
Using Run-time Reconfiguration for Energy Savings
in Parallel Data Processing

Madhura Purnaprajna, Christopher Pohl, Mario Porrmann, Ulrich Rueckert
Systems and Circuit Technology, Heinz Nixdorf Institute,

University of Paderborn, Germany
{madhurap, pohl, mario, rueckert}@hni.upb.de

Abstract—Parallelism and adaptability are two distinct archi-
tectural design considerations in embedded processors. Multi-
core processors accelerate application execution on account of
their inherent parallelism and run-time reconfiguration capabil-
ities add adaptability during infield deployment. To benefit from
both these features, a reconfigurable multiprocessor architecture
− QuadroCore has been developed. A novel reconfiguration
mechanism has been incorporated that provides fast run-time
adaptability in a 4-processor cluster. In this paper, this scheme
of reconfiguration has been used to save energy when using
QuadroCore for data-parallel applications. As a proof of concept,
a data-intensive neural network application called Self-organising
Maps has been implemented on QuadroCore. Via reconfiguration,
energy reduction of up to 30% has been observed for an
implementation in UMC’s 90nm standard cell technology.

I. INTRODUCTION AND RELATED WORK

In embedded processing stringent performance and cost
budgets necessitate both high-speed operations and low energy
consumption. Huge design costs often restrict designing new
processors for every new application. To shorten design & ver-
ification times and avoid fabrication costs, off-the-shelf prod-
ucts such as processors and FPGAs have been deployed. Easy
programmability is an advantage in processors. In FPGAs the
advantage of abundant parallel resources enables design accel-
eration. In addition, FPGAs provide flexibility and adaptability
to map user-defined applications. Dynamic reconfiguration
provides additional support to introduce design modifications
during infield deployment. However, the dense interconnection
network and the SRAM-based LUTs make present day FPGAs
require relatively high power and area. High reconfiguration
time, lack of dedicated tools and methods to automate recon-
figuration are the main drawbacks in using FPGA-based run-
time reconfiguration schemes. As an alternative, our approach
is to merge parallelism in multi-core processors and dynamic
reconfigurability in an existing cluster of parallel processors.
The reconfiguration scheme introduces flexibility to adapt
according to application-specific characteristics, viz., compu-
tation requirements, amount of communication, and frequency
of synchronisation. This approach combines the advantages of
parallel processing in multiprocessors and reconfigurability for
application-specific adaptability. Furthermore, in FPGAs run-
time reconfiguration has primarily been used as a mechanism
for space multiplexing. In this paper, we present a novel
reconfiguration mechanism to achieve energy savings, when
using data-parallel applications.

Embedded applications such as video & image processing,
and audio applications are characterised by large amount
of data processing. For parallel data processing, multi-core,
SIMD, and vector processors have been used frequently in
literature. Multi-core architectures such as Ambric [1], Pic-
ochip [2] have been used for data-parallel processing. In
multi-core processors, introducing additional cores provides
additional resources to enhance the application performance.
However, energy savings in parallel processing is entirely
dependent on the ratio of the parallelisable component in the
application. In the case of the Vector Thread processor [3],
a control processor is responsible for broadcasting atomic
instruction blocks to virtual processors, which decode and
execute instructions locally. This allows parallelising parts of
the application that can be executed simultaneously. However,
the individual processing elements perform their own instruc-
tion fetch and decode operations independently. Instruction
fetches translate to processor initiated memory transactions,
which directly influence the power dissipated by the memory.
As power consumed by memory is substantial, methods to
minimise the contribution of memory power is of importance.
Reducing memory transactions directly corresponds to reduc-
tion in system power consumption. Tensilica’s Xenergy [4]
approaches energy optimisation by customising the cache sizes
and cache policies, since the cache itself contributes to a
significant amount of power. Our approach is to introduce
an energy-efficient SIMD mode of operation, which can be
used for data-parallel applications when mapped onto parallel
processors. In this SIMD mode one of the processors takes
over the job of instruction fetch and decode, and all the
decoded instructions are forwarded to all the processors, thus
executing a single instruction stream. Additionally, a quick
reconfiguration scheme helps reverting to the autonomous
MIMD mode, where processors operate on their independent
instruction and data streams. The possibility of switching
between these two modes of operation enables using our
reconfigurable multiprocessor QuadroCore for data-parallel
applications even in the presence of intermediate data de-
pendent control stages. In [5], a mixed-mode SIMD/MIMD
reconfigurable processor called XC core has been designed
for multi-media applications. Reconfiguration in XC core is a
choice of operating the processing unit as a single processor
in MIMD mode, or reconfiguring it to operate as 4 SIMD
processing elements. In comparison to the above-mentioned

