

The evaluation of a test sequence consisting of observed trajectory samples
{yi},i=1...N is performed as follows: (a) Each CLM layer is equipped with an



Class. results for "A#1", N = 69, H = 10 Class. results for "A#1B#1C#1D#1", N = 271, H = 10 Class. results for "A#1mid C#1mid", N = 68, H = 10
TP: 69 (100.0%), FP: 0 (0.0%), NC: 0 (0.0%) TP: 251 (92.6%), FP: 20 (7.4%), NC: 14 (5.2%) TP: 65 (95.6%), FP: 3 (4.4%), NC: 0 (0.0%)
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Fig. 2: Exemplary evaluation results. Best viewed in colour. See text for details.

ordered set of N neurons corresponding to the IV observation samples. Each ob-
servation y; therefore has a four-dimensional neural representation in the CLM.
The components constitute the neural activities of the candidate letters rep-
resented by the layer-specific UKR manifolds. All neurons are initialised with
small positive random activations. (b) For each CLM layer, the layer-specific
N x N interaction matrix F is computed on the basis of the layer-associated
manifold (see last section). (¢) The CLM dynamics is applied until convergence,
i.e. until only one non-zero neural activity remains in the 4D neural representa-
tion of any y;. Afterwards, all observations are uniquely assigned to one CLM
layer and to one UKR representation of a candidate letter, respectively. These
assignments constitute the final pointwise classification results.

Figure 2 exemplarily depicts such classification outcome. The solid lines
visualise the layer-specific UKR representations of the candidate letters. The
points (correct classification) and crosses (false classification) correspond to the
processed observations of the test trajectories. The colours correspond to the
classified letters A’ (red), 'B’ (green), 'C’ (blue), and 'D’ (magenta).

Three different applications of the recognition system are illustrated: In Fig.
2(a), a previously segmented whole letter trajectory is processed. In Fig. 2(b),
the system is applied to non-segmented observations consisting of letter concate-
nations and is used to segment the trajectories according to the set of candidates.
Figure 2(c) shows that even concatenated trajectory parts can be processed and
segmented.

Table 1 gives an overview over several classification/segmentation results.
Listed are the mean percentages of true positive point classifications over four
evaluation runs. The sequences 'A;’ to ’D;’ correspond to trajectories of whole
single letters (cf. Fig. 2(a)), ’A1B1C1 Dy’ and *D,C1B1A;’ to concatenations
of whole letter trajectories (cf. Fig. 2(b)) and A7 Bmid> to > Amid pmids
concatenations of the middle parts (half of the points) of the corresponding
letter trajectories (cf. Fig. 2(c)). In order to analyse different sample rates
and parametrisations, the evaluations of the sequences consider every trajectory
sample (N*" = 1) or only every second (N*" = 2), each for the neighbourhood
sizes H = 5,10, 15, and 20 (cf. Eq. 2). Supplemental results can be found under
http://www.techfak.uni-bielefeld.de/~jsteffen/esann2010/.

The method achieves to correctly classify a high percentage of the evalu-
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Table 1: List of evaluation results. See text for details.

ated points. If errors occur, they are not distributed over the whole trajectory,
and thus, the sequences of correctly classified points are rarely interrupted as
shown in Fig. 2. This effect results from the ’gap-filling’ characteristics of the
CLM dynamics and constitutes a large advantage in the classification robustness
compared to the approach without CLM described in [2].

6 Conclusion

We presented a new approach to competitive sensory segmentation of motion
trajectories. It extends our previous approach of using UKR manifolds for mo-
tion recognition by embedding them into a Competitive Layer Model. Through
the CLM neural competition of the candidate motions, previously learned pat-
terns can be recognised very robustly, as we have shown in the evaluation on
letter trajectories.
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