
Dialogue and Discourse 2(1) (2011) 83–111 doi: 10.5087/dad.2011.105

A General, Abstract Model of
Incremental Dialogue Processing

David Schlangen DAVID .SCHLANGEN@UNI-BIELEFELD.DE

Faculty of Linguistics and Literature
Bielefeld University
Bielefeld, Germany

Gabriel Skantze GABRIEL@SPEECH.KTH .SE

Department of Speech, Music and Hearing
KTH
Stockholm, Sweden

Editor: Hannes Rieser

Abstract
We present a general model and conceptual framework for specifying architectures for incremental
processing in dialogue systems, in particular with respectto the topology of the network of mod-
ules that make up the system, the way information flows through this network, how information
increments are ‘packaged’, and how these increments are processed by the modules. This model
enables the precise specification of incremental systems and hence facilitates detailed comparisons
between systems, as well as giving guidance on designing newsystems. In particular, the model
can serve as a framework for specifying module communication in such systems, as we illustrate
with some examples.

Keywords: Incremental Processing, Dialogue Systems, Software Architecture

1. Introduction

Dialogue processing is, by its very nature,incremental. No dialogue agent (artificial or natural)
processes whole dialogues, if only for the simple reason that dialogues are createdincrementally,
by participants taking turns at speaking (or typing, in computer-mediated, chat-like interaction). At
this level, most current implemented dialogue systems are incremental: they process user utterances
as a whole and produce their response utterances as a whole. Incremental processing, as the term
is commonly used, means more than this, however, namely that processing starts before the input
is complete (e.g., (Kilger and Finkler, 1995)). Incremental systems hence are those where “[e]ach
processing component will be triggered into activity by a minimal amount of its characteristic in-
put” (Levelt, 1989). If we assume that the characteristic input of a dialogue system is the utterance
(see (Traum and Heeman, 1997) for an attempt to define this unit), we wouldexpect an incremental
system to work on units smaller than utterances. Doing this then brings into the reach of compu-
tational modelling a whole range of behaviours that cannot otherwise be captured, like concurrent
feedback (“uh-huh”, “yeah”), fast turn-taking, and collaborative utterance construction.

Our aim in the work presented here is to describe and give names to the options available to
designers of incremental systems. The model that we specify isgeneralin the sense that it describes
elements that, as we believe, are essential to incremental processing, and hence can be expected to

c©2011 David Schlangen and Gabriel Skantze Submitted 1/2010; Accepted 3/2011; Published online 5/2011



SCHLANGEN AND SKANTZE

play a role in most, if not even all, systems performing such processing, andabstractin the sense
that it only describes properties of these elements and relations between them, but not concrete
ways to instantiate them in computer implementations.1 Specifically, we define some abstract data
types, some abstract methods that are applicable to them, and a range of possible constraints on
processing modules. The notions introduced here allow the (abstract) specification of a wide range
of different systems, from non-incremental pipelines to fully incremental, asynchronous, parallel,
predictive systems, thus making it possible to be explicit about similarities and differences between
systems. We believe that this will be of great use in the future development of such systems, in that
it makes clear the choices and trade-offs one can make.

While we discuss some issues that arise when directly basing a module communication infras-
tructure for incremental systems on the model, our main focus here is on the conceptual framework,
not on implementation details. What we are alsonot doing here is to argue for one particular ‘best
architecture’—what this is depends on the particular aims of an implementation/model and on more
low-level technical considerations (e.g., availability of processing modules). As we are not trying
to proveproperties of the specified systems here, the formalisations we give are not supported by a
formal semantics.

In the next section, we first motivate the use of incremental processing in dialogue systems, and
then give some examples of the possible differences in system architectures that we want to capture.
In Section 3, we present the abstract model that underlies the system andmodule specifications, of
which we give some examples in Section 4.2 In Section 5, we discuss how the model can be used
when designing the communication infrastructure of new incremental dialoguesystems. We close
with a brief discussion of related work.

2. Motivation

2.1 Why Model Incremental Processing?

Before we go into the details of our model, we take a step back and discuss possible reasons for using
incremental processing in models of dialogue processing. This discussionwill be brief, however, as
our main interest in this paper is not to convince anyone of choosing this styleof processing, but is
rather to describe some of the options that are available once that choice has been made.3

Depending on the goals one has when building a system, incremental processing may offer
certain advantages over non-incremental processing (i.e., processingwhere only full utterances, or
even longer units like turns, are considered by the system). For example, ifone tries to optimize
thereactivityof the system, then incrementality may be attractive for the straightforward engineer-
ing reason that starting to process an input before it is complete can lead to the processing being
finished faster compared to starting processing only after the input is complete. This can be true
even if the incremental processing takes somewhat longer than the non-incremental processing, if
that difference is not too high, as illustrated in Figure 1. (Of course, the algorithms used in incre-

1. We do not claim, of course, that the list of issues discussed here is exhaustive. Moreover, even within the space that
we sketch here, there are many detail questions that will still need much work to be answered fully.

2. These sections are based on Schlangen and Skantze (2009), but are revised and significantly extended.
3. See e.g. Allen et al. (2001); Aist et al. (2007); Skantze and Schlangen (2009); Buß et al. (2010) for more com-

prehensive discussions and some empirical results regarding the useof incremental processing in applied dialogue
systems. Regarding models of human dialogue processing, there is an even longer thread of literature in Psycholin-
guistics, amassing evidence that the human language processor worksincrementally; see eg. Marslen-Wilson (1973);
Altmann and Steedman (1988); Tanenhaus et al. (1995); van Berkumet al. (2007).

84



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

mental processing should not have a systematically worse complexity than theirnon-incremental
counterparts.)

Figure 1: Input processed by Incremental and Sequential Processor. Even a much slower Incremen-
tal Processor can finish before a Sequential Processor.

In a similar vein, incremental processing can potentially promise betterquality of processing,
if the system has provisions for interactions between modules, where the results of higher-level
processing of earlier bits of input can influence lower-level processing of later bits of input. (E.g., if
the syntactic structure computed for the recognised speech so far constrains how subsequent speech
is recognised—standard practice in speech recognition.)

If one takes, more generally,naturalnessas a parameter to optimisation, then incremental pro-
cessing can bring a range of phenomena into reach that cannot otherwise be modelled. Examples of
such phenomena are, as mentioned above, concurrent feedback (“uh-huh”, “yeah”), fast turn-taking,
collaborative utterance construction (Buß and Schlangen, 2010), andgeneration of hedges and self-
corrections (Skantze and Hjalmarsson, 2010). (See Edlund et al. (2008) for a general discussion of
the goal of naturalness for dialogue systems.)

Lastly, if one goes even further and choosesrealismas a modelling goal, treating the dialogue
system as a computational model of human cognition (Schlangen, 2009), then one would be well ad-
vised to make the model work incrementally, given the wealth of evidence that the human language
processor works incrementally (see references above).

2.2 Invariants and Variants in Incremental Processing

2.2.1 MODULARITY

Implemented dialogue systems are typically modular systems, where separable processing tasks are
encapsulated in separate software modules. Encapsulation of processing tasks can also be found in
cognitively motivated theories (e.g., Levelt’s model of generation, Levelt (1989)).4 Our first goal in
the present work is to characterise such modular structure. This involvesa) identifying the modules
in a system (abstractly, without saying yet too much about what exactly theydo) and b) specifying
the connections between them.

Figure 2 shows three examples ofmodule networks, representations of systems in terms of
their component modules and the connections between them. Modules are represented by boxes,
and connections by arrows indicating the path along which information flows between modules,
the direction of this flow, and, through the use of parallel connections, the“bandwidth” of the

4. As an aside, note that modularity does not preclude extensive interaction between information sources, as postu-
lated in current constraint-based theories of language processing (MacDonald, 1994), see discussion in Altmann and
Steedman (1988).

85



SCHLANGEN AND SKANTZE

connection (see below). Arrows not coming from or going to modules represent the global input(s)
and output(s) to and from the system.

Figure 2: Module network topologies

Our goal now is to facilitate exact and concise description of the differences between module
networks such as those in the example. Informally, the network on the left can be described as a
simple pipeline with no parallel paths, the one in the middle as a pipeline enhanced with a parallel
path, and the one on the right as a star-architecture; we want to be able to describe exactly the
constraints that define each type of network.

An important element of such a specification is to state how information flows in thesystem and
between the modules, again in an abstract way, without saying much about the information itself (as
the nature of the information depends on details of the actual modules). As mentioned above, the
Figure 2 indicates the direction of information flow (i.e., whose output is whoseinput) through the
direction of edges and the “bandwidth” of a connection between modules. Aconnection between
two modules may be single-directional, if information can only flow in one way (which typically
will be from a ‘lower-level’ to a ‘higher-level’ module, e.g. from one that iscloser to the input source
to one that is further away, or from one that is closer to the generation source to one that is closer to
the output channel). In a bi-directional setting, higher-level information may influence lower-level
processing, for example through expressing expectations that the lower-level module should work
towards.

