
Modeling Human-Robot Interaction Based on Generic Interaction Patterns

Julia Peltason and Britta Wrede
Applied Informatics, Faculty of Technology

Bielefeld University, 33615 Bielefeld, Germany
Email: jpeltaso, bwrede@techfak.uni-bielefeld.de

Abstract

While current techniques for human-robot interaction
modeling are typically limited to restrictive command-
control style, traditional dialog modeling approaches
are not directly applicable to robotics due to the lack
of real-world integration. We present an approach that
combines insights from dialog modeling with software-
engineering demands that arise in robotics system re-
search to provide a generalizable framework that can
easily be applied to new scenarios. This goal is achieved
by defining interaction patterns that combine abstract
task states (such as task accepted or failed) with robot
dialog acts (such as assertion or apology). An evalu-
ation of the usability for robotic experts and novices
showed that both groups were able to program 3 out
of 5 dialog patterns in one hour while showing a steep
learning curve. We argue that the proposed approach
allows for less restricted and more informative human-
robot interactions.

Introduction
The idea of making robots a ubiquitous technology in or-
der to help people with their every day tasks in home or
office environments has imposed new challenges on inter-
action modeling in robotics. Moreover, if robots are to suc-
ceed in novel tasks, they must be able to learn from humans
by interacting with them. Thus, interaction capabilities are a
fundamental requirement for a robot not only for operating
it but also for teaching it.

Yet, today’s robotic systems often do not have a dedi-
cated dialog system but employ simple keyword-spotting
and command-matching techniques (e.g. (Parlitz et al.
2007)). Other systems rely on finite-state based dialog man-
agers (e.g. (Bauer, Wollherr, and Buss 2009)) that script the
interaction flow as finite-state automaton where the states
are associated with certain system actions and transitions
are taken based on the user’s input. However, this approach
does not scale well to less predictable interaction such as
the ideal of human-robot interaction where two autonomous
agents collaborate and contribute in a mixed-initiative man-
ner. Besides, the finite-state based approach couples dialog
and task management which makes maintenance and reuse

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

difficult. Therefore, interaction typically has to be reimple-
mented from scratch in different scenarios.

On the other hand, concepts for both flexible and
reusable dialog management frameworks have been estab-
lished within the spoken dialog community over the recent
years. Research has been focusing on traditional informa-
tion seeking domains where the system first collects the
required parameters, then presents the desired information
to the user (e.g. an accommodation or travel information).
Such approaches are not directly transferable to the robotics
domain which presents new challenges for dialog system en-
gineering as it requires mixed-initiative, multi-modal, asyn-
chronous, multi-tasking and open-ended interaction in dy-
namic environments (Lemon et al. 2002).

However, several dialog modeling approaches have been
adopted for robotics. Based on the information state ap-
proach (Larsson and Traum 2000), collaboration with au-
tonomous devices (such as unmanned helicopters) involv-
ing concurrent tasks has been modeled within the WITAS
project (Lemon et al. 2002). The Collagen collaboration
and conversation model (Rich and Sidner 1998) has been
applied within a visitor guidance demo (Sidner et al. 2005),
and the Ravenclaw dialog framework (Bohus and Rudnicky
2009) has been used in a multi-robot space exploration sce-
nario (Dias et al. 2006). These approaches have in common
that the dialog manager maintains a declarative description
of the goal decomposition and thus takes the role of the deci-
sion making instance which may make integration into dif-
ferent robotic architectures difficult.

We have introduced a technique for dialog modeling on
robots that achieves a clear separation of dialog and task
planning by relying on a fine-grained task state protocol as
interface between the dialog manager and system compo-
nents (Peltason and Wrede 2010). Furthermore, we have
introduced the concept of interaction patterns which de-
scribe generic dialog strategies that can be tailored with an
application-specific configuration. During interaction, the
dialog manager combines the patterns in a flexible way, al-
lowing for non-restrictive mixed-initiative interaction.

