INTLWUIRO aAliu /~Adunivial Hcinycilive LERASA R A AR r1cs

New York (1994), pp. 167-176

PARALLEL IMPLEMENTATION OF NEURAL ASSOCIATIVE MEMORIES
ON RISC PROCESSORS

U. Rickert, S. Ruping and E. Naroska

University of Dortmund

Dept. of Electrical Engineering
P.O. Box 500500

W-4600 Dortmund 50
Germany

INTRODUCTION

The implementatiorof neuralnetworks bymeansof multiprocessorarchitecturess a
promisingcompromisebetweenflexible modelling- the systemis still programcontrolled-
and a complete implementation by meahspecial-purpos&/LSI chips. The use ofgeneral
purposemicroprocessorfas further advantagese.g. they are relative cheapcomparedto
ASICs of low ormediumquantity, they are currently available,andthey utilize the highest
integration level of state of the art VLSI technologies.

Neural network simulation mostly usesctor-matrixor matrix-matrix operationge.g.
see Garth 1990 and Ramacher 199hg input/outputvariablesand the weightsare usually
of type 'real’. Therefore the most compute-intensive parts of simulation prografiosiang
point multiplications, and processors wilhigh floating point performanceare requiredfor
fast neural net simulations. DSPs (Digital Signal Processors)and RISCs (Reduced
Instruction Set Computers) are often used for this application (Treleaven 1989).

A specialtype of neuralnetworksare neuralassociativememories(NAMs) basedon
distributed storage ahformationwith binary inputs and outputs.Many different modelsof
NAMs have been discussed and analysed in literature (Willshaw Pa866,1980, Kohonen
1984)andit turns out that the majority of algorithmsdo not require the weight precision
offered by floatingpoint calculation.Integerarithmeticand a dynamicrangefor the weights
(synapsesdf 1 to 16 bit seemsto be sufficient for NAM applicationswithout noticeable
reductionof functionality. Hence,NAM implementationgmposedifferent requirementson
computational hardware as for neural network implementation in general.

In this paper we report on a case study addressingrtidemof implementingNAMs
on generapurposemicroprocessorsAfter a shortintroductionto the architectureof NAMs
we will give an efficient algorithm for their parallel implementation on single
microprocessorsThis algorithm was mappedto well known standardmicroprocessors
(MC88xxx, ARM2, Sparc, RS/6000, MC68x»and Intel 286/486)which will be compared
in respectto the numberof connectionger second(CPS)in the recall phaseof the NAM.
The paper concludes with a discussion of the main results of this case study.

ASSOCIATIVE MEMORY WITH NEURAL ARCHITECTURE
The structure of a neural associative memory is shown in Figure 1. The basic operation
of NAMs (Kohonen 1984)are pattern mapping (heteroassociativerecall) and pattern

completion (autoassociative recall). In addition NAMs have the capability otédedanceas
described in Palm (1982), Ruckert and Surmann (1991), and Kohonen (1984).
X - —

el el o

é @ g} X" Neural

. - —> associative
W.
(m)

: memory
S AR A
@ @ v
Yh
Y1 Y2 Ym

Figure 1 Structure of a neural associative memory

Therearetwo phasesn working with NAMs. The first is called learning phasein
which the weights(w1 1; w1 2, ... Wm) areupdatedaccordingto a learningrule and the
specific set of z input-output pairs {XYh) which have to be stored (h = 1, 2, ...Exchof
the weights is responsiblefor several input-output associations(distributed storage of
information).

The second phase is the recall phageerethe input XD is presentedand the memory
creates the outputhY For each output componentan activity ais calculated by the form:

a = ZW‘J X!

The associated binary output vector is obtained thyesholdoperation.In generalthe
componentf the input vector and the output vector as well as the weights can be of
arbitrarytype. Becauseof the computationaldemandsand dueto storageefficiency (Palm
1990) werestrict our considerationon NAMs with binary input and output vectors and
reduced weight precision of 1 to 16 bit.