The ‘bandwidth’ of the connection is represented via the number of edgesbetween two nodes
(the more edges, the higher the bandwidth), and this refers to whether parallel information can
be sent or not. One possible source for such parallelism in an incrementaldialogue system is
illustrated in Figure 3 (right), where for some stretches of an input signal (a sound wave), alternative
hypotheses are entertained (note that the boxes here donot represent modules, but rather bits of
incremental information, namely words; flattened into strings, one alternativeconsists of four words,
the other of three). We can view these alternative hypotheses about the same original signal as being
parallel to each other (with respect to the input they are grounded in).

2.2.2 GRANULARITY

Even systems that modularise the dialogue processing task in roughly the sameway can still differ
along another dimension of incremental processing, namely in how they divide up larger units into
increments. As an example, one system may decide on words as the minimal units—we will call
such units simply theincremental units(IU) of a system—whereas another system may package
incremental results triggered by time, e.g. every 500ms, and not by linguistic units. More formally,

86



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Figure 3: Parallel information streams (left) and alternative hypotheses (right)

Figure 4: Incremental input mapped to (less) incremental output

we will express this difference as a difference in relation of incremental units to the larger unit of
which they are increments.

2.2.3 INPUT/OUTPUT RELATIONS

We also want to be able to specify how incremental bits of input of a processing module can relate
to incremental bits of its output. Figure 4 shows one possible configuration, where over time in-
cremental bits of input (shown in the left column) accumulate before one bit of output (in the right
column) is produced. (As for example in a parser that waits until it can compute a major phrase out
of the words that are its input.) Describing the range of possible module behaviours with respect to
such input/output relations is another important element of the abstract modelpresented here.

2.2.4 REVISABILITY

It is in the nature of incremental processing, where output is generated on the basis of incomplete
input, that such output may have to be revised once more information becomesavailable (see (Bau-
mann et al., 2009) for a detailed investigation of the behaviour of ASR in this respect). Figure 5
illustrates such a case. At time-stept1, the available frames of acoustic features (shown in the left
column) lead the processor, an automatic speech recogniser, to hypothesise that the word “four” has
been spoken. This hypothesis is passed on from the internal state of the processor (middle column)
to the output (right column). However, at time-pointt2, as additional acoustic frames have come in,
it becomes clear that “forty” is a better hypothesis about the previous frames together with the new
ones. It is now not enough to just output the new hypothesis: it is possiblethat later modules have

87



SCHLANGEN AND SKANTZE

Figure 5: Example of hypothesis revision

already started to work with the hypothesis “four”, so the changed status of this hypothesis has to
be communicated as well. This is shown at time-stept3.

Note that the situation just described is different from, and comes additionalto, the uncer-
tainty management in dialogue systems in general. It is often seen desirable to be able to represent
a module’sconfidencein its hypotheses; indeed the increasingly popular approaches to dialogue
management that make use of probablistic models for representing uncertaindialogue states (see
e.g. Williams and Young (2007)) rely on such information. We want to distinguish provisions for
representing such ‘staticconfidence’ (confidence in a hypothesis at a given time) from the dynamic
aspects of potentially having to revise this confidence in the light of later information and having
to percolate this revision through the module network. It is the latter that Figure5 illustrates, and
it is another aspect of incremental systems that may be handled differently indifferent systems.
Capturing these differences is the final aim of our model.

2.3 Related Work

The model described here is inspired partially by Young et al. (1989)’s token passing architecture;
our model can be seen as a (substantial) generalisation of the idea of passing smaller information
bits around, out of the domain of ASR and into the system as a whole. Some of the characterisations
of the behaviour of incremental modules are inspired by (Kilger and Finkler, 1995), but adapted and
extended from incremental generation to the general case of incrementalprocessing.

While there recently have been a number of papers about incremental systems (e.g., (DeVault
and Stone, 2003; Aist et al., 2006; Brick and Scheutz, 2007)), none of those offer general consider-
ations about architectures,5 which is what we are trying to offer in the following.

3. The Model

3.1 Overview

We model a dialogue processing system in an abstract way as a collection ofconnected process-
ing modules, where information is passed between the modules along these connections. The third
component beside the modules and their connections is the basic unit of information that is com-
municated between the modules, which we call theincremental unit(IU). We will only characterise
those properties of IUs that are needed for our purpose of specifying different system types and ba-

5. Despite its title, (Aist et al., 2006) also only describes one particular setup.

88



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

sic operations needed for incremental processing; we will not say anything about the actual, module
specificpayloads of these units.

The processing module itself is modelled as consisting of aLeft Buffer (LB), the Processor
proper, and aRight Buffer(RB). When talking about operations of the Processor, we will sometimes
useLeft Buffer-Incremental Unit(LB-IU) for units in LB andRight Buffer-Incremental Unit(RB-
IU) for units in RB.

This setup is illustrated in Figure 5 above. IUs in LB (here, acoustic frames as input to an ASR)
are consumedby the processor (i.e., are processed) which creates an internal result; in the case
shown here, this internal result ispostedas an RB-IU only after a series of LB-IUs have accumu-
lated. In reality, such processing will obviously take some time to complete. For the purposes of
our abstract description here, however, we abstract away from such processing times and describe
Processors as relations between (sets of) LBs and RBs.

We begin our description of the model with the specification of network topologies.

3.2 Network Topology

Connections between modules are expressed throughconnectedness axiomswhich simply state that
IUs in one module’s right buffer are also in another buffer’s left buffer. (Again, in an implemented
system communication between modules will take time, but we abstract away fromthis here.) This
connection can also be partial or filtered. For example,∀x(x ∈ RB1 ∧ NP (x) ↔ x ∈ LB2)
expresses that all and only NPs in module one’s right buffer appear in module two’s left buffer. If
desired, a given RB can be connected to more than one LB, and more than one RB can feed into the
same LB (see the middle example in Figure 2). Together, the set of these axiomsdefines the network
topology of a concrete system. Different topology types can then be defined through constraints on
module sets and their connections. I.e., a pipeline system is one in which it cannot happen that an
IU is in more than one right buffer and more than one left buffer.

Note that for now we are assuming token identity and not for example copyingof data structures.
That is, we assume that it indeed is thesameIU that is in the left and right buffers of connected
modules, and hence any changes made to an IU are immediately known to all modules that contain it
in a buffer. This allows us to abstract away from the actual “transportation” of IUs between modules
(but see Section 5 below).

3.3 Incremental Units

So far, all we have said about IUs is that they are holding a ‘minimal amount of characteristic input’
(or, of course, a minimal amount of characteristicoutput, which is to become some other module’s
input). Communicating just these minimal information bits is enough only for the simplest kind
of system that we consider, a pipeline with only a single stream of information and no revision. If
more advanced features are desired, there needs to be more structure tothe IUs. In this section we
describe the kinds of information that the most capable systems need to represent, and that make
possible operations like hypothesis revision, prediction, and parallel hypothesis processing. (These
operations will be explained in the next section.) If in a particular system someof these operations
aren’t required, some of the structure on IUs can be simplified.

Informally, the representational desiderata are as follows. First, one needs to be able to express
certain relations between IUs, which record how IUs within a module and between modules belong
together. (Recall that IUs are meant to be incremental, minimal bits of what will at some point

89



SCHLANGEN AND SKANTZE

amount to one larger unit; e.g. words that form an utterance, or chunks of semantics that will even-
tually form the interpretation of an utterance, etc.) These relations come in two basic types; we
discuss them in detail in the next two subsections. Apart from the relations,we want IUs to carry
three other types of information as well: a confidence score representingthe confidence its producer
had in it being accurate; information about whether revisions of the IU arestill to be expected or
not; and information about whether the IU has already been processed by consumers, and if so, by
whom. A full specification of all types of information about IUs one might want to track is given
below in Section 3.3.4.

3.3.1 HORIZONTAL RELATIONS BETWEEN IUS

The first type of relation expresses what could be described as ‘horizontal’ relationships between
IUs; horizontal, because these relationships hold only between IUs of thesame level (produced
by the same module), and typically reflect in some way the temporal order in which the IUs were
created.

The most important instance of this type of relation is thesuccessorrelation, which links IUs in
such a way that from a chain of IUs linked with this relation, the (possibly still partial) larger unit
these IUs are increments of can be read off. To make this description concrete: this relation will link
IUs representing words (for example, in the output of an ASR) in such a way that the (possibly still
partial) utterance hypothesis can be produced by following the links. Moreformally, if two ASR
word hypothesis-IUs IU1 and IU2 stand in this relation, this expresses that the ASR takes IU2 to be
the continuation of the utterance whose previous element is IU1. If another IU, IU3, were linked
to IU1 as well, this would express that the sequences IU1-IU2 and IU1-IU3 form alternatives. (See
Figure 3, right; this relation is also illustrated in Figure 6, discussed below.)

