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Abstract. In this paper we present an object search behavior for a mo-
bile domestic robot that reduces the search space by applying a novel
kind of spatial attention system. Different visual cues are mapped in a
SLAM-like manner in order to identify hypotheses for possible object
locations. These locations are scanned for known objects using a recog-
nition method consisting of two complementary pathways – a detector
measuring color distributions and a classifier using a SVM with a Pyra-
mid Matching Kernel. We show the usefulness of the proposed approach
by conducting an evaluation in a real world apartment scenario.

1 Introduction

Service robotics is a growing field of interest. To become feasible robots need to be
able to communicate and interact with humans, but also need to autonomously
perform tasks in regular domestic home environments. A basic task for such
robots is “fetch and carry”. The robot is instructed by a human to fetch a known
object from another room and to deliver it to her. Variants of this task can be
found in actual robot competitions, like the “mobile manipulation challenge” at
ICRA 2010 (concentrating on grasping), the “semantic robot vision challenge”
(concentrating on object finding), or the “robocup@home” competition. Despite
the fact that the single skills needed to perform the task successfully, are well
established, robots frequently fail if they need to show them in a realistic sce-
nario. The glue to efficiently combine them in a coherent manner is typically
underestimated.

In this paper, we concentrate on the first part of finding the object re-
quested in a complex room environment. Here the performance of the object
recognizer crucially depends on the navigation component and the related ex-
ploration behavior. Object recognition techniques have been highly optimized to
image datasets that are acquired by human photographers, e.g. flickr datasets.
Here, typically the human already solved the sub-task of centering the object at
a proper resolution. Thus, the search space of the robot to find an appropriate
view on the target object is huge and uninformed search will not succeed in a
limited amount of time. Tsotsos et. al [16] already showed that the problem of
visual matching is NP complete, the visual search task in a complex 3D environ-
ment is even worse. In [11], Shubina and Tsotsos argue for using attentive cues
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that optimize the search process of a robot. They propose a greedy algorithm
that considers the cost and effect of different actions. Various kinds of a priori
knowledge are utilized, like objects in spatial proximity (also proposed by [6,18]),
saliency knowledge (see e.g. [5]), or spatiotemporal constraints (see also [15,2]).
The STAIR (Stanford Artificial Intelligent Robot) system includes an approach
for peripheral-foveal vision, an integrated view-planning strategy is presented
by [12], Curious George was developed for the semantic robot challenge [9]. It
combines a geometric map for view and path planning and an attentive system
based on 3D structure and visual appearance. A probabilistic approach utilizing
semantic knowledge about the environment to find persons in a mobile robot’s
surrounding is proposed by [13].

In the following, we propose a target-directed search strategy for known ob-
jects in unknown rooms. It combines (i) a two-step object recognition approach
that applies a color-based top-down attention filter as a first step, (ii) the ex-
ploitation of scene geometry for the extraction of appropriate places for objects
in a room, (iii) a SLAM approach that dynamically builds a semantically an-
notated map of the room. The whole approach is evaluated in a real apartment
and contrasted with a pure open-space exploration strategy.

2 Grid-Mapping Extension and Information Fusion

The basis for the semantically annotated map is an occupancy grid representing
the spatial structure of the environment generated by a SLAM implementation
[10]. This map contains only physical obstacles that can be detected by the laser
range finder, such as walls and furniture. The information from this map is suffi-
cient for planning simple navigation tasks and for measuring the robot’s current
position, but is not valuable for the selection of a promising viewpoint from
which the possible object location can be inspected. The work of [12] assumes
implicitly that the probability of each object’s location is uniformly distributed
over the entire known environment, so their proposed view planning approach
tries to cover the whole reachable space with a complete object recognition scan.
This behavior is very time consuming because areas containing no relevant vi-
sual information are analyzed using the computationally expensive recognition
algorithm. The method proposed in this paper aims to reduce the number of ac-
tual scene analyzes through enrichment of the spatial map with peripheral visual

Fig. 1. Layout of the SeAM map.
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information. Additional grid map layers on top of the SLAM obstacle map are
introduced by our “Semantic Annotation Mapping” approach (SeAM) to encode
the low-level visual cues calculated while the robot explores its environment (see
Fig. 1). These overlays are used for a more detailed analysis later on. Hence, the
combination of these information can be considered as a mechanism for mapping
spatial attention that constantly runs as a subconscious background process.

