ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

A Reconfigurable SOM Hardware Accelerator

M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski, U. Rickert

Heinz Nixdorf Ingtitute, System and Circuit Technology,
University of Paderborn, Germany
email: porrmann@hni.upb.de, WWW: http://wwwhni.upb.de/sct

Abstract. A dynamically reconfigurable hardware accelerator for self-organiz-
ing feature maps is presented. The system is based on the universal rapid proto-
typing system RAPTOR2000 that has been developed by the authors. The
modular prototyping system is based on XILINX FPGAs and is capable of emu-
lating hardware implementations with a complexity of more than 24 million sys-
tem gates. RAPTOR2000 is linked to its host — a standard personal computer or
workstation — viathe PCI bus. For the simulation of self-organizing maps a mod-
ule has been designed for the RAPTOR2000 system, that embodies an FPGA of
the Xilinx Virtex series and optionally up to 128 MBytes of SDRAM. A speed-
up of about 50 is achieved with five FPGA modules on the RAPTOR2000 sys-
tem compared to a software implementation on a state of the art personal com-
puter for typical applications of self-organizing maps.

1. Introduction

Self-organizing maps (SOMs) [1] are successfully used for a wide range of technical
applications, in particular, dealing with noisy or incomplete data. Examples of use are
controlling tasks, data analysis and pattern matching. In cooperation with an industrial
partner we are using SOMs for the analysis of 1C (Integrated Circuits) fabrication pro-
cesses. The large amount of data, that is captured during operation, has to be analyzed
in order to optimize the process and to avoid a decrease of yidd [2, 3]. Software simu-
lations of medium sized maps on state of the art workstations require calculation times
from hours up to several days for these large datasets. The simulation of large maps
(i.e. more than one million neurons with vector dimensions in the order of thousands)
seems promissing but is not feasible with state of the art PCs or workstations. From the
various possibilities to speed up neural computations we have chosen the design of a
hardware accelerator for neura netwoks. Our goal isto integrate the system into state
of the art workstations if very high performance is required and to enable access to the
accelerator viatheinternet if the accelerator is only sporadically used.

In recent years various hardware implementations for different neural network archi-
tectures have been presented [4]. But many of the proposed architectures are dedicated
to single neura network algorithms or groups of similar algorithms. The aim of our
project is to deliver a system that is capable of accelerating a wide range of different
neural algorithms. In most applications different methods of information processing
are combined. For example, artificial neural networks are combined with fuzzy logic
or with techniques for knowledge based information processing. In contrast to imple-
menting different components for data pre- and postprocessing and for neural net-
works we use adynamically (i.e. during runtime) configurable hardware accel erator to
implement al of the algorithms that are required for a specia application. The system

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

can be reconfigured for the different tasks in one application (e.g. different configura-
tions for pre- and postprocessing may be selected). Because of the reconfigurability
the hardware can be mapped optimally to the requirements of the application, thus
allowing an easy expansion by new algorithmsto improve flexibility and performance.

2. Implementing Self-organizing Mapsin Hardware

Self-organizing maps as proposed by Kohonen [1] use an unsupervised learning algo-
rithm to form a nonlinear mapping from a given high dimensional input space to a
lower dimensional (in most cases two-dimensional) map of neurons. Our goal is to
find an efficient implementation on state of the art FPGAs that, on the one hand deliv-
ers the required high performance and, on the other hand, fits into the limited ressou-
rces of current FPGAs. Because of their internal structure FPGAs seem to be very well
suited for the implementation of neural networks. Previous work of the authors con-
cerning highly optimized ASIC implementations of self-organizing maps has empha-
sized, that avoiding memory bottlenecks by using on-chip memory is a must in order
to achieve optimal performance [5]. We use XILINX Virtex FPGAs for our implemen-
tations, because these devices come with large internal SRAM blocks that can be used
for internal weight storage.