This is the most basic kind of horizontal relation, which most incremental systems will have to
realise at least implicitly (since it keeps track of how increments form larger units of information).
For other purposes, one may also want to allow other relations of this type. For example, dependency
relations between concepts would be of this type as well. Figure 6 illustrates thisfor a possible
semantic representation for the two recognition alternatives “move the ball twofields” / “move the
ball to field z”. Here we have one IU holding the concept of a move action, and linked to it, as
further specifying it, a concept representing the patient of the action (BALL -5) and, as alternatives
corresponding to the alternative recognition results, two different directional concepts (DISTANCE:2
/ “two fields” andTARGET:Z / “field z”). To recognise at this level that these two directional concepts
are alternatives and do not both hold, one must follow thesuccessorrelation, where they are on
different branches. This illustrates that thespecifiesrelation as used here (and represented in the
figure by dashed arrows) cannot be subsumed by the successor relation (solid arrows in the figure).

3.3.2 HIERARCHICAL RELATIONS

The other kind of relation orders IUs into an informational hierarchy, linkingIUs to those bits of
information—other IUs—on which they depend informationally, or, as we will call it, in which
they aregrounded. Examples for this are the links between IUs representing segments of audio
material and IUs representing the corresponding word hypotheses (i.e.,LB-IUs and RB-IUs of a
speech recogniser); between word hypotheses and semantic representations (i.e., LB-IUs and RB-
IUs of a semantic parser; in both these examples the links cut across module boundaries); between
larger phrases in a parser and their constituents (e.g., an IU representing a sentence-level parse and

90



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Figure 6: An example network, built by the relationssuccessor(solid arrows),specifies(wide
dashed arrows),grounded in(narrow dashed arrows)

IUs representing an NP and a VP, in which case the link holds between IUs from the same level);
or between states of the dialogue manager and plans for system utterances. Figure 6 shows such
grounded inlinks between word-IUs and semantic concept IUs, as narrow dashed lines.

This relation effectively tracks the flow of information through the system; following its transi-
tive closure one can go back from the highest level IU, which is output by the system, to the input
IU or set of input IUs on which it is ultimately grounded.6 Going in the other direction, this is also
the path along which doubts of a module about the quality of an IU, or ultimately its revocation, can
percolate through the module network. For example, should an ASR decide toremove support for
a word hypothesis, then all IUs that are linked to this IU via this relation will be thrown into doubt
as well. (See the purge operation described below.)

3.3.3 META-INFORMATION

We also assume that it will be useful in some systems to be able to represent and communicate
additional information about IUs. For example, in certain setups it may be useful for a module to
learn whether its consumers have found a use for a hypothesis or not. This could be a parser that
gets told whether an NP it has built has a denotation in the current dialogue context or not, and that
could then base a decision on whether to extend the parse or not on that information. (See below in
Section 4.1 the discussion of ‘early interaction systems’.)

6. Of course, the output of a dialogue system is not fully determined just by its input. Other elements of the state figure
as well; e.g., some parts of an answer to a query will depend on a database and not just the query, however, the
intention to respond with a statement will still be grounded in the input signal.

91



SCHLANGEN AND SKANTZE

The other type of information concerns the confidence of a module in its hypotheses. As noted
above, this confidence can change during the processing of further input; in extreme cases, such
changes in confidence may lead to revocation of hypotheses on which possibly already later hy-
potheses were built.

Finally, in building systems ourselves, we have found that it can be usefulto add a binary notion
of commitmentthat signals that a IU will not (or shall not) be modified again. A module can declare
such commitment on its own IUs in cases where for technical reasons (e.g., tokeep internal state to
a manageable size) it decides that it will not touch them anymore. It can alsodemand commitment
from the producers of its input IUs, if it has based unrevisable actions on them; should the producing
module still have a need to revise them, then this would lead to an exceptional situation that should
be handled specifically. (E.g., by performing an explicit self-correction.)Note that we intend a
rather technical, house-keeping use for this. There is a more general sense in which modules are
‘committed’ to their IUs, but this we think is covered by providing confidence information and by
agreeing on a system-internal strategy for putting out IUs in the first place(e.g., by either optimizing
for speed, sending out even possibly very transient hypotheses, orby optimizing for quality, possibly
holding back IUs until internal confidence has reached a certain threshold).

3.3.4 FORMAL SPECIFICATION

We define formally the universeU in which incremental units live as follows. It consists of a set
of IU objects,IU (which includes a special IU⊤), a set of module labelsM, and a collection of
functions and relations defined on these:

• i is an identification function, which, for ease of reference, maps each IUobject onto a unique
ID (e.g., a natural number).

• A function c that maps each IU to a module label, its creator. (From this follows that each IU
can only have one creator.)

• A family of relations between IUs created by the same module (i.e., IUsα, β, wherei(α) 6=
i(β) andc(α) = c(β)); we will call these relationssame level links. One instance of this type
is thesuccessorrelation discussed above, which defines a (partial) order on IUs. We specify
that by default, IUs are successor of a special IU⊤. This guarantees that IUs linked via the
successorrelation form a connected graph rooted in the⊤ element. The type of the graph will
depend on the purposes of the sending and consuming module(s). For a one-best output of an
ASR it might be enough for the graph to be a chain (andsuccessorhence be a total order),
whereas an n-best output might be better represented as a tree (with all first words linked to
⊤) or a lattice (as in Figure 3, right).
There can be other kinds of such same level relations, as described above.

• G is thegrounded inrelation, connecting an IU to one or more IUs out of which it was built.
For example, an IU holding a (partial) parse might be grounded in a set of word hypothesis
IUs, and these in turn might be grounded in sets of IUs holding acoustic features.
While thesame level linkalways points to IUs on the same level,grounded inlinks can hold
both between IUs from the same level as well as between IUs of connectedmodules; in both
cases it expresses that one bit of information depends on other bits. Thetransitive closure of
this relation hence links system output IUs to a set of system input IUs. Forconvenience, we
may define a relationsupports(x,y)for cases wherey is grounded inx; and hence the closure
of this relation links input-IUs to the output that is (eventually) built on them.

92



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

This is also the hook for the mechanism that realises the revision process described above with
Figure 5: if a module decides to revoke one of its hypotheses, it sets its confidence value (see
below) to 0; on noticing this event, all consuming modules can then check whether they have
produced RB-IUs that link to this LB-IU, and do the same for them. In this way, information
about revision will automatically percolate through the module network.
Finally, we can also define a special value (e.g.,n.n.) for this relation and use it to trigger
prediction: if an RB-IU is grounded in-related ton.n. , this can be understood as a directive
to the processor to find evidence for this IU (i.e., to prove it), using the information in its left
buffer.

• T is theconfidence(or trust) function, which maps each IU to a numerical value (depending
on the module’s needs, either fromN or R) through which the generating processor can
pass on its confidence in its hypothesis. This then can have an influence ondecisions of
the consuming processor. For example, if there are parallel hypothesesof different quality
(confidence), a processor may decide to process (and produce output for) the best first.
A special value (e.g., 0, or -1) can be defined to flag hypotheses that are being revoked by a
processor, as described above.

• C is thecommittedproperty, which holds when a producing module has committed to the IU,
i.e., it guarantees that it will never revoke the IU. See below for a discussion of how such a
decision may be made, and how it travels through the module network.

• S is theseenrelation, relating IUs and module labels. Using this relation, processors can
record whether they have “looked at”—that is, attempted to process—the IU. In the simplest
case, the positive fact can be represented simply by adding the processor ID to the list (assum-
ing here that all processors in a system are identified by a unique ID); in more complicated
setups one may want to offer status information like “is being processed by module ID” or
“no use has been found for IU by module ID”, or “I assign this IU a probability of n” via
additional relations. This allows processors both to keep track of which LB-IUs they have
already looked at (and hence, to more easily identify new material that may have entered their
LB) and to recognise which of its RB-IUs have been of use to later modules,information
which can then be used for example to make decisions on which hypothesis to expand next.

• P finally relates IUs to linguistic objects (like words or parses) which are their actualpayload,
i.e., the module-specific unit of ‘characteristic input’ (or output).

Systems can differ in which of these elements they realise, and even modules within a system
can differ along this dimension. It seems plausible to assume that most incremental systems will
have concepts that can be mapped to what may be called the core set of IU properties,(i, c, same
level link, grounded in link, T ,P), while more sophisticated processing (e.g., using prediction and
a high degree of interaction between modules) will make use of the other properties.

