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Abstract 

We present an architecture for network processing nodes 
based on a massively parallel processor structure. Due to its 
regularity, our architecture can be easily scaled to accommo-
date a range of packet processing applications with disparate 
performance and throughput requirements at high reliability. 
Furthermore, the composition from predefined building blocks 
guarantees fast design cycles and eases system verification. For 
particular resource efficiency in terms of power consumption, 
computational performance, and area requirements, specialized 
hardware accelerators can be embedded into the tailored proc-
essor cluster, which have been optimized for a particular target 
application. We demonstrate our approach using a real-world 
network access scenario that implements a full Internet protocol 
based digital subscriber line access multiplexer (IP-DSLAM) on 
our architecture. For this scenario, we achieve substantial in-
creases of performance with only a slight area increase of less 
than 0.3 %. At the same time, the processors are strongly re-
lieved and are thus available for the remaining tasks. 
 
 

1 Introduction 

Especially network applications with their ever grow-
ing performance requirements are predestined for parallel 
processing systems [1]. By processing uncorrelated flows 
of packets concurrently, these systems are able to achieve 
the required throughput, i.e., wire speed. Evolving mar-
kets and changing protocols demand flexible architectures 
that at the same time are reusable among different applica-
tion domains with disparate performance requirements.  
Our scalable approach based on HW (Intellectual Prop-
erty) modules enables us to design appropriate architec-
tures with respect to computational performance, area 
requirements, and power consumption. 

The backbone of our GigaNetIC architecture [2] (cf. 
Fig. 1) is the GigaNoC, a hierarchical hybrid network-on-
chip (NoC). Local on-chip busses cluster small numbers 
of processing elements (PEs). Switch boxes (SBs) connect 
these clusters at the higher level. Their interconnection 
can form arbitrary topologies, such as meshes, tori, or 
butterfly networks. The parallel and redundant structure of 
our switch box approach offers a high potential for fault 

tolerance: in case of a failure of one or more components, 
other parts can take over the respective operations. This 
can cause a significant increase of production yield. Fur-
thermore, the topology can be efficiently integrated and 
provides high scalability due to its modularity and regular 
interconnect scheme. New components, e.g., hardware 
accelerators and I/O interfaces, can be easily attached to 
any switch box. These IP blocks transparently handle and 
terminate our on-chip communication protocol. The initial 
silicon of our architecture will consist of 32 processing 
elements and eight switch boxes. Each PE is connected to 
the on-chip bus of a SB via a multiprocessor cache (cf. 
Fig. 1). We have chosen a mesh topology, due to efficient 
hardware integration. 

Fig. 1: Scalable parallel GigaNetIC SoC architec-
ture based on hierarchical IP blocks 

One particular application of our scalable processor ar-
chitecture is the network access domain, i.e., the aggrega-
tion of customers’ first/last mile connections to the Inter-
net via a service provider’s network. Core systems for this 
task are DSLAMs. We use this application for verification 
and demonstration of our system and analyze compute-
intensive tasks for system optimizations. 

Concerning the system evaluation and verification en-
vironment we follow a top-down approach. To test the 
software in an early design phase, and to optimize differ-
ent parameters of the architecture accompanied with a 
much faster simulation speed, we have developed SiM-
PLE, a simulation model of the architecture in SystemC. 
In this design flow, global system parameters are specified 



at a high level of abstraction. Coming closer to the hard-
ware implementation, these parameters are iteratively re-
fined. For the verification of the basic hardware blocks at 
the register-transfer level (RTL), we use a VHDL simula-
tion environment. At this detailed level, simulation is very 
slow. However, since the complete environment is synthe-
sizable, it can be mapped to a hardware emulation system. 
By using our rapid prototyping system RAPTOR2000, we 
have analyzed an exemplary system of our network proc-
essor with basic functionalities of our application scenario 
as a proof of concept. 

The paper is organized as follows. In the following sec-
tion, we discuss main concepts and building blocks of our 
architecture in more detail. Section 3 provides an over-
view of the IP-DSLAM application and the used configu-
ration. The evaluation and verification setup in Section 4 
is used to characterize our scalable architecture. Section 5 
provides results from synthesis and performance evalua-
tion and is the main contribution of this work. The paper 
is concluded in Section 6. We discuss related work 
throughout the paper. 