2.1 Vision Components

The object recognition capabilities of the robot are implemented as two comple-
mentary pathways. At first, potential object positions are detected within the
robots visual field by using simple and computationally efficient visual features.
E.g., it makes more sense to look for a red chips box in a cupboard with red
stuff in it than to search for it on a green wall. After the robots moved to an
interesting spot, it tries to classify whether a target object is present or not by
employing more complex visual representations. To focus the search on horizon-
tal surfaces, e.g. table tops, a component exists that extracts such surfaces from
the scene. An example of the outcome of these components is depicted in Fig. 2.

Horizontal Surface Extraction. Similar to [9], we use the fact that objects
are most likely placed on horizontal surfaces. Technically, the information about
these surfaces in the current visual field analyzes a 3D point cloud received from
a SwissRanger camera [14] (see Fig. 2(c)).

Color Distribution Detection. Suppose the robot searches for a known red
box of chips, as seen in Fig. 2(a). The system loads the corresponding model from
the memory and during the whole search process, it executes a fast detection
component. The purpose of this detector is to identify potential locations of
the chips within the robot’s visual field by employing the known appearance of
the target object. In this work, we use a search for the target color distribution
quite similar to [4]. This detection could be interpreted as a kind of top-down
or model-driven saliency. It is also possible to use other cues like shape and
texture or to combine them, as in the work of [4]. Important requirements for
a potential detector are its low computational complexity and applicability for
low-pixel images of the object and changes in lighting, pose, scale, deformation,
or occlusion.

(a) Original scene (b) Color matching (c) Planes in 3D space

Fig. 2. Results of the input sources for the attention mapping mechanism.
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Classification. This component is not intended to be an input for the mapping,
but to make a decision whether an image region that has been found by the
detector after approaching a viewpoint actually contains the target object. By
using different pathways and search states, our framework intrinsically supports
the idea of applying computationally expensive processes very selectively. Hence,
a classification is only invoked in valuable situations (i.e. the presence of positive
detection results). We use a Support Vector Machine with a customized version
of the Pyramid Matching Kernel [7] based on Speeded Up Robust Features [1]
for the classification. Further, successive classification results are combined over
time to enhance the stability.

2.2 Spatial Mapping

In order to register information-rich regions into the grid maps, the visual infor-
mation need to be spatially estimated relatively to the robot’s current position.
The 3D plane description can be easily transformed into a 2D aerial view rep-
resentation. In case of the color distribution cue, the direction of the detected
location can be calculated using several facts about the camera’s properties like
FoV and resolution, as well as how it is mounted on the robot (see Fig. 3(a)).
The size of the actual object in the real scene can be estimated by the size of
the bounding box. But as the object’s size in the image depends on its distance
to the camera, the possible locations form a cone originating from the robot’s
position and pointing to the calculated relative direction of the seen cue (see
Fig. 3(b)). The length of the cone in the direction of the detected cue can be
estimated by the physical and visual limitations of the system. The cone begins
at the nearest distance from where an object could be detected and ends at the
distance where the resolution of the camera prevents a reliable detection. Addi-
tionally, we assume that the greatest possible distance of an object represented
by a certain bounding box is reached, when it is lying on the floor. So the cone’s
maximum size is additionally limited by the corresponding floor distance of the
center pixel in the detected bounding box.

The actual mapping of the found regions is done by raising or lowering the
cell values of the corresponding layer in the SeAM map. If a cell is covered by
the recognized cone its value is lowered, but is raised for cells which are covered
by the robot’s field of view and not the detected cone. This encoding is similar
to the representation of the SLAM results. While values near 0.5 mean unknown
area, higher values mean free space and lower values mean detected attention
regions (corresponding to obstacles in SLAM).

(a) Visual cue (b) Robot’s viewport (c) Color detector map

Fig. 3. Steps when mapping visual cues from color detector.
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When an object is seen for the first time, the whole cone of possible locations
will be registered in the grid map. However, while the robot moves, it may
detect the same object from different angles. The probability for the object will
be raised where the cones overlap. Probabilities for cells that were previously
detected as possible object locations, will be lowered if the new results do not
vote for those cells. Eventually, only the true location of the detected object will
remain in the map (see Fig. 3(c)).

Because of the layer structure of the grid maps representing the same spatial
area, information from multiple layers can be fused to generate more sophis-
ticated data. When registering 2D color distribution results in the grid map,
we assume that the corresponding object is not behind a wall or another tall
obstacle. So, cells that correspond to obstacle cells in the SLAM layer or are
positioned behind those cells in respect to the robot’s viewpoint, are not altered
and remain unchanged (see Fig. 3(c)). This leads to a problem when detected
objects are placed on furniture like low cupboards or shelves that are detected as
obstacles in the laser level. In this case detected cues would be ignored. To solve
this problem, we introduce an additional grid map layer that fuses information
from the color detector and the horizontal surface detector. Semantically this
map represents object hypotheses on horizontal surfaces above the floor (object-
on-plane map). The probabilities are only raised if both detectors vote for the
same cell. More details can be found in [22].

