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Abstract— An internal model of the own body can be assumed
to be a central and early representation as such a model is
already required in simple behavioural tasks. More and more
evidence is showing that such grounded internal models are
applied in higher level tasks. Internal models appear to be
recruited in service for cognitive function. Understanding what
another person is doing seems to rely on the ability to step into
the shoes of the other person and map the observed action onto
ones own action system. This rules out dedicated and highly
specialized models, but presupposes a flexible internal model
which can be applied in different context and fulfilling different
functions. Here, we are going to present a recurrent neural
network approach of an internal body model. The model can be
used in the context of movement control, e.g. in reaching tasks,
but can also be employed as a predictor, e.g. for planning ahead.
The introduced extension allows to integrate visual features into
the kinematic model. Simulation results show how in this way
the model can be to utilised in perception.

I. INTRODUCTION

The way in which we perceive our surroundings is strongly
predetermined through our expectations and memories [1].
Our internal representations guide how and what we perceive.
We exploit past experiences in order to be better prepared as
our memories allow us to anticipate what will come next or
what might become important in a specific context. In this
sense, what comes to mind is not a large set of unstructured
signals from different sensory modalities, but a coherent im-
pression of a few rich concepts which are multimodal in their
nature [2]. It has often been assumed that conceptualisations
were formed in order to allow for higher level functions as
planning ahead. But today there is more and more evidence
accumulating that internal representations are a form of by-
product and their primary purpose was to subserve action and
perception in linking related information [3]. Internal models
reflect the structure of co-occuring sensory and motor signals.

Nowadays, there are many psychological, neuropsycho-
logical and neurophysiological data supporting the tight
coupling between the system responsible for controlling an
action and the ones responsible for perceiving, imagining and
understanding such an action (see e.g., the common coding
principle [4], [5], imaging studies, e.g., [6], mirror neurons
[7]). It is assumed that already existing functions in the
brain are recruited in different tasks, e.g., in planning ahead
already existing internal models are reused in a new context
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in an internal simulation [8]. In perception, internal models
seem to be recruited in order to understand the meaning of
an action of another person. The perception is driving the
body model and the following experience of being moved is
making us understand what is going on as we step into the
shoes of the other.

Recruitment of internal models presupposes that the in-
ternal models are quite flexible. This is in contrast to many
models of internal representation which concentrate on one
single function. In this paper, we want to present a body
model which can serve different function. The model is
implemented as a recurrent neural network. First, the model
can be used in motor control. This provides an evolutionary
account how such a model might have evolved in the first
place and in this way grounds the internal representation.
A model of the own body can be assumed as one of the
first models acquired [9]. Already in simple tasks as targeted
movements such a model is required and must have co-
evolved in parallel and in service for this action [10]. The
MMC model presented here can be used to control reaching
movements and solve inverse kinematic tasks. In addition,
the model also can act as a predictor or forward model
(kinematic or dynamic) which is necessary when performing
fast movements, but might also be exploited in planning
ahead. In planning ahead the model can be used to predict
consequences and instead of performing an action it can be
tested in advance in internal simulation [8] (for application
of our model for prediction see [11]). In this paper we are
extending our model to integrate visual information, i.e., do
sensor fusion.

How does an internal model of the body subserve percep-
tion? Loula and colleagues performed a series of experiments
showing that humans are using their own body model in
seeing others doing a movement [12]. Test subjects were
watching short point-light display movies. These movies do
not show a person performing a movement. Only markers
which are attached to the joints of the actor can be seen.
The set of markers on the person is in addition masked by
a number of markers that are randomly oscillating around a
random position. Even though the visual given information is
not sufficient to understand what is shown, subjects can easily
and quickly recognise what is going on in such a clip. This
must rely on additional information which is integrated with
the visual stimuli. A body model provides an explanation.
It can be used as a set of constraints how movements of
body parts relate. While perceiving a movement the brain
is constantly trying to detect structure in the movements. It
tries to connect the dots and assumes that there might be a



body in there. The seen markers are mapped to parts of the
body model. The ones moving randomly around are treated
as noise, but the ones placed on a joint of a person are moving
in the same structured way as predicted by the body model.
The internal model can pick up the visually given movement.
When going on watching the movement, the body model and
visual markers are moving together leading to the impression
that one can see a body moving. There is more and more
evidence accumulating that internal models are recruited in
such a way in perception. Interestingly, subjects are not only
able to easily distinguish different movements, but they are
also able to recognise who is shown. And even though one
only rarely sees oneself walking or moving, when watching
the point-light movies the subjects are best in identifying
themselves compared to clips showing people they knew
well and have often seen making the shown movements.
These and other findings [13] indicate that the underlying
information can not be only visual. Instead, the underlying
structure appears to be grounded in movement control and
that it is the same internal body model used for the control of
ones own movement which is also recruited in perception.
This is also supported by findings from neuroscience and
neurobiology showing that single neurons or parts of the
brain—which were assumed for a long time to be subserving
motor control—are also engaged in perception of movements
(Mirror Neurons found in monkeys [7] and the Mirror
Neuron System in humans [6].).