3.4 Modules

As explained above, modules consist of left and right buffers, and processors with internal state
that operate on input IUs to create output IUs. Normally, the direction of thisupdate operation is
from the left to the right (meaning that LB-IUs are ‘consumed’ to producenew RB-IUs that are
grounded in them), but in the case of expectation-guided modules can also be from right to left (i.e.,
attempting to find evidence for some predicted output). A central concept when looking at modules
is that of the update step, which has three stages: 1) the left buffer of themodule is updated from

93



SCHLANGEN AND SKANTZE

Figure 7: A schematic view of the update process

state LBt to state LBt′ ; 2) the current module recognises what has changed, and performs itsown
update first of its internal state (ISt to IS′

t) and then 3) of its own right buffer (RBt to state RB′t;
this in turn will be the first update step for all consuming modules). Figure 7 illustrates this flow
of information through a module, showing only those parts of the module that are relevant at each
timestep.

We use these labels for the update stages when we now first discuss some more properties of
buffers, then list operations that processors have to perform, and finally describe different possible
module behaviours.

3.4.1 BUFFERS

For the purposes of the abstract model, we can conceptualise buffers simply as sets of IUs, for which
the constraints hold that are specified by the connectedness axioms as described above. During the
execution of a system, buffers change over time (through the updates described above). To denote
the state of a buffer at a given timet, we define a functionstate from time labels to IU sets. The
changes made to a buffer from timet to t′ (i.e., to get fromstate(t) to state(t′)) we can then
denote by∆t,t′ . We will assume for now that the processor only receives this delta, and bases its
computations on this. We discuss alternative set-ups below in Section 5. We also define a function
are which returns the currentactive right edgeof a buffer; this is the set of IUs that are a) currently
active (we assume that IUs that belong to input that has been fully processed are marked as inactive);
b) not revoked (see below); and c) maximal with respect to thesuccessorrelation (recall that this
defines a partial order rooted in⊤). This is the right edge insofar as this is where new increments
will attach (e.g., where a new word will be added as more audio material comes in).

94



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

3.4.2 PROCESSOROPERATIONS

At the most abstract level, the job of processors is to react to changes in their buffers (the∆t,t′)
by performing appropriate updates. The elementary task here is to react tothe appearance of new
LB-IUs and eventually build new RB-IUs out of them (or, in the case of a predictive system, to react
to new expectations being entered as RB-IUs and to evaluate subsequentLB-IUs as to whether they
provide evidence for these expectations). How exactly this is done is specific to the individual tasks
of the module (e.g., ASR, parser, dialogue manager, etc.), and we won’t have anything to say about
this here; what we will describe here are the differenttypesof updates that can be implemented in
an incremental processing module. We also leave openhow processors are triggered into action;
we simply assume that on receiving new LB-IUs or RB-IUs or noticing changes to already known
IUs—more generally, on being given∆t,t′ of the appropriate buffer—they will eventually perform
these operations. Again, we describe here the complete set of operations; systems may differ in
which subset of the functions they implement, or even whether they implement these operations as
recognisably separate steps at all.

purge LB-IUs that are revoked by their producer must be purged from the internal state of the
processor (so that they will not be used in future updates) and all RB-IUs grounded in them must be
revoked as well.

Some reasons for revoking hypotheses have already been mentioned. For example, a speech
recogniser might decide that a previously output word hypothesis is not valid anymore (i.e., is not
anymore among the n-best that are passed on). Or, a parser might decide in the light of new evidence
that a certain structure it has built is a dead end, and withdraw support for it. In all these cases,all
‘later’ hypotheses that build on this IU (i.e., all hypotheses that are in the transitive closure of this
IU’s supportrelation) must be purged. If all modules implement the purge operation, this revision
information will be guaranteed to travel through the network.

new IU update New LB-IUs have to be integrated into the internal state, and eventually new RB-
IUs are built based on them (not necessarily in the same frequency as new LB-IUs are received; see
Figure 4 above, and discussion below). The new RB-IUs have to be related appropriately to other
IUs (e.g., viasame level links, grounded in points, etc.). As mentioned above, this is the most basic
operation of a processor, and can be expected to be implemented in all systems.

Processors can takesupportsinformation into account when deciding on the order in which
they update. A processor might for example decide to first try to use the newinformation (in its
LB) to extend structures that have already proven useful to later modules(that is, that support new
IUs). For example, a parser might decide to follow an interpretation path thatis deemed more likely
by a contextual processing module (which has grounded hypotheses in the partial path). This may
result in better use of resources—the downside of such a strategy of course is that modules can be
garden-pathed.7

Update may also work towards a goal. As mentioned above, putting ungrounded IUs in a mod-
ule’s RB can be understood as a request to the module to try to find evidencefor it. For example, the
dialogue manager might decide based on the dialogue context that a certain type of dialogue act is
likely to follow. By requesting the dialogue act recognition module to find evidence for this hypoth-
esis, it can direct processing resources towards this task. (The dialogue recognition module then can
in turn decide on which evidence it would like to see, and ask lower modules to prove this. Ideally,

7. It depends on the goals behind building the model whether this is considered a downside or desired behaviour.

95



SCHLANGEN AND SKANTZE

this could filter down to the interface module, the ASR, and guide its hypothesis forming. Tech-
nically, something like this is probably easier to realise by other means; see (Schuler et al., 2009),
briefly discussed below, for an example of an integrated approach, where semantics and reference
resolution can directly bear on the speech recognition process.)

We finally note that in certain setups it may be necessary to consume different types of IUs
in one module. As explained above, we allow more than one module to feed into another module
LB. An example where something like this could be useful is in the processing of multi-modal
information, where information about both words spoken and gestures performed may be needed to
compute an interpretation.

commit There are three ways in which a processor may have to deal with commits. First, it can
decide for itself to commit RB-IUs. For example, a parser may decide to commit to apreviously
built structure if it failed to integrate into it a certain number of new words, thusassuming that
the previous structure is complete. Second, a processor may notice that a previous module has
committed to IUs in its LB. This might be used by the processor to remove internal state kept for
potential revisions. Eventually, this commitment of previous modules might lead theprocessor to
also commit to its output, thus triggering a chain of commitments.

Interestingly, it can also make sense to let commits flow from right to left, as briefly discussed
above. For example, if the system has committed to a certain interpretation by making a publicly
observable action (e.g., an utterance, or an action in another modality), this can be represented as
a commit on IUs. This information would then travel down the processing network; leading to the
potential for a clash between a revoke message coming from the left and thecommit directive from
the right. In such a case, where the justification for an action is revoked when the action has already
been performed, self-correction behaviours can be executed.8

other updates Finally, in some settings it may also be desirable to let modules change the con-
fidence score of IUs after having put them into the RB (and so after they have already potentially
been consumed by later modules); the consuming modules then might need to react to this change,
perhaps by updating their internal state, by changing their future update strategy, or by changing
their own confidence in something they have passed on into their own right buffer. It may also be
useful in certain settings to allow other aspects of IUs to be changed later aswell, such assame level
links; again, this would be something that consuming modules need to notice and react to.

3.4.3 CHARACTERISING MODULE BEHAVIOUR

Modules can also be characterised through a description of the changesthat updates yield to buffers
and internal states, and the relations between changes to left buffers and those to right buffers. We
list several dimensions along which such a characterisation can be made.

Updates to IU Sequences Using the notion of aright edgefrom Section 3.4.1, we can transfer
some terms from (Wiŕen, 1992): a module isleft-to-right incrementalif it only producesextensions
to the current right edge; within what Wirén (1992) callsfully incremental, we can make further
distinctions, namely according to whether only revisions or also insertions and deletions are allowed.
(Revisions are covered by the revoke operation described above; insertions and deletions can be
expressed in our model by allowingsuccessorlinks to be changed appropriately.) When we want

8. In future work, we will explore if and how (e.g. through the implementation of a self-monitoring cycle with commits
and revokes) the various types of dysfluency described by Levelt (1989) and others can be modeled.

96



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

to make this further distinction, we call the formerright edge revision-incrementaland the latter
insertion/deletion incremental.

Processor-Internal Incrementality We can also distinguish modules according to how they up-
date their internal state. We call modules that keep their internal state betweenupdate steps and only
enrich it according to the current∆ of their input bufferinternally incremental(and the algorithms
they use for doing sofully incremental algorithms). While this perhaps conforms best with an in-
tuitive understanding of what incremental processing is, one can also imagine a different strategy
(which has indeed been realised (DeVault et al., 2009), as briefly reviewed below). In this strategy,
all internal state is thrown away between updates, and output is always computed from scratch using
the full currently available input and not just the newest increments of it; wewill call such modules
restart incremental. This strategy can be used when one has available more conventional process-
ing modules which happen to be robust against partial input, but are not built to handle incremental
changes to their input.

Update Frequency This dimension concerns how the update frequency of LB-IUs relates to that
of (connected) RB-IUs.