2 Architectural Building Blocks 

A central goal of our approach [3] is a parameterizable 
network processor architecture in respect to the number of 
the clusters, the processors instantiated per cluster, the 
provided hardware accelerators, and the available band-
width of the on-chip communication channels. By this, a 
high reusability of our architecture can be guaranteed. 
Further advantages of such a uniform system architecture 
lie in the simplified testability and verification of the cir-
cuit and in a more homogeneous programming model. The 
programmer is relieved from handling the on-chip com-
munication protocol explicitly since routing, memory 
management, and I/O are transparently controlled by the 
SBs. At the cluster level the programming model is based 
on a proprietary parallelizing ANSI C compiler. A preced-
ing tool partitions and schedules the tasks for the individ-
ual processor clusters. 

2.1 Processing Element 
At the processor level, we use our 32 bit RISC proces-

sor N-Core [4][5], as processing element of the system. 
The core is a softmacro and can be adapted to the needs of 
the respective area of application. Instructions have a 
fixed width of 16 bit, providing a high code density, which 
is of special importance for embedded systems with lim-
ited memory resources. The instruction set can be ex-
tended through additional operations, because of 11% free 
opcode space. Therefore, it is possible to optimize the 
architecture for specific application domains, e.g. the net-
working area. In this field we have already implemented 

several new instructions for header modification and for 
encryption algorithms used in IPsec protocols [6][5]. 
These instruction set extensions can be seen as the small-
est HW blocks used in our architecture. Additionally, the 
N-Core provides a coprocessor interface for hardware 
accelerators, facilitating further acceleration by adding 
larger HW blocks. The processor core has been verified in 
silicon successfully [4]. 

2.2 Switch Box 
At the cluster level, switch boxes act as high speed 

routing nodes, which combine the individual processor 
clusters with each other. The on-chip communication is 
based on a packet switched network-on-chip [7][8]. Data 
is transmitted by means of packet fragments – Flits (Flow 
Control Digits) – that represent the atomic on-chip data 
transmission unit [9]. A locally connected processor clus-
ter consists of four processors that are connected to the SB 
by an AMBA or Wishbone on-chip bus. The number of 
communication ports is variable and depends on the an-
ticipated on-chip network topology.  

Fig. 2: Switch Box HW block 

Despite its simplicity, this architecture allows parallel 
operation and a pipelining of the processor fields. Addi-
tionally, it guarantees almost equal link lengths and thus 
an identical and short propagation delay of the signals 
between SBs. Furthermore, the parallel structure of the SB 
concept allows a high fault tolerance: if the software de-
tects a malfunctioning processor unit, others can take over 
the pending tasks. 

Each SB is also connected to a multiprocessor array by 
an extra input/output port (port 0 in Fig. 2), which inter-
faces the communication controller (CC). The CC trans-
fers data to and from the local clusters. The SB consists of 
two main parts. The first part combines the I/O port and 
the crossbar to form the communication structure that en-
sures that the data packets are smoothly transmitted and 
reach the correct switch box output port on the basis of the 
routing strategy. The second part of the SB comprises the 
control structures that serve as an interface between the 
processor field and the on-chip network. This task is per-
formed by the communication controller, which is located 
between the port 0 and the bus of the local cluster. 
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Fig. 3: Communication Controller 

The communication controller performs the following 
tasks: It receives the flits, reorders them if necessary, and 
forwards them to the connected HW blocks, e.g., proces-
sors or hardware accelerators. Another important function 
is the initialization of the PE code memories at system 
startup. 

2.3 Hardware Accelerators and Other HW 
Blocks 

Beside the processor cores and the local memories, fur-
ther HW blocks can be integrated using several ways. The 
processor supports the connection of hardware accelera-
tors via a coprocessor interface. If those units are sup-
posed to be available to a number of processors, they can 
be coupled via the local bus at cluster level. Coupled 
closely to the processor field, these HW blocks are inte-
grated through additional master/slave interfaces of the 
local bus system and addressed via memory-mapped I/O 
ports. Beside hardware accelerators, additional modules, 
such as UARTs for debugging purposes, can be inte-
grated. 