In the following, we are presenting an approach for an
internal body model allowing for all the requested functions,
a Mean of Multiple Computation network. The model will be
introduced in the context of motor control and we will show
briefly how it can control reaching movements and solve
the inverse kinematic problem. The main contribution of the
paper follows, showing in principle how visual features can
be integrated into the model. Simulation results are presented
demonstrating how the body model can be used in perception
in a similar task as explained above, i.e., how the model can
be driven by visual information.

II. MEAN OF MULTIPLE COMPUTATION PRINCIPLE

A Mean of Multiple Computation (MMC) network is a
recurrent neural network [14]. The connections of the net
encode constraints which are derived from a set of equations
and which are usually not learnt. The activation of the
network is constrained by the defining equations and the
network acts as an autoassociator. Such a network can be
used to describe the kinematics of a manipulator like a
human or robotic arm. In this case, the model can be applied
for solving inverse, forward or mixed kinematic function
due to its pattern completion capabilities. The constraints
of the network establish the attractor characteristics of the
network. A task can be given to the network as a partial
activation state which is enforced onto some of the variables
of the net. The problem is solved by the network through
filling in complementary information. At the same time the
overall state is kept in agreement with the encoded kinematic
relations which drive the relaxation behaviour of the network.

MMC networks have shown to be able to solve inverse,
forward and mixed kinematic problems and always stabilise
to a valid geometric state (i.e., a state which can be adopted
by the arm)—even if there is no solution [15].

The MMC principle will be introduced using a descriptive
example: An arm consisting of three segments and three
joints (see fig. 1). At first, this arm shall be restricted to
movements in a plane and will be later-on extended to work
in three dimensions. The arm is redundant as it works in two
dimensions while featuring three control variables, one for
each joint (for the three dimensional case the arm has nine
degrees of freedom). Usually, redundancy is a problem for
approaches to inverse kinematics as in a redundant system
there are many solutions possible and the system has to
choose one of them [16]. In contrast, the MMC approach
exploits redundancy to find a solution in an iterative fashion.
As a representation of the arm, we choose a Cartesian space
as this makes the introduction of the MMC principle straight-
forward. Nonetheless, the principle can be applied to other
representations as well and has been successfully applied for
axis-angle representations as are usually employed in robotic
descriptions [17].

The arm consists in general of three segments represented
as vectors L1, L2 and L3. For the two dimensional case, each
vector consists of two components, a x- and a y-component.
For each of the components a single network is used, but
the structural relations are the same for both of the networks
and therefore, we will only discuss the network used for the
x-component (written as xL0 ,. . . ). In addition to the three
segment vectors, we define an end-effector vector R and two
diagonal vectors D1 and D2 (fig. 1).

The kinematics of the network can be described through
local relationships. In this way each variable is related to the
others. One can think of these local relations as closed chains
of vectors, i.e., three vectors which form a triangle. The first
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Fig. 1. Graphic representation of a planar (2D) arm consisting of three
segments, upper arm (L1), lower arm (L2) and hand (L3). Vector R points
to the position of the end effector (tip of the hand). D1 and D2 represent
additional diagonal vectors.
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Fig. 2. A MMC network: The net consists of two identical linear networks,
one for the x-components (black lines) and the other for the y-components
(grey dashed lines) of the vectors. The units represent the components of
the six vectors L1, L2, L3, D1, D2 and R of the planar arm (see Fig. 1 for
graphic illustration). If an input is given, the corresponding recurrent channel
is suppressed (symbolised by the open arrow heads). Positive weights are
indicated by filled circles and negative weighs are indicated by open circles.
The recurrent connections are shown as black squares (in the diagonal). All
other weights are zero. For details see text.

segment can be described in this way by two equations (see
fig. 1):

xL1 + xD2 − xR = 0

xL1 + xL2 − xD1 = 0 (1)

