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Abstract— We present an on-line, robust, and efficient path
planner for the redundant Mitsubishi PA-10 arm with 7 degrees
of freedom (DOF) in non-stationary environments. Because of the
specific kinematic model of the arm, path planning can be first
reduced to a redundant 6-DOF problem in a 5D configuration
space, which can be further decomposed into two problems:
(i) 3D position planning in Cartesian space and (ii) planning
in a 3D space composed of two orientation angles and an
explicit parameterization of the arms redundancy. Position and
orientation planning are interweaving and performed “on-the-
fly” without explicit global knowledge of the environment using
two instances of the dynamic wave expansion neural network
(DWENN), an effective method for path generation in arbitrarily
changing environments. The dynamic and explorative nature of
the DWENN algorithm allows to treat stationary and dynamic
obstacles in a unified manner. Through a number of simulative
tests, we show that the planner is capable of reaching both
a satisfactory robustness level and real-time performance, as
required by many practical applications.

I. INTRODUCTION

Path planning for robotic manipulators both in research
environments and for industrial applications is a challenging
problem, in particular if man-machine interaction in conse-
quently highly dynamic environments is considered. In this
context, the ultimate goal of the contemporary robotics re-
search is to provide robotic manipulators with on-line, au-
tonomous, robust, and, when possible, optimal or near-optimal
path planning capabilities.

In contrast to numerous approaches to motion planning for
mobile robots, many methods for robotic manipulators assume
that the environment is stationary. For instance, [1] and [2]
require an off-line precomputation of obstacle configurations
before the path generation is performed. The approach in [3]
generates subgoals to guide the planning in the discretized
configuration space (C-space) of the robot, and exploits par-
allel processes for concurrent search for a valid path. [4] uses
a genetic algorithm with a multi-criteria fitness function for
the end-effector motion planning of a redundant manipulator.

There also exist several approaches to motion coordination
of multiple manipulators. In [5], the time-velocity decomposi-
tion approach is transferred to motion planning of two manip-
ulators. [6] and [7] consider cooperation of two manipulators
in a shared workspace, but since the environment is highly-
structured, the planning is reduced to a 2D case. A purely on-
line approach to collision-free path planning and coordination
of two robot arms is proposed in [8].

Among the most popular approaches are potential field
methods existing in both numerical [9]–[11] and analytical
form [12]–[15]. The well-known drawback of these methods
is that they suffer from the local-minima-problem (which
mainly concerns the analytical representation of potentials
fields). Different prominent techniques for path planning in
higher-dimensional configuration spaces are probabilistic (or
randomized) methods [16]–[19]. They try to approximate the
configuration space, i.e., to capture its connectivity using
random sampling. Recently, however, also deterministic, incre-
mental building of grids in higher-dimensional spaces has been
considered as an alternative to path planning based on random
sampling [20]. In addition, [21]–[23] discuss the heuristic
grid-search and replanning algorithms which try to reduce the
number of grid nodes to be processed during the path search.
Note however that in a dynamic environment the probabilistic
roadmap methods (even in their “light” version – with lazy
collision checking) may fail, since the movement of obstacles
will lead to elimination of roadmap edges, which may destruct
the connectivity of the graph structure.

In this paper, we present a planner for a 7-DOF robot arm,
which, thanks to its dynamic nature, can deal with virtually
any type of environment, be it stationary, dynamic or unknown.
Since path planning within a high-dimensional and dynamic
configuration space suffers from the curse of dimensionality,
we decompose the initial 7-DOF problem into simpler ones.
Particularly, our planner orchestrates two 3D subplanners,
which together solve a redundant 6-DOF in 5D problem. The
remaining 7th DOF corresponds to the last roll joint of the
robot arm and can be handled separately.

Each subplanner is an instance of the original dynamic
wave expansion neural network (DWENN [24]), an efficient
tool for path planning in time-varying and highly dynamic
environments. The main feature of this grid based algorithm
is that its “local” per-node complexity does not directly depend
on the dimensionality of the configuration space.

Since path planning in each instance is done in an on-line,
explorative fashion, all forbidden (obstacle) configurations
of the arm are detected “on-the-fly” and are dynamically
integrated into the path planning process. The global planner,
which masters the two DWENN-based subplanners, exploits
only two simple heuristics: (i) We control the overall number
of steps assigned to each subplanner and (ii) we insert random
steps for an already arrived subplanner, in case the other
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subplanner does not finish within a certain number of trials.
In this work, we report the results of thorough simulative

tests, which reveal that in reasonably cluttered environments
the planner is acceptably robust, and satisfies real-time require-
ments as needed by many real-world applications.