At the SoC level, more independent units can be con-
nected to any SB and are addressable via the on-chip net-
work. These can be loosely coupled hardware accelerators 
enqueued in the data path, such as encryption modules. 
These can also be units that realize outwards connections 
such as memory controllers for external memory or 
Ethernet controllers that take over the connection to exter-
nal networks. To connect a unit to the GigaNoC, a CC is 
connected to the respective component and a SB port. The 
CC performs the conversion of the data into the flit proto-
col and the termination of the protocol, respectively. Due 
to this connection mode, the units are universally suited 
and enable a slight adaption of the system to new applica-
tion areas. 

3 Network Application Scenario(s) 

The deployment in network nodes is a major focus of 
our architectural platform. Due to its scalability, a wide 
range of network applications in access, edge, and core 
networks with different processing and performance re-
quirements can be covered. In the following, we concen-
trate on access networks and briefly introduce our IP-
DSLAM application scenario that describes a full IP 
based DSL access multiplexer system. This scenario is 
used for the subsequent performance evaluation. 

3.1 IP-DSLAM Application 
DSLAMs connect individual customers with the 

broadband service provider’s network. Today’s DSLAMs 
can become quite large systems by aggregating several 
thousands of subscriber lines. They are built modularly 
out of different line cards aggregating xDSL lines, a back-
plane connecting line and uplink cards, and one or two 
uplink cards providing access to the service provider net-
work (ISP), see Fig. 4. A maximal system configuration 
may contain up to 64 line cards, where each card aggre-
gates up to 96 DSL lines. Usually, the number of cards 
and ports per card vary with DSL version and protocol 
mix. In [10], typical configurations with 32 line cards and 
up to 72 ports per card depending on the DSL protocol 
version are reported. 

Fig. 4: DSLAM system and components 

Common processing steps experienced by each packet 
on its way through the IP-DSLAM system are: Layer-2 
protocol termination (Ethernet/AAL5), IP header check, 
IP address validation, 5-tuple classification to determine 
the destination port and traffic class, policing and schedul-
ing for QoS, forwarding, and layer-2 encapsulation. Usu-
ally, upstream and downstream packet flows require addi-
tional direction-dependent processing steps, e.g., multicast 
duplication in downstream direction. In [10] these steps 
are explained in more detail. 

3.2 Scenario Setup 
For the subsequent performance evaluation, we assume 

a maximal setup with 96 ports per line card (either 
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SHDSL or VDSL), 64 line cards, and one uplink card. 
Workload for the system is generated using IPv4 packets. 
At the link layer, Ethernet and/or ATM are used. In order 
to derive peak performance and throughput requirements 
for our architecture, we look at the worst-case for this sce-
nario, i.e., all DSL lines utilize their full bandwidth, are 
active at the same time, and process only minimum size 
packets. Of course, typical real world scenarios may re-
quire fewer resources due to more favorable packet length 
distributions and other statistical traffic properties that can 
be exploited. However, we are interested in the upper 
bound of the imposed system load.  

3.3 Benchmarking Methodology 
The performance analysis for our scalable architecture 

follows an application driven approach. Based on a com-
plete and performance indicative IP-DSLAM reference 
implementation, we identify system bottlenecks and itera-
tively explore architectural alternatives. At the system-
level, weight and interaction of tasks need to be known for 
performance indicativeness and evaluation of different 
partitioning and mapping decisions. For this reason, we 
extended our initial approach, described in [11], to a full 
IP-DSLAM reference application [10] that is platform 
independent. Similar to the standard cores in [10], we map 
this reference to the N-Core using ANSI C as intermediate 
description. The software implementation of tasks is 
changed manually when specialized hardware is incorpo-
rated. In case of instruction set modifications, the C com-
piler is retargeted [6][5]. 

4 Evaluation & Verification Environment 

Before presenting performance and synthesis results in 
the next section, we describe the various evaluation and 
verification environments that have been used to obtain 
our figures. As our system architecture is implemented 
fully on various abstract levels we have several verifica-
tion and simulation options. At Register Transfer Level 
(RTL), we use Modelsim from Mentor Graphics for the 
verification of the hardware building blocks, that is, for 
simulation and also for code coverage analysis. Unfortu-
nately, simulation of the full system at this detailed level is 
very slow. However, since the environment is synthesiz-
able, we deploy our hardware emulation system 
RAPTOR2000. To enable software development for the 
whole system at an early design phase, we also provide a 
SystemC simulation model of the complete architecture. 
This way, we are able to test and optimize the system to-
gether with the C programmed application. 

