
An Evaluation of the Scalable GigaNetIC Architecture
for Access Networks

Jörg-Christian Niemann1, Mario Porrmann1, Christian Sauer2, Ulrich Rückert1
1Heinz Nixdorf Institute, University of Paderborn, Germany

2Infineon Technologies, Corporate Research, Munich, Germany
1{niemann, porrmann, rueckert}@hni.upb.de, 2{christian.sauer}@infineon.com

Abstract

We present an architecture for network processing nodes
based on a massively parallel processor structure. Due to its
regularity, our architecture can be easily scaled to accommo-
date a range of packet processing applications with disparate
performance and throughput requirements at high reliability.
Furthermore, the composition from predefined building blocks
guarantees fast design cycles and eases system verification. For
particular resource efficiency in terms of power consumption,
computational performance, and area requirements, specialized
hardware accelerators can be embedded into the tailored proc-
essor cluster, which have been optimized for a particular target
application. We demonstrate our approach using a real-world
network access scenario that implements a full Internet protocol
based digital subscriber line access multiplexer (IP-DSLAM) on
our architecture. For this scenario, we achieve substantial in-
creases of performance with only a slight area increase of less
than 0.3 %. At the same time, the processors are strongly re-
lieved and are thus available for the remaining tasks.

1 Introduction

Especially network applications with their ever grow-
ing performance requirements are predestined for parallel
processing systems [1]. By processing uncorrelated flows
of packets concurrently, these systems are able to achieve
the required throughput, i.e., wire speed. Evolving mar-
kets and changing protocols demand flexible architectures
that at the same time are reusable among different applica-
tion domains with disparate performance requirements.
Our scalable approach based on HW (Intellectual Prop-
erty) modules enables us to design appropriate architec-
tures with respect to computational performance, area
requirements, and power consumption.

The backbone of our GigaNetIC architecture [2] (cf.
Fig. 1) is the GigaNoC, a hierarchical hybrid network-on-
chip (NoC). Local on-chip busses cluster small numbers
of processing elements (PEs). Switch boxes (SBs) connect
these clusters at the higher level. Their interconnection
can form arbitrary topologies, such as meshes, tori, or
butterfly networks. The parallel and redundant structure of
our switch box approach offers a high potential for fault

tolerance: in case of a failure of one or more components,
other parts can take over the respective operations. This
can cause a significant increase of production yield. Fur-
thermore, the topology can be efficiently integrated and
provides high scalability due to its modularity and regular
interconnect scheme. New components, e.g., hardware
accelerators and I/O interfaces, can be easily attached to
any switch box. These IP blocks transparently handle and
terminate our on-chip communication protocol. The initial
silicon of our architecture will consist of 32 processing
elements and eight switch boxes. Each PE is connected to
the on-chip bus of a SB via a multiprocessor cache (cf.
Fig. 1). We have chosen a mesh topology, due to efficient
hardware integration.

Fig. 1: Scalable parallel GigaNetIC SoC architec-
ture based on hierarchical IP blocks

One particular application of our scalable processor ar-
chitecture is the network access domain, i.e., the aggrega-
tion of customers’ first/last mile connections to the Inter-
net via a service provider’s network. Core systems for this
task are DSLAMs. We use this application for verification
and demonstration of our system and analyze compute-
intensive tasks for system optimizations.

Concerning the system evaluation and verification en-
vironment we follow a top-down approach. To test the
software in an early design phase, and to optimize differ-
ent parameters of the architecture accompanied with a
much faster simulation speed, we have developed SiM-
PLE, a simulation model of the architecture in SystemC.
In this design flow, global system parameters are specified

at a high level of abstraction. Coming closer to the hard-
ware implementation, these parameters are iteratively re-
fined. For the verification of the basic hardware blocks at
the register-transfer level (RTL), we use a VHDL simula-
tion environment. At this detailed level, simulation is very
slow. However, since the complete environment is synthe-
sizable, it can be mapped to a hardware emulation system.
By using our rapid prototyping system RAPTOR2000, we
have analyzed an exemplary system of our network proc-
essor with basic functionalities of our application scenario
as a proof of concept.

The paper is organized as follows. In the following sec-
tion, we discuss main concepts and building blocks of our
architecture in more detail. Section 3 provides an over-
view of the IP-DSLAM application and the used configu-
ration. The evaluation and verification setup in Section 4
is used to characterize our scalable architecture. Section 5
provides results from synthesis and performance evalua-
tion and is the main contribution of this work. The paper
is concluded in Section 6. We discuss related work
throughout the paper.