Anotherimportantfact with regardto NAMs is the coding of the input- and output
vectors.The theory shows, that the beststorageefficiency canbe reachedby using sparse
coding (Palm 1980, Palm 1982, Meunier et al 1991). For sparsely coded vectors the
probability p for acomponenthat takesthe value'l' (representinghe active state)is rather
small, e.g. only | = log(n) (k = log(m)) components of the input (outpertjorsare active at
any time.

In summary,the dominantcharacteristic®f NAMs in regardto implementationare a
regularas well asmodulararchitecturea reducedweight precision andsparselycoded|/O
patterns.The latter effectsmainly the communicationand dataflow managemenas will be
discussed below.

MULTIPROCESSOR ARCHITECTURE

For applications like information-retrieval or associative knowledge processing (Palm et
al 1991), NAMs with several thousand neurons are needed. This requiregarfdgimance
and a largesize of memoryof the used computerg€speciallyfor real time applicationsthe
solution can be a parallel architecture. For NAMEghly scalableand simple architecturds
shown in Figure 2.

RAM RAM RAM RAM

Y '

¢ BUS

HOST

Figure 2 Multiprocessor architecture for NAMs

Severalmicroprocessorsvith local memory are connectedto a common bus. The
controlling and management of the system is done by acbhogputer.For the applicationof
NAMs there is in general no need for communication betwleemicroprocessorsThe host
scheduleghe tasks forthe processorsand broadcastghe 1/0-vectorsand weights to the
different memory parts. During the recall and learning phasesall processorsan work in
parallel.

Eachprocessor hato createthe output for a specific numberof neurons.When the
calculationsarefinished, the host canfetch the results. Becauseof the sparselycoded!/O
patternsthe speedup in the recall phasefor this multiprocessoirchitecturas almostlinear
the more mircoprocessors are added.

IMPLEMENTATION
Distribution of the weight-matrix

The distribution of the weight-matrix depends on the size of the matripyéioesionof
the weights and the number of parallel processor units. In this papevestigateprocessor

typesmainly with a databussize of 32 bit. For a weight precisionof wy bit oneword of a
memorysegmentontains32/w, weights. It is very useful to split the matrixinto vertical

slices,so that eachmicroprocessofone per slice) can calculateits output locally. The new
weights during the learning phaseand also the activity during the recall phase can be
calculated for each slice without having information about the other slices.

Slices
T T T 1T 171
Weight- 1 I O O I I
) pl112131al51l617 18
Matrix
1 I O O I I
1 I O O I I
Memory-
Segment 0 1 2 J
_ 0101... O
32bits -l1111... 1

0010... (1
. a binary weigt

Figure 3 Splitting the weight-matrix for parallel processing

The different processorsvork on severalmemorysegmentsas shownin Figure 3. If
the system has processors with similar performance, the number of segments pboslde
be about the same.

As mentionedbefore, sparsecoding of input and output vectors will result in a
relatively simple communicationmanagementinsteadof transferinga n-bit vector only |
addresses of size log(n) have to be transfered (Palm and Palm 1991, Rickert et al 1992).

The overflow algorithm

In order to utilize the full performance of a given microprocessor we developadihe
so called "overflow algorithm”. The main idea of this algorithm is to handle a subset gf 32/w
weights containedin eachmemoryword in parallel. Figure 4 showsthe structureof the
memory words.

Waomb), 1 | Wa2iwb)-1, - W 4 W1 W o1

Waomb), z | Waz2mb)-1, : W o W o W

|
bit 31 bit 2Wb bit Wb bit 0

Figure 4 Internal structure of two memory words1(S)

The problemis thataddingthe two words S; and Sy can createan overflow between
two adjacent weights. Thereforeit is necessaryo split S; into S; 1 andS; 2 aswell asto
split S into $ 1 and $ 2. This is shown in Figure 549 containsthe weightswith an odd
index i. The space between the weights is filled with zeros. This extra space che ussd
for the overflow bits. $2 will do the samefor the weightswith an evenindexi. Therefore
the word must be shiftedgbits to the right to bring the weights irttee correctposition. Sy
is handled in the same way. The splitting camlbeeby using twostandardmicroprocessor
commands, "AND" and "SHIFT".