SIMD architectures, in QuadroCore the instruction fetch and
decode is performed by a single processor. This results in
a significant reduction in the memory power introduced via
reduction in processor initiated instruction memory transac-
tions. As a proof of concept for the architecture, a data-parallel
application with intermediate stages of data-dependent control
flow, called Self-Organizing Maps (SOM) has been evaluated.
The SOM algorithm is representative of data-parallel scientific
applications that can be implemented using this scheme.
In Section II, the architectural details of our QuadroCore
processor and the reconfiguration mechanism is presented.
Section III describes the details of the SOM algorithm and
its implementation on QuadroCore. A range of experiments
was conducted to validate our approach. A performance com-
parison has been made to Tensilica’s configurable processors,
these results are included in Section IV. Finally, Section V
provides the conclusions and future work.

II. QUADROCORE ARCHITECTURE AND THE
RECONFIGURATION MECHANISM

The QuadroCore architecture represents a MIMD (Multiple
Instruction Multiple Data) processor cluster, comprising four
32-bit RISC processors called NCore, [6]. The four processors
operate autonomously with their own local data and instruction
memory, as shown in Figure 1. Each of the four processors
has its own 16×32 bit local register file and 32KB instruction
and data memory. Quick exchange of register contents between
the four processors is enabled via a 32×32 bit shared register
file. For larger data sharing, the processors have access to
an external memory via arbitration over a shared bus. The
architecture itself is scalable, i.e., multiple such QuadroCores
can be interconnected for higher computational demands. The
inter-cluster communication is possible via a network-on-chip
with packet-based communication described also detailed in
[6]. In this paper, we present the architectural features in
QuadroCore that enables energy savings.

Analysing the power distribution in the QuadroCore, it has
been observed that nearly 80% of the total power is drawn by
memory. Thus, the power consumed by all the four processor
cores approximately equates to the power dissipated by a
single memory unit. Memory power is determined by the
read and write operations initiated by the processor. This
necessitates new strategies to improve the processor-memory
interaction to reduce the entire system power. Hence, a recon-
figurable interconnect has been introduced between the decode
& execute stages of all the processors. This reconfigurable
interconnect enables altering the control path of the individual
processors. Via reconfiguration during run-time, the control
path can be reconfigured such that only one processor performs
the fetch & decode for all the processors and forwards the
decoded instruction to all the participating processors. During
run-time a special reconfiguration instruction configures the
control path of the processors. This special power-saving
mode of operation is called the SIMD mode. Via clock
gating, the unused instruction fetch & decodes stages for
other processors are disabled, resulting in zero processor-