In oder to limit the hardware requirements for the implementation, the original SOM-
algorithm has been simplified. In particular the Manhattan distance is used for calcu-
lating the distance between the input vector and the model vectors to avoid multiplica-
tions as required for the euclidean distance (which istypically used in SOM implemen-
tations). The internal precision is set to 16 bit and the accuracy of the input vector
components and of the model vectors is set to eight bit. Restricting the values of the
neighborhood function to negative powers of two gives us the opportunity to replace
the multiplications that are required for adaptation by shift operations. Of cause these
simplifications do not come for free (e.g. the convergence time may increase in some
cases), but it has been shown that the simplified algorithm is well suited for alot of
applications [6]. Furthermore the actual generation of Xilinx FPGAs (Virtes Il) comes
with integrated multipliers and our implementations on these chips will thus be able to
use euclidean distance instead of manhattan distance with no lossin performance.

Data pre- and postprocessing is a crucial and often ignored aspect in neurocomputer
design. The use of reconfigurable hardware enables us to implement optimally fitting
hardware implementations - not only for neural networks but a so for pre- and postpro-
cessing. As an example, we have integrated the main visualization techniques for self-
organizing maps, that had to be performed in software so far, into hardware. The visu-
alization of component maps and pattern position mapsis supported as well as al kind
of distance matrices like the U-Matrix. Implementing these algorithms in hardware
dramatically reduces communication and thus enables a more efficient utilization of
the hardware accelerator [7].

Our SOM-implementation consists of processing elements that are working in SIMD-
manner and that are controlled by an external controller. Nearly all calculations are
performed in paralel on all processing elements. A bidirectional bus is used for data
transfers to dedicated elements and for broadcasting data to groups of processor ele-
ments (or to all processor elements). Single elements and groups of elements are
addressed by row and column lines that are connected to the two-dimensional matrix.
The externally generated instructions are transferred to the processor elements via an
additional control bus. Two more signals are used for status messages from and to the

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

controller. The architecture is able to simulate virtual maps, i.e. it is possible to simu-
late maps that are larger than the array of processor elements that is implemented.
Apart from the typica two dimensional grid of neurons, any other kind of network
topology can be implemented (e.g. one dimensiona or toroidal maps). Because the
values for the adaptation factors are provided by an external controller, any adaptation
function and neighborhood function may be realized with the proposed hardware
(without any changes in the FPGA configuration).

3. Architecture of the Hardwar e Acceler ator

The hardware accelerator that is presented in this paper is based on the modular rapid
prototyping system RAPTOR2000. The system consists of a motherboard and up to six
application specific modules (ASMs). Basically, the motherboard provides the com-
munication infrastructure between the ASMs and links the RAPTOR2000 system via
PCI bus to a host computer. Additionally, management functions like bus arbitration,
memory management and error detection services are integrated in two Complex Pro-
grammable Logic Devices (CPLD). The various communication schemes that can be
used between different ASMs and between the ASMs and the host computer are
depicted in the block diagram in figure 1. Every ASM dlot is connected to the Local
Busfor internal communication with other devices or ASMs and for external commu-
nication with the host processor or with other PCI bus devices. An additional Broad-
cast Bus can be used for simultaneous communication between the ASMs. Addition-
ally, adual port SRAM can be accessed by all ASMs via the Broadcast Bus (e.g. uti-
lized as a buffer for fast direct memory accesses to the main memory of the host sys-
tem). Direct communication between adjacent ASMs is realized by 128 signals that
can be variably used, depending on the actual implementation.

A crucial aspect concerning FPGA designs is the configuration of the devices. Each
ASM that carries an FPGA has to be configured by an application specific data stream
that determines the function of the device. In order to utilize dynamic reconfiguration
(i.e. during runtime) it is necessary to minimize this reconfiguration time, therefor the
configuration algorithms have been implemented in hardware. Reconfiguration of an
ASM can be started by the host computer, another PCI bus device or by another ASM.

=

CTRL CPLD ;
titer, MU Config. CPLD
Diagnose, CLK !
4] PCl Bus II
3 .
@ Y \ Bridge Local Bus >
[S) \,—‘/ Master, Slave,
e DMA ‘ ‘ CTRL i@I CTRL i@I CTRL i@I
© <
- Q@ AN AN @
Dual-Port 2(128 128 128 128)3
sram | = = g
~_- = S
E; Module 1 E; Module 2 E; Module 3
< Broadcast Bus >

Figure 1. Architecture of the Raptor2000 rapid prototyping system

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

Thus, it is possible that an FPGA autonomously reconfigures itself by configuration
datathat islocated anywhere in the system. Due to the hardware implementation of the
reconfiguration algorithm, a Xilinx Virtex 1000 FPGA can be completely reconfigured
within less than 20 ms. The configuration algorithm implemented into the hardware
also supports the partial reconfiguration of the system [8].