The interaction patterns have been extracted from a num-
ber of different human-robot interaction scenarios as shown
in figure 1, such as the Home-Tour scenario where a mobile
robot is supposed to acquire information about its environ-
ment (Booij et al. 2008), (Peltason et al. 2009), an object

manipulation scenario where a humanoid robot learns how
to label and grasp objects (Lütkebohle et al. 2009), and a
receptionist scenario where a robot offers visitor guidance
(Beuter et al. 2008). Given the diversity of these scenarios,
we argue that the resulting patterns provide a good coverage
of typical situations in human-robot interaction.

In this paper, after recapitulating the main concepts of the
dialog manager introduced in (Peltason and Wrede 2010),
we report on novel results as to the question of whether
the interaction patterns constitute an understandable appli-
cation programming interface to the dialog manager. We
have conducted an experiment where programmers unfamil-
iar with the dialog manager were able to build a simple in-
teraction scenario consisting of begin and end of interaction
and at least one task involving interfacing to other compo-
nents within one hour. We consider it especially promising
that also programmers new to robotics were able to perform
tasks that required integration of dialog with the robot sys-
tem. This result suggests that the interaction patterns to-
gether with the task state protocol are appropriate concepts
to encapsulate the complexity both of dialog modeling and
component integration.

Figure 1: The Curious Robot and the Home-Tour scenario: Two
human-robot interaction scenarios that provided the basis for the
identification of typical interaction patterns.

Utterance Interaction pattern
R: What is that? Correctable information request
H: This is a lemon. Correctable information request
R: A melon. OK. Correctable information request
H: No, I said ’lemon’! Correctable information request
R: A lemon. OK. Correctable information request
R: How should I grasp Simple information request

the lemon?
H: That way. Simple information request
R: Alright, with the . Simple information request

power grasp.
R: I am going to grasp it Self-initiated action
R: I start grasping now. Self-initiated action
H: What objects Human information request

do you know?
R: Lemon. Human information request
H: How do you grasp Human information request

the lemon?
R: With the power grasp. Human information request
R: OK, I finished grasping. Self-initiated action

Table 1: A typical interaction with the Curious Robot where it
first asks for information about an unknown object, then attempts
to grasp it. During action execution, the human asks monitoring
questions in order to check the robot’s learning success.

A dialog manager for human-robot interaction
In this section, we describe the main concepts of the dia-
log manager introduced in (Peltason and Wrede 2010) that
uses an abstract task protocol for interfacing with the do-
main level and provides a collection of generic interaction
patterns as building blocks for human-robot interaction.

The task state protocol
In distributed robotic systems, various components con-
tribute to the overall systems, for instance components for
dialog management including in- and output components as
well as components for perceptual analysis, motor control
and components generating nonverbal feedback. They need
to work together and coordinate.

To realize this, we use the concept of tasks that can be
performed by components. Tasks are described by an execu-
tion state and a task specification containing the information
required for execution. A protocol specifies task states rele-
vant for coordination and possible transitions between them
as shown in figure 2. Task updates, i.e. updates of the task
state and possibly the task specification, cause event notifi-
cations which are delivered to the participating components
whereupon they take an appropriate action such as creating
dialog acts in case of the dialog manager.

In contrast to dialog management approaches that main-
tain hierarchical task representations such as Collagen’s
recipes (Rich and Sidner 1998), the activity models in the
WITAS system (Lemon et al. 2002) or Ravenclaw’s task
specification (Bohus and Rudnicky 2009), our approach
leaves task planning to one or more dedicated components
such as e.g. an action proposal component in the Curious
Robot scenario (Lütkebohle et al. 2009) or an environment
representation in the Home-Tour scenario (Peltason et al.
2009). That is, the global discourse planning is delegated to
external processes while the dialog system is responsible for
the local discourse planning as specified with the interaction
patterns described in the next section. With this separation,
bottom-up decision making is facilitated. Furthermore, the
dialog manager integrates easier into different types of dis-
tributed robotic architectures. The remainder of this section
describes how interaction modeling benefits from the task
state protocol.

cancel
requested

update
requested

runninginitiated

CANCELLED

DONE

failed

completedaccepted

result_available
rejected

cancel cancel_failed

update accept, reject

Figure 2: The task life-cycle. A task gets initiated, is running, may
be canceled or updated, may deliver intermediate results and finally
is completed. Alternatively, it may be rejected by the handling
component or execution may fail.

