
HARDWARE DESIGN FOR SELF ORGANIZING FEATURE MAPS WITH
BINARY INPUT VECTORS

S. Rüping, U. Rückert and K. Goser

University of Dortmund
Dept. of Electrical Engineering

P.O. Box 500500
W-4600 Dortmund 50

Germany

Abstract:

A number of applications of self organizing feature maps require a powerful hardware. The algorithm of
SOFMs contains multiplications, which need a large chip area for fast implementation in hardware. In this
paper a resticted class of self organizing feature maps is investigated. Hardware aspects are the
fundamental ideas for the restictions, so that the necessary chip area for each processor element in the map
can be much smaller then before and more elements per chip can work in parallel. Binary input vectors,
Manhatten Distance and a special treatment of the adaptation factor allow an efficient implementation. A
hardware design using this algorithm is presented. VHDL simulations show a performance of 25600
MCPS (Million Connections Per Second) during the recall phase and 1500 MCUPS (Million Connections
Updates Per Second) during the learning phase for a 50 by 50 map. A first standard cell layout containing
16 processor elements and full custom designs for the most important parts are presented.

1. Introduction

Self organizing feature maps as described in [1] have applications in the fields of data analysis and pattern
recognition. Especially for real time application a fast and efficient hardware is needed. Well known "von
Neumann computers" work serially on each element of a self organizing feature map, so that they have to
be very fast and can work only on rather small maps when time is the critical aspect.
A speedup is possible when a calculation unit is available for each element of the map or a special
coprocessor is used. There are a number of hardware designs known in literature [e.g. 2, 3, 4]. Due to the
mathematical operations which are necessary for the algorithm of self organizing feature maps, calculation
units are rather complex and need large chip area. For increasing map size multiplexing of the available
units is required to restrict the number of chips.
The basic idea of this paper is to look at a special class of self organizing feature maps. The aim is to get a
most simplified hardware by making restrictions on the algorithm and the used operations. For example
binary input vectors and Manhatten distance make it possible to calculate the distance between two vectors
without multiplication. Chapter 2 will describe all the simplifications according to hardware aspects which
are made for the presented circuits.
The investigation leeds to a hardware design that is described in chapter 3 and 4. Simulations using the
hardware description language VHDL result in numbers for the performance of the hardware. This is
discussed in chapter 5. Different layouts are already designed. First there is a standard cell layout
containing 16 processor units for self organizing feature maps and second there are full custom layouts for
the most important parts of the unit. Chapter 7 will close the paper dicussing the results.

2. Simplifications according to hardware

The algorithm of self organizing feature maps is summarized in equation 1.1. The calculation of the weight
vector for the time t+1 is made with the old weight vector w(t), the distance between the old weight vector
and the input vector and an adaptation factor alpha.

Computation, Lecture Notes in Computer Science 686, Springer
Verlag, Berlin (1993), pp. 488-493

w t +1()= w t()+ α t,x,y()⋅ x t()− w t()()
w t +1(); w t +1() : new and old weight vector
α t,x,y() : adaptation factor
t : time
x, y : coordinates of the element (1.1)

The distance between the weight vector and the input vector is very often defined by the euclidean distance
which is calculated by

x - w()= xi − wi()2

i
∑

(1.2)

Due to the difficulties to realize the square root in hardware and to the fact that not the absolute value is
important but the relation between all the distances on the map, most implementations use the distance

x - w() = x i − wi()2

i
∑

(1.3)

where the square root is not used. But nevertheless multiplications are needed. A distance which is very
simple to implement in hardware is shown in equation 1.4. It is called the Manhattan distance and can be
realized by a modified adder and a register.

x - w() = |
i

∑ x i − wi |
(1.4)

Further multiplications are necessary for the product of the adaptation factor alpha and the calculated
distance. A restriction to discrete values of alpha can simplify this multiplication. Alpha has a value
between 0 and 1. If only the values shown in 1.5 are allowed, the operation can be handled by a shifter.