Reconfigurable
Interconnects

Control Path

Shared Memory

ALU

Registers

Decoder

Memory

ALU

Registers

Decoder

Memory

ALU

Registers

Decoder

Memory

ALU

Registers

Decoder

Memory

Processor 1 Processor 2 Processor 3 Processor 4

Memory Memory Memory Memory

Shared Registers

Fig. 1. QuadroCore Reconfigurable Multiprocessor

to-instruction memory transactions. In the SIMD mode, the
processors execute instructions using the data in the local
register files, as the data path remains unchanged. The main
difference between conventional SIMD and the SIMD mode
in QuadroCore is that only one processor performs the fetch &
decode operation, all instructions within the base instruction
set architecture can be used as SIMD instructions. Addition-
ally, no special vector registers or operators are required for
this SIMD mode. When using QuadroCore for applications
such as search algorithms, sorting methods etc., it is typical
to expect intermediate stages of data dependent control. In
presence of such stages, reconfiguring the control path again
permits switching back to the default MIMD mode, where the
processors operate autonomously using their local instructions.
The reconfiguration time is very small, a single clock cycle is
sufficient to switch modes. Further, the reconfiguration instruc-
tions are embedded in the instruction stream, aiding automatic
generation and management of reconfiguration. Further, to
ease the inter-processor communication and synchronisation,
additional reconfiguration capabilities have been integrated
into QuadroCore. The associated compilation tool flow for
these modes in QuadroCore is detailed in [7].

Figure 2 shows the control path, when QuadroCore operates
in the SIMD mode. As seen, a single instruction fetch in
SIMD mode replaces 4 instruction fetches in the MIMD mode.
Hence, the SIMD mode of operation results in power savings
in comparison to MIMD mode, but it does so at the cost
of additional clock cycles required for all the processors to
operate in synchronous mode. An additional advantage of the
SIMD mode is the reduced code size for the slave processors,
since in the SIMD mode the program resides only in the master
processor.

Decoder ALU Registers
Instruction
Memory

Decoder ALU Registers
Instruction
Memory

Decoder ALU Registers
Instruction
Memory

Decoder ALU Registers
Instruction
Memory

M
a
s

te
r

Multiple Data Streams

P
E

1
P

E
2

P
E

3
P

E
4

Data
Memory

Data
Memory

Data
Memory

Data
Memory

Single Instruction Stream

Reconfigurable
Interconnect

Fig. 2. Control and Data Flow in SIMD Mode

A. Design Flow

Figure 3 shows the methodology incorporated to optimize
the given application for both time and power. The architecture
was synthesized for UMC’s 90nm standard cell technology.
Further, the gate-level netlist running the application was
simulated to record the application specific switching ac-
tivity, which directly influences the dynamic power of the
reconfigurable multiprocessor. This switching activity was fed
to the power analysis tool from Synopsys to analyse the
resulting power. With the same netlist, modifications were
introduced in the application described in C, such that the
SIMD mode of operation could be enabled wherever possible.
The modifications are only MIMD to SIMD mode switches
after the processors are synchronized and are executing the
same code, without any input data-dependence in the control
flow. In doing so, it had to be ensured that the master processor
operated normally and the rest of the processors executed the
same instructions as the master processor.

Partitioning the application onto the four processors is
simplified for data parallel applications, since a single program
resides on all the processors, when operating in MIMD mode.
Tasks or functions that are same to all the processors, with no
data dependent control, are executed in SIMD mode, by insert-
ing a MIMD−SIMD mode switch. In case of data-dependent
control, reconfiguration instructions are inserted to enable a
SIMD−MIMD switch. Since, the reconfiguration instruction
itself has an execution time of one clock cycle; the overhead
of switching to and from SIMD mode is minimal. To ensure a
seamless mode switch, the processors need to be synchronized
before switching to the SIMD mode. The synchronization is
achieved via a fast barrier synchronization, described in [7].
The synchronization process itself is achieved in a single
clock cycle, after all the participating processors encounter the

C-description

Compilation

Gate level Simulation

Record switching actvity

Power Measurements

Functional and Timing Verification

Run-time
Reconfiguration

SIMD / MIMD

T
im

e
 /
 P

o
w

e
r

Data/Task Parallel
Application

QuadroCore
Architecture

Fig. 3. Design Flow for Time and Power Optimization

barrier instruction. Thus, for applications with data-dependent
control, merging of blocks executed in SIMD or MIMD is
ensured to minimize SIMD−MIMD mode switches. The fol-
lowing section describes the application scenario for evaluating
the proposed scheme.