II. PA-10 ROBOT ARM KINEMATICS

The Mitsubishi PA-10 is a 7 axis general purpose robot arm.
It is composed of a succession of roll joints (No. 1, 3, 5 and 7
in Fig. 1) and pitch joints (No. 2, 4 and 6). On the one hand
the existence of a redundant DOF complicates the kinematics,
but on the other hand can be exploited for obstacle avoidance
and generation of smooth trajectories, if represented within
the path planning algorithm. An elegant closed form solution
for the inverse kinematics of redundant robot arms has been
described in [25]. In the following, we give a brief summary
tailored to the PA-10.

Starting from the base of the arm, conceptually each roll
joint and the following pitch joint are combined to a spherical
joint at locations 2, 4 and 6 in Fig. 1. Any given end-effector
position and orientation determines the location of the last
pitch joint 6. Since base joint 2 is fixed and the arm segments
have fixed length, the spherical elbow joint 4 can only move
on a circle around the axis connecting joint 2 and 6. Hence,
the redundancy manifold is a circle in Cartesian space which
can be parameterized by an angle α between 0 and 2π.

Fig. 1. Illustration of the PA-10 redundancy circle. The right picture shows
two blended screen-shots from our simulation, including forearm and hand.

Due to inherent joint range limits some sectors on the re-
dundancy circle yield an invalid arm posture. These forbidden
sectors will be regarded as “internal” obstacles later and still
can be handled by the formalism described in [25]. For any
desired end-effector position and orientation we can freely
choose the redundancy parameter α from a valid range, and
then analytically calculate the corresponding joint angles.

The 7th arm joint controls the rotation of the end-effector
about its roll axis, which can be predetermined without af-
fecting the redundancy motion. Hence, we handle this joint
separately, typically maintaining an upright orientation of
the mounted robot hand during the whole movement. This
effectively reduces the path planning to a redundant 6-DOF
problem in 5D space, consisting of the Cartesian end-effector
position as well as its azimuth and altitude angles relative to
the table. Due to the nearly cylindrical shape of our robotic
hand, this joint indeed can be neglected in collision checks.

III. DISTRIBUTED DYNAMIC PATH PLANNING

Since our approach aims at real time interaction of the
robot with its environment, its planning system has to be
capable of acquiring information about obstacles in an on-line
and dynamic fashion. Additionally, planning takes place in a
redundant 6D configuration space as described in the previous
section. While up to date there are no real-time solutions
available for such high-dimensional planning problems, which
can dynamically integrate obstacle information, the dynamic
wave expansion neural network has been proven to efficiently
solve such problems in up to three dimensions [24]. This
motivates to decompose the originally 6D planning problem
into two 3D problems, which, however, interact in a highly
non-trivial way because both 3D planners refer to a common
real-world situation. This makes a planner’s obstacle landscape
dependent on the other planner’s current configuration.
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Fig. 2. The circular obstacle within the workspace induces different obstacle
configurations in angular space (as marked by gray arrows and an X on
the additional angular axis) depending on the actual end-effector position in
Cartesian space. The current orientation of the arm is indicated by a black
arrow and the letter C respectively.

Fig. 2 illustrates the effects of decomposition for a simpler
3-DOF arm. Here the 3D configuration space is split into a
2D positional and a 1D angular space, representing the Carte-
sian position and orientation of the end-effector respectively.
The three shown configurations in positional space lead to
different obstacle configurations if seen from angular space
as illustrated by the gray arrows. The shift of the forbidden
region in angular space becomes evident when looking at the
additionally displayed discretized angular axis in Fig. 2, where
forbidden angular configurations are marked with an X. Vice
versa, forbidden end-effector positions in 2D Cartesian space
change as a function of the end-effector orientation.

Note that we do not require an explicit representation of the
obstacle landscape, neither within the subplanners nor within
the overall planner. Rather, the planner actively explores its
environment which is represented only implicitly within a
continously updated virtual world model. The overall planner
validates every aspired 7DOF arm posture computed from the
current configurations of both subplanners employing colli-
sion checking routines within the world model. Because the
obstacle landscapes of each subplanner strongly depends on
the current configuration of the other planning instance, each
planner has to reset and dynamically re-explore its forbidden
configurations after a move of the other planner. An analytical
computation of the obstacle configurations is possible, but
computationally too costly.