alpha ∈ 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

 (1.5)

A multiplication with 1/2 is the same as shifting one bit to the right. Which means the restricted class of
self organizing feature maps using the Manhattan distance and discrete values for alpha can be designed in
hardware without using multipiers.
Another simplification that decreases the number of necessary I/O ports and the chip area can be done by
restricting the components of the input vector to be binary.

x = x1, x2, . . ., xn()T x i ∈ 0,1{ } input vector

w = w1, w2 , . . ., wn()T
wi ∈ 0,1,2,3,....,24 −1{ } weight vector

(1.6)

The precision of the weights is set to 4 bits. First simulations show that this seems to be a reasonable
value but further investigations have to be done in this field. For the definition of the distance equation 1.7
is given. The bit of the inputvector codes the minimum and the maximum of the possible weight values.

x - w = x i ⋅(2
4 −1) − wi

i=1

n

∑
(1.7)

3. Hardware design

The restrictions described in chapter 2 allow a simple hardware design with very few ports between the
units. Figure 1 shows an example of a 2 by 2 map, which can easily be extended to larger map sizes. Each
unit, in Figure 1 called PE (Processor Element), has a port for the row, the column, the clock and data. A
three bit command bus sends the instructions to the units.

row row rowrow

row row rowrow

col

col

col

col

col

col col

col

T T

T T

Ser_data

Ser_data

Ser_data

Ser_data

S S

S S

PE PE

PE PErow 0

row 1

col 0 col 1

R

VDD

R

VDD

R

VDD

R

VDD

SCol_Adr

T
Ser_
data Row_Adr

Fig. 1: Example for a 2 by 2 map

Each column and row line is connected to a seperate pull up resistor. The unit's outputs can be 'low' or
can have a high impedance. So it is possible to realize a 'wired or' and use this for the minimum search.
After calculation of the distance all units start to count down the distance register (see chapter 4). The unit,
which is the first to be zero, put a low voltage on it's row and column line. At this time the control logic
knows the minimum unit and it's position. If there are more than one unit that are the minimum at the same
time, a request to the elements can solve the problem.
All units are designed in the same way. Therefore the system can easily be extended by adding new rows
and columns to the map, when the control logic has the capability to handel the number of rows and
columns.

4. Internal structure

The internal structure of the units is shown in Figure 2. The connections of the unit described in chapter 3
can be found above the controller. The main blocks are the calculation block, the weights, sum and alpha
register and the controller. The weight register stores the weight vector and presents a component per
clock cycle to the calculation block. The calculation block produces the distance of the corresponding input
and weight components and add it to the sum register. During the learning phase it calculates the new
weight value using the bits in the alpha register. All this is done in one clock cycle.
The input vector is send to all units via the data line. One component per clock cycle is handled and all
units work in parallel. In order to decrease the chip area the input vector components are not stored in the
units. They must be sent again during the learning phase. Investigations have shown that this is no
disadvantage. Due to the binary type of the input vectors it is possible to send these bits as fast as the unit
could read them from an internal register.
To keep the design most flexible, the adaptation factor is send before each adaptation step. That makes it
possible to control the adaptation function and neighborhood size without restrictions. On the other hand
all units with the same alpha can work in parallel during the adaptation step. This will be explained in more
detail in chapter 5.

CONTROLLER

WEIGHTS

ALPHA

CALCU-
LATION

BLOCK

SUM

Data T S row col

alpha

 4
w_in

2

v_in

4
w_out

sum_out sum_in

7

d_in d_outT

ser_in
ser_out

move

ser_in
d_out

d_in

ser_out learn move_sfeed_b

T S row_in col_in row_out col_out

sum_count sum_T

alp_move

w_learn w_feed
w_move_s

sum=0

3

sum_Reset

reset

count

sum=0

w_move_p

move_p

7

Fig. 2: The internal structure of the unit

5. Performance of the system

As mentioned before the unit is capable of processing one component per clock cycle, which means the
system needs 64 clock cycles for calculating all distances on a map for an input vector with 64
components. The number of clock cycles to find the minimum depents on the minimum distance. The
distance might be small for an already learned map, so for this example an average value of 36 is taken,
which leads to a result of 100 clock cycles for each input vector finding the position of the most similar
element. Figure 3 lists the performance for a 50 by 50 map working at 16 MHz.