— 0 Waz2iwb), 1 1 0 .1

A A

=

— | Weamb), 1 |e2mb)-1, - % 1 % 1 W1
Sl T 0 Wazsmb)-1, %1 0 W1
bit 31 bit2Whb bit Wh bit 0

Figure 5 Splitting §| into S 1 and § 2

After splitting S1,1 and Sy 1 canbe added.A possibleoverflow will be storedin the

spacebetweenthe weights. A single "ADD" instructionis now able to handle 32/(2wp)
weights in parallel. The result of$+ S 1 is shown in Figure 6.

Sl F SZ 1: Wa2mb)-1, - +Wa2mib)-1, 4 W+ W,

bit 31 bit 2Wb bit Wb bit 0
Figure 6 Adding S 1 and $ 1

The number of additions which are possible without getting overflow problems is given

by:

22@Nb _ 1

#add=—
2" -1

Whenthis numberis reachedsplitting can be doneagainand addingthe weightscan
proceed.

Assuming w = 4 bit and a word length of 3#t the microprocessohasto isolateand
add 8 weights serially. Using the overflow algorithm, the microprocessooperateson 4
weightsin parallelandthe cycle "isolateandadd" hasto be done only twice. In generala
single microprocessor is able to handle about

W, roc
CcH= Pl
20w,

columns (neurons) of a NAM in parallel. The parameigews the width of the databus of

the processor (at present mainly 32 bit). In other words standard microprocessafzable
of emulatingaboutc# processorswith a smaller datapath wy in parallel. Obviously, for
binary weights the highest parallelism is achieved.

COMPARISON OF DIFFERENT GENERAL PURPOSE PROCESSORS
Description of the measurements

For testing the performanceof the different processorsa complete associationof a
1024x1024bit matrix is done. The input vectorhas 20active componentgl = 20) and the
outputvectorcontainsk = 1024/(wy x 32) active bits. Thatmeans,f wy is equalto 1 the
output vector has a dimension of 1024 and contains 32 active componegts. dqualto 4
the dimensionis 256 andthe numberof active componentss 8. This condition guarantees
that the storage requirement for NAMs wittfiferent weight precision(wp = 1, 2, 4, 8,16)
is the same.

All vectorsarestoredasa list of addressewhich describethe positionsof the active
bits. It is important to mention that the output vectors are also stotbs way, becauseahe
transfomatiorfrom the bit form to the addresform takessometime andis includedin our
time measurements.

Table 1 shows &st of all measuredand estimated}imesfor the different processors
expressedas MCPS(Million ConnectionsPer Second).There are three types of values
summarized in this table. They are marked by the lette@ #dE. The letter A meansthat
the program is written in Assembler,m@zansthat the programis written in C-languageand
E means that the MCPS value vwesdimatedoy the clock rate, the necessargommandsand
the number of clock cycles per command.

Obviously, the processorsnvestigatedn this casestudy are not a completeset of all
general purpose microprocessors. The listed processors were available at our institute.

Comparing the different resuliisis importantto remindthe way how the valueswere
measured. A C-program is usually not as optimagdn assembleprogram.To investigate
this, Table2 showsa comparisorbetweenthe resultingMCPS fora C-programandfor an
assembler program.

Table 1 Results for different weight precisions

wp=1 Wp =2 Wp =4 Wp =8 Wp= 16

ARM2 7,9 (A) 52 (A) 2,9 (A) 1,6 (A) 0,9 (A) MCPS
MC68000 2,0 (A) 1,7 (E) 1,0 (E) 0,5 (E) 0,4 (E) MCPS
80286 2,1 (A) 2,2 (E) 1,2 (E) 0,6 (E) - MCPS
MC68030 20,6 (A) 17,8 (A) 8,4 (A) 5,0 (A) 2,7 (A) MCPS
MC88100 27,8 (A) 18,8 (E) 10,0 (E) 5,7 (E) 2,9 (B) MCPS
i486-50 34,1 (C) 29,3 (C) 135(C) 7,5(C) 4,1 (C) MCPS
RS/6000 18,0 (C) 15,8 (C) 8,4 (C) 4,9 (C) 28 (C) MCPS
Sparc2 14,5 (C) 13,8 (C) 6,6 (C) 3,8 (C) 2,0 (C) MCPS
A : Assembler C : C programming language E : estimated

Table 2 Comparison of C and Assembler programs

Assembler C
ARM?2 7,9 2,1 MCPS
MC68030 20,6 9,3 MCPS
MC88000 27,8 10,2 MCPS

It seems to be a fact that a program written in assembler is about 2 to fasteethan
a C-program for this special application of NAMSs.