4.1 SystemC-based Simulation 
To test the software in an early design phase and to op-

timize different parameters of the architecture accompa-

nied with a much faster simulation speed, we have devel-
oped the simulation environment SiMPLE (SystemC inte-
grated Multiprocessor Level Environment) of the architec-
ture in SystemC. SiMPLE contains a cycle-accurate simu-
lation model of the N-Core, parameterizable caches and 
SBs. We follow a strict top-down design flow: global sys-
tem parameters are specified on a high level of abstrac-
tion; coming closer to the hardware implementation, these 
parameters are iteratively refined. 

Although this cycle-accurate model is on a high ab-
straction level, the simulation for a system consisting of 
32 PEs, 32 caches, 8 SBs and 8 local busses is about 2kHz 
on a 3 GHz Pentium-4 PC. To speed up the simulation, we 
mapped main parts of the system to an FPGA-based rapid 
prototyping system. In addition, this emulation enables 
insights into the behavior of the hardware in more detail. 

4.2 FPGA-based Rapid Prototyping 
The RAPTOR2000 system [12] consists of a PCI card 

and a set of daughter boards that carry, e.g., FPGAs or 
Ethernet PHYs. By using this rapid prototyping system, 
detailed hardware analyses can be done in short time. The 
design under consideration can be embedded and tested in 
a real-world system environment, e.g., attached to an 
Ethernet module, and can be tested in the whole system 
environment. When using our RAPTOR2000 rapid proto-
typing system, we achieve a speed-up of at least 10,000 
compared to the VHDL simulation, and a speed-up of 
about 6,250 compared to the SystemC simulation, on a 
3 GHz Pentium-4. 

Using two Virtex II 4000 FPGAs, fully utilized with a 
setup of: 1 SB, 32 kB packet buffer, 2 N-Cores with 32kB 
program memory each, a timer, a PIC, a wishbone bus, 2 
Ethernet interfaces and a UART for debugging, we are 
able to test the application software with real data traffic. 
With this implementation running at 12.5MHz we carry 
out an exact analysis of the bus and NoC usage. 

5 Realization and Performance Analysis 

In this section, we evaluate the potential of our scalable 
architecture. We start with a basic system, containing 32 
PEs and the necessary communication infrastructure. We 
estimate area and evaluate its performance mapping the 
most compute-intensive tasks of the IP-DSLAM scenario 
in software onto the PEs. Then we extend the system with 
hardware accelerators and instruction set modifications 
and compare the results of this enhanced system to the 
original system. This will demonstrate how flexibility is 
traded off with performance and area. 

As a prerequisite, we analyzed the scenario and identi-
fied the most compute-intensive functions in software. 
Three functions have been selected for the performance 



analysis of the system: IP header check, CRC8, and 
CRC32. The IP header check is carried out each time an 
IP packet arrives. Among the functions that have to be 
accomplished are: checking the version of the IP protocol, 
checking the time-to-live field, and checking or recalculat-
ing the IPv4 checksum. The CRC8 (cyclic redundancy 
check) is necessary, e.g., to protect the header of ATM 
cells. A CRC32 checksum is important for both ATM and 
AAL5 segmentation Ethernet framing. 

5.1 Basic System – Area Estimation 
The standard cell synthesis delivers first results for the 

future ASIC implementation of a 32 PE system. The area 
and clock frequency estimations for the main components 
of the network processor are based on synthesis results for 
two industrial standard cell technologies in 130nm and 
90nm. The entire size of this system is about 50 mm² and 
43.7 mm², respectively (cf. Table 1). 

Table 1: Synthesis results for the main build-
ing blocks of the SoC architecture 

130nm 90nm 130nm 90nm
32 N-Cores 32 x 0.16 32 x 0.12 205 285
8 switch-boxes [with 5 ports] 8 x 1.129 8 x 0.53 560 650
32 local RAMs, (32 KB) 
+ 8 local packet buffers (2  x 16 KB)

32 x 0.875 
+ 8 x 2 x 0.466

32 x 0.875 
+ 8 x 2 x 0.466 400 450

8 local on-chip busses 8 x  0.05 8 x 0.02 211 290
total 50.01 43.7 205 285

Area [mm²] Frequency [MHz]SoC main components

 
Unless otherwise noted, all values are given for typical operating conditions. 