A. Decomposition into Space and Orientation Planning

We adapt this decomposition principle to path planning for
the PA10 within the remaining 6D configuration space. Specif-
ically, we decompose the problem into two 3D subproblems
governed by two independent subplanners: i) position planning
of the end-effector in Cartesian space, and ii) planning of the
end-effector’s orientation as well as the redundancy angle.
Hence, the configuration space of the first planner P1 is the
Cartesian position within the workspace, while that of the
second planner P2 is spanned by the two orientation angles
azimuth and altitude as well as the angle α describing the
position on the redundancy circle of the arm. Remember that
we factored out the orientation of the end-effector about its roll
axis, which can be handled independently by the 7th joint.
Consequently, this leads to explicit redundancy control and
multiple targets for the subplanner P2, which can be easily
handled by the DWENN algorithm.

B. Coordination and Exploration of Dynamic Obstacles

PATH  PLANNER

POSITION PLANNING

dwenn instance

reset obstacles
if needed

intended
configuration q1

ORIENTATION PLANNING
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Fig. 3. Flow chart of the global path planning cycle.
The two subplanners are conceptually independent, use no

common global information, and run alternating coordinated
through a mastering planning process P as illustrated in Fig. 3.
The mastering planner selects one of the subplanner instances
Pi to execute the next few robot movements. Before an actual
arm movement is performed, the intended new configuration
of Pi is validated. To this end, the mastering planner combines
the requested configuration of the active subplanner and the
current configuration of the other subplanner and calculates
a corresponding arm posture applying the inverse kinematics.
If this posture cannot be found, violates joint angle limits,
or would generate a collision as checked within the virtual
world model, the requested 3D sub-configuration is marked
as an obstacle within the active planner Pi. In this case,
the subplanner either continues planning using the updated

obstacle configuration, or waits for its next turn assigned by
the master P . Otherwise the arm posture is actuated by the
robot.

Due to the strong dependence of the obstacle landscape of
one planning instance on the current configuration of the other
planning instance, obviously all obstacles become dynamic
from the point of view of each subplanner. Hence, each
subplanner has to reset its acquired obstacle information, every
time the other subplanner actually has moved the robot during
its turn. Since the information about obstacles is collected “on-
the-fly” in an explorative fashion, the planner can naturally
deal with stationary, dynamic, and unknown environments.

C. Coordination Heuristics of the Mastering Planner

The mastering planner has to carefully assign appropriate
planning chunks to each subplanner. On the on hand these
chunks need to have an adequate length to enable the sub-
planners to acquire sufficient obstacle information, on the other
hand these chunks have to coordinated, such that both planners
simultaneously reach their respective 3D target.

If one subplanner Pa reaches its target significantly before
the other planner Pb, the maneuverability of Pb is strongly
restricted which may lead to a deadlock. Specifically, Pb may
not reach its target(s), since all paths to the target(s) are
blocked by obstacles.

To tackle this problem, we apply two heuristics in the
mastering planner P : First, we estimate the remaining path
length of both subplanners and from this calculate the proba-
bility to select a specific subplanner for the next few planning
steps. Statistically, we thereby assign a number of local
planning steps to each subplanner, which is proportional to
its respective remaining path length. This steps-scaling forces
the two planners to arrive at their targets as simultaneously
as possible. Second, if nonetheless we arrive at the deadlock
situation describe above, where planner Pb cannot reach its
target anymore, we insert one random step for Pa after each
N steps of Pb. In our experiments, we found N = 15 to be a
suitable value.

IV. DWENN PATH PLANNING ALGORITHM

Recently, some research in robotics and AI was aimed at
finding techniques for speeding-up and heuristic Al improve-
ment of grid-search methods (their main difficulty being the
exponential growth of complexity in the dimension of the
configuration space). For example, [26] discusses how grid
search can be optimized by heuristically reducing the number
of neighbor expansions (depending on where the parent node
is located in the neighborhood). [27]–[30] discuss incremental
heuristic search algorithms which reduce the number of grid
nodes to be recomputed by reusing the information from
previous searches. Note that none of these algorithms can
overcome the curse of dimensionality of the planning problem.