3 Modeling of Logic and Behaviors

As mentioned before, the mapping of attention is implemented as a constantly
running background process, so when the robot is initialized, it has no knowledge
about its environment. Hence, it has to begin with a visual exploration of the
scene to locate interesting objects or places. In order to find those locations the
attention maps are analyzed for valuable regions and corresponding viewpoints.
Map Acquisition through Exploration. To gain initial information, the im-
plemented behavior begins by exploring the area. The first step is a frontier-based
exploration strategy as proposed by [21] using the SLAM map. It finds locations
on the existing SLAM map, where the known free space fades to the unknown
area. These frontiers are assumed to provide new information, so the robot just
has to move to the nearest frontier repeatedly, to explore its environment.

Using this strategy exclusively is problematic, because the laser range is
more far-reaching than the camera’s view port. Important places may be missed
by the cameras when the described approach will consider a certain space as
already explored. However, the necessary information of areas covered by the
camera’s view port are encoded in a grid map similar to the SLAM map. This
information can be used by applying the exploration algorithm to one of the
camera’s attention maps to perform a visual exploration (see Fig. 4(a)).
Viewpoint Computation. Viewpoints close to the actual objects are desired
to receive enough pixels for the recognition component, as well as views from
different angles to confirm the recognition result (see Fig. 4(c)). As a first step
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(a) Visual exploration (b) Color detector map (c) Viewpoints

Fig. 4. Exploration goals and viewpoint calculation.

the map is binarized to distinguish attention cells which have a value less than
0.5 from unknown and clear regions. The resulting map is processed by a region
growing algorithm. Next, we dilate each continuous region by an amount of cells
that corresponds to roughly one meter in the real world and apply a sobel filter to
reduce the found regions only to their edge cells. We assume that these cells have
a reasonable distance to the detected location, but not all of them are appropriate
as navigation goals. The obstacle map is used to delete all cells which are not
reachable, do not have a minimum distance to obstacles, or are located in an
unknown area. The remaining cells are clustered using the k-means algorithm [8].
The centroids of the resulting clusters are treated as viewpoints. Small clusters
result in many viewpoints that can be used to analyze the attention region from
many different angles, while large clusters result in a small number of viewpoints.

Behavior Implementation. The implemented behavior executes several states
to perform the search task. It begins with a laser-based exploration state that
switches to a camera-based visual exploration, when the current room is suffi-
ciently explored by the laser. In regular intervals the current attention maps are
analyzed for viewpoints. The analysis distinguishes strong viewpoint suggestions
derived from the object-on-plane map and weak suggestions derived from a map
representing only one of the visual cues. This is because we assume the combined
map to be more valuable and more robust than the others. When a strong sug-
gestion was found, the exploration is suspended and the robot approaches the
viewpoint. When reached, the robot starts the classification described in Sec.
2.1. The result and its location is stored and the behavior continues analyzing
the attention maps ignoring already visited locations. If no strong suggestion
remains, the robot carries on with weak viewpoints. When all viewpoints were
visited, the robot continues exploring until no further frontiers are found.

Architectural Embedding. The software architecture of our robot BIRON
consists of many different components, each providing a certain functionality
such as speech recognition or face detection. All components follow the concept
of Information-Driven-Integration (IDI) [19] by sharing their data via an Active
Memory [20] within the system. As it has been pointed out by Brugali [3] the
configuration of the system, namely the connections between all components at
runtime, is crucial for component-based systems such as the BIRON system. We
have developed a tool called BonSAI to flexibly model the robot behavior on
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Fig. 5. The BIRON apartment (left: Overview – right: BIRON in the living room).

the one hand and also encapsulate the necessary system configuration on the
other hand.

BonSAI behavior modeling. BonSAI is a domain-specific library that builds
up on the concept of sensors and actuators which allow the linking of perception
to action. The sensors and actuators encapsulate rather complex perception-
action-linking processes, but take care of the system configuration and provide a
simple interface. BonSAI facilitates the design of applications that focus on the
modeling of the robot’s behavior as e.g. described in Sec. 3. The behavioral states
should be modelled locally, which means that e.g. all strategies for the specific
behavior are included and are not spread over many states. The behaviors should
be minimal, e.g. modeling one specific functionality of the robot.

