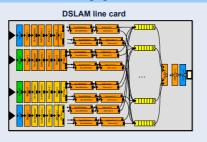


A Lightweight NoC for the **NOVA Packet Processing Platform**

HEINZ NIXDORF INSTITUTE

University of Paderborn System and Circuit Technology Prof. Dr.-Ing. Ulrich Rückert

C. Sauer¹, M. Gries¹, S. Dirk¹, J.-C. Niemann², M. Porrmann², U. Rückert²


¹ Infineon Technologies, Access Communications, Munich ² Heinz Nixdorf Institute, Paderborn

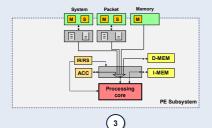
Motivation & Goal

Modular platform construction kit to investigate design criteria, such as flexibility, programmability, area, and performance

- Reuse of of-the-shelf components (e.g., programmable embedded cores) and deployment tools where possible
- Refinements (instruction set, co-processors, etc.) where needed as determined by profiling of reference applications
- Synergy: Hardware platform directly supports message passing semantics of application; NoC is a natural choice

Application Domain

- Packet processing in access networks
- Data-flow driven processing


cluster

N-Core & multi-

on-chip network

- Message passing semantics between computational kernels
- Subject to tight constraints on costs and performance
- Flexibility required to support broad variety of protocols and customer requirements

Network-Optimized Versatile Architecture (NOVA) Platform: Concepts

Modular platform

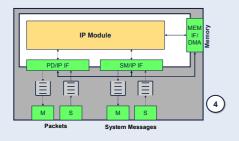
- Number and type of processing cores
- Number and type of co-processors
- Number and type of I/O interfaces
- Heterogeneous memory hierarchy
- Communication architecture

I/O If CPU CoP Mem Memory

GigaNoC - hierarchical Network-on-chip

- Bus-based network for small clusters (< 10 components)
- Switch boxes for connecting clusters

NoC principles


- Message passing interface with priorities: computation can continue while message is transmitted to destination
- Incorporation of flow control by backpressure signaling to avoid overload and loss
- Lightweight one-word header, which contains destination, message type, and context ID for fast flow-through processing

SoC main components	Area [mm²]		Frequency [MHz]	
	130nm	90nm	130nm	90nm
32 Cores [N-Core]	32 x 0.16	32 x 0.12	205	285
8 switch-boxes [with 5 ports]	8 x 1.129	8 x 0.53	560	650
32 local RAMs, (32 KB)	32 x 0.875			450
+ 8 local packet buffers (2 x 16 KB)	+8 x 2 x 0.466	+8 x 2 x 0.466		
8 local on-chip busses	8 x 0.05	8 x 0.02	211	290
Total	50.01	43.7	205	285

Systematic development of platform building blocks

- Profiling of embedded general-purpose cores (and their compilers) and specialized packet processing engines
- Packet processing engines provide high performance; general purpose cores are flexible and have mature compilers > Provides a first estimate of required parallelism

NOVA Socket concept

- Homogeneous interface
- Separation of IP-specific interfaces from interconnect and memory interfaces

Efficient implementation

Two NoC interfaces, buffering 16 64B messages each, need less than 1/3 of the CPU subsystem area

Status/Next Steps

- Verification of approach and concepts
- Currently implementing initial NOVA platform prototype comprising approx. 20 message passing clients
- Application-driven analysis using system-level benchmark
- Mapping IP-DSLAM reference application to the platform
- Enables detailed quantitative exploration of design trade-offs
- Demonstrator at CeBIT 2006 trade fair
- Evaluation of GigaNoC for larger systems [2]

Partners/Funding

Infineon Technologies

- Communications, Access System Engineering (COM AC SE NP)
- 81726 Munich, Germany
- E-mail: Christian.Sauer@infineon.com

Heinz Nixdorf Institute

- University of Paderborn, System and Circuit Technology
- Fürstenallee 11, 33102 Paderborn, Germany
- E-mail: niemann@hni.upb.de

This project is supported, in parts, by the research grants GigaNetIC and PlaNetS of the German government (BMBF).