We write f:in=out for modules that guarantee that every new LB-IU will lead to a new RB-IU
(that is grounded in the LB-IU). In such a setup, the consuming module lagsbehind the sending
module only for exactly the time it needs to process the input. Following Nivre (2004), we can call
this strict incrementality.

f:in≥outdescribes modules that potentially collect a certain amount of LB-IUs before producing
an RB-IU based on them. This situation has been depicted in Figure 4 above.

f:out≥in characterises modules that update RBmoreoften than their LB is updated. This could
happen in modules that produce endogenous information like clock signals,or that produce contin-
uously improving hypotheses over the same input (see below), or modules that ‘expand’ their input,
like a TTS that produces audio frames.

Connectedness We may also want to distinguish between modules that produce ‘island’ hypothe-
ses that are, at least when initially posted, not connected to previously generated output IUs via a
common element that dominates them throughgrounded inlinks, and those that guarantee that this
is not the case. For example, to achieve anf:in=out behaviour, a parser may output hypotheses that
are not connected to previous hypotheses, in which case we may call the hypotheses ‘unconnected’.
Conversely, to guarantee connectedness, a parsing module might need toaccumulate input, resulting
in an f:in≥out behaviour, or may need to speculate on continuations, possibly resulting inf:in≤out
behaviour.9

Completeness We define thecompletenessof a set of IUs which are connected via the successor
relation informally as the relation of the sequence they form (e.g., a sequence of words understood
as a prefix of an utterance) to (the type of) what would count as a maximal sequence. For example,
for an ASR module, such a maximal sequence may be the transcription of a whole utterance and

9. The notion ofconnectednessis adapted from (Sturt and Lombardo, 2005), who provide evidence that the human
parser strives for connectedness.

97



SCHLANGEN AND SKANTZE

not just a prefix of one; for the parser maximal output may be a parse of type sentence (as opposed
to one of type NP, for example), etc.10

Building on this notion, we can characterise modules according to completeness of their LB and
RB. In ac:in=out-type module, the most complete set of RB-IUs is only as complete as the most
complete set of LB-IUs. That is, the module does not speculate about completions, nor does it lag
behind. (This may technically be difficult to realise, and practically not veryrelevant.)

More interesting is the difference between the following types: In ac:in≥out-type module,
the most complete set of RB-IUs potentially lags behind the most complete set of LB-IUs. This
will typically be the case inf:in≥out modules.c:out≥in-type modules finally potentially produce
output that ismore complete than their input, i.e., theypredict continuations. An extreme case
would be a module that always predicts complete output, given partial input. Such a module may
be useful in cases where modules have to be used later in the processing chain that can only handle
complete input (that is, are non-incremental); we may call such a systemprefix-based predictive,
semi-incremental. (Again, (DeVault et al., 2009) is an example of such a module; as is (Schlangen
et al., 2009).)

With these categories in hand, we can make further distinctions within what Dean and Boddy (1988)
call anytime algorithms. Such algorithms are defined as a) producing output at any time, which how-
ever b) improves in quality as the algorithm is given more time. Incremental modulesby definition
implement a reduced form of a): they may not produce an output at any time,but they do produce
output at more times than non-incremental modules. This output then also improves over time, ful-
filling condition b), since more input becomes available and either the guessesthe module made (if
it is a c:out≥in module) will improve or the completeness in general increases (as more complete
RB-IUs are produced). Processing modules, however, can also be anytime algorithms in a more re-
stricted sense, namely if they continuously produce new and improved output even for a constant set
of LB-IUs, i.e. without changes on the input side. (Which would bring themtowards thef:out≥in
behaviour.)

As a final note, we can now see that a non-incremental system can be characterised as a spe-
cial case of an incremental system, namely one where IUs are always maximally complete (with
c:in=out) and where all modules update in one go (f:in=out). (Typically, in such systems IUs
will also always be committed, but this need not necessarily be the case for asystem to be non-
incremental.)

3.5 System Specification

Combining all these elements, we can finally define a system specification as thefollowing:

• A list of modules that are part of the system.
• For each of those a description in terms of which operations from Section 3.4.2 the module

implements, and a characterisation of its behaviour in the terms of Section 3.4.3.
• A set of axioms describing the connections between module buffers (and hence the network

topology), as explained in Section 3.2.

10. This definition is only used here for abstractly classifying modules. Practically, it is of course rarely possible to know
how complete or incomplete an ongoing input is. Investigating how a dialoguesystem can better predict completion
of an utterance is in fact one of the aims of the project in which this framework was developed.

98



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Figure 8: The NUMBERS system architecture (CA = communicative act)

• Specifications of the format of the IUs that are produced by each module, interms of the defi-
nition of slots in Section 3.3. For technical reasons, one may also want to specify which infor-
mation given about IUs may be changed later, and which can be considered immutable.

4. Some Example Specifications

4.1 ‘Early Interaction’ Systems

Most previous work on incremental processing has focused on one ofthe many possible advantages
of this processing style, namely on making available ‘higher-level’ informationto ‘lower-level’
processes, where this information can then be used to guide processing.This typically has taken the
form of letting a parser interact with extra-syntactic knowledge. (Despite considerable differences
in the way this effect is achieved, (DeVault and Stone, 2003; Stoness etal., 2005; Aist et al., 2006,
2007; Brick et al., 2007; Brick and Scheutz, 2007) can all be subsumedunder this description.)

The general approach can be described in IU terms as follows: the parser posts certain con-
stituents (NPs and VPs) as RB-IUs, connected modules filter out the phrase type they care about
and evaluate them in the domain (e.g., a domain ontology checks which operations are possible in
the domain, and what likely frames are that express a certain action; or a module tests whether NPs
have a denotation in the domain). This evaluation is attached to the IU (via theseenrelation, for
example); the parser then must be capable of noticing updates to an RB-IU and act accordingly
(e.g., modify the chart that forms its internal state).

The cited papers all focus on this interaction and do not say much about thesystems in which
this interaction is realised, so we cannot give full system specifications here.

4.2 The Numbers System

The Numbers System (Skantze and Schlangen, 2009) has a special status here because it can not
just be usefully described in the terms explained here, it actually directly instantiates some of the
concepts and methods described in this paper.

The module network topology of the system is shown in Figure 8. This is pretty much a stan-
dard dialogue system layout, with the exception that prosodic analysis is done in the ASR and that

99



SCHLANGEN AND SKANTZE

dialogue management is divided into a discourse modelling module and an action manager. As can
be seen in the figure, there is also a self-monitoring feedback loop—the system’s actions are sent
from the TTS (text-to-speech synthesizer) to the discourse modeller. Thesystem has two modules
that interface with the environment (i.e., are system boundaries): the ASR and the TTS.

A single hypothesis chain connects the modules (that is, no two same level linkspoint to the
same IU). Modules pass messages between them that can be seen as XML-encodings of IU-tokens.
Information strictly flows from LB to RB. All IU slots except seen (S) are realised. The purge and
commit operations are fully implemented. In the ASR, revision occurs as already described above
with Figure 4, and word-hypothesis IUs are committed (and the speech recognition search space is
cleared) after 2 seconds of silence are detected. (Note that later moduleswork with all IUs from
the moment that they are sent, and do not have to wait for them being committed.) The parser may
revoke its hypotheses if the ASR revokes the words it produces, but also if it recovers from a “garden
path”, having built and closed off a larger structure too early. As a heuristic, the parser waits until a
syntactic construct is followed by three words that are not part of it untilit commits. For each new
discourse model increment, the action manager may produce new communicative acts (CAs), and
possibly revoke previous ones that have become obsolete. When the system has spoken a CA, this
CA becomes committed, which is recorded by the discourse modeller.

No hypothesis testing is done (that is, no un-grounded information is put onRBs). All modules
have af:in≥out; c:in≥outcharacteristic; that is, they may collect information in the form of LB-IUs
before they generate RB-IUs and hence potentially lag behind somewhat.

The system achieves a very high degree of responsiveness—by using incremental ASR and
prosodic analysis for turn-taking decisions, it can react in around 200ms when suitable places for
backchannels are detected, which should be compared to a typical minimum latency of 750ms in
common systems where only a simple silence threshold is used.11

4.3 A Prefix-Based, Predictive System

The module described in (DeVault et al., 2009) has already been mentioneda couple of times above.
The module is an NLU component that outputs full semantic frames, even if its input is only a partial
utterance. In our terms, it isprefix-based predictive, with c:out≤in. The module is also ‘internal-
event based’ in that updates are triggered by events of an internal clock (the ASR is polled every
200ms) and not by the event of receiving a new LB-IU (more on this distinction in the next section).
No internal state is kept between update steps, so output is always computed on the basis of the
latest, possibly still partial, full input and not on the newest increments only;the module is only
restart-incremental.

