
ADAPTABLE SWITCH BOXES AS ON-CHIP ROUTING
NODES FOR NETWORKS-ON-CHIP

Ralf Eickhoff, Jörg-Christian Niemann, Mario Porrman, Ulrich Rückert
Heinz Nixdorf Institute, System and Circuit Technology, University of Paderborn
Fürstenallee 11, 33102 Paderborn, Germany

{eickhoff,niemann,porrmann,rueckert}@hni.upb.de

Abstract Due to continuous advancements in modern technology processes whichhave
resulted in integrated circuits with smaller feature sizes and higher complex-
ity, current system-on-chip designs consist of many different components such
as memories, interfaces and microprocessors. To handle this growingnumber
of components, an efficient communication structure must be providedand in-
corporated during system design. This work deals with the implementation of
an efficient communication structure for an on-chip multiprocessor design. The
internal structure of one node is proposed and specified by its requirements. Fur-
thermore, different routing strategies are implemented. Moreover, thecommu-
nication structure is mapped on a standard cell process to examine the achieved
processing speed and to determine the area requirements.

Keywords: Switch Box, Networks-on-Chip, SoC, Multiprocessor Architectures.

Introduction

Due to upcoming improvements in semiconductor processes it is possible
to integrate a huge amount of components on a single chip. Consequently, dif-
ferent IP cores have to cooperate and to communicate with each other. Thus,
when designing the system, an efficient communication structure must be pro-
vided, which is able to manage the traffic between all components. On the
one hand, many existing approaches known from computer networks canbe
adapted to networks-on-chip (NoCs). For example, a circuit-switching net-
work or a packet-switching network can be established and the performance
and flexibility trade-off has to be solved. On the other hand, these networks-on-
chip differ from traditional computer networks. In a packet-switched network-
on-chip, for example, the packet size will mostly be much smaller than in a
computer network. Furthermore, the geometrical dimensions of such a net-
work are much smaller compared to computer networks. Consequently, lower
latency and higher throughput can be achieved. In this paper we present a



2

network-on-chip, which is based on the packet switching approach. Itis able
to handle the traffic between an unlimited but known number of modules.

After a short account on how the design of the network-on-chip was moti-
vated, the implementation is presented in Section 1 where the topology of the
network and the topology of each node are shown. In Section 2 two differ-
ent routing strategies are analyzed. In Section 3 we present first results of a
synthesis of this network structure.

Motivation

Due to increasing traffic in computer networks and to the growth of the
whole network there is an increasing demand to manage the traffic. For this
task, a general purpose processor is not efficient for the requiredperformance
whereas an application-specific instruction processor (ASIP) such asa network
processor (NPU) is more suitable. Today, these complex architectures canbe
integrated into one single chip due to modern design techniques, as mentioned
in the introduction.

In the GigaNetIC project [6] we aim at developing high-speed components
for networking applications based on massively parallel architectures. Acen-
tral part of this project is the design, evaluation, and realization of a parame-
terizable network processing unit. The proposed architecture is based on mas-
sively parallel processing, enabled by a multitude of processors, whichform a
homogeneous array of processing elements arranged in a hierarchicalsystem
topology with a powerful communication infrastructure. Four processing ele-
ments are connected via an on-chip bus to a so-called switch box, cf. fig. 1,
which allows a forming of arbitrary on-chip topologies. Hardware accelerators
support the processing elements to achieve a higher throughput and help to
reduce energy consumption. Following a top-down approach, network appli-
cations are analyzed and partitioned into smaller tasks. The tasks are mapped
to dedicated parts of the system, where a parallelizing compiler exploits inher-
ent instruction level parallelism. The hardware has to be optimized for these
programming models in several ways. Synchronization primitives for both pro-
gramming hierarchies have to be provided and memory resources have to be
managed carefully. Furthermore, the shown dimension of the system is only
one example of our multiprocessor system. The number of parallel operating
processors can be further increased. As a core component of our architecture,
we use a 32 bit RISC CPU, the S-Core, which has been designed in our re-
search group [5]. By changing the number of ports of the switch boxes the
topology of the on-chip network can be arbitrarily formed including meshes,
butterfly networks or tori [1]. For our first implementation we have chosena
mesh topology due to efficient hardware integration (cf. section 3).