We got multiple equations containing each variable—for the
arm example there are overall four different equations and
each variable is present in two of them (in general, one
obtains

(
n
3

)
equations). For each variable all equations con-

taining this variable are solved. Again, for the first segment
this leads to the following two equations:

xL1 = xR − xD2

xL1 = xD1 − xL2 (2)

There are now Multiple ways of Computing each variable.
Each variable is time dependent and shall be computed in
an iterative fashion. Calculating a new value of a variable
for the next time step shall incorporate all of the above com-
putations. To integrate the—possibly different—solutions we
simply calculate the Mean value of all the solutions and also
include the current value of the variable. Including the current
value inhibits fast changes and therefore prevents oscillations
(the recurrent connection introduces low pass properties and
the weight of the connection can be related to the time
constant [18]). A new value for the first segment can be

calculated therefore as:

xL1(t + 1) =
1
d
(xR(t)− xD2(t)) +

1
d
(xD1(t)− xL2(t))

+
d− 2

d
xL1(t) (3)

For each variable one gets a similar equation which consists
of the integrated equations and the current value. This set
of equations describes the relations between all the variables
and how to calculate one variable from the other values. It
also can be interpreted directly as a weight matrix defining a
neural network (see fig. 2, equation 3 corresponds to the first
column of the network weights: R and D1 are of positive
weight while D2, L2 have a negative sign).

To explain the behaviour of the network, let us consider
some examples. As the network is setup using forward kine-
matic relations, it is obvious that the network can calculate
the position of the end-effector when the single segment
vectors are given and solve the forward kinematic problem.
In the inverse kinematic case the end-effector position R
is given to the network and the network has to find a
set of complying segment orientations. While in a stable
state all of the multiple equations would provide the same
result for a variable, the introduction of a new end-effector
vector changes this and all equations containing R are
affected. These equations lead now to different results and
the introduced disturbance is spread through these equations
onto the other variables. Over time the network converges to
a harmonic state again, that is a state in which the encoded
kinematic relations are valid once again and the new end-
effector position has been accounted for [15]. This can be
seen in fig. 3. The initial position is shown in light grey and
for every second iteration step the new arm configuration
as provided by the network is shown through dotted lines.
As can be seen in fig. 3 a), the network approaches the end
position over a small number of iteration steps. In b) a case
is shown in which the target can not be reached as it is
outside of the workspace. But the network comes up with a
coherent arm configuration which is minimizing the distance
of the end-effector to the target. The model solves the task
as good as possible.

The presented model above requires for a vector represen-
tation an additional processing step after each iteration. As
all variables can be changed independently the length of the
vectors is not guaranteed to stay the same. But the vectors
representing rigid segments should always be of the same
size. Therefore it is necessary to normalise these vectors
after each iteration. Using a joint angle representation—as
common in robotics—for control of the movements of the
segments makes this unneccessary [17].

To summarise, MMC networks can easily be derived to
describe the kinematics of any manipulator. For complex
structures the structure can be divided onto different levels of
a hierarchy of connected MMC networks [19]. A MMC net is
not restricted to one type of problems, but can solve forward,
inverse or any mixed kinematic problem. States of the
network always correspond to geometric valid configurations.
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Fig. 3. Solution of the inverse kinematic problem (damping d = 5).
The manipulator arm should point to a given position, marked by a cross,
starting from an initial configuration (dotted lines). In a) a situation is shown
in which one of the infinite numbered possible solutions is chosen. In b)
the target is situated outside the workspace of the arm, therefore there is
no solution possible. Nevertheless, the network solves the task “as good as
possible”.

III. INTEGRATION OF VISUAL FEATURES

The MMC model has been introduced in the context of
reaching movements, solving the inverse kinematic problem.
Besides this, we extended MMC networks to include dy-
namic influences and to use such a model as a predictor of
movement dynamics [20]. A predictive model may also allow
for higher-level cognitive functions. Planning ahead can be
realised using such a model of the body in internal simulation
[8] (for details of applying the MMC model for planning of
movements of a hexapod robot see [11]).

As mentioned in the introduction, internal models are also
involved in perception. The internal representations govern
how we perceive our environment and we constantly try
to map incoming perceptions onto our existing embodied
representations [21], [22]. First, to make sense of them. That
is to recognise and categorise what we perceive. And second,
to be able to draw conclusions. That is to predict what might
happen next or to remember what might be also important
in a context. The example in the introduction demonstrates
how our visual perception of movements is guided by our
own movement expertise as encoded in a body model. It
appears that we use our internal body model constantly
during perception of others moving around to understand
them (See research on Mirror Neurons, that are neurons
in areas which were for a long time assumed to be solely
responsible for motor control, but have also been found active
in perception of movements. These neurons appear to encode
goal directed action, independent of who is carrying them out
[7], [23].).