4.4 Incremental Generation in the DEAL System

Skantze and Hjalmarsson (2010) describe an approach to incremental speech generation in dialogue
systems that is based on the model presented here. The approach allows adialogue system to
incrementally interpret spoken input while simultaneously planning, realising and self-monitoring
the system response. If the system detects that the user has stopped speaking and it is appropriate
for the system to take the turn, the system may start to speak, even if it does not yet have a complete
plan of what to say, or if the input IUs are not yet committed. As the input is processed, the action

11. A video showing an example interaction with the system can be found athttp://www.purl.org/
net/Numbers-SDS-Video.

100



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Figure 9: The right buffer of an ASR (top) and the speech plan that at isincrementally produced
(bottom). Vertex s1 is associated with w1, s3 with w3, etc. Optional speech segments are
marked with dashed outline.

manager in the system builds a tentative speech plan, which may then later be revised. If output IUs
need to be revised, and they have already been spoken, the system will automatically perform an
overt self-repair, using editing terms such as “sorry, I mean”.

In order to facilitate incremental speech generation, system utterances are made up of smaller
IUs. The action manager incrementally produces aspeech plan, which is a graph that represents
different ways of realising a message. Each edge in this graph is associated withspeech segment.
The speech output module may then traverse this graph in different ways,depending on a number
of constraints, such as timing. Each speech segment is also made up of smallerspeech units. These
mark locations where an utterance may be aborted, or where self-corrections may occur. Figure 9
illustrates how a speech plan may be incrementally produced, as words are recognized by the speech
recognizer.

The grounded-in links may then be followed all the way back from the speech units to the
speech segments, to the speech plan, to the communicative acts in the discourse model that it was
a response to, and finally to the phrases and the words in the user utterance. Thereby, a revision in
the speech recogniser may trigger a revision in the spoken output.

This system has been evaluated in a Wizard-of-Oz setting, and achieved faster reaction times
than a version of the system with incremental generation disabled, and was judged more polite,
more effective, and better at indicating when to speak.

5. Using the IU Model as a Middle Layer in Incremental Dialogue Systems

As we said in the introduction, the model as laid out in the previous sections is meant to describe
the design space for incremental systems, and one of its applications is the uniform description (and
consequently, easier comparison) of extant models of incremental processing (including different
models of human incremental language processing). However, the model has also proved useful for
us in the design of new systems (as described above; other systems are currently under develop-
ment). In this section, we discuss some additional conceptual issues that need to be addressed when
basing a system on this model.12 We present this in the form of a list of questions that a system
designer must answer. Again, we do not give recommendations for one particular solution but rather

12. We will remain mostly on the conceptual level here. A lower level description of implementational problems and
links to a collection of reference implementations of the framework can be found in Schlangen et al. (2010).

101



SCHLANGEN AND SKANTZE

Figure 10: IUs as structured objects. The fields are: ID, producing module, target ofsame-level-
link, target ofgrounded-in-link, confidence value, committed, seen-by, payload.

describe the available options, and the circumstances under which certain choices are advisable. In
Subsection 5.2 we then present a more detailed description of two differentways to derive a working
system infrastructure from these concepts.

5.1 Design Issues

How are IUs represented? The first question to decide is how to represent IUs. As we said
above, besides the payload of an IU, which holds the actual incremental ‘chunk’ of information
that is to be exchanged, there are a number of other properties and relations of IUs that one might
need to keep track of in a system. A straightforward way of doing so is to realise IUs as a data
structure with several fields that hold values (for which most programming languages have basic
built-in datatypes), with Booleans for properties and values for relations;Figure 10 illustrates this
approach (for two ASR-IUs that are linked viasuccessor, of which the first is committed, and both
have been used by an NLU component). However, a less direct approach may also be appropriate,
where properties of IUs are indirectly represented via properties of thebuffers.13 Section 5.2 will
give an example of such an approach, where the properties of being revoked or being committed are
represented indirectly and must be inferred from the state of the buffer.

How are buffers synchronised between modules?The second, and more interesting challenge
is to implement the flow of information—i.e., the flow of IUs—through the system. In the abstract
model explained above, we have treated buffers as sets of entities, and have represented connections
between modules (via their buffers) by relations between such sets. Doing this is enough from the
point of view ofanalysisof a system, as there it is enough to know that information in one buffer
is guaranteed to appear in another buffer as well. When designing a system, however, one has to
actually make this happen.

What is to be achieved, then, is that IUs in a producer’s right buffer must appear in all of
its consumers’ left buffers, and all changes of properties of the IUs must be synchronised; in other
words, it must be guaranteed that after an update to a RB (step RBt to RBt′ in Figure 7) all connected
LBs must be updated as well (must perform their step LBt to LBt′), so that the connectedness axioms
hold for RBt′ and LBt′ . (Or, respectively, for updates to LBs in case of right-to-left information
flow.) There are two interrelated aspects to this: one is how the path along which the information
travels is realised, the other is what actually travels along this path. Figure 11sketches some of the
available options.

13. This is one reason why we have taken care in Section 3.3.4 above to only specify that there are certain properties
that need to be represented, and have not said anything about the concrete data structures to be used for representing
them.

102



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Figure 11: Options for realising paths and messages: shared memory (left); direct communication
with either full copies of buffers or edit messages (middle); mediated communication
via blackboard, again full copies or edit messages (right)

First, the path: In a set-up where the modules in question operate in a sharedmemory space
(Figure 11, left), strictly speaking there is no path along which the informationhas to travel. In such
a case IUs can simply be data objects in shared memory, and these objects andall changes made
to them are immediately accessible to all modules; in this sense, this realisations corresponds most
closely to the abstract conceptualisation explained above. (If modules work asynchronously—see
discussion below—the usual precautions have to be taken to avoid inconsistencies when modifying
shared memory.)

In set-ups where the modules need to be more independent from each other, perhaps running
on different machines and/or being implemented in different programming languages, a ‘virtual
shared memory’ can be created via message passing. Figure 11 in the middle shows a set-up where
producing module and consuming module exchange instructions on how to achieve synchronisation,
and on the right it shows a variant of this where the ‘virtual shared memory’ is managed by a
dedicated module that implements a ‘blackboard’ (a common set-up in AI systems,provided for
example by the Open Agent Architecture, (Cheyer and Martin, 2001)).

Second, the information that travels: The question here is whether the updated buffer is com-
municated as a whole (RBt′ is sent, to replace LBt and yield LBt′) or whether only the changes
that were made when updating it are communicated (as message like “this is how you can turn LBt
into LBt′”). In the former case, it is left to the consuming module to compute∆t,t′ , whereas in the
latter case this information is provided by the producer; in most cases this may be the more efficient
solution.

All these options realise the same functionality, namely that buffers are synchronised. Which
option is the most appropriate in a given situation depends on other considerations, e.g. on how
tightly the modules can be integrated, on whether existing resources have to be re-used, etc.

How are updates to modules triggered? Another question then is how updates in a module are
triggered. There are two basic modes of operation here: One, updates can be triggered by the
receptionof new information. This requires that new information is automaticallypushedto the
consuming module; updates are hence driven by the external event of aproducing module pushing
new information into the buffer. (More accurately: this event triggers acheckof whether an update

103



SCHLANGEN AND SKANTZE

to internal state is required; there may be cases where new information doesnot actually have an
effect on the consuming module.)

The other option is to let a consuming module query the producing modules it is interested in for
new information at self-determined intervals (or triggered by other, endogenous, internal events).
This could then be called a ‘pull model’.

Mixtures of these approaches are of course possible, where some information is pushed and
other pulled on demand (for example, new IUs are pushed, but later changes to the confidence slot
may not be pushed but only be queried when that information is relevant).

How is control distributed between modules? On creation of an IU, are all further processing
steps performed in sequence in all later modules, before control returnsand the next IU can be
created by this module? Or are modules running asynchronously (in threads, processes, agents)?
The former case is more similar to normal dialogue systems, with the only change being that smaller
increments travel through the network. The latter case requires more changes, to deal with possible
concurrency problems. (Of course, asynchronicity is not only possible in incremental systems, see
e.g. (Boye et al., 2000) for an early example of an asynchronous non-incremental system.)

What is preserved between updates? Is internal state cleared at the beginning of each update,
or not? If it is cleared, then module needs to process the complete buffer containing all IUs that
span the input so far (and in fact doesn’t really work fully incrementally;see above the definition of
restart incremental.) This is an appropriate choice if a module is used that can handle partial input,
but cannot incrementally update its internal state.

What is the relation between buffers and internal states? Lastly, one needs to think about how
deeply the modules are encapsulated and protected from each other. Theway we have described it
so far, the buffers are distinct from the internal state of a module, and a module may not need to
take everything from its left buffer into its internal state, and not every processing step that leads
to changes in its internal state needs to lead to changes of its right buffer. However, one can also
imagine cases where there is a more direct connection between modules, andoutput of one module
is written directly into the internal state of another module (e.g., words from an ASR are put directly
into a parse chart) or something is read directly out of an internal state.

