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Abstract

We present a general model and conceptual framework foifgjmerarchitectures for incremental
processing in dialogue systems, in particular with respeethe topology of the network of mod-
ules that make up the system, the way information flows thiathg network, how information
increments are ‘packaged’, and how these increments acegsed by the modules. This model
enables the precise specification of incremental systethb@mce facilitates detailed comparisons
between systems, as well as giving guidance on designingsgsiems. In particular, the model
can serve as a framework for specifying module communicaticsuch systems, as we illustrate
with some examples.
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1. Introduction

Dialogue processing is, by its very natumegcremental No dialogue agent (artificial or natural)
processes whole dialogues, if only for the simple reason that dialogeeseatedincrementally,
by participants taking turns at speaking (or typing, in computer-mediatatt/igb interaction). At
this level, most current implemented dialogue systems are incremental: thegprser utterances
as a whole and produce their response utterances as a whole. Intakpreoessing, as the term
is commonly used, means more than this, however, namely that processtadgsfare the input
is complete (e.g., (Kilger and Finkler, 1995)). Incremental systems headda@se where “[e]ach
processing component will be triggered into activity by a minimal amount of ésatheristic in-
put” (Levelt, 1989). If we assume that the characteristic input of a di@@ystem is the utterance
(see (Traum and Heeman, 1997) for an attempt to define this unit), we expdatt an incremental
system to work on units smaller than utterances. Doing this then brings intoabie o& compu-
tational modelling a whole range of behaviours that cannot otherwisepbered, like concurrent
feedback (“uh-huh”, “yeah”), fast turn-taking, and collaboratiitterance construction.

Our aim in the work presented here is to describe and give names to thesoatiaifable to
designers of incremental systems. The model that we spegjgnisralin the sense that it describes
elements that, as we believe, are essential to incremental processingraedchan be expected to
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play a role in most, if not even all, systems performing such processingglsstdactin the sense
that it only describes properties of these elements and relations betweenhivenot concrete
ways to instantiate them in computer implementatibi@pecifically, we define some abstract data
types, some abstract methods that are applicable to them, and a rangsibfeposnstraints on
processing modules. The notions introduced here allow the (abstracificatén of a wide range
of different systems, from non-incremental pipelines to fully incremensinehronous, parallel,
predictive systems, thus making it possible to be explicit about similarities aiedatites between
systems. We believe that this will be of great use in the future developmentloksystems, in that

it makes clear the choices and trade-offs one can make.

While we discuss some issues that arise when directly basing a module comtioaniitfaas-
tructure for incremental systems on the model, our main focus here is onrtbepataal framework,
not on implementation details. What we are ate@bdoing here is to argue for one particular ‘best
architecture’—what this is depends on the particular aims of an implementatioel/anation more
low-level technical considerations (e.g., availability of processing mofiufes we are not trying
to proveproperties of the specified systems here, the formalisations we giveissapported by a
formal semantics.

In the next section, we first motivate the use of incremental processinglogde systems, and
then give some examples of the possible differences in system archiseittateve want to capture.
In Section 3, we present the abstract model that underlies the systemoatude specifications, of
which we give some examples in SectioR 4 Section 5, we discuss how the model can be used
when designing the communication infrastructure of new incremental dialmgiems. We close
with a brief discussion of related work.

2. Motivation

2.1 Why Model Incremental Processing?

Before we go into the details of our model, we take a step back and disasiblpaeasons for using
incremental processing in models of dialogue processing. This discugilibe brief, however, as
our main interest in this paper is not to convince anyone of choosing thisadtgtecessing, but is
rather to describe some of the options that are available once that chsibedramad@.
Depending on the goals one has when building a system, incremental gingcasay offer
certain advantages over non-incremental processing (i.e., procegséng only full utterances, or
even longer units like turns, are considered by the system). For example ifies to optimize
thereactivity of the system, then incrementality may be attractive for the straightforwaidesrg
ing reason that starting to process an input before it is complete can leaa pootessing being
finished faster compared to starting processing only after the input is ctangdibis can be true
even if the incremental processing takes somewhat longer than the memaral processing, if
that difference is not too high, as illustrated in Figure 1. (Of course, If@rithms used in incre-

1. We do not claim, of course, that the list of issues discussed herbasigtive. Moreover, even within the space that
we sketch here, there are many detail questions that will still need mudhtavbe answered fully.

2. These sections are based on Schlangen and Skantze (2009, tavised and significantly extended.

3. See e.g. Allen et al. (2001); Aist et al. (2007); Skantze and Sgéta2009); Bul? et al. (2010) for more com-
prehensive discussions and some empirical results regarding tloé ineeemental processing in applied dialogue
systems. Regarding models of human dialogue processing, therevsratoager thread of literature in Psycholin-
guistics, amassing evidence that the human language processolinaérmentally; see eg. Marslen-Wilson (1973);
Altmann and Steedman (1988); Tanenhaus et al. (1995); van Bexrkam(2007).
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mental processing should not have a systematically worse complexity thamémeincremental
counterparts.)

Input | {
Incremental Processor [ b
i
Sequential Processor i

Figure 1: Input processed by Incremental and Sequential Prac&s&m a much slower Incremen-
tal Processor can finish before a Sequential Processor.

In a similar vein, incremental processing can potentially promise betiaiity of processing,
if the system has provisions for interactions between modules, where ghksref higher-level
processing of earlier bits of input can influence lower-level procgssitater bits of input. (E.g., if
the syntactic structure computed for the recognised speech so faratosstow subsequent speech
is recognised—standard practice in speech recognition.)

If one takes, more generallgaturalnessas a parameter to optimisation, then incremental pro-
cessing can bring a range of phenomena into reach that cannot o#nbenisodelled. Examples of
such phenomena are, as mentioned above, concurrent feedbladiufily “yeah”), fast turn-taking,
collaborative utterance construction (Bu3 and Schlangen, 2010yearedtation of hedges and self-
corrections (Skantze and Hjalmarsson, 2010). (See Edlund et a8)(9 general discussion of
the goal of naturalness for dialogue systems.)

Lastly, if one goes even further and choosealismas a modelling goal, treating the dialogue
system as a computational model of human cognition (Schlangen, 2009@rtaevould be well ad-
vised to make the model work incrementally, given the wealth of evidence thattinan language
processor works incrementally (see references above).

2.2 Invariants and Variants in Incremental Processing
2.2.1 MODULARITY

Implemented dialogue systems are typically modular systems, where sepacaiglesing tasks are
encapsulated in separate software modules. Encapsulation of prgdessis can also be found in
cognitively motivated theories (e.g., Levelt's model of generation, Le¥8B9))# Our first goal in
the present work is to characterise such modular structure. This inahgsntifying the modules
in a system (abstractly, without saying yet too much about what exactlydihegnd b) specifying
the connections between them.

Figure 2 shows three examples mibdule networksrepresentations of systems in terms of
their component modules and the connections between them. Modules @®erdpd by boxes,
and connections by arrows indicating the path along which information fl@sden modules,
the direction of this flow, and, through the use of parallel connections;#edwidth” of the

4. As an aside, note that modularity does not preclude extensive itiberdetween information sources, as postu-
lated in current constraint-based theories of language processirudp(vald, 1994), see discussion in Altmann and
Steedman (1988).
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connection (see below). Arrows not coming from or going to modulessemt the global input(s)
and output(s) to and from the system.

N\ \
\ -
R SN L I U

Figure 2: Module network topologies

Our goal now is to facilitate exact and concise description of the diffeebetween module
networks such as those in the example. Informally, the network on the lefheaescribed as a
simple pipeline with no parallel paths, the one in the middle as a pipeline enhaitbeal parallel
path, and the one on the right as a star-architecture; we want to be abdsdobeé exactly the
constraints that define each type of network.