4 Evaluation

For evaluation we used a real world living room and placed three known objects
on varying spots on the furniture. We compared the performance with an unin-
formed search behavior by measuring the number of correctly found objects and
false detection results. When performing this competitive behavior, the robot’s
movement is not based on any assumptions concerning possible object positions,
but is triggered by an exclusively reactive behavior led by the currently visi-
ble obstacles in the perception of the laser range finder. Every few seconds the
robot turns to the nearest obstacle in order to search for a known object using the
recognition component. As the uninformed behavior was expected to visit sig-
nificantly more viewpoints in the same time period, the results were additionally
normalized with the total of visited viewpoints which serves as a measurement
for the effectiveness of the viewpoint choice.

4.1 Real World Experiments: Setup and Scenario

The BIRON hardware platform (see Fig. 5(b)) we use is based on the research
platform GuiaBotTM by MobileRobots customized and equipped with sensors
that allow analysis of the current situation in a human-robot interaction. A more
detailed description of the hardware platform can be found in [17].
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(a) (b) (c) (d)

Fig. 6. An example of the robot’s movement. Depicted is the SLAM map at different
stages of development. Blue circle: robot – Green circle: viewpoint.

A Real World Apartment For evaluating our system under real world con-
ditions and carrying out user studies we have permanently rented an off-campus
apartment in Bielefeld. One of our goals is to establish an evaluation-development
cycle to iteratively improve the capabilities of our robots. One focus of our re-
search here in particular is on the interaction design and adaptive interaction
skills enabling naive users to successfully interact with the robot. The work pre-
sented here was evaluated in the apartment. The search task, as described in the
next part, was carried out in the living room as depicted in Fig. 5(a).

An Example of the Search Behavior Fig. 6(a-d) shows the first few seconds
of the robot’s movement recorded at an exemplary evaluation run. The system
begins with an exploration behavior that makes the robot turn in place and
subsequently start to move towards the unknown region behind the furniture in
the upper left area of the map (Fig. 6(b)). Due to the fact that the room is quite
small, the robot decides after a short time that its exploration strategy roughly
covered the whole area already. As a result the attention maps are analyzed.
The third image of each progress picture in Fig. 7 shows the developed map at
this point in time. A strong suggestion to take a look at the couch table from
the viewpoint represented by the green mark in Fig. 6(c) is generated. Then the

(a) Color attention map (b) Horizontal plane map (c) Object-on-plane map

Fig. 7. Temporal progress of the attention maps from the upper left to the lower right
image in each subfigure (exemplary evaluation run). Notice that the color attention
regions shrink over time, when seen from different angles.
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robot navigates to the computed viewpoint and starts the object recognition
(Fig. 6(d)). The result will be saved and the search continues by analyzing the
attention maps until no further viewpoints are found.

4.2 Results

We made the robot search the living room 15 times and for comparison we
started the system 7 additional times with the previously described uninformed
behavior. It turned out that the implemented search behavior identified correctly
on average 1.40 objects per search and detected 1.36 false positives, while the
uninformed approach only identified 0.86 correct objects per run and detected
in contrast 2.14 false positives. These results already show an advantage for the
implemented search behavior, but considering that the uninformed behavior did
not have to struggle with navigation problems, we did an additional comparison
based on the number of approached viewpoints. The uninformed behavior visited
on average more than twice the number of viewpoints in the same period of time,
compared to the implemented search behavior (1.61 VP/sec to 0.80 VP/sec). So
we also measured the amount of Correct Identifications per Viewpoint (C/VP).
The result of 0.22 C/VP when using the implemented search behavior compared
to 0.06 C/VP by the uninformed behavior shows that the proposed approach
provides a very effective strategy for searching objects.

(a) Search behavior (b) Uninformed behavior

Fig. 8. Exemplary results of the evaluation. The implemented search behavior (a)
produced more reasonable viewpoints, than the uninformed behavior (b). The proposed
searching approach found one correct object on the couch table and two times the item
on the couch. The uninformed behavior found the object on the armchair in the upper
right corner and accidentally found a wrong object in the shelf.

5 Conclusion

We presented a solution for the autonomous object finding part of the “fetch
and carry” task by concentrating on an attention mechanism. We could show
that the proposed mapping approach reasonably reduces the search space for the
robot. In a set of experiments we evaluated the implemented system and could
prove the applicability of the approach for object search in real world indoor
environments.
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