III. APPLICATION SCENARIO

Self-organizing maps (SOM) are a special type of artificial
neural networks (ANN) that have proven to be very effec-
tive for data analysis and exploration of high dimensional
datasets [8]. The SOM is based on an n-dimensional (usually
with n = 2) grid of such neurons (i.e., processing elements)
that adapted to the input data-set X ⊂ Rm. This results in a
dimensionality reduction Rm → Rn where m ≥ n, and hence
resulting in a simplified representation of the original data-set.
This representation can be visualised and analysed further. The
algorithm is divided into three steps:

1) Initialization: The weight vectors −→mi ∈ Rm of all
neurons Ni need to be initialised with random values

∀i,j mi,j = rand[0...1], (1)

where j denotes the components of the vector −→mi.
2) Best-match search: A vector −→x (t) is randomly selected

from X and the distance between −→x (t) and all −→mi is
calculated. The neuron with the smallest distance to the
input is called the best-match (BM).

‖−→x −−→mbm‖ = min
∀i

‖−→x −−→mi‖ (2)

3) Adaptation: The weight vectors −→mi are adjusted towards
the input −→mi based on the so called neighbourhood
function hci

∀i
−→mi(t + 1) = −→mi(t)− |−→mi(t)−−→x (t)| · hci, (3)

where hci = hci(t, ‖Ni −NBM‖) (4)

hci is a function that decreases both in time and distance
from the best-match; often a Gauss-kernel is chosen.

Steps two and three are repeated for all vectors −→x ∈ X , where
each iteration for all vectors is called one epoch. Depending
on the requirements of the dataset, several such epochs may
be required to form a properly organized map.

A. Runtime and Parallelism

The runtime of the SOM algorithm depends on the number
of neurons, the number of vectors, the dimension of the vectors
and the number of epochs:

T ∝ |N ||X|dim(−→x) ·#epochs (5)

The inherent nature of the algorithm suggests the exploitation
of parallelism. All |N | neurons do the same calculations when
finding the BM or adapting to a new vector, therefore up to |N |
processing elements (PEs) can execute in parallel. The only
necessary sequential step occurs when searching for the BM
and communicating its position to all the PEs for adaptation.
In general, the ratio of the sequential to parallel portion of
code is very small portion of the code [9], which makes
SOM ideal for implementation on parallel processors. For the
QuadroCore, the execution time TQuadro is governed by the
following equation:

TQuadro ∝
(⌈
|N |
|PE|

⌉
dim(−→x) + tgBM

)
|X| ·#epochs, (6)

Where, PE is 4 for our QuadroCore processor and tgBM

is the time (in clock cycles) during which the processors
synchronize, share their local BMs, and find a global BM.

B. Implementation

As a neuron-parallel approach is selected, the functionality
of the neurons is represented by the functions find local BM,
find global BM, and adapt Map. Since find local BM and adapt
Map perform exactly the same operations on different data (cf.
equation 2, function-level parallelism), they can be executed in
SIMD mode (see Figure 4), which is done by inserting a recon-
figuration instruction (function called reconfig(mode)).
After the BM calculation is done, each processor sends its
local BM data to the shared register file (function called
send(data, location)).

The following synchronization steps between find local BM
and adapt Map are data-dependent (a search operation), thus
performed by one processor only (MIMD). Therefore, another
reconfiguration instruction is inserted and the local BM data
from all the processors is received from the shared register
file receive(data, location)) to calculate a global
BM. For adaptation (cf. equation 3), all processors enter SIMD
mode again, as they share the same instruction stream. Finding

the local best matches and adapting the map are the dominating
functions, most frequently executed. They are executed on
all the processors simultaneously in SIMD mode, resulting
in significant power savings and an increase in code density
when using the proposed approach, cf. Section IV.

C. Applicability to other algorithms

The mapping of the SOM algorithm to QuadroCore de-
sign flow is typical of data-parallel applications, where large
amount of data needs to be processed. The algorithm is com-
posed of compute intensive functions, which are mapped to
several processors executed in parallel. A producer-consumer
relationship (e.g. find local BM and adapt Map functions) is
made possible via a message passing interface using the shared
register file. Function-level parallelism uses the available spa-
tial parallelism of multi-processors, which is independent of
the input data. Further, the proposed concept of reconfiguration
during run-time to save power is applied when all processors
operate on independent data, but perform the same operations
using the SIMD mode. Thus, reconfiguration is infrequent and
at function-level granularity.