Mapsize Components Clock Cycles MCPS

50 x 50 64 ~ 100 25600

 Fig. 3: Performance during recall phase

During the recall phase all units can work in parallel. This is not possible during learning phase, when
only units with the same value of alpha can calculate the new weight vectors at the same time. Figure 4
explains the process. First the minimum element adapts it's weights and switches into inactive mode. The
element was addressed by the row and the column lines. Then a field of 3 by 3 units is addressed with 3
row and 3 column lines. This field can now adapt in parallel while the central unit (the minimum) is

inactive and will not adapt a second time. The working principle is used for all further rings until the
whole adaptation function has been processed. Each unit switches to inactive mode after the adaptation
step.

3 3 3 3 3

3

3

3

33333

3

3

3 2 2 2

2

222

2 1

Fig. 4: Addressing the units for adaptation

VHDL simulations for a map working at 16 MHz has been used to produce the performance numbers
listed in Figure 5.

Adaptation Size Components Clock Cyles MCUPS

50 x 50 64 1716 1500

Fig. 5: Performance during learning phase

6. Layout of the unit

A 1.5 um CMOS technology has been used to design the different parts of the proposed unit in full custom
layout. The calculation block has a size of about 0.15 mm2. The weight register with a capacity of 256
bits (64x4) needs about 1.85 mm2. Both are manufactured at the moment and will be tested soon. A 10 by
10 mm chip could contain about 25 units, where the majority of the area is used by the on chip memory.
Further versions of the units will be designed in 0.8 um CMOS technology, so that the number of units
per chip will increase.
On the other hand a standard cell layout containing 16 processing units (each with 64 bits (8x4) memory)
has been developed and is shown in Figure 6. The cells are based on a 2 um CMOS process. The chip has
a size of 10 by 10 mm and works with 16 MHz clock rate.

7. Discussion

A hardware design for self organizing feature maps is presented in this paper. Only a restricted class of
feature maps can be handle by the hardware, but with this restrictions it is possible to simplify the design
and decrease the necessary chip area. It seems, that there are a number of applications where binary data is
processed. On the other hand it might be possible to find an efficient coding for continous data. This
would increase the number of applications.
The hardware is very simple to extend. A chip containing full custom designed units is expected to contain
a much higher number of units than the standard cell layout. Therefore large map sizes with all elements
working in parallel can be built.

Fig. 6: Standard cell layout of 16 units (10x10 mm, 2 um CMOS)

A software for simulating the restricted class of self organizing feature maps is tested at the moment and
will be used to investigate the necessary weight precision and other specifications of the maps.

8. Acknowledgement

This work has been partly supported by the german ministry of research and technology BMFT, contract
number 01-IN 103 B/O.

9. References

[1] T. Kohonen. Self-Organization and Associative Memory. Springer Verlag Heidelberg New York
Tokio, 1984

[2] D. Hammerstrom, N. Nguyen. An Implementation of Kohonen's Self-Organizing Map on the
Adaptive Solutions Neurocomputer. Proceedings of Artificial Neural Networks 1991, pp. 715 -
720. North-Holland, 1991

[3] V. Tryba. Selbstorganisierende Karten: Theorie, Anwendung und VLSI-Implementierung. (in
German). Dissertation an der Universität Dortmund, Abteilung Elektrotechnik. 1992

[4] U. Ramacher, U. Rückert, J.A. Nossek. Proceedings of the 2nd International Conference on
Microelectronics for Neural Networks. Kyrill &Method Verlag, München, 1991