Integration of action execution into interaction A robot
performing actions such as manipulation of objects needs to

Arm ControlSpeech
recognition

Text-to-
Speech

Dialog

accept Grasp3:

cancel_failed7:

complete Grasp9:

receive
(Grasp the apple)

1:

receive
(Stop)

5:

initiate Grasp2:

say
(I am going
 to grasp the apple.)

4:

cancel Grasp6:

say
(I can not stop)

8:

say
(I finished)

10:

Figure 3: UML sequence diagram illustrating the component
communication for a grasp request made by the human. Later, the
human attempts to cancel the action which does not succeed.

be able to verbalize its intended actions and give feedback
about its internal state, but it also needs to react to comments
or corrections uttered by the human instructor. Having the
robot e.g. performing a grasp action requested by the human
requires communication between the dialog system and the
arm control as shown in figure 3. As the dialog manager re-
ceives the grasp command, it initiates a grasp task which is
accepted by the arm control. The dialog is notified about the
task state update and acknowledges task execution. As the
human commands canceling, the dialog sets the task state
cancel. The arm control however fails to cancel the task and
sets the task state cancel failed which the dialog reacts on by
apologizing. Finally, the task is completed, and the dialog
acknowledges successful task execution. Generally, using
this fine-grained protocol for component integration enables
the dialog system to provide feedback for the user indicating
the internal system state. On the other hand, it supports the
modification of the task specification during execution and
thus gives the robot the ability to react to comments, correc-
tions and commands on-the-fly.

Mixed-initiative interaction The dialog manager exe-
cutes dialog tasks for other components, e.g. greeting the
human if one is detected by the vision, informing the human
about anything or conversely requesting information from
the human. While human initiative is realized whenever in-
put from the speech understanding component is received,
robot initiative occurs when a system component requests a
dialog task to be executed. Situation permitting, the dialog
manager will accept the dialog task, go into interaction with
the human, and finally complete the dialog task.

Learning within interaction The task state protocol sup-
ports learning within interaction by establishing mecha-
nisms for information transfer from the dialog system to
the robotic subsystem. Once information is available from
the human, the dialog manager augments the task specifi-
cation with the new information and sets the task state re-
sult available. Since this transition may be taken multi-

ple times, given information can be corrected. Moreover,
mixed-initiative enables active learning, where the learner
provokes a situation providing new information instead of
waiting until such situation eventually presents itself. Per-
ceptively, integration of action execution and interaction
paves the way for interactive action learning.

Interaction patterns
In interaction, dialog acts are not unrelated individual
events, but form coherent segments that are determined by
semantics, pragmatics and even more subtle factors such as
social conventions or roles.

Accordingly, analyzing our previous human-robot inter-
action scenarios, we have observed recurring conversational
patterns. For instance, the robot’s question for an object la-
bel proceeds alike the question for the interaction partner’s
name or the current room: it first asks for the desired infor-
mation and once the human answered the question, it typi-
cally will affirm it in order to give the human the possibility
to correct it if necessary. Regularities occur also on domain
level. This fact has already been accounted for by basing
communication between the dialog manager and the robotic
subsystem upon the generic task state protocol.