2 Architectural Building Blocks

A central goal of our approach [3] is a parameterizable
network processor architecture in respect to the number of
the clusters, the processors instantiated per cluster, the
provided hardware accelerators, and the available band-
width of the on-chip communication channels. By this, a
high reusability of our architecture can be guaranteed.
Further advantages of such a uniform system architecture
lie in the simplified testability and verification of the cir-
cuit and in a more homogeneous programming model. The
programmer is relieved from handling the on-chip com-
munication protocol explicitly since routing, memory
management, and I/O are transparently controlled by the
SBs. At the cluster level the programming model is based
on a proprietary parallelizing ANSI C compiler. A preced-
ing tool partitions and schedules the tasks for the individ-
ual processor clusters.

2.1 Processing Element
At the processor level, we use our 32 bit RISC proces-

sor N-Core [4][5], as processing element of the system.
The core is a softmacro and can be adapted to the needs of
the respective area of application. Instructions have a
fixed width of 16 bit, providing a high code density, which
is of special importance for embedded systems with lim-
ited memory resources. The instruction set can be ex-
tended through additional operations, because of 11% free
opcode space. Therefore, it is possible to optimize the
architecture for specific application domains, e.g. the net-
working area. In this field we have already implemented

several new instructions for header modification and for
encryption algorithms used in IPsec protocols [6][5].
These instruction set extensions can be seen as the small-
est HW blocks used in our architecture. Additionally, the
N-Core provides a coprocessor interface for hardware
accelerators, facilitating further acceleration by adding
larger HW blocks. The processor core has been verified in
silicon successfully [4].

2.2 Switch Box
At the cluster level, switch boxes act as high speed

routing nodes, which combine the individual processor
clusters with each other. The on-chip communication is
based on a packet switched network-on-chip [7][8]. Data
is transmitted by means of packet fragments – Flits (Flow
Control Digits) – that represent the atomic on-chip data
transmission unit [9]. A locally connected processor clus-
ter consists of four processors that are connected to the SB
by an AMBA or Wishbone on-chip bus. The number of
communication ports is variable and depends on the an-
ticipated on-chip network topology.

Fig. 2: Switch Box HW block

Despite its simplicity, this architecture allows parallel
operation and a pipelining of the processor fields. Addi-
tionally, it guarantees almost equal link lengths and thus
an identical and short propagation delay of the signals
between SBs. Furthermore, the parallel structure of the SB
concept allows a high fault tolerance: if the software de-
tects a malfunctioning processor unit, others can take over
the pending tasks.

Each SB is also connected to a multiprocessor array by
an extra input/output port (port 0 in Fig. 2), which inter-
faces the communication controller (CC). The CC trans-
fers data to and from the local clusters. The SB consists of
two main parts. The first part combines the I/O port and
the crossbar to form the communication structure that en-
sures that the data packets are smoothly transmitted and
reach the correct switch box output port on the basis of the
routing strategy. The second part of the SB comprises the
control structures that serve as an interface between the
processor field and the on-chip network. This task is per-
formed by the communication controller, which is located
between the port 0 and the bus of the local cluster.

I/O
 p

or
t 3

I/O
 p

or
t 1

I/O
 po

rt 0

co
mmunica

tio
n

co
ntro

lle
r

ro
ut

in
g

in
fo re
gi

st
er

 fi
le

he
ad

er
 m

od
ifi

ca
tio

n
co

or
di

na
te

 s
ub

tra
ct

io
n

pa
ra

lle
l i

np
ut

 q
ue

ue
s

FI
FO

s

Fig. 3: Communication Controller

The communication controller performs the following
tasks: It receives the flits, reorders them if necessary, and
forwards them to the connected HW blocks, e.g., proces-
sors or hardware accelerators. Another important function
is the initialization of the PE code memories at system
startup.

2.3 Hardware Accelerators and Other HW
Blocks

Beside the processor cores and the local memories, fur-
ther HW blocks can be integrated using several ways. The
processor supports the connection of hardware accelera-
tors via a coprocessor interface. If those units are sup-
posed to be available to a number of processors, they can
be coupled via the local bus at cluster level. Coupled
closely to the processor field, these HW blocks are inte-
grated through additional master/slave interfaces of the
local bus system and addressed via memory-mapped I/O
ports. Beside hardware accelerators, additional modules,
such as UARTs for debugging purposes, can be inte-
grated.