Adaptable Switch boxes as on-chip routing nodes for networks-on-chip 3

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B Switch-Box

Cluster

N-Core & Multi-
processor cache

On-chip network

On-chip bus

Figure 1. Architecture of the network processor proposed in the GigaNetIC project

1. Implementation of the network-on-chip

As in computer networks, different requirements have to be considered in
order to find an efficient implementation for a special application. An impor-
tant issue of a common network is the underlying graph. This has a strong
impact on several parameters of the network affecting latency, throughput etc.
When the topology of the network is fixed each switch box can be designed
due to its requirements. The inputs for example, have to face tasks like storing
and delivering packets. In the following these packets will be referred toas
flits, which represent the atomic transportation units in our approach.

1.1 Topology of the network

The network-on-chip can be evaluated with the methods known in computer
networks. Consequently, the existing models can be adapted to characterize
the network and the topology can be described by a graph. Besides common
similarities in respect to the modeling of a network, some differences are still
present. Compared to a computer network, a network-on-chip is marked by
several differences [4]:

different geometrical dimension; a system-on-chip obtains short dis-
tances to other nodes

parallel communication structures are easier to establish on a chip with-
out high costs

higher bandwidth due to parallel communication structures

deterministic and periodic traffic

smaller packet size



4

Consequently, these characteristics have to be considered in the network
topology. For the application as a network processor the on-chip networkhas
to meet the following requirements:

regular communication structure

high scalability during design time

good re-use

high performance

Moreover, as the production process maps the communication structure on
a two-dimensional surface a regular communication structure is provided by
a two-dimensional graph. Thus, the 2-d grid, the 2-d torus and the binary
tree are well suited to achieve a regular communication structure. The binary
tree provides a small bisection bandwidth which results in high throughput
requirements next to the root of the tree. Thus, a communication link that
allows higher throughput in comparison to the other links of the net has to be
established. This also leads to an irregular structure.

The grid and the torus provide a regular communication structure and have
no technical limits in respect to a growing number of nodes. Consequently,
these structures can be used when a new design of the network processor con-
tains more computing arrays and thus more nodes. The main disadvantage of
a torus is the circular connection. This causes longer interconnection delays at
the boundaries, and leads to lower operating speed in a globally synchronous
design.

We have chosen the grid as the topology for the network-on-chip. In order
to provide a high scalability during design time slight modifications have been
implemented. The nodes are not only connected to their direct neighbors but
also to their neighbors lying on the diagonal, causing a shorter diameter of the
whole network, as can be seen in figure 1. Compared to a conventional grid,
this introduces a higher connectivity and a shorter diameter.

1.2 Structure of each switch box

When the topology of the network-on-chip is determined, each switch box
of the net has to handle the information streams, which are split into several
flits by the processor array. Thus, the switch box has to handle each flit inde-
pendently and autonomously. One task provided by this node is to store the
flits. Moreover, in order to relieve the connected processor array the switch
box has to route the flit through the net autonomously. This requires a routing
decision inside each box and a communication structure between the input and
output ports of every node. Figure 2(b) shows the structure of our approach.
Here, due to a generic description the whole number of input and output ports



Adaptable Switch boxes as on-chip routing nodes for networks-on-chip 5

Switch box

(a) switch box connectivity to other nodes

In
p

u
t 

/ o
u

tp
u

t 
p

o
rt

A
rb

ite
r

Input / output 
port

In
p

u
t / o

u
tp

u
t 

p
o

rt

Input / output 
port

A
rbiter

Arbiter

Arbiter Arb
ite

r

co
m

m
un

ica
tio

n 

str
uc

tu
re

In
put /

 o
utp

ut 

port

(b) internal structure of each switch box
providing one extra port for the connected
processor array

Figure 2. Structure and connectivity of each switch box in the middle of the grid

can be changed during design time easily and all components are adapted to
the number of ports.