An important element of such a specification is to state how information flows Bygtem and
between the modules, again in an abstract way, without saying much abaofidimation itself (as
the nature of the information depends on details of the actual modules). Agmmahabove, the
Figure 2 indicates the direction of information flow (i.e., whose output is whngse) through the
direction of edges and the “bandwidth” of a connection between modulesinAection between
two modules may be single-directional, if information can only flow in one wayidwtypically
will be from a ‘lower-level’ to a ‘higher-level’ module, e.g. from one thatigser to the input source
to one that is further away, or from one that is closer to the generationestuone that is closer to
the output channel). In a bi-directional setting, higher-level informatiop m@guence lower-level
processing, for example through expressing expectations that thelkveémodule should work
towards.

The ‘bandwidth’ of the connection is represented via the number of duigfaseen two nodes
(the more edges, the higher the bandwidth), and this refers to whethaleparformation can
be sent or not. One possible source for such parallelism in an increntiakague system is
illustrated in Figure 3 (right), where for some stretches of an input sigrediind wave), alternative
hypotheses are entertained (note that the boxes hematdepresent modules, but rather bits of
incremental information, namely words; flattened into strings, one alterreamsists of four words,
the other of three). We can view these alternative hypotheses aboattlesosiginal signal as being
parallel to each other (with respect to the input they are grounded in).

2.2.2 (RANULARITY

Even systems that modularise the dialogue processing task in roughly thevegran still differ
along another dimension of incremental processing, namely in how theyedipidarger units into
increments. As an example, one system may decide on words as the minimalwaitsi-call
such units simply théncremental unit{IU) of a system—whereas another system may package
incremental results triggered by time, e.g. every 500ms, and not by linguistsc viore formally,
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Figure 3: Parallel information streams (left) and alternative hypotheiggs)(r
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Figure 4: Incremental input mapped to (less) incremental output

we will express this difference as a difference in relation of incrememiés to the larger unit of
which they are increments.

2.2.3 INPUT/OUTPUT RELATIONS

We also want to be able to specify how incremental bits of input of a primgessodule can relate
to incremental bits of its output. Figure 4 shows one possible configuratio@renover time in-
cremental bits of input (shown in the left column) accumulate before ond bittput (in the right
column) is produced. (As for example in a parser that waits until it can c@vgumajor phrase out
of the words that are its input.) Describing the range of possible moduleiobeinswith respect to
such input/output relations is another important element of the abstract predehted here.

2.2.4 REVISABILITY

It is in the nature of incremental processing, where output is generatétedasis of incomplete
input, that such output may have to be revised once more information beewaikble (see (Bau-
mann et al., 2009) for a detailed investigation of the behaviour of ASR in thgem). Figure 5
illustrates such a case. At time-stgp the available frames of acoustic features (shown in the left
column) lead the processor, an automatic speech recogniser, to hypethas the word “four” has
been spoken. This hypothesis is passed on from the internal state ebtesgor (middle column)

to the output (right column). However, at time-poipt as additional acoustic frames have come in,
it becomes clear that “forty” is a better hypothesis about the previonsedogether with the new
ones. Itis now not enough to just output the new hypothesis: it is poshkiiéater modules have
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Figure 5: Example of hypothesis revision

already started to work with the hypothesis “four”, so the changed stathssdypothesis has to
be communicated as well. This is shown at time-gtep

Note that the situation just described is different from, and comes addition#the uncer-
tainty management in dialogue systems in general. It is often seen desirablalitelio represent
a module’sconfidencen its hypotheses; indeed the increasingly popular approaches to dialogue
management that make use of probablistic models for representing unckalaigue states (see
e.g. Williams and Young (2007)) rely on such information. We want to distifgpisvisions for
representing suctstaticconfidence’ (confidence in a hypothesis at a given time) from the dynamic
aspects of potentially having to revise this confidence in the light of laternr&ion and having
to percolate this revision through the module network. It is the latter that Figihestrates, and
it is another aspect of incremental systems that may be handled differerdiffdrent systems.
Capturing these differences is the final aim of our model.

2.3 Related Work

The model described here is inspired partially by Young et al. (198R&ntpassing architecture;
our model can be seen as a (substantial) generalisation of the idea ioigpsssller information
bits around, out of the domain of ASR and into the system as a whole. Sonedfdahacterisations
of the behaviour of incremental modules are inspired by (Kilger and Finkg&5), but adapted and
extended from incremental generation to the general case of incremestabsing.

While there recently have been a number of papers about incrementahsy&.g., (DeVault
and Stone, 2003; Aist et al., 2006; Brick and Scheutz, 2007)), nbtse offer general consider-
ations about architectureswhich is what we are trying to offer in the following.

3. The Model
3.1 Overview

We model a dialogue processing system in an abstract way as a collectonradcted process-
ing modules, where information is passed between the modules along thesetiams. The third
component beside the modules and their connections is the basic unit ehatifon that is com-
municated between the modules, which we callitteeemental uni{lU). We will only characterise
those properties of 1Us that are needed for our purpose of spegifijfierent system types and ba-

5. Despite its title, (Aist et al., 2006) also only describes one particulapsetu
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sic operations needed for incremental processing; we will not sayiagyabout the actual, module
specificpayload of these units.

The processing module itself is modelled as consisting béfd Buffer (LB), the Processor
proper, and &ight Buffer(RB). When talking about operations of the Processor, we will sometimes
useLeft Buffer-Incremental Uni(LB-IU) for units in LB andRight Buffer-Incremental UnitRB-

IU) for units in RB.

This setup is illustrated in Figure 5 above. IUs in LB (here, acoustic frasggpat to an ASR)
are consumedy the processor (i.e., are processed) which creates an interntyj redhe case
shown here, this internal resultg@stedas an RB-IU only after a series of LB-IUs have accumu-
lated. In reality, such processing will obviously take some time to complete. Egutposes of
our abstract description here, however, we abstract away frommocessing times and describe
Processors as relations between (sets of) LBs and RBs.

We begin our description of the model with the specification of network topesgog

3.2 Network Topology

Connections between modules are expressed throughectedness axiomaich simply state that
IUs in one module’s right buffer are also in another buffer’s left buf{Again, in an implemented
system communication between modules will take time, but we abstract awaytfiohere.) This
connection can also be partial or filtered. For examplegx € RBy A NP(z) < x € LBs)
expresses that all and only NPs in module one’s right buffer appear dulmowo’s left buffer. If
desired, a given RB can be connected to more than one LB, and morerth&Bocan feed into the
same LB (see the middle example in Figure 2). Together, the set of these abatines the network
topology of a concrete system. Different topology types can then be defineugh constraints on
module sets and their connections. l.e., a pipeline system is one in which d@tdaappen that an
IU is in more than one right buffer and more than one left buffer.

Note that for now we are assuming token identity and not for example cop§oega structures.
That is, we assume that it indeed is temelU that is in the left and right buffers of connected
modules, and hence any changes made to an IU are immediately known to aiesidi contain it
in a buffer. This allows us to abstract away from the actual “transpontadiol Us between modules
(but see Section 5 below).

3.3 Incremental Units

So far, all we have said about 1Us is that they are holding a ‘minimal amdwthiapacteristic input’
(or, of course, a minimal amount of characteristidput which is to become some other module’s
input). Communicating just these minimal information bits is enough only for the siniles
of system that we consider, a pipeline with only a single stream of informatidma revision. If
more advanced features are desired, there needs to be more strutharéus. In this section we
describe the kinds of information that the most capable systems need teariprand that make
possible operations like hypothesis revision, prediction, and parallethgpis processing. (These
operations will be explained in the next section.) If in a particular system sdthese operations
aren’t required, some of the structure on IUs can be simplified.