Influenced by the idea of design patterns in software en-
gineering that offer reusable solutions to commonly occur-
ring problems, we captured the detected commonalities as
interaction pattern. Interaction patterns describe dialog and
domain processing on a high level and have a twofold func-
tion. For the dialog manager, interaction patterns constrain
the input interpretation by providing the required dialog con-
text and determine the appropriate reaction on the input. For
the scenario developer, interaction patterns serve as config-
urable building blocks of interaction, encapsulating both the
subtleties of dialog management and the complexity of com-
ponent integration.

Interaction patterns can be formalized as transducer aug-
mented with internal state actions, consisting of
• a set of human dialog acts H and a set of robot dialog acts R,

e.g. H.request or R.assert;
• a set of incoming task events T , e.g. accepted or failed;
• a set of states S representing the interaction state;
• a set of actions A the dialog manager performs, e.g. initiating or

updating a task or reset interaction;
• an input alphabet Σ ⊂ (H ∪ T);
• an output alphabet Λ ⊂ R;
• a transition function T : S × Σ∗ −→ S ×A∗ × Λ∗.
By admitting task events as input and internal actions that
perform task initiation and update, the dialog level is linked
with the domain level.

The patterns have been implemented as statecharts (Harel
1987), an extended form of finite state machines, which
provides both an executable model and an understandable
graphical representation as shown in figure 4.

For instance, the simple action request in figure shown 5
pattern describes an action request initiated by the human
that, in contrast to the cancellable action request used in fig-
ure 3, can not be cancelled any more. The normal course of
events is that the human requests the action to be executed,
the dialog manager initiates the domain task, the responsi-
ble system component accepts execution so that the dialog

state name

action, when entered
H.dialog-act /

state name
H.dialog-act / R.dialog-act

state name
task event / R.dialog-act

/

/

Figure 4: Interaction patterns are represented as transducer which
takes as input human dialog acts and task events and produces robot
dialog acts as output.

manager will assert execution. Finally, the task is completed
and the robot acknowledges. In contrast, the correctable in-
formation request pattern is initiated by the human. Here,
the normal course of event is that on receiving the respec-
tive dialog task request, the dialog manager will ask for the
desired information and accept the dialog task. Once the hu-
man provided the answer, the robot will repeat it as implicit
confirmation that can be corrected if necessary. Table 2 lists
all patterns that have been identified so far.

Pattern configuration The patterns themselves do not de-
termine what kind of task is to be executed or what kind of
information to obtain exactly. These specifics are defined in
the configuration associated with each pattern, and a con-
crete scenario is realized by configuring a set of patterns and
registering them with the dialog manager.

In detail, it needs to be specified for the human’s dialog
acts what kind of (possibly multimodal) input is interpreted
as a given dialog act which is done by formulating condi-
tions over the input. For the robot’s dialog acts, their surface
form needs to be specified. Up to now, speech output and
pointing gestures are implemented as output modalities and
can be combined. Alternatively, a more sophisticated lan-
guage generation component could be added in future.

Moreover, also the task communication needs to be con-
figured. This includes the task specification itself as well as
possible task specification updates. In addition, the defini-
tion of context variables is customizable by the developer.
Context variables can be used for parameterizing the robot’s
dialog acts and for task specification updates. This is how
for the robot’s information request the answer is transferred
from the human to the responsible system component.

Interleaving patterns during interaction During inter-
action, the registered patterns are employed in a flexible way
by admitting patterns to be interrupted by other patterns and
possibly resumed later which leads to pattern interleaving as
shown in table 1. The default policy for pattern interleav-
ing is to permit simpler patterns to be nested within tempo-
rally extended patterns. For instance, it seems reasonable to
permit monitoring questions uttered by the human to be em-
bedded in the robot’s slow-going grasp execution as shown
in table 1. In this way, we equip the robot with multitasking
capabilities.

Pattern interleaving is realized by organizing active pat-
terns on a stack. Whenever an input is received, the dialog
manager attempts to interpret it in the context provided by
the topmost pattern. If it fails, the lower and inactive patterns
are tried.