5.2 Basic System – Performance Estimation 
The basic system consists of N-Core processors, local 

bus components of the processor clusters, switch boxes, 
and basic I/O interfaces (cf. Table 1). The basic system 
performs all tasks solely in software. The necessary sys-
tem size is determined in consideration of the application 
scenario. Table 2 shows the required function calls per 
second for the most compute-intensive tasks of the 
DSLAM scenario. 

Table 2: Function calls per second 

SHDSL VDSL SHDSL VDSL
IP header check 0.375 0.563 24.000 264.000

CRC8 0.906 5.660 57.962 362.264
CRC32 12 75 768 4800

function calls
[millions per second]

line card uplink card

 
For the IP header check, different variants have been 

implemented that primarily differ in respect to the calcula-
tion of the checksum. The fastest variant uses 32 bit addi-
tions and needs a total of 108 cycles. The fastest 16 bit 
variant, similar to the implementation mentioned in the 
RFC1071, needs 111 cycles. Using a line card with 96 
DSL ports under full load (SHDSL: 2Mbit/s uplink / 
downlink), the worst case scenario would be that 0.38 
million header checks per second and per line card were to 
be carried out in the uplink, based on the assumption that 
only IP packets with a minimal length of 64 bytes are 
transmitted. This means that one processor per line card 
would be needed and 20% of its capacity used (cf. Table 

3). If one analyzes the uplink card with a full extension of 
the DSLAM (64 line cards), at this stage, the full capacity 
of 13 processors would be used exclusively for the IP 
header check, or, when using one N-Core, this would have 
to be operated with 2.6GHz. With VDSL (3/22Mbps up-
link/downlink), 140 CPUs would be needed on the uplink 
card or, one N-Core would have to run with a clock rate of 
28.5GHz to handle this load on its own. 

The software implementation of the CRC8 needs 71 
clock cycles per 32 bit (4 byte header) ATM cell on the 
N-Core. With SHDSL, the worst case outcome would be a 
data volume of 384 Mbits per line card. This equals about 
900,000 ATM cells needing a checksum calculation. With 
this, 31% of the N-Core’s capacity is used. If the ATM 
cells on the uplink card were to be checked also, this 
would mean that 21 N-Cores were needed only for the 
CRC8 checksum in the case of SHDSL and 126 CPUs in 
the case of VDSL. However, this does not take into con-
sideration that there is always an additional parallelism 
overhead; as a consequence, more processors were to be 
employed. 

Table 3: Required N-Cores for the given  
scenario 

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.20 0.30 12.64 139.08 0.14 0.21 9.09 100.04

CRC8 0.31 1.96 20.07 125.47 0.23 1.77 14.44 90.25
CRC32 5.21 32.56 333.42 2083.90 3.75 23.42 239.83 1498.95

required CPUs
 for task: line card uplink card

130nm 90nm
line card uplink card

 
The CRC32 in the case of SHDSL, imposes a computa-

tional load that uses the capacity of the 6 or 33 N-Cores 
with VDSL on the line card (130nm technology). Here, 
the N-Core needs an average of 89 clock cycles per 32 bit. 
As far as the uplink card is concerned, due to the higher 
data volume, these numbers are even higher. Here too, the 
numbers argue for the use of a hardware accelerator. 
Table 3 summarizes the necessary processor numbers in 
consideration of the given tasks. 

Table 4: Required size of the system  

SHDSL VDSL SHDSL VDSL
required CPUs 8 38 368 2350

overall system size
[mm²] 7.3 35.0 335.8 2144.7

required CPUs 6 28 265 1691

overall system size
[mm²] 3.6 15.5 146.8 934.4

uplink cardline card

130nm

90nm

technology system
parameters

 
Finally, we obtain the system parameters of the re-

quired architecture that is able to fulfill the mentioned 
functionalities (cf. Table 4). It is noticeable that systems 
for the uplink card can not be implemented without ap-
propriate hardware accelerators. For the line card, the ba-
sic architecture is able to fulfill the requirements of 
SHDSL (90 nm and 130 nm) and for VDSL (90 nm). The 
next section describes enhancements of the basic system 



to increase the performance for dedicated tasks. This de-
creases the costs by means of area and power consumption 
and optimizes the resource efficiency of the system. 