Informally, the representational desiderata are as follows. First, agusne be able to express
certain relations between IUs, which record how 1Us within a module andeegtwodules belong
together. (Recall that IUs are meant to be incremental, minimal bits of what wstbrae point
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amount to one larger unit; e.g. words that form an utterance, or chidirdesr@antics that will even-
tually form the interpretation of an utterance, etc.) These relations come inaswio types; we
discuss them in detail in the next two subsections. Apart from the relatingjant IUs to carry
three other types of information as well: a confidence score represémiicgnfidence its producer
had in it being accurate; information about whether revisions of the It@reéo be expected or
not; and information about whether the IU has already been procegsmhbumers, and if so, by
whom. A full specification of all types of information about IUs one might twantrack is given
below in Section 3.3.4.

3.3.1 HORIZONTAL RELATIONS BETWEENIUS

The first type of relation expresses what could be described as dmbaiz relationships between
IUs; horizontal, because these relationships hold only between |Us cfathe level (produced
by the same module), and typically reflect in some way the temporal order imhiedUs were
created.

The most important instance of this type of relation isghecessorelation, which links IUs in
such a way that from a chain of 1Us linked with this relation, the (possibly sifligl) larger unit
these IUs are increments of can be read off. To make this descriptioretenthis relation will link
IUs representing words (for example, in the output of an ASR) in suchyatiat the (possibly still
partial) utterance hypothesis can be produced by following the links. Kéoneally, if two ASR
word hypothesis-lUs IJand 1U, stand in this relation, this expresses that the ASR takesd e
the continuation of the utterance whose previous element;is lanother IU, 1U;, were linked
to IU; as well, this would express that the sequenceslill, and IU;-IU3 form alternatives. (See
Figure 3, right; this relation is also illustrated in Figure 6, discussed below.)

This is the most basic kind of horizontal relation, which most incremental sgsiall have to
realise at least implicitly (since it keeps track of how increments form langies of information).
For other purposes, one may also want to allow other relations of this tppex&mple, dependency
relations between concepts would be of this type as well. Figure 6 illustratefothtaspossible
semantic representation for the two recognition alternatives “move the bafldide” / “move the
ball to field z". Here we have one IU holding the concept of a move actind,liaked to it, as
further specifying it, a concept representing the patient of the actienL(-5) and, as alternatives
corresponding to the alternative recognition results, two differenttitiresd concepts{ISTANCE: 2
/“two fields” andTARGET: z / “field z"). To recognise at this level that these two directional concepts
are alternatives and do not both hold, one must followsthecessorelation, where they are on
different branches. This illustrates that thgecifiegelation as used here (and represented in the
figure by dashed arrows) cannot be subsumed by the successianr&alid arrows in the figure).

3.3.2 HERARCHICAL RELATIONS

The other kind of relation orders |Us into an informational hierarchy, linkldg to those bits of
information—other IUs—on which they depend informationally, or, as we vaill it, in which

they aregrounded Examples for this are the links between 1Us representing segments of audio
material and 1Us representing the corresponding word hypothesed B4Us and RB-1Us of a
speech recogniser); between word hypotheses and semantic regtiess (i.e., LB-1Us and RB-

IUs of a semantic parser; in both these examples the links cut across moduligbies); between
larger phrases in a parser and their constituents (e.g., an U reprgsaisemtence-level parse and
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.| PATIENT:BALL-5 |
MOVE ‘-‘” \
My Sl s DT S -DISTANCE:2

-

Figure 6: An example network, built by the relatiossccessor(solid arrows),specifies(wide
dashed arrowsgrounded in(narrow dashed arrows)

IUs representing an NP and a VP, in which case the link holds betweendlsthe same level);
or between states of the dialogue manager and plans for system utter&igig® 6 shows such
grounded inlinks between word-1Us and semantic concept IUs, as narrow dastesd lin

This relation effectively tracks the flow of information through the systetigiong its transi-
tive closure one can go back from the highest level IU, which is outptihé system, to the input
IU or set of input IUs on which it is ultimately groundé&dSoing in the other direction, this is also
the path along which doubts of a module about the quality of an IU, or ultimateniteation, can
percolate through the module network. For example, should an ASR deadidmtwye support for
a word hypothesis, then all IUs that are linked to this 1U via this relation will bevth into doubt
as well. (See the purge operation described below.)

3.3.3 META-INFORMATION

We also assume that it will be useful in some systems to be able to represecoramunicate
additional information about IUs. For example, in certain setups it may Heldse a module to
learn whether its consumers have found a use for a hypothesis or ristcatlid be a parser that
gets told whether an NP it has built has a denotation in the current dialogtextor not, and that
could then base a decision on whether to extend the parse or not on tratatibn. (See below in
Section 4.1 the discussion of ‘early interaction systems’.)

6. Of course, the output of a dialogue system is not fully determined yuiss ilnput. Other elements of the state figure
as well; e.g., some parts of an answer to a query will depend on a databd not just the query, however, the
intention to respond with a statement will still be grounded in the input signal.
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The other type of information concerns the confidence of a module in itshgpes. As noted
above, this confidence can change during the processing of furia; iim extreme cases, such
changes in confidence may lead to revocation of hypotheses on whistblycsready later hy-
potheses were built.

Finally, in building systems ourselves, we have found that it can be usedidid a binary notion
of commitmenthat signals that a IU will not (or shall not) be modified again. A module catade
such commitment on its own IUs in cases where for technical reasons (&kegepanternal state to
a manageable size) it decides that it will not touch them anymore. It cadatsand commitment
from the producers of its input 1Us, if it has based unrevisable actiotisem; should the producing
module still have a need to revise them, then this would lead to an exceptiontbsitihat should
be handled specifically. (E.g., by performing an explicit self-correctidwiote that we intend a
rather technical, house-keeping use for this. There is a more gepes# 81 which modules are
‘committed’ to their IUs, but this we think is covered by providing confidencerimfation and by
agreeing on a systeme-internal strategy for putting out IUs in the first dage by either optimizing
for speed, sending out even possibly very transient hypothedegpptimizing for quality, possibly
holding back 1Us until internal confidence has reached a certain ticgsh

3.3.4 FORMAL SPECIFICATION

We define formally the univerde in which incremental units live as follows. It consists of a set
of 1U objects,ZU (which includes a special IU), a set of module labeld1, and a collection of
functions and relations defined on these:

e i is an identification function, which, for ease of reference, maps eachjktt onto a unique
ID (e.g., a natural number).

¢ A function ¢ that maps each IU to a module label, its creator. (From this follows that each IU
can only have one creator.)

¢ A family of relations between IUs created by the same module (i.e.plUt wherei(«) #
i(B) ande(a) = ¢(B)); we will call these relationsame level linksOne instance of this type
is thesuccessorelation discussed above, which defines a (partial) order on IUs. @é&fgp
that by default, IUs are successor of a specialllUThis guarantees that 1Us linked via the
successorelation form a connected graph rooted in thelement. The type of the graph will
depend on the purposes of the sending and consuming module(s). f@tast output of an
ASR it might be enough for the graph to be a chain (andcessohence be a total order),
whereas an n-best output might be better represented as a tree (witkt alidfids linked to
T) or a lattice (as in Figure 3, right).
There can be other kinds of such same level relations, as describesl abo

e G is thegrounded irrelation, connecting an U to one or more IUs out of which it was built.
For example, an IU holding a (partial) parse might be grounded in a sebrf lypothesis
IUs, and these in turn might be grounded in sets of IUs holding acoustiaésa
While thesame level linkalways points to IUs on the same levgipunded inlinks can hold
both between IUs from the same level as well as between |Us of connacuales; in both
cases it expresses that one bit of information depends on other bitsrahiséive closure of
this relation hence links system output IUs to a set of system input lUscdfeenience, we
may define a relatiosupports(x,yjor cases wherg is grounded inc; and hence the closure
of this relation links input-1Us to the output that is (eventually) built on them.
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This is also the hook for the mechanism that realises the revision procesieéd above with
Figure 5: if a module decides to revoke one of its hypotheses, it sets itslenod value (see
below) to 0; on noticing this event, all consuming modules can then check ertibgty have
produced RB-1Us that link to this LB-IU, and do the same for them. In this wégrmation
about revision will automatically percolate through the module network.