For the simulation of self-organizing feature maps the module DB-VS has been
designed for the RAPTOR2000 system. This ASM embodies an FPGA of the Xilinx
Virtex (-E) series and optionally up to 128 MBytes of SDRAM. The ASM can be
equipped with various chips, that emulate circuits with a complexity of 400,000 to 4
million system gates. The SDRAM controller is integrated into the FPGA logic. A
photo of the RAPTOR2000 system with two DB-V S modules is shown in figure 2. In
the context of this paper we focus on the implementation of self-organizing feature
maps on RAPTOR2000. Because of the flexibility of the system many other neural and
conventional algorithms may be mapped to the system. As another example for neural
networks we have analyzed the implementation of neural associative memories on the
RAPTOR2000 system [9]. Another case study focuses on the implementation of octree
based 3D graphics [10].

4. SOM-Implementation on RAPTOR2000

In order to implement the SOM-algorithm on the RAPTOR2000 rapid prototyping sys-
tem, five DB-V S modules are applied. Four ASMs are used to implement a matrix of
processing elements while the fifth is used to implement the matrix controller, an 1/0
controller for the connection to the local bus of the RAPTOR2000 system and a dual
port SRAM that is used to buffer input- and output-data. An integrated SDRAM inter-
face controls the external 128 MBytes of SDRAM. The dual port SRAM is used to
store single input vectors, commands from the host computer and the results (e.g. best
match positions or postprocessed visualizations of the map). The large SDRAM is
used to store one or more input data sets. During learning of a self-organizing map, the

Figure 2. Photo of the RAPTOR2000 System
with the FPGA module DB-VS

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

whole input data set has to be presented to the map for severa times. Thusit is recom-
mendable to transfer the whole data set in one fast block transfer viathe PCI busto the
hardware accelerator in order to minimize the load of the PCI bus.

The design has been described in VHDL and synthesized using the Synopsys FPGA
compiler and the Xilinx Alliance tools for place and route. Using Virtex XCV812E-6
devices, Npg=81 processing elements can be implemented, each equipped with 2
kBytes of internal SRAM. The utilization of the FPGASs s about 68%. The numbers of
clock cycles that are required for recall (Cecq) @nd for learning (cadapt) of an input
vector with adimension of | are:

= n, [l + 2T 1d(I [255) + 4)
= n, 02 +2ld([255)] + 12)

Crecall

(D

Cadapt

The variable n, is the number of neurons, that is emulated by one processing element.
Using Virtex XCV812E-6 devices, aclock frequency of 65 MHz has been achieved for
the FPGAs. The maximum performance is achieved, if every processing element rep-
resents one neuron (n,=1). In this case about 17,500 MCPS (Million Connections per
Second) can be achieved during recall and 2000 MCUPS during learning. Simulating
larger maps, the performance decreases. Using a benchmark data set with a vector
dimension of 1=9, maps with up to 250x250 Neurons can be simulated with a perfor-
mance of 4,400 MCPS and 665 M CUPS, respectively. With a software implementation
on a state of the art personal computer (AMD Athlon, 1 GHZz) only a performance of
85 MCPS and 22 MCUPS can be achieved for this problem. Apart from the described
Xilinx XCV812E devices, other FPGAs with BG560 package may be used on DB-VS.
Xilinx Virtex devices may be used as well as Virtex E devices. The design has been
synthesized to different Xilinx devices leading to a maximum performance of more
than 50 GCPS and 5,7 GCUPS on Xilinx XCV3200E-6 devices. The dynamically
reconfiguration that is provided by the RAPTOR2000 system can be used to adapt the
size of the map that is simulated in order to achieve optimal performance. Addition-
ally, dynamic reconfiguration is used to adapt the precision of the processing elements.
Starting with alow precision (e.g. 8 bit), arough ordering of the map can be achieved.
For fine tuning of the map the precision of the processing elementsisincreased (e.g. to
16 bit), by loading a new configuration file.