One requirement of each box is to store the flits. Due to independent infor-
mation streams, a distributed memory approach is used in contrast to shared
memory by implementing FIFOs in each port. FIFO structures are able to
achieve a higher performance and, compared to shared memory, do not need
a complex control structure. In contrast, the FIFOs in each port establisha
queuing line and the head-of-line-blocking problem has to be faced if onlyone
queue is provided [3]. Thus, in every input port one queue of FIFOsis used for
each output, known in literature asvirtual-output-queuing(VOQ) [7]. Inside
the output ports no parallel queue has to be established since this function can
be transferred to the input port of the adjacent switch box.

For the communication structure inside each switch box, a crossbar is es-
tablished in order meet the high performance requirements inside each box.A
bus structure is not able to guarantee high throughput because one participant
blocks all the other accesses ever though these might be disjunctive. Anyway,
at each output port an arbiter must be provided because two or more inputs
could deliver their flits to the same output. A suitable solution to arbitrate
these accesses is to provide a round-robin arbiter for each output. Our approach
uses a modification of [2] to improve the operating speed. Thus, only two of
the proposed arbitrary stages are established with the result of a non-bijective
mapping. This leads to a pipeline length of two stages and, consequently, a
shorter latency.



6

he
a

de
r

R
eg

is
te

r 
fil

e Header 
modification

Coordinate 
subtraction

Routing 
decision

Buffer

Buffer

Buffer

FIFO

FIFO

FIFO

FIFO

parallel input 
queues

data data

C
ro

ss
ba

r

Figure 3. Structure of an input port

1.3 Structure of one port

As mentioned earlier, each switch box has to store each flit at the input or
output in a virtual output queue. This task can be managed by an input or an
output or by both. Consequently, the function of an output of one node can
be transferred to the input of the next neighbor so that complexity is reduced.
It suffices to use the storage function in the output port if the interconnection
delay between two switch boxes becomes too long. In contrast, if only one
storage queue is provided at the output port, head-of-line-blocking willoccur
also. Thus, nearly the same input structure must be used at the output. So long
as the critical path is not determined by the interconnection delay, the output
of the crossbar can be directly connected to the input of the neighboring node.

Besides storing the flits and separating them into parallel input queues every
input has to change the header of a flit that contains information about its des-
tination. Thus, the structure shown in figure 3 is developed. Here, the flits
are stored in a register file because of the routing decision, which takes com-
putation time. In parallel to this decision the header modification is applied
and each flit is stored in a FIFO. Multicast and broadcast functions can also be
implemented.

2. Routing strategy

In our approach the information is split into several flits that are routed
through the net to the target node. In contrast to a circuit-switched network
the path through the net is not reserved and each node handles the flits au-
tonomously. Two different strategies can be used to determine the path through
the network. Due to the underlying grid topology, Cartesian coordinates can
be used to determine the destination node. Each flit consists of a header that
includes a two-dimensional destination vector. This vector relatively points to
the target node from the current position in the network. Thus, the vectorhas
to be modified if one flit is sent to a neighbor node.



Adaptable Switch boxes as on-chip routing nodes for networks-on-chip 7

2.1 Dynamic routing

The flits have to be delivered from the source node to its destination. Instead
of establishing a central routing decision at the initial node, the dynamic rout-
ing is used inside each switch box, especially inside each input port (cf. fig. 3).
Central routing algorithms such as Dijkstra or Bellman-Ford algorithms re-
quire a global knowledge of the network. This would result in extensive hard-
ware if this task is transferred into the switch box relaxing the processor array.
Moreover, these algorithms need information about the communication costs,
which are mainly based on the actual traffic in a system-on-chip design since
the network and the communication structure between two nodes are regular.
Thus, due to high throughput these costs change immediately. This results in
another optimal path through the network.