5.2 Two Examples of IU-Architectures

We now discuss some more concrete details of how to plan the communication infrastructure of
an incremental system. We do this in two variants, where different system goals and preconditions
are taken into account. These descriptions are loosely based on our current work on two different
systems.14

5.2.1 MODULES ASAGENTS; BI-DIRECTIONAL INFORMATION FLOW

Assume that we are in the following situation: we need the modules of the system we’re building
to run on different machines (with different computer architectures), because we have to use legacy
components (e.g., a vision system that only runs under Microsoft WindowsR© whereas other compo-
nents run onUNIX machines). This means that we cannot rely on shared memory for implementing

14. Note that while the choices illustrated in these specifications do cluster together naturally, they by no means are
completely dependent—it is possible to combine features of the model in other ways, e.g. have a distributed system
with “right edge” encoding of changes (see below).

104



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

the module buffers. We also want the system to be predictive, expectation-driven; that is, we want
‘right-to-left’ information flow.

What we sketch here as a solution to these requirements is a pretty straightforward implementa-
tion of the model as detailed above. First, we decide to implement IUs as objects,with information
fields as illustrated above in Figure 10; as mentioned there, support for such objects is present in
many different programming languages, so we’re not (very) restrictedon this. Since we can’t rely
on (process specific) shared memory, we have to achieve synchronisation of buffers through explicit
communication between modules. Details of how to set up such communication (registration of
modules, routing and buffering of messages etc.) are beyond the scope of this paper, we just note
that there is a variety of off-the-shelf solutions for this tasks (e.g., CORBA,15 ICE,16 OAA (Cheyer
and Martin, 2001), and many more). What’s more interesting is which messages we want to send.
The following is a list of (informally specified) messages that realise the full spectrum of capabilities
modelled in the IU approach. Keep in mind that the purpose of sending these messages is twofold:
to achieve synchronisation between buffers, and at the same time to encapsulate what has changed;
that is, the messages represent the∆ of the update.
First, from producer to consumer(s):

• add this IU (full IU, all fields); this is, as noted above, the most basic type of information
exchange, presenting a new increment for consumption. If parallel hypotheses are allowed in
the system, the consumer has to look up to which of the active hypothesis chains the new IU
is to be added. It can do this by checking thesuccessorlink on the new IU.

• revoke this IU (IU ID); indicates that a producer withdraws support for a previously posted
hypothesis.

• reinstate this IU (IU ID); makes a previously revoked IU active again.

• confidence change (IU ID, new value); notifying consumer(s) about a change of the confi-
dence slot. (Note that if revocation is signalled via special values for confidence, then the
previous two messages are only syntactic sugar for certain settings of this message.)

• commit (IU ID); which is a guarantee to the consumer(s) that no update or revocation will be
performed anymore on this IU.

• no support (IU ID); this communicates to the consumer that an IU that the consumer wanted
to be proven (that is, prediction; see below) could not be validated, and that the module has
given up. (It is in some sense the ‘negative’ of a commitment.)

Consumers can send ‘back’ to producers the following messages:

• used (IU ID); indicating that the consumer could make use of a given IU, and hence the larger
hypothesis it is part of may be promising.

• useless (IU ID); the consumer can show that no use can be made of the hypothesis path ending
in this IU in the current context.

15. See e.g.http://www.omg.org/gettingstarted/corbafaq.htm.
16.http://www.zeroc.com/

105



SCHLANGEN AND SKANTZE

• commit (IU ID); the consumer has based an irreversible decision on this IU, e.g. by making
an observable action, and so an exception should be raised if the producer wants to revoke it.

• support (full IU); indicating that the consumer expects this to be the producer’s output.

While it would also be possible for consumers to query producers for newmessages, the more
straightforward solution is to let the producers send such messages whenever they have made
changes to their right buffers (i.e., on making the update step RBt to RB′

t from Figure 7). Updates
to a module can then be triggered by reception of these messages; i.e., the module is event-driven.

From the requirement stated at the beginning of this section that modules needto run on different
machines it follows that they need to run in different processes. Again thestraightforward solution
then is to let the modules communicate asynchronously and run concurrently,with all the possible
pitfalls that concurrent programming entails (see e.g. (van Roy and Haridi,2004)).17

5.2.2 CLOSE COUPLING OFMODULES; SHARED MEMORY; EFFICIENT ENCODING OF

UPDATES

Imagine a different scenario. We know that we are going to build all modules of the incremental
system from scratch, and we know that we can do this within one programminglanguage. Hence,
we can make use of shared memory to realise buffers, the option sketched inFigure 11 (left). We
also do not anticipate a need for prediction. In such a setting, we can use acompact alternative
representation of IU networks, which makes communication more efficient.

In a shared memory setup, synchronisation of buffers is not an issue, as right buffers and left
buffers are in fact the same memory space. Only the task of notifying consuming modules about
what exactly changed remains, of what they have to look for when they access the shared memory.
The idea here is now to reify positional information by superimposing a network of position nodes
over the IU network, with the IUs being associated with edges in that network. These positional
nodes then give us names for certain update stages, and so revisions can be efficiently encoded by
reference to these nodes. An example can make this clearer. Figure 12 shows five update steps in the
right buffer of an incremental ASR module. By reference to positional nodes, we can communicate
easily a) what the newest (rightmost; as explained above in Section 3.4.1) committed IU is (we will
call this NC fornewest committed; indicated in the Figure as a shaded node) and b) what the newest
non-revoked or active IU is (i.e., the right edge (RE); indicated in the Figure as a node with a dashed
line). So, the change between the state at timet1 andt2 is signalled by RE taking on a different
value. This value (w3) has not been seen before, and so the consumingmodule can infer that the
network has been extended; it can find out which IUs have been addedby going back from the new
RE to the last previously seen position (in this case, w2; note that this would withno changes work
for parallel hypothesis threads, if the positional network were a lattice). At t3, a retraction of a
hypothesis is signalled by a return to a previous state, w2. All consuming modules have to do now
is to return to an internal state linked to this previous input state (more on this in a second). Finally,
t5 illustrates a commitment, where NC changes, and all IUs on the path from the newNC to the last
committed IU now count as committed.

This representation style can be considered more parsimonious, as what inthe approach from the
previous section were three different messages (add, revoke, commit) ishere implicitly expressed in

17. It would be interesting to formally analyse the potential for parallelisationin dialogue processing, with Petri-Nets or
other modelling tools. We leave this to future work.

106



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

����� �����	� 
����
������ ������������	��

��� ����
�

���	��
��

�
� �����
���
�

���	�����

��� �����
�

���	��
��

��� ����������
���

�

���	�����

��� �����
���

�

���	����

�� ��� �


�� ��� �
 �
�� ��

�� ��� �
 �
�� ��

�� ��� �
 �
�� ��

�
�� ������ ��

�� ��� �
 �
�� ��

�
�� ������ ��

Figure 12: The Right Buffer of an ASR module, and update messages compactly representing re-
vokes and commits

����� �����	� 
����
������ �������
������

��� ������
� �

��� �������	
��
�

�
��� ������

�

�


� ����� 
� �� �� ��


� ����� 
� �	
� 
� �� �� ��

����


� ����� 
� �	
� 
� �� �� ��

����

Figure 13: Connecting input states and output states of a buffer

107



SCHLANGEN AND SKANTZE

changes to the pair (NC, RE). The status of an IU, and changes to it, are represented in the network
and this pair, and so IUs themselves can be immutable (unchangeable) objectsin this approach. This
avoids the pitfalls of having concurrent modules altering and accessing thestate of the IUs. Message
size is always constant in this approach, even if comprehensive changes are made to a buffer. E.g.,
in t4 in Figure 12, two IUs are added, but this still requires only one message, an update to what the
label of the current right edge is. Also, coupling between modules can betighter in this approach, as
states of the consumer can be directly tied to states of the producer. This is illustrated in Figure 13.
States of a parser (which is, for ease of presentation, not doing a veryinteresting job here, simply
mapping number words to their logical representations as numbers) can be linked to the updates that
created them, so that revision on the input state just requires going back to aprevious output state.
In the example, this happens int3, where the return of RE to w2 results in a return of the previously
computed consumer state p2.

6. Conclusions and Future Work

We have presented a general, abstract model of incremental dialogue processing. The model is
general in the sense that it describes elements that are essential to incremental processing, and
hence can be expected to play a role in most, if not even all, systems performing such processing.
It is abstractin the sense that it only describes properties of these elements and relationsbetween
them, but not concrete ways to instantiate them in computer implementations. We illustrated the
notions developed here through the description of a number of existing systems in these terms, and
we discussed some questions that arise when trying to build such systems.

In future work, we will attempt to describe more existing systems (such as (DeVault and Stone,
2003; Aist et al., 2006; Brick and Scheutz, 2007)) in the terms developedhere, to more thoroughly
investigate the coverage of our concepts. We are also currently exploring how more cognitively
motivated models such as the model of speech generation by (Levelt, 1989)can be specified in
our framework. A further direction for extension is the implementation of modalityfusion as IU-
processing. Lastly, we are now starting to work on connecting the model for incremental process-
ing and grounding of interpretations in previous processing results described here with models of
dialogue-level grounding in the information-state update tradition (Larssonand Traum, 2000). The
first point of contact here will be the investigation of self-corrections, as a phenomenon that connects
sub-utterance processing and discourse-level processing (Ginzburg et al., 2007).