Since mapping an application to this architecture does not
involve rewriting legacy code, portability is made possible by
inserting mode-specific directives in code. The code modifi-
cations involve identifying regions of data-dependant control,
for regions where the control path can be determined only
during compile time. Thus, in case of input data dependencies,
processors operate on their individual instruction stream in the
default MIMD mode. Reconfiguration is managed via high-
level language support, reducing design and developmental
costs.

IV. EXPERIMENTS AND RESULTS

The QuadroCore architecture comprising four processors
and their local memories was synthesized in UMC’s 90nm
standard cell technology with a timing constraint of 200 MHz.
Power reports were obtained after back-annotating the switch-
ing activity report generated using gate-level simulation. The
core architecture has a power dissipation of 0.05 mW/MHz
(excluding memories). For comparison, a single instance of
a 90 nm, 32-bit Xtensa processor from Tensilica exhibits
a power dissipation of 0.032 mW/MHz and the MIPS 34K
processor exhibits a power dissipation of 0.56 mW/MHz, as
reported in [10].

A. Power Distribution

The plot shown in Figure 5 shows the variation in power
distribution within the QuadroCore cluster. Comparing the
power consumption of the processor core itself to the power
consumed by the local instruction and data memory, it can
be seen that nearly 80% of the total power is drawn by
memory, which is mainly determined by the processor initiated
memory transactions. This implies that the total power for
all the four processors approximately equates to the power
dissipated by a single memory unit. Hence, optimizations in
terms of power, for the processor itself can only make a

S
IM

D

Initalize Map Initalize Map

Find local
Best Match

Find local
Best Match

Find Global
Best Match

Adapt Map Adapt Map

M
IM

D
S

IM
D

Processor 1 Processor 2 Processor 3 Processor 4

#
e

p
o

c
h

s

Synchronize + Reconfigure

T
Q

u
a

d
ro

C
o

re

Initalize Map

Find local
Best Match

Initalize Map

Find local
Best Match

Adapt Map Adapt Map

T
g

B
M

Synchronize + Reconfigure

Fig. 4. SOM Application mapping on QuadroCore

low impact in the total power of the system. This entails
new strategies to improve the processor-memory interaction in
order to optimize the entire system power, as proposed here
in this paper. As illustrated in Figure 5, switching to SIMD
mode has reduced the power consumed by memory 1, 2, 3
because of the reduced instruction fetches in the respective
processors. A 15% reduction in the total power consumed has
been observed.

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

Memory0 Memory1 Memory2 Memory3 Multiprocessor Total

P
o

w
e

r
in

 W
a

tt
s

MIMD SIMD

Fig. 5. Comparing power consumed for memory and processors

B. Energy Savings in QuadroCore

Tables I, II, and III compare the performance of the SOM
application when mapped to (a) a single processor, (b) Quadro-
Core operating in MIMD mode, and (c) when operating in
the low-power SIMD mode (which includes reconfiguration
time to/from MIMD mode). All power measurements include
the processor cores and their instruction and data memories
respectively. The speedup denotes the improvement in speed
of execution on the 4-processor QuadroCore as compared to
the time on one NCore processor. Power savings indicate the
amount of power saved when operating in the SIMD mode.
Energy is calculated for the processor operating at 200 MHz
and is the product of the total time required (product of
execution cycle and clock period) and the power consumed
in the respective modes. Energy savings in MIMD denote the
reduction in energy in comparison to a single NCore. Energy
savings in SIMD mode imply the energy saved when operating
in SIMD mode in comparison to the MIMD mode. Energy
saving of up to 30% is observed on account of the reduced
instruction memory accesses, which in turn results in switching
off unused resources. The reduction in speedup for the SIMD
mode is the cost of reconfiguration between the MIMD−SIMD
in the presence of input data dependent changes in control
flow.