Finally, we can also define a special value (exgn.) for this relation and use it to trigger
prediction if an RB-IU is grounded inrelated ton.n. , this can be understood as a directive
to the processor to find evidence for this 1U (i.e., to prove it), using thermdition in its left
buffer.

e 7 is theconfidencdor trust) function, which maps each IU to a numerical value (depending

on the module’s needs, either frolh or R) through which the generating processor can
pass on its confidence in its hypothesis. This then can have an influerndecisions of

the consuming processor. For example, if there are parallel hypotbkdédterent quality

(confidence), a processor may decide to process (and produad fmnthe best first.

A special value (e.g., 0, or -1) can be defined to flag hypotheses thaearg revoked by a
processor, as described above.

e C is thecommittedproperty, which holds when a producing module has committed to the U,

i.e., it guarantees that it will never revoke the 1U. See below for a digmusd how such a
decision may be made, and how it travels through the module network.

e S is theseenrelation, relating 1Us and module labels. Using this relation, processors can

record whether they have “looked at"—that is, attempted to process—tHa thle simplest
case, the positive fact can be represented simply by adding the ppotiegs the list (assum-
ing here that all processors in a system are identified by a unique ID); i@ complicated
setups one may want to offer status information like “is being processed HQulentD” or
“no use has been found for IU by module ID”, or “I assign this IU a @doibty of n” via
additional relations. This allows processors both to keep track of whictUsBthey have
already looked at (and hence, to more easily identify new material that mayehéered their
LB) and to recognise which of its RB-IUs have been of use to later modinfsmation
which can then be used for example to make decisions on which hypothegjstudenext.

¢ P finally relates IUs to linguistic objects (like words or parses) which are tlotiiedpayload
i.e., the module-specific unit of ‘characteristic input’ (or output).

Systems can differ in which of these elements they realise, and even modihigsarsystem
can differ along this dimension. It seems plausible to assume that most in¢a¢spestems will
have concepts that can be mapped to what may be called the core setropksties,(i, c, same

level link, grounded in linkZ ", P), while more sophisticated processing (e.g., using prediction and

a high degree of interaction between modules) will make use of the othezniesp

3.4 Modules

As explained above, modules consist of left and right buffers, andessors with internal state
that operate on input IUs to create output IUs. Normally, the direction ofuniate operation is
from the left to the right (meaning that LB-IUs are ‘consumed’ to produee RB-1Us that are
grounded in them), but in the case of expectation-guided modules caredismbright to left (i.e.,
attempting to find evidence for some predicted output). A central concegt l@bking at modules
is that of the update step, which has three stages: 1) the left buffer aiddale is updated from
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Figure 7: A schematic view of the update process

state LB to state LB/; 2) the current module recognises what has changed, and perforowenits
update first of its internal state (%o 1S;) and then 3) of its own right buffer (RBo state RB;
this in turn will be the first update step for all consuming modules). Figure #ridites this flow
of information through a module, showing only those parts of the module thaebevant at each
timestep.

We use these labels for the update stages when we now first discuss soenproperties of
buffers, then list operations that processors have to perform, aatyfitescribe different possible
module behaviours.

3.4.1 BUFFERS

For the purposes of the abstract model, we can conceptualise buffipig as sets of IUs, for which
the constraints hold that are specified by the connectedness axioms@alatkabove. During the
execution of a system, buffers change over time (through the updatas@elsabove). To denote
the state of a buffer at a given timewe define a functiontate from time labels to 1U sets. The
changes made to a buffer from timeo ¢’ (i.e., to get fromstate(t) to state(t')) we can then
denote byA, ,». We will assume for now that the processor only receives this delta, aseshts
computations on this. We discuss alternative set-ups below in Section 5. d\edilse a function
are Which returns the curremictive right edgef a buffer; this is the set of IUs that are a) currently
active (we assume that IUs that belong to input that has been fully getase marked as inactive);
b) not revoked (see below); and ¢) maximal with respect tostieeessorelation (recall that this
defines a partial order rooted in). This is the right edge insofar as this is where new increments
will attach (e.g., where a new word will be added as more audio material coines in
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3.4.2 PRROCESSOROPERATIONS

At the most abstract level, the job of processors is to react to changesiirbtiifers (theA; /)

by performing appropriate updates. The elementary task here is to rdhetappearance of new
LB-1Us and eventually build new RB-1Us out of them (or, in the case afaljctive system, to react
to new expectations being entered as RB-1Us and to evaluate subskBukksg as to whether they
provide evidence for these expectations). How exactly this is done iffisgethe individual tasks
of the module (e.g., ASR, parser, dialogue manager, etc.), and we vemg'tamything to say about
this here; what we will describe here are the diffetgpiesof updates that can be implemented in
an incremental processing module. We also leave dwswprocessors are triggered into action;
we simply assume that on receiving new LB-IUs or RB-IUs or noticing gkaro already known
IUs—more generally, on being giveN, » of the appropriate buffer—they will eventually perform
these operations. Again, we describe here the complete set of operalystams may differ in
which subset of the functions they implement, or even whether they implemeet diperations as
recognisably separate steps at all.

purge LB-IUs that are revoked by their producer must be purged from thenatetate of the
processor (so that they will not be used in future updates) and allRRplounded in them must be
revoked as well.

Some reasons for revoking hypotheses have already been mentiomedxafmple, a speech
recogniser might decide that a previously output word hypothesis isatidtanymore (i.e., is not
anymore among the n-best that are passed on). Or, a parser migl itetbiel light of new evidence
that a certain structure it has built is a dead end, and withdraw suppatit fio all these casesll
‘later’ hypotheses that build on this IU (i.e., all hypotheses that are in thsitige closure of this
IU’s supportrelation) must be purged. If all modules implement the purge operation, thssoe
information will be guaranteed to travel through the network.

new IU update New LB-IUs have to be integrated into the internal state, and eventually Bew R
IUs are built based on them (not necessarily in the same frequencydBllJs are received; see
Figure 4 above, and discussion below). The new RB-IUs have to biededppropriately to other
IUs (e.g., viasame level linksgrounded in points, etc.). As mentioned above, this is the most basic
operation of a processor, and can be expected to be implemented in athsyste

Processors can tal®ipportsinformation into account when deciding on the order in which
they update. A processor might for example decide to first try to use thénfiesmation (in its
LB) to extend structures that have already proven useful to later mo@h#dss, that support new
IUs). For example, a parser might decide to follow an interpretation patistdaemed more likely
by a contextual processing module (which has grounded hypotheseaspartmal path). This may
result in better use of resources—the downside of such a strategyiisfecis that modules can be
garden-pathed.

Update may also work towards a goal. As mentioned above, putting ungrduidd in a mod-
ule’s RB can be understood as a request to the module to try to find evifierkcd-or example, the
dialogue manager might decide based on the dialogue context that a cquenf fialogue act is
likely to follow. By requesting the dialogue act recognition module to find exdaddar this hypoth-
esis, it can direct processing resources towards this task. (Thewgalegognition module then can
in turn decide on which evidence it would like to see, and ask lower modulesve fhis. Ideally,

7. It depends on the goals behind building the model whether this is coedidelownside or desired behaviour.
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this could filter down to the interface module, the ASR, and guide its hypothasisnig. Tech-
nically, something like this is probably easier to realise by other means; skeléBet al., 2009),
briefly discussed below, for an example of an integrated approachewbkenantics and reference
resolution can directly bear on the speech recognition process.)