Acknowledgements

This work was supported by a grant from DFG in the Emmy Noether Programme. Thanks to Timo
Baumann and Okko Buß for discussions of the ideas reported here. We would also like to thank the
anonymous reviewers of the precursor to this paper, (Schlangen and Skantze, 2009), and especially
of this revised and extended version, for their very detailed and helpfulcomments.

References

Gregory Aist, James Allen, Ellen Campana, Lucian Galescu, Carlos A. GomezGallo, Scott Stoness,
Mary Swift, and Michael K. Tanenhaus. Software architectures for incremental understanding of
human speech. InProceedings of the International Conference on Spoken Language Processing

108



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

(ICSLP), Pittsburgh, PA, USA, September 2006.

Gregory Aist, James Allen, Ellen Campana, Carlos Gomez Gallo, Scott Stoness, Mary Swift, and
Michael K. Tanenhaus. Incremental understanding in human-computer dialogue and experimen-
tal evidence for advantages over nonincremental methods. InProceedings of Decalog 2007, the
11th International Workshop on the Semantics and Pragmatics of Dialogue, Trento, Italy, 2007.

James Allen, George Ferguson, and Amanda Stent. An architecture for morerealistic conversational
systems. InProceedings of the conference on intelligent user interfaces, Santa Fe, USA, June
2001.

Gerry Altmann and Mark Steedman. Interaction with context during human sentence processing.
Cognition, 30:191–238, 1988.

Timo Baumann, Michaela Atterer, and David Schlangen. Assessing and improving the performance
of speech recognition for incremental systems. InProceedings of the North American Chapter of
the Association for Computational Linguistics - Human Language Technologies (NAACL HLT)
2009 Conference, Boulder, Colorado, USA, May 2009.

Johan Boye, Beth Ann Hockey, and Manny Rayner. Asynchronous dialogue management: Two
case-studies. InProceedings of the 4th Workshop on Semantics and Pragmatics of Dialogue
(Götalog2000), pages 51–55, Gothenburg, Sweden, 2000.

Timothy Brick and Matthias Scheutz. Incremental natural language processing for HRI. InPro-
ceedings of the Second ACM IEEE International Conference on Human-Robot Interaction, pages
263–270, Washington, DC, USA, 2007.

Timothy Brick, Paul Schermerhorn, and Matthias Scheutz. Speech and action: Integration of action
and language for mobile robots. InProceedings of the 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’07), San Diego, CA, USA, October/November 2007.

Okko Buß and David Schlangen. Modelling sub-utterance phenomena in spoken dialogue systems.
In Proceedings of the 14th International Workshop on the Semantics and Pragmatics of Dialogue
(Pozdial 2010), pages 33–41, Poznan, Poland, June 2010.

Okko Buß, Timo Baumann, and David Schlangen. Collaborating on utterances with a spoken dia-
logue system using an isu-based approach to incremental dialogue management. InProceedings
of the SIGdial 2010 Conference, pages 233–236, Tokyo, Japan, September 2010.

Adam Cheyer and David Martin. The open agent architecture.Journal of Autonomous Agents and
Multi-Agent Systems, 4(1):143–148, March 2001. OAA.

Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In Proceedings of AAAI-
88, pages 49–54. AAAI, 1988.

David DeVault and Matthew Stone. Domain inference in incremental interpretation. InProceedings
of ICOS 4: Workshop on Inference in Computational Semantics, Nancy, France, September 2003.
INRIA Lorraine.

109



SCHLANGEN AND SKANTZE

David DeVault, Kenji Sagae, and David Traum. Can I finish? learning whento respond to incre-
mental interpretation results in interactive dialogue. InProceedings of the 10th Annual SIGDIAL
Meeting on Discourse and Dialogue (SIGDIAL’09), London, UK, September 2009.

Jens Edlund, Joakim Gustafson, Mattias Heldner, and Anna Hjalmarsson.Towards human-like
spoken dialogue systems.Speech Communication, 50:630–645, 2008.

Jonathan Ginzburg, Raquel Fernández, and David Schlangen. Unifying self- and other-repair. In
Proceeding of DECALOG, the 11th International Workshop on the Semantics and Pragmatics of
Dialogue (SemDial07), Trento, Italy, June 2007.

Anne Kilger and Wolfgang Finkler. Incremental generation for real-time applications. Technical
Report RR-95-11, DFKI, Saarbrücken, Germany, 1995.

Staffan Larsson and David Traum. Information state and dialogue management in the TRINDI
dialogue move engine toolkit.Natural Language Engineering, pages 323–340, 2000.

Willem J.M. Levelt.Speaking. MIT Press, Cambridge, USA, 1989.

Maryellen C. MacDonald. Probabilistic constraints and syntactic ambiguity resolution. Language
and Cognitive Processes, 9(2):157–201, 1994.

William D. Marslen-Wilson. Linguistic structure and speech shadowing at very short latencies.
Nature, 244:522–523, August 1973.

Joakim Nivre. Incrementality in deterministic dependency parsing. pages 50–57, Barcelona, Spain,
July 2004.

David Schlangen. What we can learn from dialogue systems that don’t work: On dialogue systems
as cognitive models. InProceedings of DiaHolmia, the 13th International Workshop on the
Semantics and Pragmatics of Dialogue (SEMDIAL 2009), pages 51–58, Stockholm, Sweden,
June 2009.

David Schlangen and Gabriel Skantze. A general, abstract model of incremental dialogue pro-
cessing. InProceedings of the 12th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2009), pages 710–718, Athens, Greece, March 2009.

David Schlangen, Timo Baumann, and Michaela Atterer. Incremental reference resolution: The
task, metrics for evaluation, and a bayesian filtering model that is sensitive todisfluencies. In
Proceedings of SIGdial 2009, the 10th Annual SIGDIAL Meeting on Discourse and Dialogue,
London, UK, September 2009.

David Schlangen, Timo Baumann, Hendrik Buschmeier, Okko Buß, Stefan Kopp, Gabriel Skantze,
and Ramin Yaghoubzadeh. Middleware for incremental processing in conversational agents. In
Proceedings of the SIGdial 2010 Conference, pages 51–54, Tokyo, Japan, September 2010.

William Schuler, Stephen Wu, and Lane Schwartz. A framework for fast incremental interpretation
during speech decoding.Computational Linguistics, 35(3), 2009.

Gabriel Skantze and Anna Hjalmarsson. Towards incremental speech generation in dialogue sys-
tems. InProceedings of the SIGdial 2010 Conference, pages 1–8, Tokyo, Japan, September 2010.

110



AN ABSTRACT MODEL OF INCREMENTAL PROCESSING

Gabriel Skantze and David Schlangen. Incremental dialogue processing in a micro-domain. InPro-
ceedings of the 12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2009), pages 745–753, Athens, Greece, March 2009.

Scott C. Stoness, James Allen, Greg Aist, and Mary Swift. Using real-worldreference to improve
spoken language understanding. InProceedings of Workshop on Spoken Language Understand-
ing at AAAI05, Pittsburgh, PA, USA, 2005.

Patrick Sturt and Vincenzo Lombardo. Processing coordinated structures: Incrementality and con-
nectedness.Cognitive Science, 29:291–305, 2005.

Michael K. Tanenhaus, Michael J. Spivey-Knowlton, Kathleen M. Eberhard, and Julie C. Sedivy.
Intergration of visual and linguistic information in spoken language comprehension. Science,
268, 1995.

D. Traum and P. Heeman. Utterance units in spoken dialogue. In E. Maier,M. Mast, and S. Lu-
perFoy, editors,Dialogue Processing in Spoken Language Systems, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1997.

Jos J.A. van Berkum, Arnout W. Koornneef, Marte Otten, and Mante S. Nieuwland. Establishing
reference in language comprehension: An electrophysiological perspective. Brain Research,
1146:158–171, 2007.

Peter van Roy and Seif Haridi.Concepts, Techniques, and Models of Computer Programming. MIT
Press, Cambridge, Massachusetts, USA, 2004.

Jason Williams and Steve Young. Partially observable Markov decision processes for spoken dialog
systems.Computer Speech and Language, 21(2):231–422, 2007.

Mats Wiŕen. Studies in Incremental Natural Language Analysis. PhD thesis, Link̈oping University,
Linköping, Sweden, 1992.

S.J. Young, N.H. Russell, and J.H.S. Thornton. Token passing: a conceptual model for connected
speech recognition systems. Technical report CUED/FINFENG/TR 38, Cambridge University
Engineering Department, 1989.

111