At the SoC level, more independent units can be con-
nected to any SB and are addressable via the on-chip net-
work. These can be loosely coupled hardware accelerators
enqueued in the data path, such as encryption modules.
These can also be units that realize outwards connections
such as memory controllers for external memory or
Ethernet controllers that take over the connection to exter-
nal networks. To connect a unit to the GigaNoC, a CC is
connected to the respective component and a SB port. The
CC performs the conversion of the data into the flit proto-
col and the termination of the protocol, respectively. Due
to this connection mode, the units are universally suited
and enable a slight adaption of the system to new applica-
tion areas.

3 Network Application Scenario(s)

The deployment in network nodes is a major focus of
our architectural platform. Due to its scalability, a wide
range of network applications in access, edge, and core
networks with different processing and performance re-
quirements can be covered. In the following, we concen-
trate on access networks and briefly introduce our IP-
DSLAM application scenario that describes a full IP
based DSL access multiplexer system. This scenario is
used for the subsequent performance evaluation.

3.1 IP-DSLAM Application
DSLAMs connect individual customers with the

broadband service provider’s network. Today’s DSLAMs
can become quite large systems by aggregating several
thousands of subscriber lines. They are built modularly
out of different line cards aggregating xDSL lines, a back-
plane connecting line and uplink cards, and one or two
uplink cards providing access to the service provider net-
work (ISP), see Fig. 4. A maximal system configuration
may contain up to 64 line cards, where each card aggre-
gates up to 96 DSL lines. Usually, the number of cards
and ports per card vary with DSL version and protocol
mix. In [10], typical configurations with 32 line cards and
up to 72 ports per card depending on the DSL protocol
version are reported.

Fig. 4: DSLAM system and components

Common processing steps experienced by each packet
on its way through the IP-DSLAM system are: Layer-2
protocol termination (Ethernet/AAL5), IP header check,
IP address validation, 5-tuple classification to determine
the destination port and traffic class, policing and schedul-
ing for QoS, forwarding, and layer-2 encapsulation. Usu-
ally, upstream and downstream packet flows require addi-
tional direction-dependent processing steps, e.g., multicast
duplication in downstream direction. In [10] these steps
are explained in more detail.

3.2 Scenario Setup
For the subsequent performance evaluation, we assume

a maximal setup with 96 ports per line card (either

input register

bus controller

output register

da
ta

 in

da
ta

 o
ut

local bus

memory
(dual ported)

memory controller

16 FI
FO

 c
on

tro
lle

r
address selector 16FI

FO
 c

on
tro

lle
r

send controlFIFO
registers

FIFO
registers

address FIFO send FIFO

Switch Box
communication

controller

Line card

Line card

Line card

Uplink
card

Back
plane

Service
card

DSLAM
Control

DSLAM Architecture

xDSL

xDSL

xDSL

ISP

Upstream traffic

Downstream traffic

SHDSL or VDSL), 64 line cards, and one uplink card.
Workload for the system is generated using IPv4 packets.
At the link layer, Ethernet and/or ATM are used. In order
to derive peak performance and throughput requirements
for our architecture, we look at the worst-case for this sce-
nario, i.e., all DSL lines utilize their full bandwidth, are
active at the same time, and process only minimum size
packets. Of course, typical real world scenarios may re-
quire fewer resources due to more favorable packet length
distributions and other statistical traffic properties that can
be exploited. However, we are interested in the upper
bound of the imposed system load.

3.3 Benchmarking Methodology
The performance analysis for our scalable architecture

follows an application driven approach. Based on a com-
plete and performance indicative IP-DSLAM reference
implementation, we identify system bottlenecks and itera-
tively explore architectural alternatives. At the system-
level, weight and interaction of tasks need to be known for
performance indicativeness and evaluation of different
partitioning and mapping decisions. For this reason, we
extended our initial approach, described in [11], to a full
IP-DSLAM reference application [10] that is platform
independent. Similar to the standard cores in [10], we map
this reference to the N-Core using ANSI C as intermediate
description. The software implementation of tasks is
changed manually when specialized hardware is incorpo-
rated. In case of instruction set modifications, the C com-
piler is retargeted [6][5].

4 Evaluation & Verification Environment

Before presenting performance and synthesis results in
the next section, we describe the various evaluation and
verification environments that have been used to obtain
our figures. As our system architecture is implemented
fully on various abstract levels we have several verifica-
tion and simulation options. At Register Transfer Level
(RTL), we use Modelsim from Mentor Graphics for the
verification of the hardware building blocks, that is, for
simulation and also for code coverage analysis. Unfortu-
nately, simulation of the full system at this detailed level is
very slow. However, since the environment is synthesiz-
able, we deploy our hardware emulation system
RAPTOR2000. To enable software development for the
whole system at an early design phase, we also provide a
SystemC simulation model of the complete architecture.
This way, we are able to test and optimize the system to-
gether with the C programmed application.