On the other hand it is important whichmpileris used.Table 3 showsa comparison
of two different C-compilerson a i486-50MHz computer.In this examplethe program
produced by the second compiler is nearly two times faster than the other.

Table 3 Comparison of two C-compilers on a i486-50MHz computer

N=1 N=2 N=4 N=8 N =16
Zortec 20,9 16,8 8,83 4,92 2,67 MCPS
Gnu 34,1 29,3 13,5 7,53 4,13 MCPS

DISCUSSION

Comparingthe different processorgan not be donesimply by comparingthe MCPS
values. As shown in Table 2 and Table & ivery importantto remindthe type of computer
languageand also the specialproduct that is used. For this application of NAMs some
compilersdo a much betterjob thanothers,which doesnot meanthat they are much better
products because they surely have their disadvantages for other applications.

The first 5 processordisted in Table 1 are measuredusing an assemblerprogram.
Therefore the simulation times aakmostminimized. The last 3 processorare measuredy
running a C-program, so the listed performancesare expectedto increasefor running
assembler programs.

It is an interesting result that the i486-50MHz processor is dbbtes fasterthanthe
Sparcprocessor (4MMHz). A possibleexplanationis the usageof different C-compilers.
With the Zortec compiler th#86-50MHz hasa performanceof 20,9 MCPSwhich is about
the sameasthe RS/6000and a little fasterthanthe Sparc.It might be possiblethat another
compiler on the SUNvorkstationcould increasehe performanceOtherexplanationgnight
be the differensizesof cachememoryor the influenceof the operatingsystem(Unix, MS-
DOS, 0S/2,...) on the performancewhich is difficult to estimate.Neverthelesghe i486-
50MHz seems to be a powerful processor for this special type of application. The instructions
that are used forthe overflow algorithm are very simple (ADD, AND, SHIFT) and are
executedby the i486-50MHz in a few clock cycles. This could explain the fact that this
special CISC processor is as fast as the RISC processors.

Comparing the Motorola microprocessor families MCGBKSC) and MC88k (RISC),
the RISC architecturds the better choicdor this specialapplication,as might be expected.
With a clockrate of 16 MHz the MC88100 is about 1.3 times fasterttiee C68030with a
clockrate of50 MHz (wp = 1, Tab. 1). HoweverCISC processorsasthe 68k andi486 are
mass products and hence cheaper than RISC processors, in general.

A comparisonof different generationsof the same microprocessoifamily (68xxx,
80x86) showsa considerablespeedup of 10 ormore. This should be considered while
developingapplication specific integrated circuits (ASICs), especiallyin respectto the
expected cost/performance ratio of the complete system.

Another interesting result is that the gairpgrformancdrom wyp = 2 to wp = 1 is not
as high as might be expecteda factor of 2). The reasonfor thatis the time neededfor the
transformation of the output vectors from bit to address formlargestgain resultsfor the
MC88100. This is mainly becausethe processor hasappropriateinstructions for this
transformation.

Nevertheless, in this paper it is not our intension to find out the best micropraoessor
simulation of NAMs. This seemsto be impossible at the moment becausea general
benchmarkis missing for that work. Such a benchmark should provide the same
presuppositiongor all processors.There are a lot of dependenciesvhich influence the
performanceand which could not be simply estimated compiler, cachememory, operating
system,...). At presentwe areworking ona specificationof an appropriatedoenchmarkior
NAMs based on distributed storage and sparsely coded I/O patterns.