How can our model serve visual perception? The task of
the model would be to map an observed body to the body
model and to bring the model in line with the observed body.
Therefore, the model has to incorporate visual features. This
approach is comparable to the application of Kalman filters
which also exploit known underlying structural relations to
predict future states (see e.g. [22], [24]). The difference
is that in our model the prediction relies explicitly on the
given body model regardless of what values have to be
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Fig. 4. Determination of the visual center of gravity. + signals the single
segment COG. The overall visual COG lies at the centroid of the triangle
spanned by the three segment COGs and is marked by a bold + sign.

predicted (proprioceptive information or visual information).
In the following, we will show how visual descriptors can
be introduced into the model. We will use image moments
which describe a seen body, in our case an arm. Image
moments [25] are features that describe shape properties of
the foreground object, like visual center of gravity (COG) or
orientation. They capture statistical regularities of the pixels.
An advantage of image moments is that they are easy and
inexpensive to compute and are at the same time descriptive.
In general, image moments are calculated using binary pixel-
based images (I(x, y) intensity function, object pixels are
equal to 1) as visual input and applying the formula

Mpq =
∑

x

∑
y

xpyqI(x, y) (4)

The order of the visual moment is defined as the sum of p
and q. These two factors are weighting the summation over
all pixels. The zeroth order moment represents the covered
area of the foreground object. From the first order image
moments one can derive the visual COG (x, y) of the object

x =
M10

M00
, y =

M01

M00
(5)

While higher order moments provide information as orien-
tation and shape, we will only use these lower order image
moments to show how visual descriptors can be incorporated
into a MMC network in principle. Already this information
is sufficient for the arm model to follow an observed arm.

Image moments can be calculated from an input image.
But to influence the network behaviour they have to be re-
lated to the kinematic variables of the network. It is possible
to derive the image moments for any given configuration
of the arm (see fig. 4, derivation of the centroid). First, the
overall image moments can be decomposed into moments
representing the single segments

Mges
pq = ML1

pq + ML2
pq + ML3

pq (6)
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Fig. 5. Two examples of the perceived arm movement. Course of time is going from left to right, shown are snapshots of iteration 25, 50, 75 and 100.
In the first figure at the left the initial configuration is shown in light gray. The moving arm is shown as a dashed line and the current state of the MMC
model used for perception is represented as the dark grey line. In a) a near target is shown and in b) a target is shown for the fully stretched arm.

The centroid is defined as (shown only for the x-component)

xges =
Mges

10

Mges
00

=
ML1

10 + ML2
10 + ML3

10

3ML
00

=
1
3
(xL1 + xL2 + xL3) (7)

The centroid of each segment is given as the midpoint
between starting and end point of the segment vector:

xL1 =
1
2
(0 + xL1)

xL2 =
1
2
(xL1 + (xL1 + xL2))

xL3 =
1
2
((xL1 + xL2) + (xL1 + xL2 + xL3)) (8)

When employing these equations (8) into the centroid equa-
tion (7), we get

xges = 1
6 ((0 + xL1)

+(xL1 + (xL1 + xL2))
+((xL1 + xL2) + (xL1 + xL2 + xL3)))

= 5
6 xL1 + 1

2xL2 + 1
6xL3

(9)
This equation provides us with a visual COG vector for the
whole arm when the single segment vectors are given. The
centroid vector can now be introduced into the network. In
addition, for each of the contained kinematic variables, we
can derrive an equation relating this variable to the centroid.

Solving equation (9) for the segment variables leads to

xL1 =
6
5
xges − 3

5
xL2 − 1

5
xL3

xL2 = 2xges − 5
3
xL1 − 1

3
xL3

xL3 = 6xges − 5xL1 − 3xL2 (10)

These equations are integrated following the MMC principle
into the overall network. New segment vectors are now
computed using three equations and the current variable
value. In the case of L1 the kinematic equations (2) and
equation (10) are combined1 (compare to equation 3):

xL1(t + 1) =
1
d
(xR(t)− xD2(t))

+
1
d
(xD1(t)− xL2(t))

+
k1

d
(
6
5
xges − 3

5
xL2 − 1

5
xL3)

+
d− (k1 + 2)

d
xL1(t) (11)