C. Variation in Application Parameters

Performance characteristics for variations in application
parameters such as, the number of vectors, components, and
number of epochs were measured. Gate-level simulations are
time-consuming and since the parameters directly influence the
simulation time, three indicative results are plotted in Figure 6.

TABLE I
PERFORMANCE COMPARISON OF SOM WITH PARAMETERS: VECTORS = 5, EPOCH = 1, COMPONENTS = 5, NEURONS = 16

Operating Mode Execution Cycles Speedup Power(W) %Power Savings Energy(µJ) %Energy Savings
(a) Single Processor 53,870 1 0.018 4.89
(b) MIMD 15,608 3.45 0.052 4.05 17.05
(c) MIMD−SIMD 15,790 3.41 0.044 14.72 3.50 28.44

TABLE II
PERFORMANCE COMPARISON OF SOM WITH PARAMETERS: VECTORS = 25 , EPOCH = 1, COMPONENTS = 5, NEURONS = 16

Operating Mode Execution Cycles Speedup Power(W) %Power Savings Energy(µJ) %Energy Savings
(a) Single Processor 268,327 1 0.018 24.40
(b) MIMD 77,267 3.47 0.052 20.20 17.27
(c) MIMD−SIMD 78,250 3.43 0.043 16.69 17.04 30.20

TABLE III
PERFORMANCE COMPARISON OF SOM WITH PARAMETERS : VECTORS = 5 , EPOCH = 1, COMPONENTS = 10, NEURONS = 16

Operating Mode Execution Cycles Speedup Power(W) %Power Savings Energy(µJ) %Energy Savings
(a) Single Processor 100,719 1 0.019 9.21
(b) MIMD 28,581 3.52 0.055 7.83 16.45
(c) MIMD−SIMD 28,744 3.51 0.045 17.78 6.47 30.91

As seen in the plot, the speedup was in the range of 3.2 to
3.5, and power savings in the range of 14% to 18% have been
observed in the SIMD mode when compared to the MIMD
mode. In comparison to a single processor, the corresponding
energy savings were in the range of 28 to 30%. On account
of switching between SIMD−MIMD modes, the reduction in
speed for SIMD operation is in the range of 0.2 to 2%. Apart
from power and energy savings, a reduction in code-size of
8% on account of reduced operations in the SIMD mode were
also observed.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300

Time (1000 cycles)

Po
w

er
 (W

)

Single NCore

QuadroCore - MIMD

QuadroCore - SIMD

Components
Vectors
Neurons

5
V1

5
16

10
V2

5
16

5
V3

25
16

V3
V2

V2

V2

V3

V3

V1

V1

V1

Fig. 6. Impact of Application Parameters on Power and Execution Time

D. Comparing Area, Execution Time and Energy

The plot in Figure 7 compares the variations in area, time,
and energy for the SOM algorithm mapped onto a single
NCore processor, the QuadroCore operating in MIMD mode,
SIMD mode, Tensilica’s base processor Xtensa (1K Instruc-
tion cache and 1K Data cache), and the same Xtensa base

processor augmented with instruction set extensions for the
SOM algorithm. For comparison, all the cores were analysed
at 90nm technology operating at 200 MHz, with application
parameters as indicated in Table I. The size of the points
corresponds to a third dimension, which is the gate-count
for the processor core (excluding the memory) in each of
the cases. QuadroCore outperforms the other processors in
terms of clock cycles and energy. However, it has to be noted
that a QuadroCore processor has a larger area on account of
its four independent data paths as compared to a single data
path in NCore and Xtensa processors. Additional control and
data paths in QuadroCore explore coarse-grained parallelism
and provide a speed advantage, in comparison to fine-grained
additional instructions in Xtensa. Additional energy savings
are observed in QuadroCore’s SIMD mode. An important
difference between the reconfigurable QuadroCore and the

0

1

2

3

4

5

6

0 20,000 40,000 60,000
Time (cycles)

E
ne

rg
y

(u
J)

NCore QuadroCore-MIMD QuadroCore-SIMD

Xtensa Xtensa+ISE FPGA

Fig. 7. Comparing Area, Energy and Execution time

configurable Xtensa processors is the run-time adaptability in
QuadroCore in comparison to design time configurability (via
additional instructions, resources) in Tensilica’s processors.
For comparison, a custom realisation of the SOM algorithm
based on [11], was implemented on Xilinx XCV4LX100,
operating at 150 MHz (indicated as a green quadrilateral). This
implementation results in a significantly improvement in time
and energy. However, the inherent configurability in FPGAs
results in a high area, which is excluded in Figure 7.