We finally note that in certain setups it may be necessary to consume diffgpers of 1Us
in one module. As explained above, we allow more than one module to feed wiftvteamodule
LB. An example where something like this could be useful is in the procesdingukti-modal
information, where information about both words spoken and gestursmed may be needed to
compute an interpretation.

commit There are three ways in which a processor may have to deal with commits. itFdemn
decide for itself to commit RB-IUs. For example, a parser may decide to commiptevéously
built structure if it failed to integrate into it a certain number of new words, tmsuming that
the previous structure is complete. Second, a processor may notice trati@up module has
committed to 1Us in its LB. This might be used by the processor to remove inteatalkept for
potential revisions. Eventually, this commitment of previous modules might leggrtitessor to
also commit to its output, thus triggering a chain of commitments.

Interestingly, it can also make sense to let commits flow from right to left, afybdiscussed
above. For example, if the system has committed to a certain interpretation bygnaagirblicly
observable action (e.g., an utterance, or an action in another modality)athtsecrepresented as
a commit on IUs. This information would then travel down the processing mkfweading to the
potential for a clash between a revoke message coming from the left aodrtimeit directive from
the right. In such a case, where the justification for an action is revoked Wie action has already
been performed, self-correction behaviours can be exeéuted.

other updates Finally, in some settings it may also be desirable to let modules change the con-
fidence score of IUs after having put them into the RB (and so after taey already potentially
been consumed by later modules); the consuming modules then might neect to thé change,
perhaps by updating their internal state, by changing their future upttategy, or by changing
their own confidence in something they have passed on into their own ri§fbt.bii may also be
useful in certain settings to allow other aspects of IUs to be changed latellasuch asame level

links; again, this would be something that consuming modules need to notice ahtbreac

3.4.3 (HARACTERISING MODULE BEHAVIOUR

Modules can also be characterised through a description of the chiiatjapdates yield to buffers
and internal states, and the relations between changes to left buftetisase to right buffers. We
list several dimensions along which such a characterisation can be made.

Updates to IU Sequences Using the notion of aight edgefrom Section 3.4.1, we can transfer
some terms from (Wen, 1992): a module igft-to-right incrementalf it only producesextensions

to the current right edge; within what V&in (1992) calldully incremental we can make further
distinctions, namely according to whether only revisions or also insertiahdelations are allowed.
(Revisions are covered by the revoke operation described abowestiams and deletions can be
expressed in our model by allowirsgiccessotinks to be changed appropriately.) When we want

8. In future work, we will explore if and how (e.g. through the impleméataof a self-monitoring cycle with commits
and revokes) the various types of dysfluency described by Le\@88{land others can be modeled.
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to make this further distinction, we call the formgght edge revision-incrementand the latter
insertion/deletion incremental

Processor-Internal Incrementality We can also distinguish modules according to how they up-
date their internal state. We call modules that keep their internal state baipeate steps and only
enrich it according to the curredt of their input bufferinternally incrementa(and the algorithms
they use for doing séully incremental algorithms While this perhaps conforms best with an in-
tuitive understanding of what incremental processing is, one can alsénienaglifferent strategy
(which has indeed been realised (DeVault et al., 2009), as brieflyedibelow). In this strategy,
all internal state is thrown away between updates, and output is alwaysuted from scratch using
the full currently available input and not just the newest increments of ityikeall such modules
restart incremental This strategy can be used when one has available more conventiocespro
ing modules which happen to be robust against partial input, but arauitioidchandle incremental
changes to their input.

Update Frequency This dimension concerns how the update frequency of LB-IUs relateato th
of (connected) RB-IUs.

We write f:in=out for modules that guarantee that every new LB-IU will lead to a new RB-1U
(that is grounded in the LB-IU). In such a setup, the consuming moduleblelgisd the sending
module only for exactly the time it needs to process the input. Following Nivd@4R we can call
this strict incrementality

f.in>outdescribes modules that potentially collect a certain amount of LB-IUs &efoiducing
an RB-IU based on them. This situation has been depicted in Figure 4 above.

f:out>in characterises modules that update iR&reoften than their LB is updated. This could
happen in modules that produce endogenous information like clock signdt&t produce contin-
uously improving hypotheses over the same input (see below), or modatesxpand’ their input,
like a TTS that produces audio frames.

Connectedness We may also want to distinguish between modules that produce ‘island’ lsspoth
ses that are, at least when initially posted, not connected to previoustyaged output IUs via a
common element that dominates them throggiunded inlinks, and those that guarantee that this
is not the case. For example, to achievd:ar=out behaviour, a parser may output hypotheses that
are not connected to previous hypotheses, in which case we may cajitbinbses ‘unconnected’.
Conversely, to guarantee connectedness, a parsing module might aeedrulate input, resulting

in anf.in>out behaviour, or may need to speculate on continuations, possibly resulfimg<mut
behaviou

Completeness We define theeompletenessf a set of IUs which are connected via the successor
relation informally as the relation of the sequence they form (e.g., a segoémmrds understood
as a prefix of an utterance) to (the type of) what would count as a maxagaksce. For example,
for an ASR module, such a maximal sequence may be the transcription ofla utterance and

9. The notion ofconnectednesis adapted from (Sturt and Lombardo, 2005), who provide evideratettle human
parser strives for connectedness.

97



SCHLANGEN AND SKANTZE

not just a prefix of one; for the parser maximal output may be a pars@efsgntence (as opposed
to one of type NP, for example), ete.

Building on this notion, we can characterise modules according to complsteitbeir LB and
RB. In ac:in=out-type module, the most complete set of RB-IUs is only as complete as the most
complete set of LB-IUs. That is, the module does not speculate aboutletiong, nor does it lag
behind. (This may technically be difficult to realise, and practically not velgvant.)

More interesting is the difference between the following types: mmi@>outtype module,
the most complete set of RB-IUs potentially lags behind the most complete s&-ifd. This
will typically be the case if:in>out modules.c:out>in-type modules finally potentially produce
output that ismore complete than their input, i.e., thgyedict continuations. An extreme case
would be a module that always predicts complete output, given partial inpgh & module may
be useful in cases where modules have to be used later in the procdssimghat can only handle
complete input (that is, are non-incremental); we may call such a systefin-based predictive,
semi-incremental(Again, (DeVault et al., 2009) is an example of such a module; as is (Kyra
et al., 2009).)

With these categories in hand, we can make further distinctions within whatdrebBoddy (1988)
callanytime algorithmsSuch algorithms are defined as a) producing output at any time, which how
ever b) improves in quality as the algorithm is given more time. Incremental mooylésfinition
implement a reduced form of a): they may not produce an output at anyhirh&ey do produce
output at more times than non-incremental modules. This output then also espyesr time, ful-
filling condition b), since more input becomes available and either the gussse®dule made (if

it is a c:out>in module) will improve or the completeness in general increases (as more ¢emple
RB-IUs are produced). Processing modules, however, can alsoybma algorithms in a more re-
stricted sense, namely if they continuously produce new and improvedt@vgrufor a constant set

of LB-IUs, i.e. without changes on the input side. (Which would bring thewards thef:out>in
behaviour.)

As a final note, we can now see that a hon-incremental system can taetehizsed as a spe-
cial case of an incremental system, namely one where IUs are always rigpéoraplete (with
c:in=ouf) and where all modules update in one dgin&out). (Typically, in such systems IUs
will also always be committed, but this need not necessarily be the casesf@tem to be non-
incremental.)