In addition to the centroid, we want to also use depth
information. Therefore, we have to to extend our MMC
network to three dimensions which is straightforward. Until
now, two identical networks were used. One for the x- and

1ki is a factor weighting differentially the influence of the centroid
equations. As can be seen from the equations in (10) the centroid is affecting
the different segments not equally. Therefore, the influence of this equation
has to be weighted. We used in our computation k1 = 2, k2 = 1, k3 = 0.5.



one for the y-component. To extend the network to three
dimension one has just to add a third network representing
the z-component. The kinematic equations are the same as
given in equation (3). As the z-component is orthogonal to
the picture plane the centroid position does not contain any
depth information. But the visual information does contain
depth information. The visual area is changing depending
on where the arm is pointing. Again, we make simplifying
assumptions. First, the depth of the segments is negligible,
that means when a segment is pointing towards the viewer the
area is approaching zero. Second, we are assuming a parallel
visual projection of the whole scene, therefore objects does
not appear smaller when they are farer away. We define the
visual area of a segment when seen from the side as one
(MLp

00 = 1). For all cases in between the area equals the
projection of the segment onto the x-y-plane (the view plane).
This can be calculated as

MLi
00 =

√
(xLi)2 + (yLi)2 (12)

Taken together for all the segments, the summed visual area
is

Mges
00 = ML1

00 + ML2
00 + ML3

00 (13)

We can now introduce the visual area for each segment as an
additional variable and calculate it from the segment vectors
(as the summation of the partial visual areas calculated for
one segment). But in addition, when a visual area is provided
we can estimate the depth information for the whole arm and
integrate this depth information. First of all, we have to share
the visual area information onto the segments, e.g. gor the
first segment we estimate

ML1
00 = Mges

00 − (ML2
00 + ML3

00 ) (14)

As the projection on the x-y-plane, the z-component of
the segment vector and the segment vector (assumed of
unit length) form an orthogonal triangle, it holds (xLi)2 +
(yLi)2 = 1− (zLi)2. Therefore, we can substitute (xLi)2 +
(yLi)2 in equation (12) and can calculate the matching z-
component from the estimated visual area for that segment

MLi
00 =

√
1− (zLi)2

zLi =
√

1− (MLi
00 )2 (15)

The estimate for the z-component can now be integrated in
the MMC network through application of the MMC principle
(it is only incorporated in the network of the z-component).
In the following, the two extensions will be evaluated in
simulations.

IV. RESULTS

The network can be used in simulations for perceiving
movements of an arm. On the one hand, there is a MMC
network controlling the movements of an arm. The task for
the arm is to perform reaching movements. Input to this
network are target points. From its initial configuration the
arm is then reaching towards the targets. On the other hand,
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Fig. 6. Arrangements of the target points. Shown is the robot arm in the
initial configuration. The targets (white crosses) are arranged around the
base of the manipulator on two circles and in intervals of 45◦.

there is a second MMC network acting as an observer. This
network shall follow the performed movement. The visual
features of the moving arm are input to this network. The
image moments then drive the network. We then compare
the movement with the perceived movement over time.

A. Perceiving movements in a plane

In the first series of simulations, the movements are
restricted to movements of the arm in a plane (no depth
information is used). Input to the MMC network controlling
the arm are target points. Two examples for movements
are shown in fig. 5. The arm driven by the image moment
properties nicely follows the moving arm. What immediately
becomes apparent is that the movement is slower than in the
original approach. This is not surprising as now there are
more equations involved while for the perceiving network
only one equation is used for steering the network. The effect
could be counteracted through reducing the damping value—
but for better comparison we choose the same damping value
as in the initial simulations d = 5 in all simulations.

To analyse the networks performance quantitatively, we
set-up a set of 10 targets. The targets are arranged on two
half circles (fig. 6). The vectors pointing to the five targets
on each circle enclose 45◦ respectively. The two distances
to the two sets of targets are two segment lengths and
three segment lenghts which would mean the arm is fully
stretched. As can be seen in fig. 5, for the near targets the
arm has to fold. The joints connecting the segments are
not restricted and there are two distinct different ways of
folding the arm. For this series we therefore decided not to
start from a fully stretched arm configuration, as in this case
both ways of folding in one joint are equally likely. As a
visual centroid is not distinguishing the shape, there is no
information provided to the observer network in which way
to fold. As a consequence the perceived arm and the moved
arm could end up in very different configuration just because
the MMC model of the perceiving network chose the other
possibility of folding the arm. This could been circumvented
incorporating additional visual features like higher order
image moments. As in this paper we only want to present
the general approach, we decided to use a pragmatic and



a) Movement of the arm seen from above
t = 25 iteration steps t = 50 iteration steps t = 75 iteration steps t = 100 iteration steps

b) Movement of the arm seen from the side
t = 25 iteration steps t = 50 iteration steps t = 75 iteration steps t = 100 iteration steps

c) Movement of the arm seen from behind
t = 25 iteration steps t = 50 iteration steps t = 75 iteration steps t = 100 iteration steps