Initiated by user Initiated by robot
Cancellable action request Self-initiated cancellable action
Simple action request Self-initiated simple action
Information request Correctable information request
Interaction opening Simple information request
Interaction closing Clarification
Interaction restart
System reset

Table 2: Identified interaction patterns.

Do Interaction Patterns ease dialog modeling?
As outlined above, an evaluation of the overall approach
needs to focus on both aspects, the quality of the imple-
mented dialog and the ease of programming new scenarios
or new dialog features. In this paper we focus on the soft-
ware engineering aspect. We have conducted a usability test
where programmers were asked to build a human-robot in-
teraction scenario using the proposed dialog manager. Based
on performance measurement (Nielsen 1994), we evaluated
the usability of the system for scenario developers. Beside,
the participants were asked to continuously verbalize their
thoughts while using the system which enabled us to identify
potential deficiencies and misconceptions and lead to a num-
ber of API improvements including more precise method
naming, clearer syntax for the configuration language and
additional convenience methods.

Experimental Setup Participants were classified either as
robotic expert or robotic novice, each group consisting of
four individuals. Classification was based on the partici-
pants’ statements about previous knowledge on robotic ar-
chitectures, both in general and in-house, as well as the task
state protocol as described above. However, all participants
were unfamiliar with the dialog manager.

Having acquainted with the system by reading the doc-
umentation for 10-15 minutes, participants were asked to
solve a list of tasks with one hour given as time limit. The
tasks were given in abstract textual form and had to be bro-
ken down by the participants into subtasks, such as select-
ing the appropriate interaction pattern, writing the dialog
act configuration using the XML configuration language,
possibly writing additional variable or task configuration in
Java, registering the pattern with the dialog manager and
finally testing the produced code using a prepared simu-
lation. Participants were instructed to solve the tasks au-
tonomously. The experimenter was available for specific
questions, though, and intervened if problems occurred that
concerned general issues such as Java, XML or the IDE
rather than the interaction patterns itself. For each task, the
time was taken that the participant took for solving it com-
pletely or up to a certain proportion. A task was considered
to be solved 100% if the source code was completed and
tested successfully, 75% if it was untested or slightly incom-
plete and 50% if it exhibited substantial incompletenesses or
if the participant gave a detailed oral description of a possi-
ble solution.

In detail, five tasks with increasing complexity were
given. Task 1 and 2 were designed to be fairly simple and
consisted in implementing interaction opening and end re-

initiate

initiate-system-task(ShortTerm)
H.request /

asserted

 system_task_accepted / R.assert

failed

system_task_failed / R.apologize

refused

system_task_rejected / R.refuse

terminated

system_task_completed / R.acknowledge

system_task_failed / R.apologize

system_task_completed / R.acknowledge /

 /

 /

asked

update-dialog-task-state(accepted)
start / R.question

answered

H.answer /

repeated

apply-dialog-task-spec-update

update-dialog-task-state(result_available)

 / R.repeat

H.correct /

confirmed

update-dialog-task-state(completed)
* /

disconfirmed

H.negate /

 /

 / R.const-question

Figure 5: Two example interaction patterns: Simple action request, describing a simple (i.e. non-cancellable) action request initiated by
the human and Correctable information request, describing a information request with implicit confirmation initiated by the robot where
information can be corrected later if necessary.

spectively. Task 3 was to realize a navigation command that
might be rejected or fail and be cancelled by the human at
any time. The appropriate pattern for this task is the can-
cellable action request which is similar to the simple action
request shown in figure 5, except that it has a number of
additional states and transitions for action cancelling. Task
4 required integration of a power management component
that generated notifications whenever the battery level falls
below a critical value. The complexity of this task lies in cre-
ating a context variable, allocating it with the current charge
level and using it to parametrize the robot’s warning. Task 5
consisted in having the robot ask persons for their name us-
ing the correctable information request pattern shown in fig-
ure 5. This required augmenting the task specification with
the person name in order to realize the information trans-
fer to the responsible system component. Table 3 shows an
overview of the given tasks.