3.5 System Specification

Combining all these elements, we can finally define a system specificationfaidgtving:

e Alist of modules that are part of the system.

e For each of those a description in terms of which operations from Sectidh tBel module
implements, and a characterisation of its behaviour in the terms of Section 3.4.3.

e A set of axioms describing the connections between module buffers Gt hhe network
topology), as explained in Section 3.2.

10. This definition is only used here for abstractly classifying modulexctieally, it is of course rarely possible to know
how complete or incomplete an ongoing input is. Investigating how a dialggstem can better predict completion
of an utterance is in fact one of the aims of the project in which this framewas developed.
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Figure 8: The NUMBERS system architecture (CA = communicative act)

e Specifications of the format of the IUs that are produced by each moduénis of the defi-
nition of slots in Section 3.3. For technical reasons, one may also wantdifyspaich infor-
mation given about IUs may be changed later, and which can be corssiderautable.

4. Some Example Specifications

4.1 ‘Early Interaction’ Systems

Most previous work on incremental processing has focused on ahe afany possible advantages
of this processing style, namely on making available ‘higher-level’ informatiiotiower-level’
processes, where this information can then be used to guide proceRsisitypically has taken the
form of letting a parser interact with extra-syntactic knowledge. (Despitsiderable differences
in the way this effect is achieved, (DeVault and Stone, 2003; Stoneds 2005; Aist et al., 2006,
2007; Brick et al., 2007; Brick and Scheutz, 2007) can all be subsumeel this description.)

The general approach can be described in IU terms as follows: therpausts certain con-
stituents (NPs and VPs) as RB-1Us, connected modules filter out theeptyfaes they care about
and evaluate them in the domain (e.g., a domain ontology checks which opsrat@possible in
the domain, and what likely frames are that express a certain action; orwdenests whether NPs
have a denotation in the domain). This evaluation is attached to the IU (visetreelation, for
example); the parser then must be capable of noticing updates to an Ridldcaaccordingly
(e.g., modify the chart that forms its internal state).

The cited papers all focus on this interaction and do not say much abosygtemns in which
this interaction is realised, so we cannot give full system specificatioes he

4.2 The Numbers System

The Numbers System (Skantze and Schlangen, 2009) has a specahstiabecause it can not
just be usefully described in the terms explained here, it actually directlyntistizs some of the
concepts and methods described in this paper.

The module network topology of the system is shown in Figure 8. This is pretty rawstan-
dard dialogue system layout, with the exception that prosodic analysis ésiddme ASR and that
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dialogue management is divided into a discourse modelling module and an actiagenaAs can
be seen in the figure, there is also a self-monitoring feedback loop—ttensgsactions are sent
from the TTS (text-to-speech synthesizer) to the discourse modellersyBtem has two modules
that interface with the environment (i.e., are system boundaries): the AGBaTTS.

A single hypothesis chain connects the modules (that is, no two same levepbitksto the
same IU). Modules pass messages between them that can be seen &nddiings of IU-tokens.
Information strictly flows from LB to RB. All U slots except seef)(are realised. The purge and
commit operations are fully implemented. In the ASR, revision occurs as gloezstribed above
with Figure 4, and word-hypothesis IUs are committed (and the speecynidoa search space is
cleared) after 2 seconds of silence are detected. (Note that later madwulesvith all IUs from
the moment that they are sent, and do not have to wait for them being committedpaiser may
revoke its hypotheses if the ASR revokes the words it produces, louf dlsecovers from a “garden
path”, having built and closed off a larger structure too early. As aisigirthe parser waits until a
syntactic construct is followed by three words that are not part of it irddmmits. For each new
discourse model increment, the action manager may produce new communaiCAs), and
possibly revoke previous ones that have become obsolete. When temdyass spoken a CA, this
CA becomes committed, which is recorded by the discourse modeller.

No hypothesis testing is done (that is, no un-grounded information is pRBai). All modules
have &:in>out, c:in>outcharacteristic; that is, they may collect information in the form of LB-1Us
before they generate RB-IUs and hence potentially lag behind somewhat.

The system achieves a very high degree of responsiveness—Igy insremental ASR and
prosodic analysis for turn-taking decisions, it can react in aroundh20@hen suitable places for
backchannels are detected, which should be compared to a typical minimuncylafe750ms in
common systems where only a simple silence threshold istised.

4.3 A Prefix-Based, Predictive System

The module described in (DeVault et al., 2009) has already been mentiauegble of times above.
The module is an NLU component that outputs full semantic frames, even if isisipnly a partial

utterance. In our terms, it igrefix-based predictivewith c:out<in. The module is also ‘internal-
event based’ in that updates are triggered by events of an intern&él (thec ASR is polled every
200ms) and not by the event of receiving a new LB-IU (more on this distime the next section).
No internal state is kept between update steps, so output is always conguutbe basis of the
latest, possibly still partial, full input and not on the newest increments dinéymodule is only

restart-incremental

4.4 Incremental Generation in the DEAL System

Skantze and Hjalmarsson (2010) describe an approach to incremesgahgpeneration in dialogue
systems that is based on the model presented here. The approach ali@isgae system to
incrementally interpret spoken input while simultaneously planning, realisidgsalf-monitoring

the system response. If the system detects that the user has stoppiddgped it is appropriate
for the system to take the turn, the system may start to speak, even if it oiogst have a complete
plan of what to say, or if the input IUs are not yet committed. As the input isge®ed, the action

11. A video showing an example interaction with the system can be foundtap://ww. purl . org/
net / Nunber s- SDS- Vi deo.
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Figure 9: The right buffer of an ASR (top) and the speech plan thatiatismentally produced
(bottom). Vertex sl is associated with wl, s3 with w3, etc. Optional spegoheses are
marked with dashed outline.

manager in the system builds a tentative speech plan, which may then lateisee ré output 1Us
need to be revised, and they have already been spoken, the systemteontiagically perform an
overt self-repair, using editing terms such as “sorry, | mean”.

In order to facilitate incremental speech generation, system utterarecetade up of smaller
IUs. The action manager incrementally producespaech planwhich is a graph that represents
different ways of realising a message. Each edge in this graph is assbwidh speech segment
The speech output module may then traverse this graph in different deysnding on a number
of constraints, such as timing. Each speech segment is also made up of speieln unitsThese
mark locations where an utterance may be aborted, or where self{tmmsgemay occur. Figure 9
illustrates how a speech plan may be incrementally produced, as wor@sagaized by the speech
recognizer.

The grounded-in links may then be followed all the way back from the $paais to the
speech segments, to the speech plan, to the communicative acts in the disooded that it was
a response to, and finally to the phrases and the words in the user wtefdueeeby, a revision in
the speech recogniser may trigger a revision in the spoken output.

This system has been evaluated in a Wizard-of-Oz setting, and achasted feaction times
than a version of the system with incremental generation disabled, and ggedjunore polite,
more effective, and better at indicating when to speak.

5. Using the IU Model as a Middle Layer in Incremental Dialogue Sgtems

As we said in the introduction, the model as laid out in the previous sections ist toedescribe
the design space for incremental systems, and one of its applications isftrenutescription (and
consequently, easier comparison) of extant models of incrementalssinggincluding different
models of human incremental language processing). However, the nasdaldo proved useful for
us in the design of new systems (as described above; other systemsrarglgwnder develop-
ment). In this section, we discuss some additional conceptual issuesedbriee addressed when
basing a system on this modél.We present this in the form of a list of questions that a system
designer must answer. Again, we do not give recommendations forastieypar solution but rather

12. We will remain mostly on the conceptual level here. A lower level detson of implementational problems and
links to a collection of reference implementations of the framework caotedfin Schlangen et al. (2010).
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Figure 10: 1Us as structured objects. The fields are: ID, producing lapthrget ofsame-level
link, target ofgrounded-inlink, confidence value, committed, seen-by, payload.

describe the available options, and the circumstances under which céidégrare advisable. In
Subsection 5.2 we then present a more detailed description of two diffeagstto derive a working
system infrastructure from these concepts.