4.1 SystemC-based Simulation
To test the software in an early design phase and to op-

timize different parameters of the architecture accompa-

nied with a much faster simulation speed, we have devel-
oped the simulation environment SiMPLE (SystemC inte-
grated Multiprocessor Level Environment) of the architec-
ture in SystemC. SiMPLE contains a cycle-accurate simu-
lation model of the N-Core, parameterizable caches and
SBs. We follow a strict top-down design flow: global sys-
tem parameters are specified on a high level of abstrac-
tion; coming closer to the hardware implementation, these
parameters are iteratively refined.

Although this cycle-accurate model is on a high ab-
straction level, the simulation for a system consisting of
32 PEs, 32 caches, 8 SBs and 8 local busses is about 2kHz
on a 3 GHz Pentium-4 PC. To speed up the simulation, we
mapped main parts of the system to an FPGA-based rapid
prototyping system. In addition, this emulation enables
insights into the behavior of the hardware in more detail.

4.2 FPGA-based Rapid Prototyping
The RAPTOR2000 system [12] consists of a PCI card

and a set of daughter boards that carry, e.g., FPGAs or
Ethernet PHYs. By using this rapid prototyping system,
detailed hardware analyses can be done in short time. The
design under consideration can be embedded and tested in
a real-world system environment, e.g., attached to an
Ethernet module, and can be tested in the whole system
environment. When using our RAPTOR2000 rapid proto-
typing system, we achieve a speed-up of at least 10,000
compared to the VHDL simulation, and a speed-up of
about 6,250 compared to the SystemC simulation, on a
3 GHz Pentium-4.

Using two Virtex II 4000 FPGAs, fully utilized with a
setup of: 1 SB, 32 kB packet buffer, 2 N-Cores with 32kB
program memory each, a timer, a PIC, a wishbone bus, 2
Ethernet interfaces and a UART for debugging, we are
able to test the application software with real data traffic.
With this implementation running at 12.5MHz we carry
out an exact analysis of the bus and NoC usage.

5 Realization and Performance Analysis

In this section, we evaluate the potential of our scalable
architecture. We start with a basic system, containing 32
PEs and the necessary communication infrastructure. We
estimate area and evaluate its performance mapping the
most compute-intensive tasks of the IP-DSLAM scenario
in software onto the PEs. Then we extend the system with
hardware accelerators and instruction set modifications
and compare the results of this enhanced system to the
original system. This will demonstrate how flexibility is
traded off with performance and area.

As a prerequisite, we analyzed the scenario and identi-
fied the most compute-intensive functions in software.
Three functions have been selected for the performance

analysis of the system: IP header check, CRC8, and
CRC32. The IP header check is carried out each time an
IP packet arrives. Among the functions that have to be
accomplished are: checking the version of the IP protocol,
checking the time-to-live field, and checking or recalculat-
ing the IPv4 checksum. The CRC8 (cyclic redundancy
check) is necessary, e.g., to protect the header of ATM
cells. A CRC32 checksum is important for both ATM and
AAL5 segmentation Ethernet framing.

5.1 Basic System – Area Estimation
The standard cell synthesis delivers first results for the

future ASIC implementation of a 32 PE system. The area
and clock frequency estimations for the main components
of the network processor are based on synthesis results for
two industrial standard cell technologies in 130nm and
90nm. The entire size of this system is about 50 mm² and
43.7 mm², respectively (cf. Table 1).

Table 1: Synthesis results for the main build-
ing blocks of the SoC architecture

130nm 90nm 130nm 90nm
32 N-Cores 32 x 0.16 32 x 0.12 205 285
8 switch-boxes [with 5 ports] 8 x 1.129 8 x 0.53 560 650
32 local RAMs, (32 KB)
+ 8 local packet buffers (2 x 16 KB)

32 x 0.875
+ 8 x 2 x 0.466

32 x 0.875
+ 8 x 2 x 0.466 400 450

8 local on-chip busses 8 x 0.05 8 x 0.02 211 290
total 50.01 43.7 205 285

Area [mm²] Frequency [MHz]SoC main components

Unless otherwise noted, all values are given for typical operating conditions.

5.2 Basic System – Performance Estimation
The basic system consists of N-Core processors, local

bus components of the processor clusters, switch boxes,
and basic I/O interfaces (cf. Table 1). The basic system
performs all tasks solely in software. The necessary sys-
tem size is determined in consideration of the application
scenario. Table 2 shows the required function calls per
second for the most compute-intensive tasks of the
DSLAM scenario.