5.3 Enhanced System 
The enhanced system integrates hardware accelerators, 

which relieve the processors from the compute-intensive 
tasks. It also considers potential instruction set extensions. 
The residual processors can be used for control functions 
and tasks that are not suitable for hardware acceleration. 
Accelerators connected locally may operate at core fre-
quency those coupled loosely to the system allow higher 
clock speed. 

Before explaining the integration of coprocessors into 
our architecture, we investigate acceleration potential of 
the N-Core by application-specific instruction set exten-
sions. In [5], we have presented a tool-chain that facili-
tates the required optimizations for the software (i.e., inte-
gration of new instructions into the compiler) as well as 
for the hardware (i.e., integration of new instructions into 
the hardware architecture of our N-Core). For network 
applications, our analyses have shown that a combination 
of the instructions LDW (load word) and XOR is rather 
promising. The implementation of the resulting super in-
struction XORLDW has no impact on the critical path of 
the processor and increases the processor area only by 
0.03%. With this slight modification of the processor, a 
speed-up of 1.1 is achieved for CRC calculation. Table 5 
shows the resource requirements for CRC8 with 32bit 
input data. Power consumption decreases only marginally 
because of our changes in the control structure of the 
processor. But the energy consumption is reduced by 
nearly 10% for both VLSI technologies. 

Table 5: System parameters of the original 
and extended processor 

absolute 
(µm²)

relative 
increase

absolute 
(mw)

relative 
decrease

absolute 
(nWs)

relative 
decrease

N-Core 158012 - 10.084 - 2.81 -
N-Core 

(XORLDW) 158489 0.301% 10.080 0.04% 2.53 9.89%

N-Core 121280 - 9.009 - 2.37 -
N-Core 

(XORLDW) 122314 0.845% 9.002 0.07% 2.13 9.93%

technology

130 nm

90 nm

Core
total area total power total energy

 
For the network applications that are analyzed here, a 

speed up of 10% in comparison to a pure software solu-
tion is not sufficient for CRC calculation. Therefore, more 
complex hardware accelerators are presented in the fol-
lowing. During the design space exploration a decision 
has to be made as to whether it is sufficient to use small 
accelerators with limited impact on performance or 
whether more complex accelerators have to be embedded 
that offer higher performance and relieve the processor 
but require additional resources. 

The hardware accelerator that has been implemented 
for IP header check needs 8 clock cycles to perform the 

complete functionality. If the coprocessor is attached to 
our switch box via the communication controller, we can 
guarantee that the NoC is capable of writing the required 
data into the buffer of the accelerator with the needed per-
formance. Thus, up to 228 millions header checks per 
second can be performed if the accelerator is working at a 
clock frequency of 1.82 GHz (90 nm). Even if the accel-
erator operates with the same (low) clock frequency as the 
PEs, 35.6 million header checks can be performed per 
second. If we compare these results to the 2.6 millions 
checks that are performed in one second with the software 
implementation on our N-Core, a speed-up between 13.7 
and 87.7 can be achieved. The area is depending on the 
maximum clock frequency and ranges from 0.012 / 
0.008 mm² (130nm / 90nm) to 0.0157 / 0.0146 mm² 
(130nm / 90nm) at maximum clock speed (cf. Table 6). 

Table 6: Required area for the  
HW accelerators 

technology max frequency
[GHz]

required area
[mm²]

max frequency 
[GHz]

required area
[mm²]

1.69 0.0157 1.42 0.0115
0.54 0.0120 0.96 0.0102
1.82 0.0146 1.41 0.0098
0.49 0.0078 0.775 0.0066

130nm

90nm

IP header check CRC

 
For CRC calculation, a hardware accelerator has been 

developed, too. Due to its parallel implementation, it 
processes 32 bit input data in one clock cycle. The unit 
performs CRC8 as well as CRC32 checks and achieves a 
speed-up of up to 630 (90 nm) if the interfaces deliver the 
data with the required bandwidth. If the coprocessor is 
attached to the local bus, additional clock cycles for mem-
ory access have to be considered. Without congestion, 
four clock cycles are required for memory access. Table 6 
gives an overview over the area requirements for different 
operating frequencies. The first clock frequency is the 
maximally achievable clock rate for the specific technol-
ogy. Due to less strict timing constraints, the second clock 
frequency is lower, consequently, the area requirements 
are smaller. 