The DWENN algorithm is a grid-search technique, which
was specifically designed for path planning in highly-dynamic
environments. It is capable of generating dynamic distance
potentials over the discretized configuration space of the robot.



Fig. 4. Discretized potential field over a 60x60 workspace with 10 targets.
The targets correspond to the minimum value points. In the shown case, the
values of others grid nodes reflect the L∞-distances to the nearest target.

Unlike the heuristic grid replanning techniques which aim
at minimizing the number of expansion nodes, the main
objective of the DWENN algorithm is to produce paths which
do not contain oscillations and tend to be optimal even in an
intensively changing environment.

The DWENN algorithm propagates waves of activity around
one or multiple target configurations. At each instance of
time a new wave emanates from these points and carries the
information about the distance to the target, i.e., it propagates
in such a way, that farther locations in the C-space accumulate
larger activity values (see the illustration in Fig. 4). At each
time step, the robot can move only to the neighboring location
from which the activity has been inherited. The pseudo-code of
a single iteration of the DWENN algorithm is shown in Fig. 5.

Two main features distinguish the DWENN algorithm from
others. First, the update rule incorporates an inhibitory mech-
anism to reset the potential value of a node, if needed, and
initiates propagation of inhibitory waves, which sequentially
reset the activity of the nodes (lines 7, 19–21 in Fig. 5). This
prohibits undesired path detours. Second, the local complexity
of the DWENN algorithm does not depend on the dimension-
ality of the C-space (see [24], an example for a dynamic
environment is presented in [8]).

Other features of the DWENN algorithm include:
• a simple update rule, which employs one addition and some
binary checks only;
• the update rule determines the selective flow of the activity to
the first “valid” neighbor (for which the GOOD NEIGHBOR
function in Fig. 5 returns true);
• the algorithm is parameter-free, i.e., there are no parameters,
which may influence the efficiency of planning;
• the algorithm involves only integer-valued computation; its
complexity grows linearly in the number of grid nodes;
• as reported in [24], DWENN qualitatively outperforms other
existing algorithms (e.g., the algorithms in [31] and [32]).

V. EXPERIMENTAL RESULTS

In our setup, a human-sized forearm and hand are mounted
to the PA-10 as an end-effector, yielding a total length of
1915 mm from the base of the PA-10 to the fingertips. The
additional DOFs of the hand are not taken into account in the
planning process.

00 t← current time step;
01 for each grid node i do
02 if i = target then
03 act(i, t + 1)← 1; // targets have smallest activity
04 else if i = neighbor of a target
05 act(i, t + 1)← act(i, t) + 1;

06 else
07 act(i, t+1)← 0; // inhibitory wave, if no “good” neighbor
08 for each neighbor j of node i,

starting with lastGood(i) do
09 if GOOD NEIGHBOR(j, i, t) then
10 lastGood(i)← j; // store path from i to j

11 act(i, t + 1)← act(j, t) + 2;

12 break; // simply take the first “good” neighbor
13 new configuration ← lastGood(current configuration)

14 bool GOOD NEIGHBOR(j, i, t)
15 return
16 act(j, t) > 0 && // j is part of the activity wave
17 j 6= obstacle && // j is not an obstacle
18 act(j, t) 6= act(j, t− 1) && // j carries new information
19

`
act(i, t− 1) + act(i, t) = 0 ||

20 act(j, t) < act(i, t)
´

21 // if i became inactive at t, last cond. is false for any j

22 // otherwise j should be closer to the target than i

Fig. 5. Single iteration of the DWENN path planning algorithm. Initially, all
potential values act(i, t = 0) are zero. Furthermore, it is assumed that the
neighbors of node i are considered with respect to some preassigned ordering.
It is also assumed that the nodes are expanded consecutively, i.e. first the target
node(s), then its immediate neighbors are added, and so on.

The PA-10 arm is mounted at the center of the ceiling of a
nearly cubic workspace with an edge length of 1600 mm in x
and y-direction. The height of the workspace (z-direction) is
only 1350 mm. Note that the length of the arm and the size
of the rigid end-effector impose serious difficulties for path
planning even within an empty workspace.

For the following experiments, we used a 40x40x25 sized
grid for the position planner (P1), filling the lower 1000 mm
of the workspace, and, thus, corresponding to a sampling
interval of 40 mm along each axis. The combined orienta-
tion/redundancy planner (P2) used a grid of size 30x40x30
(azimuth/altitude/redundancy).