Table 2: Function calls per second

SHDSL VDSL SHDSL VDSL
IP header check 0.375 0.563 24.000 264.000

CRC8 0.906 5.660 57.962 362.264
CRC32 12 75 768 4800

function calls
[millions per second]

line card uplink card

For the IP header check, different variants have been

implemented that primarily differ in respect to the calcula-
tion of the checksum. The fastest variant uses 32 bit addi-
tions and needs a total of 108 cycles. The fastest 16 bit
variant, similar to the implementation mentioned in the
RFC1071, needs 111 cycles. Using a line card with 96
DSL ports under full load (SHDSL: 2Mbit/s uplink /
downlink), the worst case scenario would be that 0.38
million header checks per second and per line card were to
be carried out in the uplink, based on the assumption that
only IP packets with a minimal length of 64 bytes are
transmitted. This means that one processor per line card
would be needed and 20% of its capacity used (cf. Table

3). If one analyzes the uplink card with a full extension of
the DSLAM (64 line cards), at this stage, the full capacity
of 13 processors would be used exclusively for the IP
header check, or, when using one N-Core, this would have
to be operated with 2.6GHz. With VDSL (3/22Mbps up-
link/downlink), 140 CPUs would be needed on the uplink
card or, one N-Core would have to run with a clock rate of
28.5GHz to handle this load on its own.

The software implementation of the CRC8 needs 71
clock cycles per 32 bit (4 byte header) ATM cell on the
N-Core. With SHDSL, the worst case outcome would be a
data volume of 384 Mbits per line card. This equals about
900,000 ATM cells needing a checksum calculation. With
this, 31% of the N-Core’s capacity is used. If the ATM
cells on the uplink card were to be checked also, this
would mean that 21 N-Cores were needed only for the
CRC8 checksum in the case of SHDSL and 126 CPUs in
the case of VDSL. However, this does not take into con-
sideration that there is always an additional parallelism
overhead; as a consequence, more processors were to be
employed.

Table 3: Required N-Cores for the given
scenario

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.20 0.30 12.64 139.08 0.14 0.21 9.09 100.04

CRC8 0.31 1.96 20.07 125.47 0.23 1.77 14.44 90.25
CRC32 5.21 32.56 333.42 2083.90 3.75 23.42 239.83 1498.95

required CPUs
 for task: line card uplink card

130nm 90nm
line card uplink card

The CRC32 in the case of SHDSL, imposes a computa-

tional load that uses the capacity of the 6 or 33 N-Cores
with VDSL on the line card (130nm technology). Here,
the N-Core needs an average of 89 clock cycles per 32 bit.
As far as the uplink card is concerned, due to the higher
data volume, these numbers are even higher. Here too, the
numbers argue for the use of a hardware accelerator.
Table 3 summarizes the necessary processor numbers in
consideration of the given tasks.

Table 4: Required size of the system

SHDSL VDSL SHDSL VDSL
required CPUs 8 38 368 2350

overall system size
[mm²] 7.3 35.0 335.8 2144.7

required CPUs 6 28 265 1691

overall system size
[mm²] 3.6 15.5 146.8 934.4

uplink cardline card

130nm

90nm

technology system
parameters

Finally, we obtain the system parameters of the re-

quired architecture that is able to fulfill the mentioned
functionalities (cf. Table 4). It is noticeable that systems
for the uplink card can not be implemented without ap-
propriate hardware accelerators. For the line card, the ba-
sic architecture is able to fulfill the requirements of
SHDSL (90 nm and 130 nm) and for VDSL (90 nm). The
next section describes enhancements of the basic system

to increase the performance for dedicated tasks. This de-
creases the costs by means of area and power consumption
and optimizes the resource efficiency of the system.

5.3 Enhanced System
The enhanced system integrates hardware accelerators,

which relieve the processors from the compute-intensive
tasks. It also considers potential instruction set extensions.
The residual processors can be used for control functions
and tasks that are not suitable for hardware acceleration.
Accelerators connected locally may operate at core fre-
quency those coupled loosely to the system allow higher
clock speed.

Before explaining the integration of coprocessors into
our architecture, we investigate acceleration potential of
the N-Core by application-specific instruction set exten-
sions. In [5], we have presented a tool-chain that facili-
tates the required optimizations for the software (i.e., inte-
gration of new instructions into the compiler) as well as
for the hardware (i.e., integration of new instructions into
the hardware architecture of our N-Core). For network
applications, our analyses have shown that a combination
of the instructions LDW (load word) and XOR is rather
promising. The implementation of the resulting super in-
struction XORLDW has no impact on the critical path of
the processor and increases the processor area only by
0.03%. With this slight modification of the processor, a
speed-up of 1.1 is achieved for CRC calculation. Table 5
shows the resource requirements for CRC8 with 32bit
input data. Power consumption decreases only marginally
because of our changes in the control structure of the
processor. But the energy consumption is reduced by
nearly 10% for both VLSI technologies.