Table 7: Needed coprocessors for the given 
scenario with local bus connection 

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.015 0.022 0.937 10.3 0.102 0.154 6.6 72.1

CRC8 0.004 0.028 0.283 1.8 0.181 1.132 11.6 72.5
CRC32 0.059 0.366 3.746 23.4 0.527 3.293 33.7 210.7

line card uplink card line card uplink card
(optimal memory access) (non-optimal memory access)needed units

@205MHz

 
Table 7 shows the number of coprocessors that are re-

quired if the three tasks are performed exclusively in hard-
ware. For this example, the coprocessors are attached via 
the local on-chip bus. Therefore, they are clocked syn-
chronously to the PEs with a much lower frequency 
(205MHz) than possible. We differentiate between opti-
mal memory access (i.e., no congestion) and a conserva-
tive bus arbitration. In the latter case (non-optimal mem-



ory access), we suppose that bus accesses are uniformly 
distributed between all units (here 5). It appears that a 
single IP header checker and one CRC module are suffi-
cient for the implementation of a line card in the two DSL 
variants. For the processing-intensive applications on the 
uplink card, the number of required coprocessors in-
creases dramatically if they are attached to the local bus 
and operate with reduced clock frequency. 

Table 8 points out the acceleration that could be 
achieved if the coprocessors are integrated into the 
datapath of the system, working with their maximum clock 
frequency. In this case, it could be necessary to enhance 
the NoC, e.g., by increasing the payload of the flit proto-
col, to achieve the required high on-chip bandwidth. 
These aspects remain to be analyzed further. For the line 
card, one hardware accelerator is sufficient for the IP 
header check, independent of the used VLSI technology. 
One CRC coprocessor can be utilized for both CRC8 and 
CRC32 since the unit is never utilized more than 6%. 

Table 8: Needed coprocessors for the given 
scenario with high-speed on-chip connection 

SHDSL VDSL SHDSL VDSL SHDSL VDSL SHDSL VDSL
IP header check 0.002 0.003 0.114 1.250 0.002 0.002 0.105 1.160

CRC8 0.001 0.004 0.041 0.255 0.001 0.004 0.041 0.257
CRC32 0.008 0.053 0.541 3.380 0.009 0.053 0.545 3.404

uplink cardneeded units
@max. frequency

130 nm
line card uplink card

90 nm
line card

 
For the implementation of uplink cards, coprocessors 

are inevitable but one IP header check unit and 4 CRC 
coprocessors deliver the required performance. Of course 
the embedded processors are also required in this sce-
nario. The N-Cores are used for remaining tasks and con-
trol purposes as well as for future extensions of the sys-
tem. This is especially important in respect to increasing 
the time in market. During the design space exploration, a 
system has to be defined that offers the required perform-
ance and flexibility. Performance is achieved by integrat-
ing an appropriate number of hardware accelerators while 
flexibility is achieved by integrating embedded processor 
cores. 

5.4 Performance Comparison 
Table 9 shows the area requirements of an exemplary 

network processor that meets the requirements of line 
cards and uplink cards. Compared to the basic system 
(without hardware extensions; cf. Table 1), the area has 
only increased by 0.23%. However, in contrast to the ba-
sic implementation, the extended system is able to cope 
with the SHDSL scenario and with the VDSL scenario for 
the line card without any restrictions when using the same 
clock frequency for all components (cf. Table 4, Table 7). 

To assure a correct processing of the VDSL scenario 
on the uplink card under full load and with the usage of 
the coprocessors (running at the same clock speed as the 
other SoC components), the architecture should be ex-

tended to a 8x4 cluster. At each cluster, one IP header 
check module and eight CRC units are required. Further-
more, one had to guarantee that the flits at their destina-
tion always in time. This may force an enlargement of the 
NoC bandwidth. This architecture would require approx. 
203 mm² / 178 mm², and the SoC would contain 256 PEs, 
4 MB memory as well as 288 coprocessors. 