Results and Observations Within the one hour time limit,
all participants were able to solve task 1 and 2, and none pro-
ceeded up to task 5 as shown in table 4. Task 3 that exhibited
considerable higher degree of difficulty than task 1 and 2
could be solved by seven out of eight participants. Remark-
ably, all of the robotic novices were able to solve it, even
though it required using the cancellable action request pat-
tern which involves complex domain integration using the
task state protocol. This result suggests that, first, the task
state protocol abstracts from integration details in an intu-
itive way and, second, that the graphical representation of
the interaction describes linking domain and dialog level in
an understandable way.

As shown in table 5, task 2 could be solved considerably
faster than task 1, with 26.75 minutes at average compared to
9 minutes, though possessing the same degree of difficulty.
This suggests that once participants got accustomed to the
API they use it fairly effective, taking 9 minutes at average
for a simple pattern like interaction end and 20.28 minutes
for a more complex pattern like cancellable action request.

In general, novices took slightly more time for each tasks.
This applies to task 1 and task 2 as well, even though these
tasks do not include any interfacing to the robotic subsys-

tem. We therefore do not expect this result to generalize.
It can probably be explained with the robotic expert group
exhibiting superior programming skills in general.

Apart from performance measurement, by asking the par-
ticipants to think aloud, we gained insights into on the sce-
nario developers’ view of the dialog manager. For instance,
it was interesting to observe the participants’ reaction faced
with the graphical representation of the cancellable action
request pattern required for task 3 which is similar to the
simple action request pattern shown in figure 5 but has in
addition one state and three transitions for action cancelling.
While most of the robotic novices were at first overwhelmed
by the complexity, some of the robotic experts became al-
most enthusiastic. A possible interpretation for that might
be that the experts are already aware of the high integration
complexity which becomes well describable by the pattern
visualization. However, in the end, the novices were able to
manage the task even more successful than the experts (table
4), though slightly slower (table 5).

The cancellable action request pattern gave us the oppor-
tunity for another valuable observation concerning the pat-
tern visualization, having system events as input and robot
dialog acts as resulting output. It could be observed that
the robotic experts oriented by the system event names, e.g.
’accepted’ while the robotic novices oriented by more the
dialog act names, e.g. ’R.assert’. We conclude that using
this combined notation supports both the robotic system en-
gineer and the interaction designer perspective.

overall domain domain
subjects experts novices

Task 1 100% 8 4 4
Task 2 100% 8 4 4
Task 3 75% 8 4 4

100% 7 3 4
Task 4 50% 4 3 1

75% 2 1 1
100% 1 1 0

Task 5 100% 0 0 0

Table 4: Number of subjects that succeeded to solve the respective
task up to the given percentage.

Task Description Number of dialog acts Challenge Interaction pattern
1 Greeting 2 Interaction opening
2 Parting 2 Interaction closing
3 Navigation instruction 11 Task communication Cancellable action request
4 Low battery warning 6 Task communication, Notification

Variable definition,
Parametrized output

5 Acquire person name 1 Task communication, Correctable information request
Variable definition,
Task specification update

Table 3: Overview of the tasks given in the usability test.

all subjects who domain domain
solved the task experts novices
100% (n) (n) (n)

Task 1 26.75 (8) 25.75 (4) 27.75 (4)
Task 2 9 (8) 8.75 (4) 9.25 (4)
Task 3 20.28 (7) 18.66 (3) 21.5 (3)
Task 4 12 (1) 12 (1) na (0)
Task 5 na (0) na (0) na (0)

Table 5: Average time (in minutes) needed in order to completely
solve a task (i.e. 100%).

Conclusion
In this paper, we have presented an approach to human-
robot interaction modeling that employs generic interaction
patterns to encapsulate the subtleties of dialog management
and the complexity of robotic domain integration. We argue
that the combined representation of task and dialog structure
eases scenario implementation and at the same time enables
richer interaction accounting for the real world. Moreover,
by combining interaction patterns in a flexible way, less re-
stricted interactions will become possible.