Table 5: System parameters of the original
and extended processor

absolute
(µm²)

relative
increase

absolute
(mw)

relative
decrease

absolute
(nWs)

relative
decrease

N-Core 158012 - 10.084 - 2.81 -
N-Core

(XORLDW) 158489 0.301% 10.080 0.04% 2.53 9.89%

N-Core 121280 - 9.009 - 2.37 -
N-Core

(XORLDW) 122314 0.845% 9.002 0.07% 2.13 9.93%

technology

130 nm

90 nm

Core
total area total power total energy

For the network applications that are analyzed here, a

speed up of 10% in comparison to a pure software solu-
tion is not sufficient for CRC calculation. Therefore, more
complex hardware accelerators are presented in the fol-
lowing. During the design space exploration a decision
has to be made as to whether it is sufficient to use small
accelerators with limited impact on performance or
whether more complex accelerators have to be embedded
that offer higher performance and relieve the processor
but require additional resources.

The hardware accelerator that has been implemented
for IP header check needs 8 clock cycles to perform the

complete functionality. If the coprocessor is attached to
our switch box via the communication controller, we can
guarantee that the NoC is capable of writing the required
data into the buffer of the accelerator with the needed per-
formance. Thus, up to 228 millions header checks per
second can be performed if the accelerator is working at a
clock frequency of 1.82 GHz (90 nm). Even if the accel-
erator operates with the same (low) clock frequency as the
PEs, 35.6 million header checks can be performed per
second. If we compare these results to the 2.6 millions
checks that are performed in one second with the software
implementation on our N-Core, a speed-up between 13.7
and 87.7 can be achieved. The area is depending on the
maximum clock frequency and ranges from 0.012 /
0.008 mm² (130nm / 90nm) to 0.0157 / 0.0146 mm²
(130nm / 90nm) at maximum clock speed (cf. Table 6).

Table 6: Required area for the
HW accelerators

technology max frequency
[GHz]

required area
[mm²]

max frequency
[GHz]

required area
[mm²]

1.69 0.0157 1.42 0.0115
0.54 0.0120 0.96 0.0102
1.82 0.0146 1.41 0.0098
0.49 0.0078 0.775 0.0066

130nm

90nm

IP header check CRC

For CRC calculation, a hardware accelerator has been

developed, too. Due to its parallel implementation, it
processes 32 bit input data in one clock cycle. The unit
performs CRC8 as well as CRC32 checks and achieves a
speed-up of up to 630 (90 nm) if the interfaces deliver the
data with the required bandwidth. If the coprocessor is
attached to the local bus, additional clock cycles for mem-
ory access have to be considered. Without congestion,
four clock cycles are required for memory access. Table 6
gives an overview over the area requirements for different
operating frequencies. The first clock frequency is the
maximally achievable clock rate for the specific technol-
ogy. Due to less strict timing constraints, the second clock
frequency is lower, consequently, the area requirements
are smaller.

Table 7: Needed coprocessors for the given
scenario with local bus connection

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.015 0.022 0.937 10.3 0.102 0.154 6.6 72.1

CRC8 0.004 0.028 0.283 1.8 0.181 1.132 11.6 72.5
CRC32 0.059 0.366 3.746 23.4 0.527 3.293 33.7 210.7

line card uplink card line card uplink card
(optimal memory access) (non-optimal memory access)needed units

@205MHz

Table 7 shows the number of coprocessors that are re-

quired if the three tasks are performed exclusively in hard-
ware. For this example, the coprocessors are attached via
the local on-chip bus. Therefore, they are clocked syn-
chronously to the PEs with a much lower frequency
(205MHz) than possible. We differentiate between opti-
mal memory access (i.e., no congestion) and a conserva-
tive bus arbitration. In the latter case (non-optimal mem-

ory access), we suppose that bus accesses are uniformly
distributed between all units (here 5). It appears that a
single IP header checker and one CRC module are suffi-
cient for the implementation of a line card in the two DSL
variants. For the processing-intensive applications on the
uplink card, the number of required coprocessors in-
creases dramatically if they are attached to the local bus
and operate with reduced clock frequency.