Table 9: Exemplary system with 4x2 clusters 
for a given DSLAM scenario 

130nm 90nm
32 N-Cores 5.12 3.84
8 switch-boxes [with 5 ports] 9.03 4.24
32 local RAMs, (32 KB) 
+ 8 local packet buffers (2  x 16 KB) 35.46 35.46

8 local on-chip busses 0.40 0.16
2 IP header check coprocessors 0.03 0.03
8 CRC coprocessors (capable of CRC8, CRC32) 0.09 0.08
total 50.13 43.80

Area [mm²]SoC main components

 
Table 10 compares the performance of the basic system 

and the enhanced system that includes the hardware accel-
erators for CRC and IP header check. The basic system is 
only suited for the SHDSL scenario whereas the enhanced 
system meets the requirements of the SHDSL as well as of 
the VDSL scenario. Executing, for example, the IP header 
check on a single N-Core in the basic system, leads to a 
performance of 1.9 million header checks per second 
while the two hardware accelerators in the enhanced sys-
tem deliver a performance of more than 51 million func-
tion calls per second. This results in a speed-up of 27. 

Table 10: Performance – basic system vs.  
enhanced system (line card SHDSL) 

used
N-Cores

possible
fct. calls/ops
per second

units 
possible

fct. calls/ops
per second

speed-up

IP header check 1 1,90E+06 2 5,13E+07 27
CRC8 1 2,89E+06 4 8,20E+08 284
CRC32 6 1,38E+07 4 8,20E+08 59

remaining N-Cores 24 4,92E+09 32 6,56E+09

increase
area 50,01 50,13 100,24%

basic system enhanced system
max. performance 
for task @205MHz 

 

6 Conclusion 

In this paper, we have presented a scalable, 
IP(Intellectual Property)-based network processor archi-
tecture that is adaptable to different application domains 
in respect to performance, power consumption and area 
requirements. We characterized this architecture by key 
figures for achievable performance and area requirements 
based on elementary tasks for an IP-DSLAM scenario. 
Currently, we are in the process of taping out the initial 
silicon for the prototype realization in 90nm.  

Concluding this work, we found that with the aid of our 
powerful GigaNoC, application-specific architectures can 



be designed in a resource-efficient way. For especially 
compute-intensive tasks, hardware accelerators can simply 
be integrated. The coupling takes place either at the local 
bus or, with the presented communication controller, on 
an arbitrary port of a switch box. The system is easily 
adaptable to dedicated application scenarios, can be opti-
mized, and is scalable to other domains of network proc-
essing. By using coprocessors, we achieved substantial 
increases in performance by factors between 27 up to 284 
with only a slight area increase of less than 0.3%. The 
embedded PEs could be strongly relieved and are thus 
available for additional tasks. We apply a library-based 
programming approach that can be maintained across 
various hardware and software implementations and thus 
facilitates a simple integration of the new hardware units. 

Our simulation environment SiMPLE facilitates an 
early verification of the application software for the entire 
system. With this environment, we determine key architec-
tural parameters for a set of networking applications and 
verify the functionality of our system early in the design 
phase. Furthermore, our rapid prototyping system 
RAPTOR2000 facilitates the fast low-level analysis of our 
architecture concept. We are able to test the hardware 
under real-world conditions. The results gained from 
SiMPLE can immediately flow into the hardware design 
and can then be verified on FPGA basis. Especially com-
pute-intensive tasks can be recognized semi-automatically 
by our tool chain. These tasks are accelerated through 
instruction set extensions of the processors or through 
dedicated coprocessors. Consequently, we can increase 
the resource efficiency of the system. 

Our future work comprises the integration of additional 
hardware accelerators such as CAMs for fast route look-
ups and enhanced QoS functionality. We also analyze new 
instruction set extensions for additional functions of the 
IP-DSLAM scenario to achieve speed-ups on the control 
plane. Currently, our system uses a globally synchronous 
clock. In order to simplify the extension to larger systems, 
we will change to a locally synchronous (at the cluster 
level) and globally asynchronous architecture. 
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