A. Experiment 1: Reachability of Random Targets

In a first experiment, conducted to demonstrate the ef-
fectiveness of the proposed planning strategy, we randomly
generated 10000 target postures from uniform sampling in
the 3D Cartesian space and in the 2D space of azimuth and
altitude orientation of the end-effector. Targets with no valid
discretized solution were rejected. We then let the planner
move to the desired target, always starting from a pre-defined
“home” position (see Fig. 7). We measured the number of steps
as well as the time the planner required to reach its target. If
the planner did not arrive at the target within 500 steps, the
attempt was canceled (which was the case for 12.2% of the
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Fig. 6. Histogram and relative cumulative histogram showing the number
of planning steps for reaching 10000 randomly selected targets. Left: Empty
workspace. Right: With moving obstacle. The lighter bars and the dashed line
apply to the full trial set, the darker bars and the solid line to the reduced
trial set.

trials in an empty workspace). For the accomplished targets,
the planner took 76 steps or 18.2 seconds on average to finish.
The distribution of planning steps is illustrated in Fig. 6. If
we reduce the set to those end-effector targets which have 15
feasible (out of 30 possible) redundant solutions, only 3399
targets remain and the error rate drops to 5.6%. This result
emphasizes the hardness of the problem as well as the ability
of the planner to exploit the redundancy manifold.

To demonstrate the effect of the proposed heuristics em-
ployed in the coordinating planner, we repeated the experiment
without the heuristics, i.e. just with alternating steps of the
subplanners. This led to a failure rate of 14.4%, resp. 7.7%
for the reduced target set.

To demonstrate the ability to handle dynamically moving
obstacles, we repeated the experiment moving a spherical
obstacle up and down in the workspace at a velocity of 4cm/s
(the left sphere in Fig. 7b). This resulted in a slightly increased
error rate of 15.6% resp. 8.1% for the reduced target set.

In real applications, one must somehow handle unsuccessful
planning attempts. For this, we suggest to define workspace-
specific “safe” positions as intermediate targets and to repeat
the planning process from different starting points.

B. Experiment 2: Reachability of the Table Surface

In this experiment, we demonstrate the capabilities of our
path planning system in a task which resembles approaching
movements in the context of grasping, and allows to easily
visualize the results. To this aim, we created a set of targets by
specifying a regular grid of 2D positions on the table (bottom
of the workspace). The target height was fixed to z=50 mm
above the table. To generate target orientations, we sampled
the azimuth and altitude angles of the end-effector orientation,
yielding up to 97 possible targets for each position on the table.

We then measured (1) how many of the targets are theoreti-
cally reachable, i.e. there is at least one valid arm posture, and
(2) how many of these tasks the planner accomplished. Again,
each trial was started from the home position. In a second
and third series, we placed obstacles inside the workspace (the
hemisphere and the two spheres in Fig. 7a and b, respectively).

Fig. 8 illustrates the results of this experiment. Note that
our planner reaches all positions on the table nearly equally
well. Only in the lower right corner the performance decreases
slightly, which is due to violation of joint limits.

(a) (b)
Fig. 7. Home position for all experiments and location of spherical obstacles
for Experiment 2 and 1b.

In the third series (bottom row of Fig. 8) the two spherical
obstacles severely restrict the maneuverability of the arm. Still,
averaged across all table points, our planner manages to reach
85% of the theoretically possible target postures.

VI. CONCLUSION

We presented a real-time path planner for the 7-DOF
Mitsubishi PA-10 arm. The planner combines two 3D path
planning instances responsible for the end-effector’s position
and orientation, respectively. We apply two heuristics which
control the overall number of steps for each subplanner and
initiate random steps in case one subplanner has arrived, while
the other has not. Path planning is performed using the DWENN
algorithm, designed specifically for path generation in highly
dynamic environments. Path generation in each subplanner is
performed on-line, and the obstacle information is collected
“on-the-fly”, which allows the planner to deal potentially
with dynamic and unknown obstacles. The planner has been
thoroughly evaluated in a number of simulative scenarios,
including random target configurations, as well as configu-
rations at the table surface, which is especially important in
the context of grasping. These tests reveal that our planner is
reliable and fast enough for real-world applications.
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