Table 8 points out the acceleration that could be
achieved if the coprocessors are integrated into the
datapath of the system, working with their maximum clock
frequency. In this case, it could be necessary to enhance
the NoC, e.g., by increasing the payload of the flit proto-
col, to achieve the required high on-chip bandwidth.
These aspects remain to be analyzed further. For the line
card, one hardware accelerator is sufficient for the IP
header check, independent of the used VLSI technology.
One CRC coprocessor can be utilized for both CRC8 and
CRC32 since the unit is never utilized more than 6%.

Table 8: Needed coprocessors for the given
scenario with high-speed on-chip connection

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.002 0.003 0.114 1.250 0.002 0.002 0.105 1.160

CRC8 0.001 0.004 0.041 0.255 0.001 0.004 0.041 0.257
CRC32 0.008 0.053 0.541 3.380 0.009 0.053 0.545 3.404

uplink cardneeded units
@max. frequency

130 nm
line card uplink card

90 nm
line card

For the implementation of uplink cards, coprocessors

are inevitable but one IP header check unit and 4 CRC
coprocessors deliver the required performance. Of course
the embedded processors are also required in this sce-
nario. The N-Cores are used for remaining tasks and con-
trol purposes as well as for future extensions of the sys-
tem. This is especially important in respect to increasing
the time in market. During the design space exploration, a
system has to be defined that offers the required perform-
ance and flexibility. Performance is achieved by integrat-
ing an appropriate number of hardware accelerators while
flexibility is achieved by integrating embedded processor
cores.

5.4 Performance Comparison
Table 9 shows the area requirements of an exemplary

network processor that meets the requirements of line
cards and uplink cards. Compared to the basic system
(without hardware extensions; cf. Table 1), the area has
only increased by 0.23%. However, in contrast to the ba-
sic implementation, the extended system is able to cope
with the SHDSL scenario and with the VDSL scenario for
the line card without any restrictions when using the same
clock frequency for all components (cf. Table 4, Table 7).

To assure a correct processing of the VDSL scenario
on the uplink card under full load and with the usage of
the coprocessors (running at the same clock speed as the
other SoC components), the architecture should be ex-

tended to a 8x4 cluster. At each cluster, one IP header
check module and eight CRC units are required. Further-
more, one had to guarantee that the flits at their destina-
tion always in time. This may force an enlargement of the
NoC bandwidth. This architecture would require approx.
203 mm² / 178 mm², and the SoC would contain 256 PEs,
4 MB memory as well as 288 coprocessors.

Table 9: Exemplary system with 4x2 clusters
for a given DSLAM scenario

130nm 90nm
32 N-Cores 5.12 3.84
8 switch-boxes [with 5 ports] 9.03 4.24
32 local RAMs, (32 KB)
+ 8 local packet buffers (2 x 16 KB) 35.46 35.46

8 local on-chip busses 0.40 0.16
2 IP header check coprocessors 0.03 0.03
8 CRC coprocessors (capable of CRC8, CRC32) 0.09 0.08
total 50.13 43.80

Area [mm²]SoC main components

Table 10 compares the performance of the basic system

and the enhanced system that includes the hardware accel-
erators for CRC and IP header check. The basic system is
only suited for the SHDSL scenario whereas the enhanced
system meets the requirements of the SHDSL as well as of
the VDSL scenario. Executing, for example, the IP header
check on a single N-Core in the basic system, leads to a
performance of 1.9 million header checks per second
while the two hardware accelerators in the enhanced sys-
tem deliver a performance of more than 51 million func-
tion calls per second. This results in a speed-up of 27.

Table 10: Performance – basic system vs.
enhanced system (line card SHDSL)

used
N-Cores

possible
fct. calls/ops
per second

units
possible

fct. calls/ops
per second

speed-up

IP header check 1 1,90E+06 2 5,13E+07 27
CRC8 1 2,89E+06 4 8,20E+08 284
CRC32 6 1,38E+07 4 8,20E+08 59

remaining N-Cores 24 4,92E+09 32 6,56E+09

increase
area 50,01 50,13 100,24%

basic system enhanced system
max. performance
for task @205MHz

6 Conclusion

In this paper, we have presented a scalable,
IP(Intellectual Property)-based network processor archi-
tecture that is adaptable to different application domains
in respect to performance, power consumption and area
requirements. We characterized this architecture by key
figures for achievable performance and area requirements
based on elementary tasks for an IP-DSLAM scenario.
Currently, we are in the process of taping out the initial
silicon for the prototype realization in 90nm.