Fig. 7. Example movement in three dimensions, shown from different perspectives (a) view from above, b) side view, c) view from behind). Consider
the initial configuration of the arm as shown in fig. 6 (in b) this means that the second segment lies in front of the viewer; in c) the third segment lies
behind the other two segments). Course of time is going from left to right, shown are snapshots of iteration 25, 50, 75 and 100. At the left a rendering is
visualising the perspective. In the first snapshot at the left the initial configuration is shown in light gray. The moving arm is shown as a dashed line and
the current state of the MMC model used for perception is represented as the dark grey line.

simple solution, i.e., to use an initial configuration in which
the arm is not fully stretched but already folded. In this
case the MMC network does not have to choose how to
fold as this is already determined (the arm in fig. 6 shows
the initial configuration). The controlled arm reached out
during a period of 200 iteration steps towards one target
point after the other. Again, the observing network adopted
in all cases a similar configuration. First, we compared the
distance between the end-points of the movement control
network and the network visually perceiving the movement.
The mean difference between the two end-points was 0.178
units (a unit equals one segment length, standard deviation
of ±0.142 units). A better measurement for comparing
the configurations of the networks states is to look at the
differences of the single segment orientations. The difference
angle for the segment orientations of the perceived arm and
the moving arm were computed for each segment. The mean
difference was −0.49◦ (standard deviation ±12.29◦). Mostly
the last segment was responsible for the high variation which
is not surprising as the orientations of the first two segments

are weighted higher. The mean difference in segment orien-
tations for the last segment was −1.41◦ (standard deviation
±18.90◦; for the first segment: −2.73◦, st.d. ±4.33◦; second
segment: 2.71◦, st.d. ±9.63◦).

B. Perceiving three dimensional movements

In a second series of movements, we also used depth
information. Again, we used a set of targets in three di-
mensional space. As before, the targets are arranged on two
spheres (radii of two and three segment lengths). In the x-y-
plane the same targets are used. Additional targets have been
introduced. On the one hand, two targets directly above the
base of the manipulator. One target on the inner sphere and
one on the outer sphere. In addition, another target has been
placed on each sphere in the middle between a target lying in
the x-y-plane and the target on top of the sphere (in this way
the vectors towards these targets and the x-y-plane enclose
a 45◦ angle, see fig. 7 on the left). Information about the
covered visual area from the moving arm was given to the
observer network. Fig. 7 shows one example of a perceived
movement. As can be seen, this information is sufficient



to drive the network also in three dimensions. Again, we
analysed this quantitatively. For the twenty two different
targets we got a mean difference between controlled arm
and perceived arm of 0.135 units (st.d. ±0.113 units). The
orientation of the single segments differed by −0.63◦(st.d.
±10.47◦)

V. CONCLUSION

In this article, we presented a body model which can fulfil
different function and can be flexibly applied in different
contexts. Using the MMC principle, we first used the network
for motor control of a redundant arm (The model has already
been used for more complex structures [19].). The model
can also be used for prediction and allows for planning
ahead [11]. We extended the model and incorporated visual
information. Additional equations are integrated into the
model and due to its autoassociator capabilities the presented
body model can be now used to mediate between visual
spaces and segment orientations. This has been demonstrated
in simulations. For application in a real world scenario on
a robot more sophisticated descriptors might be needed and
preprocessing becomes necessary. When during perception
another person or robot should be mapped onto the body
model, it is required to, first, find the agent in the picture
which means it has to be segmented from the background.
Then the features have to be extracted from the picture and
one must compensate changes in scale and orientation. As an
example, normalised and centralised moments [26] of higher
order could be used in the future as descriptors which are
invariant against rotation and scale changes. At the same time
this would improve the results as these image features include
shape information. In the simple scenario as presented here,
perceived and controlled arm align in general, even though
we only used visual moments of first order and therefore no
form describing features at all. As the model is realised as
a neural network approach, we want to integrate additional
and more descriptive visual features in the future through
learning parts of the neural network.
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