The connectivity of each switch box can be increased (see section 1) result-
ing in several output ports. Here, each output port is identified by its coor-
dinates and is allocated by costs stored in registers. Each flit is temporarily
stored at the input and the information about the header is extracted. With this
information, the corresponding quadrant is chosen so that we have a subset of
all outputs. The output port with the minimum cost is selected. Then, the flit is
stored in the according FIFO queue, the header modification is performed and,
with this, the relative position of the flit changes.

2.2 Static routing

By using this strategy the way of each flit through the network is predeter-
mined. When arriving at an input port, the header information is extracted and
the flit is switched to the output port depending on the quadrant (x-y routing).
For a switch box with a connectivity of four, this results in a transmission to
positive or negative x/y direction. First, the corresponding column is chosen
by switching the flit to the node at which the x coordinate of the vector equals
zero. As long as the y coordinate is unequal to zero the flit is switched in y
direction. After storing the flit the header modification is the same for both
routing strategies.

This technique chooses the shortest way through the net if a grid with a
connectivity of four is used as topology. If the connectivity increases this tech-
nique is inefficient and must be adapted. If the x coordinate or y coordinate
has already been reached the flit is sent into the remaining y direction or x di-
rection. If no corresponding row or column is reached the next node is chosen
depending on the ratio of both coordinates. Thus, the flit covers the largest
distance toward its destination so that the shortest way through the net will
also be found with these modifications when the connectivity is bigger than
the standard connectivity of a grid.



8

Both possibilities (dynamic and static routing) are implemented in our sys-
tem. After a flit has been received, it is stored in one of the parallel queues
based on the static or dynamic routing. Depending on application demands the
routing strategy can be changed immediately by special control flits. Before
storing the flit, the header has to be modified due to a change in the position
because no storage elements are being provided at the outputs. Thus, thedes-
tination vector has to be modified before leaving the queue. Additionally, a
header modification behind the queues would have increased the critical path
substantially.

3. Synthesis of one node

In this section we analyze the on-chip network related to latency, through-
put, area, and power consumption, in dependence on storage capacity and
connectivity of the switch box. A first prototype has been implemented on
a modern standard cell technology provided by UMC (0.13µm@1.2 V). Our
approach for the communication structure is designed in such a way that sev-
eral parameters such as flit width, storage capacity of the FIFO structures and
the header size and, with this, the whole dimension of the mesh can be easily
changed before synthesis.

Table 1 gives an overview of the synthesis results for a different storage
capacity and connectivity of each switch box while the width of one flit is set
to 32 bit including an eight bit destination vector (although these parameters
can be changed later). The connectivity is changed by increasing the number
of ports. The table shows the critical path delay, the area of one node, and
the power consumption at a certain connectivity. The power is computed with
Synopsys Design Power for the maximum speed of each version. The widthof
the destination vector is fixed because the expected size of the system will bein
this dimension. Due to the sign-magnitude representation of the vector a2

3
×

2
3 grid3 can be addressed, which is suitable for the proposed multiprocessor.

It can be concluded from table 1 that the dynamic routing has a negative
impact on the network due to a longer critical path and higher area consump-
tion. Thus, the implementation of both routing strategies has to be considered
in dependence on the application. If only static routing is provided a compact
design with less area consumption and higher throughput, based on a higher
system clock, is achieved, whereas dynamic routing can relieve edges oftraffic
with the help of cost tables (e.g., in an universal coprocessor design).Further-
more, the proposed network can handle a throughput of 20 Gbit/s per port in
each direction if a flit size of 32 bit is assumed. Throughput can be enhanced
if the number of parallel interconnections is further increased by using a larger
flit size.