Concluding this work, we found that with the aid of our
powerful GigaNoC, application-specific architectures can

be designed in a resource-efficient way. For especially
compute-intensive tasks, hardware accelerators can simply
be integrated. The coupling takes place either at the local
bus or, with the presented communication controller, on
an arbitrary port of a switch box. The system is easily
adaptable to dedicated application scenarios, can be opti-
mized, and is scalable to other domains of network proc-
essing. By using coprocessors, we achieved substantial
increases in performance by factors between 27 up to 284
with only a slight area increase of less than 0.3%. The
embedded PEs could be strongly relieved and are thus
available for additional tasks. We apply a library-based
programming approach that can be maintained across
various hardware and software implementations and thus
facilitates a simple integration of the new hardware units.

Our simulation environment SiMPLE facilitates an
early verification of the application software for the entire
system. With this environment, we determine key architec-
tural parameters for a set of networking applications and
verify the functionality of our system early in the design
phase. Furthermore, our rapid prototyping system
RAPTOR2000 facilitates the fast low-level analysis of our
architecture concept. We are able to test the hardware
under real-world conditions. The results gained from
SiMPLE can immediately flow into the hardware design
and can then be verified on FPGA basis. Especially com-
pute-intensive tasks can be recognized semi-automatically
by our tool chain. These tasks are accelerated through
instruction set extensions of the processors or through
dedicated coprocessors. Consequently, we can increase
the resource efficiency of the system.

Our future work comprises the integration of additional
hardware accelerators such as CAMs for fast route look-
ups and enhanced QoS functionality. We also analyze new
instruction set extensions for additional functions of the
IP-DSLAM scenario to achieve speed-ups on the control
plane. Currently, our system uses a globally synchronous
clock. In order to simplify the extension to larger systems,
we will change to a locally synchronous (at the cluster
level) and globally asynchronous architecture.

Acknowledgements
This work has been supported by the German Government
(BMBF) grants 01M3062A (GigaNetIC) and 01AK065A
(PlaNetS) and Infineon Technologies AG, especially the
department CPR ST (Prof. Ramacher).

References
[1] Comer, D. Network Systems design Using Network Proces-

sors. Prentice Hall, 2003.
[2] J.-C. Niemann et al, A holistic methodology for network

processor design, In Proc. of the Workshop on High-Speed
Local Networks, 28th Conference on Local Computer Net-
works (LCN2003), p. 583-592, 2003, Germany.

[3] J.-C. Niemann, M. Porrmann, U.Rückert, A Scalable Paral-
lel SoC Architecture for Network Processors, in Proc.
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Tampa, FL., USA, 2005.

[4] D. Langen, J.-C. Niemann, M. Porrmann, H. Kalte, U.
Rückert, Implementation of a RISC Processor Core for
SoC Designs – FPGA Prototype vs. ASIC Implementation,
In Proc. of the IEEE Workshop on Heterogeneous recon-
figurable Systems-on-Chip, 2002.

[5] J.-C. Niemann et al., Network Application Driven Instruc-
tion Set Extensions for Embedded Processing Clusters, In
Proc. PARELEC 2004, pp. 209-214, Dresden, Germany,
2004.

[6] U. Kastens, D. K. Le, A. Slowik, M. Thies, Feedback
Driven Instruction-Set Extension, In Proc. of ACM
SIGPLAN/SIGBED 2004 Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES'04), Washing-
ton, D.C., USA, June 2004.

[7] W.J. Dally and B. Towles, Route packets, not wires: On-
chip interconnection networks, in Proceedings of DAC
2001, 2001, pp. 684–689.

[8] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection
Networks: An Engineering Approach, Morgan Kaufmann
Publishers, 2003.

[9] Zhonghai Lu and Axel Jantsch, Flit admission in on-chip
wormhole-switched networks with virtual channels, In
Proceedings of the International Symposium on System-
on-Chip 2003, November 2004.

[10] C. Sauer, M. Gries, S. Sonntag, Modular Reference Imple-
mentation of an IP-DSLAM, 10th IEEE Symposium on
Computers and Communications (ISCC’05), Cartagena,
Spain, 2005.

[11] G. Hagen et al., Developing an IP-DSLAM Benchmark for
Network Processors, Advanced Networking and Commu-
nications Hardware Workshop (ANCHOR), Munich, Ger-
many, 2004.

[12] H. Kalte, M. Porrmann, U. Rückert, A Prototyping Plat-
form for Dynamically Reconfigurable System on Chip De-
signs, in: Proc. of the IEEE Workshop Heterogeneous re-
configurable Systems on Chip (SoC). Hamburg, Germany,
2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