= Control-FPGA
[= 9]
(%] = < x3 ||/
2 ol ® ||EE|(___
_(e — V||~ & o =0
IS o [a) O
L S
g SDRAM-
8 Controller
[! !
O
'_
o
: |
o
128 MByte
<~_- SDRAM PE-Matrix: 4 x Xilinx Virtex

Figure 3. Architecture of the hardware accelerator

ESANN'2002 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-1, pp. 337-342

5. Conclusion

A dynamically reconfigurable hardware accelerator for the simulation of self-organiz-
ing feature maps has been presented. Equipped with five FPGA modules, the system
achieves a maximum performance of more than 50 GCPS (Giga Connections per Sec-
ond) during recall and more than 5 GCUPS (Giga Connection Updates per Second)
during learning. Even higher performance numbers can be achieved by using new
FPGA architectures like the Xilinx Virtex-E series. Apart from the high performance
the system is capable of doing pre- and postprocessing tasks — either by use of the
implemented visualization features or by dynamically reconfiguring the devices during
runtime. The latter is supported by the RAPTOR2000 rapid prototyping system by
means of the ability to reconfigure the FPGAs very fast viathe PCI bus.

Acknowledgement

This work has been partly supported by the Deutsche Forschungsgemeinschaft (Ger-
man Research Council) DFG Graduate Center "Parallele Rechnernetzwerke in der
Produktionstechnik" and by the Robert Bosch GmbH, Automotive Equipment Divi-
sion 8, Reutlingen, Germany.

References

[1] Kohonen, T.: "Self-Organizing Maps', Springer-Verlag, Berlin, 1995.

[2] Goser, K., Marks, K.-M., Rickert, U., "Selbstorganisierende Parameterkarten zur
Prozel3iberwachung und -voraussage”, Informatik-Fachberichte Nr. 227, 1989, pp. 225-
237, Springer, M iinchen.

[3] Ruping, S., Mller, J.: "Andysis of IC Fabrication Processing using Self-Organizing
Maps', Proc. of ICANN"99, Edinburgh, 7.-10. Sept. 1999, S. 631-636.

[4] Ruckert, U.: "ULSI Implementationsfor Artificial Neura Networks', 9th Euromicro Work-
shop on Paralldl and Distr. Processing 2001, Feb. 7-9, 2001, Mantova, Italien, S.436-442.

[5] Porrmann, M., Riping, S., Ruckert, U.: "The Impact of Communication on Hardware
Accderators for Neural Networks"', Proc. of SCI 2001 Orlando, Floriada USA, 22.-25. Juli
2001, pp. 248-253.

[6] Ruping, S., Porrmann, M., Rickert, U., "SOM Accelerator System", Neurocomputing 21,
pp. 31-50, 1998 .

[7]1 Porrmann, M., Riping, S., Ruckert, U., "SOM Hardware with Acceleration Module for
Graphical Representation of the Learning Process', Proc. of the 7th Int. Conference on
Microe ectronicsfor Neura, Fuzzy and Bio-Inspired Systems, pp. 380-386, Granada, 1999.

[8] Porrmann, M., Kalte, H., Witkowski, U., Niemann, J.-C., Rickert, U.: "A Dynamically
Reconfigurable Hardware Accelerator for Self-Organizing Feature Maps', Proc. of SCI
2001 Orlando, Florida USA, 22.-25. Juli, 2001, pp. 242-247.

[9] Porrmann, M., Witkowski, U., Kalte, H., Rickert, U.: "Implementation of Artificid Neural
Networks on a Reconfigurable Hardware Accelerator", 10th Euromicro Workshop on Paral-
lel, Distributed and Network-based Processing (PDP 2002), 9.-11. Januar 2002, Gran
Canarialdand, Spain, to be published.

[10] Kalte, H., Porrmann, M., Rickert, U., "Using a Dynamically Reconfigurable System to
Accelerate Octree Based 3D Graphics', PDPTA’'2000, June 26-29, 2000 Monte Carlo
Resort, Las Vegas, Nevada, USA, pp. 2819-2824