V. CONCLUSIONS AND FUTURE WORK

Reconfiguration is enabled in the QuadroCore processors by
adding a layer of interconnects between the decode & execute
units. This architectural modification enables reconfiguring
the control path among the processors. This introduces a
SIMD mode of operation, which results in achieving energy-
efficiency by reducing the instruction memory transactions.
The reconfigurable interconnect does not interfere with the
original ISA and hence ensures backward compatibility. This
feature has been used to achieve energy savings in data parallel
applications. Mapping of a data-parallel SOM algorithm has
shown to save about 14% to 18% of power and nearly
30% of energy in comparison to a single processor. The
energy savings achieved in SIMD in comparison to a fixed
MIMD architecture is about 15%. This philosophy can be
extended to other applications, which benefit from parallel
data processing on multiple processors. As seen, increasing
the number of processors results in energy savings even with
variations in the problem parameters. The presented scheme
of control path reconfiguration is generic and can be extended
to other multiprocessor architectures. Ongoing work includes
extending this scheme to further reduce power by minimising
data memory access by using the reconfigurable interconnect
to alter the data path among the processors.

REFERENCES

[1] M. Butts, “Synchronization through communication in a massively
parallel processor array,” IEEE Micro, pp. 32–40, Sept.-Oct. 2007.

[2] PC102 Product Brief, PicoChip Inc, March 2004, available from
http://www.picochip.com/.

[3] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic, “The vector-thread architecture,” SIGARCH Comput.
Archit. News, vol. 32, no. 2, p. 52, 2004.

[4] Optimizing for Energy Using the Xenergy Energy Estimation Tool,
Tensilica Inc., Aug. 2007, available from http://www.tensilica.com.

[5] S. Kyo, T. Koga, L. Hanno, S. Nomoto, and S. Okazaki, “A low-cost
mixed-mode parallel processor architecture for embedded systems,” in
ICS ’07: Proceedings of the 21st annual international conference on
Supercomputing. New York, NY, USA: ACM, 2007, pp. 253–262.

[6] J.-C. Niemann, C. Puttmann, M. Porrmann, and U. Rueckert, “Resource
efficiency of the GigaNetIC chip multiprocessor architecture,” Journal
of System Architecture, vol. 53, no. 5-6, pp. 285–299, May 2007, Special
issue on Architectural premises for pervasive computing.

[7] M. Hussmann, M. Thies, U. Kastens, M. Purnaprajna, M. Porrmann, and
U. Rueckert, “Compiler-driven reconfiguration of multiprocessors,” in
Proceedings of the Workshop on Application Specific Processors (WASP)
2007, pp. 3–10, 2007.

[8] T. Kohonen, Self-organization and associative memory. Springer-Verlag
New York, Inc. New York, NY, USA, 1989.

[9] M. Porrmann, U. Witkowski, and U. Ruckert, “A massively parallel
architecture for self-organizing feature maps,” Neural Networks, IEEE
Transactions on, vol. 14, no. 5, pp. 1110–1121, Sept. 2003.

[10] T. R. Halfhill, “MIPS 74k goes superscalar,” In-Stat Microprocessor
Report 2007, vol. 21, May 2007.

[11] C. Pohl, M. Franzmeier, M. Porrmann, and U. Ruckert, “gNBX-
reconfigurable hardware acceleration of self-organizing maps,” in Field-
Programmable Technology, 2004. Proceedings. 2004 IEEE International
Conference on, 2004, pp. 97–104.