Overall thespeedsavailablefrom generalpurposemicroprocessorare sufficientfor a
rangeof NAM applicationsFor example,giving a 4096x4096NAM with binary weights
(wp = 1) in which about320000patterns(l = 12, k = 3) can be storedwith low error
probability (Rickert 1991), a single i486-50MHz microprocessor(34 MCPS, Tab. 2)
performs about 700 associations per second. The associations per second are given by:

Assoc _ MCPS
sec [(h

It shouldbe possibleto increasethe performanceby working onassembletevel. If
even highespeedis requireda multiprocessomrchitecturegFig. 2) could be used.Last but
not least we have to be aware of the fact thatiind RISC processogeneratioroffers a 64
bit datapath, an internal clock rate above 100 MHz and a superpipelinedand superscalar
architecture (Weiss 1992).

CONCLUSION

The reportedcase study onsimulation of NAMs on the basis ofgeneralpurpose
microprocessors is interesting in three aspects at least.

Firstly, adaptingthe implementationof NAMs to the characteristicof the hardware
gaveus an efficient algorithm with which it is possibleto handleabout c# = wprod2Wp
neurons in parallel by a single processor. For a low weigddision(wp = 1, 2) a speedup
factor of about 10 is available.

Secondly, in order to achieve peadrformancdow level work on assembler program
level is rewarded. Our assembler programs are about #ntesfasterthan C-programsor
this special application of NAMs.

Thirdly, the speeds available from general purpoggoprocessorare sufficientfor a
rageof NAM applicationsHence,it seemdo be advisableto provefor eachapplicationof
NAMs, whethera high costASIC solutionis necessarpr alow costsolutionwith general
purpose microprocessors would meet the requirements.

ACKNOWLEDGEMENT

This work has been partly supportedby the german ministry of researchand
technology BMFT, contract number 01-IN 103 B/O.

REFERENCES

Garth, S.,"Simulatorsfor neuralnetworks",in AdvancedNeuralComputersR. Eckmiller
(ed), Elsevier Science Publishers, 1990, pp 177-183.

Kohonen, T., "Selforganisation and Associative Memory", Springer Verlag, Berlin, 1984.

Meunier, C., Yanai, H.F., Amari, S.I'Sparselycodedassociativenemories:capacityand
dynamical properties”, Network, November, 1991, pp 469-487

Palm, G., "On Associative Memory", Biol. Cybern. 36, 1980, pp 19-31.

Palm, G., "Neural Assemblies”, Springer Verlag, Berlin, 1982.

Palm, G., Local Learning Rules and SparseCoding in Neural Networks, in Advanced
Neural Computers, R. Eckmiller (ed.), North-Holland, 1990.

Palm, G., Ruckert, U., Ultsch, A., "Wissenverarbeitungn Neuronaler Architektur",
Tagungsband zum. Int. GI-Kongress:Wissensbasiert8ysteme- Verteilte kuenstliche
Intelligenz, Muenchen, 1991.

Palm, G., Palm, M., Parallel Associative Networks: The PAN-System and the Bacchus-
Chip, in Proc. of the 2nd Int. Conf. Microelectronics for Neural Networks, U.
Ramacher, U. Ruckert, J.A. Nossek (eds.), Kyrill&Method Verlag, Minchen 1991.

RamacherU., "Guide lines to VLSI designof neuralnets”, in VLSI Design of Neural
Networks, U. Ramacher, U. Rickert, Kluwer Academic, 1991, pp 1-17.

Ruckert, U., "VLSI Design of an associativememory basedon distributed storage of
information"”,in VLSI Designof NeuralNetworks,U. RamacherlJ. Rickert, Kluwer
Academic, 1991, pp 1-17.

Ruckert, U., Surmann, H., "Toleranz of binary associative memory towards stuck-at-faults",
in Proceedings of the International Conference on Artfid@lironalNetworks (ICANN-
91), Helsinki, 1991, pp 1195-

Ruckert, U., Funke, A., Pintaske, C., "Acceleratorboard\feural AssociativeMemories",
to be published in Microelectroniésr Neural Networks, NeurocomputingVol. 4, No.

6, 1992
Treleaven,P.C., "Neurocomputers" International Journal of Neurocomputing,Issue 1,

1989, pp 4-31
Weiss, R., "Third-generation RISC processors", EDN March 30, 1992, pp 97-108

Willshaw, D.J., Bunemann,O.P., Longuett-Higgins,H.C., Non-holografic associative
memory, Nature 222, 1969, pp 960-.