5.1 Design Issues

How are IUs represented? The first question to decide is how to represent IUs. As we said
above, besides the payload of an U, which holds the actual incremehtatK’ of information
that is to be exchanged, there are a number of other properties andn®lattidJs that one might
need to keep track of in a system. A straightforward way of doing so is tisedés as a data
structure with several fields that hold values (for which most programmimgukeges have basic
built-in datatypes), with Booleans for properties and values for relatieigsire 10 illustrates this
approach (for two ASR-IUs that are linked \8accessaqrof which the first is committed, and both
have been used by an NLU component). However, a less direct ajppnuay also be appropriate,
where properties of 1Us are indirectly represented via properties dfufiers® Section 5.2 will
give an example of such an approach, where the properties of bemigeteor being committed are
represented indirectly and must be inferred from the state of the buffer.

How are buffers synchronised between modules? The second, and more interesting challenge
is to implement the flow of information—i.e., the flow of IUs—through the system. ératistract
model explained above, we have treated buffers as sets of entitiesaemntkipresented connections
between modules (via their buffers) by relations between such sets. Dadrig €dmough from the
point of view ofanalysisof a system, as there it is enough to know that information in one buffer
is guaranteed to appear in another buffer as well. When designing ansysiesever, one has to
actually make this happen.

What is to be achieved, then, is that IUs in a producer’s right buffert rapgear in all of
its consumers’ left buffers, and all changes of properties of the |Ust tmeisynchronised; in other
words, it must be guaranteed that after an update to a RB (stefofRB;. in Figure 7) all connected
LBs must be updated as well (must perform their steptoB.B,), so that the connectedness axioms
hold for RB. and LB,.. (Or, respectively, for updates to LBs in case of right-to-left informatio
flow.) There are two interrelated aspects to this: one is how the path alonp tilgiéinformation
travels is realised, the other is what actually travels along this path. Figgieeldhes some of the
available options.

13. This is one reason why we have taken care in Section 3.3.4 abowytepecify that there are certain properties
that need to be represented, and have not said anything about tmeteatata structures to be used for representing
them.
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Figure 11: Options for realising paths and messages: shared memorydjleit communication
with either full copies of buffers or edit messages (middle); mediated comuatiorc
via blackboard, again full copies or edit messages (right)

First, the path: In a set-up where the modules in question operate in a shamedry space
(Figure 11, left), strictly speaking there is no path along which the informatario travel. In such
a case IUs can simply be data objects in shared memory, and these objeatscr@hges made
to them are immediately accessible to all modules; in this sense, this realisaticesponids most
closely to the abstract conceptualisation explained above. (If modulésaggnchronously—see
discussion below—the usual precautions have to be taken to avoid ineoieses when modifying
shared memory.)

In set-ups where the modules need to be more independent from eaghpettin@ps running
on different machines and/or being implemented in different programmingideyes, a ‘virtual
shared memory’ can be created via message passing. Figure 11 in the rhimleiéessset-up where
producing module and consuming module exchange instructions on howi¢e@sknchronisation,
and on the right it shows a variant of this where the ‘virtual shared méenmmpanaged by a
dedicated module that implements a ‘blackboard’ (a common set-up in Al syspeavigled for
example by the Open Agent Architecture, (Cheyer and Martin, 2001)).

Second, the information that travels: The question here is whether théedpul#fer is com-
municated as a whole (RBis sent, to replace LBand yield LB/) or whether only the changes
that were made when updating it are communicated (as message like “this iohaaryturn LB
into LBy"). In the former case, it is left to the consuming module to comphite, whereas in the
latter case this information is provided by the producer; in most cases thiserthg more efficient
solution.

All these options realise the same functionality, namely that buffers ardvsymised. Which

option is the most appropriate in a given situation depends on other catgider e.g. on how
tightly the modules can be integrated, on whether existing resources hazedaibed, etc.

How are updates to modules triggered? Another question then is how updates in a module are
triggered. There are two basic modes of operation here: One, updatdsectriggered by the
receptionof new information. This requires that new information is automaticailghedto the
consuming module; updates are hence driven by the external eveptadiacing module pushing
new information into the buffer. (More accurately: this event triggertkeckof whether an update
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to internal state is required; there may be cases where new informatiomatastually have an
effect on the consuming module.)

The other option is to let a consuming module query the producing modules it isgtedrin for
new information at self-determined intervals (or triggered by other, esmtmgs, internal events).
This could then be called a ‘pull model'.

Mixtures of these approaches are of course possible, where sommation is pushed and
other pulled on demand (for example, new IUs are pushed, but lategetamthe confidence slot
may not be pushed but only be queried when that information is relevant).

How is control distributed between modules? On creation of an U, are all further processing
steps performed in sequence in all later modules, before control rednththe next IU can be
created by this module? Or are modules running asynchronously (in shneatesses, agents)?
The former case is more similar to normal dialogue systems, with the only chairggetbat smaller
increments travel through the network. The latter case requires morgeag)da deal with possible
concurrency problems. (Of course, asynchronicity is not only plessibncremental systems, see
e.g. (Boye et al., 2000) for an early example of an asynchronousntoemental system.)

What is preserved between updates? Is internal state cleared at the beginning of each update,
or not? If it is cleared, then module needs to process the complete buffidag all 1Us that
span the input so far (and in fact doesn'’t really work fully incrementakyg above the definition of
restart incrementa) This is an appropriate choice if a module is used that can handle partial inpu
but cannot incrementally update its internal state.

What is the relation between buffers and internal states? Lastly, one needs to think about how
deeply the modules are encapsulated and protected from each othevajyl ae have described it
so far, the buffers are distinct from the internal state of a module, anddalmeay not need to
take everything from its left buffer into its internal state, and not eveog@ssing step that leads
to changes in its internal state needs to lead to changes of its right bufferevidr, one can also
imagine cases where there is a more direct connection between modulesitautdof one module
is written directly into the internal state of another module (e.g., words fromSfR de put directly
into a parse chart) or something is read directly out of an internal state.

5.2 Two Examples of IU-Architectures

We now discuss some more concrete details of how to plan the communicaticstrundtare of

an incremental system. We do this in two variants, where different systats god preconditions
are taken into account. These descriptions are loosely based on cemtouork on two different
systems?

5.2.1 MODULES ASAGENTS, BI-DIRECTIONAL INFORMATION FLOW

Assume that we are in the following situation: we need the modules of the syst&mbmilding

to run on different machines (with different computer architecturegrise we have to use legacy
components (e.g., a vision system that only runs under Microsoft Wirflawsereas other compo-
nents run oruNix machines). This means that we cannot rely on shared memory for implementing

14. Note that while the choices illustrated in these specifications do clustehéogeturally, they by no means are
completely dependent—it is possible to combine features of the model inw#ys, e.g. have a distributed system
with “right edge” encoding of changes (see below).
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the module buffers. We also want the system to be predictive, expectitieam; that is, we want
‘right-to-left’ information flow.