The evaluation focused on the question if this approach
enables developers to implement new interaction scenarios
in short time. The quantitative results from the usability
study showed that both, domain experts and novices were
able to complete 3 out of 5 dialog programming tasks of in-
creasing complexity within one hour. Although domain ex-
perts were slightly faster than novices, both groups showed
a steep learning curve in the second task indicating that the
concepts are easy to learn. Qualitative observations support
this interpretation: while domain experts tended to rely on
the concepts related to the system task protocol, that is the
internal processing of the robot, domain novices focused on
the dialog acts, that is the surface structure of the dialog.
Future studies will investigate how different aspects of the
dialog framework, such as interleaving interaction patterns,
affect the quality of the dialog design.

References
Bauer, A.; Wollherr, D.; and Buss, M. 2009. Information retrieval
system for human-robot communication asking for directions. In
International Conference on Robotics and Automation.
Beuter, N.; Spexard, T.; Lütkebohle, I.; Peltason, J.; and Kummert,
F. 2008. Where is this? - gesture based multimodal interaction
with an anthropomorphic robot. In International Conference on
Humanoid Robots.
Bohus, D., and Rudnicky, A. I. 2009. The ravenclaw dialog man-

agement framework: Architecture and systems. Computer Speech
& Language 23(3):332–361.
Booij, O.; Kröse, B.; Peltason, J.; Spexard, T.; and Hanheide,
M. 2008. Moving from augmented to interactive mapping. In
Robotics: Science and Systems Conference.
Dias, M. B.; Harris, T. K.; Browning, B.; Jones; Argall, B.; Veloso,
M.; Stentz, A.; and Rudnicky, A. 2006. Dynamically formed
human-robot teams performing coordinated tasks. In AAAI Spring
Symposium: To Boldly Go Where No Human-Robot Team Has
Gone.
Harel, D. 1987. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming 8:231–274.
Larsson, S., and Traum, D. 2000. Information state and dialogue
management in the trindi dialogue move engine toolkit. Natural
Language Engineering 6:323–340.
Lemon, O.; Gruenstein, A.; Battle, A.; and Peters, S. 2002. Multi-
tasking and collaborative activities in dialogue systems. In 3rd SIG-
dial meeting on Discourse and Dialogue, 113–124. Association for
Computational Linguistics.
Lütkebohle, I.; Peltason, J.; Schillingmann, L.; Elbrechter, C.;
Wrede, B.; Wachsmuth, S.; and Haschke, R. 2009. The curious
robot - structuring interactive robot learning. In International Con-
ference on Robotics and Automation.
Nielsen, J. 1994. Usability Engineering. San Francisco, California:
Morgan Kaufmann Publishers.
Parlitz, C.; Baum, W.; Reiser, U.; and Hägele, M. 2007. Intuitive
human-machine-interaction and implementation on a household
robot companion. In 12th International Conference on Human-
Computer Interaction.
Peltason, J., and Wrede, B. 2010. Pamini: A framework for assem-
bling mixed-initiative human-robot interaction from generic inter-
action patterns. In 11th SIGdial Meeting on Discourse and Dia-
logue.
Peltason, J.; Siepmann, F. H.; Spexard, T. P.; Wrede, B.; Hanheide,
M.; and Topp, E. A. 2009. Mixed-initiative in human augmented
mapping. In International Conference on Robotics and Automa-
tion.
Rich, C., and Sidner, C. L. 1998. Collagen: A collaboration
manager for software interface agents. User Modeling and User-
Adapted Interaction 8:315–350.
Sidner, C. L.; Lee, C.; Kidd, C. D.; Lesh, N.; and Rich, C. 2005.
Explorations in engagement for humans and robots. Artif. Intell.
166(1-2):140–164.