Adaptable Switch boxes as on-chip routing nodes for networks-on-chip 9

Table 1. Results of synthesis on UMC 130 nm @1.2 V (one switch box)

number ports per delay frequency area power throughput
of flits1 switch box bc/wc2 [ns] [GHz] [mm

2] bc/wc [W] bc/wc [Gbit/s]

dynamic and static routing

5 5 0.80/1.78 1.25/0.56 0.5621 2,966/0.855 200/90
10 5 0.86/1.85 1.16/0.54 0.9019 2.954/0.834 186/86
20 5 0.90/1.80 1.11/0.55 1.8059 2.886/0.930 177/89

5 9 1.00/2.25 1.00/0.44 1.8488 2.799/0.745 288/128
10 9 1.09/2.30 0.92/0.43 2.9209 3.101/0.803 264/125
20 9 1.13/2.46 0.88/0.41 5.5675 3.579/0.859 255/117

5 17 1.50/3.10 0.66/0.33 6.6744 2.805/0.756 363/175

static routing only

5 5 0.72/1.63 1.39/0.61 0.5542 3.368/0.932 222/98
10 5 0.77/1.57 1.30/0.64 0.8803 3.185/0.990 208/102
20 5 0.75/1.56 1.33/0.64 1.7329 3.469/1.045 213/102

5 9 0.95/2.00 1.05/0.50 1.7827 2.901/0.857 303/144
10 9 0.92/2.00 1.08/0.50 2.8223 3.411/0.931 313/144
20 9 0.99/2.10 1.01/0.47 5.5881 3.886/1.024 291/137

5 17 1.10/2.50 0.91/0.40 6.5350 2.804/0.942 494/218



10

4. Conclusion

In this work, a network-on-chip for an on-chip multiprocessor design has
been proposed. The topology was chosen as a grid to provide a regularcom-
munication structure and a good re-use possibility for further implementations.
Moreover, each node has been designed to handle the traffic autonomously and
provides a good scalability with growing networks. Two routing strategies have
been implemented in the switch box design and are analyzed with respect to
their performance and resource requirements. Providing a maximum through-
put of about 500 Gbit/s, a prototypical implementation has been designed by
using a 130nm CMOS technology.

Acknowledgment

This work was supported in part by the Infineon Technologies AG, espe-
cially the department CPR ST, Prof. Ramacher and by the German Research
Council DFG, SFB 376.

Notes

1. stored in each FIFO

2. best case and worst case conditions

3. Thus a64 · 4 = 256 processor array can be implemented.

References

[1] A. Brinkmann, J.-C. Niemann, I. Hehemann, D. Langen, M. Porrmann, and U. R-uckert.
On-Chip Interconnects for Next Generation System-on-Chips. InProc. of the 15th Annual
IEEE International ASIC/SOC Conference, pages 211 – 215, September 2002.

[2] A. Gupta, F. G. Gustavson, M. Joshi, and S. Toledo. Design and implementation of a fast
crossbar scheduler.ACM Transactions on Mathematical Software, 24(1):74–101, 1998.

[3] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output queueing on a space-
division packet switch.IEEE trans. on commun., COM-35:1347–1356, 1987.

[4] S. Kumar. On packet switching networks for on-chip communication. In A. Jantsch and
H. Tenhunen, editors,Networks on Chip, chapter 5. Kluwer Academic Publishers, 2003.

[5] D. Langen, J.-C. Niemann, M. Porrmann, H. Kalte, and U. R-uckert. Implementation of
a risc processor core for soc designs fpga prototype vs. asic implementation. InProc.
of the IEEE-Workshop: Heterogeneous reconfigurable Systems on Chip (SoC), Hamburg,
Germany, 2002.

[6] J.-C. Niemann and et al. A holistic methodology for network processor design. InProc.
of the Workshop on High-Speed Local Networks held in conjunction with the28th Annual
IEEE Conference on Local Computer Networks, pages 583 – 592, Oct. 2003.

[7] Y. Tamir and G. Frazier. High-performance multiqueue buffers for VLSI communication
switches. 15th Annual International Symposium on Computer Architecture, pages 343–
354, 1988.