What we sketch here as a solution to these requirements is a pretty straigintfimplementa-
tion of the model as detailed above. First, we decide to implement |Us as olygbt&formation
fields as illustrated above in Figure 10; as mentioned there, supportdoradijects is present in
many different programming languages, so we're not (very) restrimtetthis. Since we can't rely
on (process specific) shared memory, we have to achieve synchimmisgbuffers through explicit
communication between modules. Details of how to set up such communicatiostr@ggn of
modules, routing and buffering of messages etc.) are beyond the stctipe paper, we just note
that there is a variety of off-the-shelf solutions for this tasks (e.g., CORBGE % OAA (Cheyer
and Martin, 2001), and many more). What's more interesting is which messagwant to send.
The following is a list of (informally specified) messages that realise thegatisum of capabilities
modelled in the IU approach. Keep in mind that the purpose of sending thesages is twofold:
to achieve synchronisation between buffers, and at the same time to elatapghat has changed;
that is, the messages representshef the update.

First, from producer to consumer(s):

e add this IU (full 1U, all fields) this is, as noted above, the most basic type of information
exchange, presenting a new increment for consumption. If parallethgpes are allowed in
the system, the consumer has to look up to which of the active hypothesis dhainew 1U
is to be added. It can do this by checking tiecessolink on the new 1U.

e revoke this IU (IU ID) indicates that a producer withdraws support for a previously posted
hypothesis.

e reinstate this IU (IU ID) makes a previously revoked IU active again.

e confidence change (IU ID, new valyejotifying consumer(s) about a change of the confi-
dence slot. (Note that if revocation is signalled via special values forammie, then the
previous two messages are only syntactic sugar for certain settings of t8agee)

e commit (IU ID), which is a guarantee to the consumer(s) that no update or revocatiorewill b
performed anymore on this 1U.

e no support (IU ID) this communicates to the consumer that an |U that the consumer wanted
to be proven (that is, prediction; see below) could not be validated, atdht module has
given up. (Itis in some sense the ‘negative’ of a commitment.)

Consumers can send ‘back’ to producers the following messages:

¢ used (IU ID) indicating that the consumer could make use of a given 1U, and hencediee la
hypothesis it is part of may be promising.

¢ useless (IU ID)the consumer can show that no use can be made of the hypothesis path end
in this 1U in the current context.

15. Seee.chtt p: // www. ong. or g/ getti ngstarted/ corbafaqg. ht m
16.htt p: // ww. zer oc. conl
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e commit (IU ID) the consumer has based an irreversible decision on this U, e.g. by making

an observable action, and so an exception should be raised if the pradats to revoke it.
e support (full U} indicating that the consumer expects this to be the producer’s output.

While it would also be possible for consumers to query producers fornessages, the more
straightforward solution is to let the producers send such messageswehdhey have made
changes to their right buffers (i.e., on making the update stept®RBB, from Figure 7). Updates
to a module can then be triggered by reception of these messages; i.e., tHe imedant-driven.

From the requirement stated at the beginning of this section that moduletonmaaadn different
machines it follows that they need to run in different processes. Agaisttaghtforward solution
then is to let the modules communicate asynchronously and run concurvettilgll the possible
pitfalls that concurrent programming entails (see e.g. (van Roy and H20igi))1’

5.2.2 Q0SECOUPLING OFMODULES, SHARED MEMORY; EFFICIENT ENCODING OF
UPDATES

Imagine a different scenario. We know that we are going to build all moddl#sedncremental
system from scratch, and we know that we can do this within one programariggage. Hence,
we can make use of shared memory to realise buffers, the option sketchipliie 11 (left). We
also do not anticipate a need for prediction. In such a setting, we can e@m®@act alternative
representation of IlU networks, which makes communication more efficient.

In a shared memory setup, synchronisation of buffers is not an issugha buffers and left
buffers are in fact the same memory space. Only the task of notifying songunodules about
what exactly changed remains, of what they have to look for when trmsadhe shared memory.
The idea here is now to reify positional information by superimposing a n&taefgoosition nodes
over the IU network, with the IUs being associated with edges in that netwiitkse positional
nodes then give us names for certain update stages, and so revisidmes efficiently encoded by
reference to these nodes. An example can make this clearer. Figurevi2fste update steps in the
right buffer of an incremental ASR module. By reference to positiondespwe can communicate
easily a) what the newest (rightmost; as explained above in Section 3.mbitted IU is (we will

call this NC fornewest committedndicated in the Figure as a shaded node) and b) what the newest

non-revoked or active IU is (i.e., the right edge (RE); indicated in therEBiga a node with a dashed
line). So, the change between the state at timandt, is signalled by RE taking on a different
value. This value (w3) has not been seen before, and so the consomihge can infer that the
network has been extended; it can find out which IUs have been dgydgaing back from the new
RE to the last previously seen position (in this case, w2; note that this woulchavithanges work
for parallel hypothesis threads, if the positional network were a latticé)ts Aa retraction of a
hypothesis is signalled by a return to a previous state, w2. All consuminglesokdave to do now
is to return to an internal state linked to this previous input state (more on thietoad). Finally,
t5 illustrates a commitment, where NC changes, and all IUs on the path from thid@éuwthe last
committed IU now count as committed.

This representation style can be considered more parsimonious, as Wieeapproach from the
previous section were three different messages (add, revoke, comhatgigmplicitly expressed in

17. It would be interesting to formally analyse the potential for parallelisatiaialogue processing, with Petri-Nets or
other modelling tools. We leave this to future work.
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time | string word buffer update message
t one J—'wz (wi, w2]
t one five [wl, w3]
ts one [wil, w2]
t, one four five [wl, w5]
ts [commit] [w5,w5]

Figure 12: The Right Buffer of an ASR module, and update messagesactipnpepresenting re-
vokes and commits

time | string word buffer parser buffer
t1 forty @4—[ forty ]—l\,\f—/g)
t, forty five me

b fforty | @ | fory e e J—O)

Figure 13: Connecting input states and output states of a buffer
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changes to the pair (NC, RE). The status of an 1U, and changes to ie@esented in the network
and this pair, and so IUs themselves can be immutable (unchangeable) ohjeistapproach. This
avoids the pitfalls of having concurrent modules altering and accessistgatieeof the IUs. Message
size is always constant in this approach, even if comprehensive ehang made to a buffer. E.g.,
in t4 in Figure 12, two 1Us are added, but this still requires only one messaggdate to what the
label of the current right edge is. Also, coupling between modules ctgtier in this approach, as
states of the consumer can be directly tied to states of the producer. Thistimi#dsn Figure 13.
States of a parser (which is, for ease of presentation, not doing antergsting job here, simply
mapping number words to their logical representations as numbers) cakdzttinthe updates that
created them, so that revision on the input state just requires going bagkdwgiaus output state.
In the example, this happenstifi where the return of RE to w2 results in a return of the previously
computed consumer state p2.

6. Conclusions and Future Work

We have presented a general, abstract model of incremental dialogeesging. The model is
generalin the sense that it describes elements that are essential to incrementdsprge and
hence can be expected to play a role in most, if not even all, systems perdosoth processing.
It is abstractin the sense that it only describes properties of these elements and retstiomen
them, but not concrete ways to instantiate them in computer implementations. WatiHdstine
notions developed here through the description of a number of existitensy these terms, and
we discussed some questions that arise when trying to build such systems.

In future work, we will attempt to describe more existing systems (such aéafideand Stone,
2003; Aist et al., 2006; Brick and Scheutz, 2007)) in the terms develbgexr] to more thoroughly
investigate the coverage of our concepts. We are also currently explooiw more cognitively
motivated models such as the model of speech generation by (Levelt, ¢88%)e specified in
our framework. A further direction for extension is the implementation of modalgjon as |U-
processing. Lastly, we are now starting to work on connecting the modaldemental process-
ing and grounding of interpretations in previous processing resultsideddere with models of
dialogue-level grounding in the information-state update tradition (LaraedrTraum, 2000). The
first point of contact here will be the investigation of self-correctios® phenomenon that connects
sub-utterance processing and discourse-level processing (@&gretal., 2007).
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