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Abstract. In this paper we explore different hardware accel-
erators for cryptography based on elliptic curves. Further-
more, we present a hierarchical multiprocessor system-on-
chip (MPSoC) platform that can be used for fast integration
and evaluation of novel hardware accelerators. In respect
of two application scenarios the hardware accelerators are
coupled at different hierarchy levels of the MPSoC platform.
The whole system is implemented in a state of the art 65 nm
standard cell technology. Moreover, an FPGA-based rapid
prototyping system for fast system verification is presented.
Finally, a metric to analyze the resource efficiency by means
of chip area, execution time and energy consumption is in-
troduced.

1 Introduction

Data security is an important requirement for many appli-
cations in our daily life. Especially internet applications
such as e-commerce need to transmit secret data via inse-
cure communication channels. Therefore, various crypto-
graphical methods exist that allow to protect sensitive data.
Asymmetric cryptography, which is also known as public-
key cryptography, does not only provide algorithms for en-
cryption and decryption of data, but also for digital signa-
tures and authentication. Recently asymmetric cryptography
based on elliptic curves is gaining interest. Compared to
traditional asymmetric techniques, e.g. the RSA algorithm,
the elliptic curve cryptography (ECC) achieves an equivalent
level of security with smaller key sizes. Using elliptic curve
cryptography therefore results in memory as well as band-
width savings.

Nevertheless, computational intensive operations emerge
during the processing of ECC protocols. The scalar multipli-
cation on elliptic curves represents a frequently required and
complex operation. The acceleration of this task by dedicated
hardware units can not only speed up the execution time, but
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also help to save energy. In this paper, we propose different
types of hardware accelerators for scalar multiplication in re-
spect of two application scenarios. On one hand, we consider
mobile devices with limited power resources such as smart-
cards. On the other hand, security servers are considered,
where high performance is more important than power con-
sumption and costs in terms of chip area.

Our work presents various hardware accelerators for ellip-
tic curve cryptography, which are evaluated by integration
into a multiprocessor system-on-chip (MPSoC). This pro-
posed evaluation platform is scalable and can be adapted
to suit different application scenarios. Dedicated hardware
blocks can easily be integrated at different hierarchy levels of
the MPSoC, which allows a comfortable evaluation of novel
accelerators. Furthermore, the whole system is mapped onto
an FPGA-based rapid prototyping environment in order to
speed up simulation and verification.

The proposed hardware accelerators are synthesized in a
modern 65 nm standard cell technology and analyzed regard-
ing their resource efficiency in terms of chip area, execution
speed and power consumption. Furthermore, a metric is in-
troduced to compare the resource efficiency of different im-
plementations in respect of the considered application sce-
nario.

The paper is structured as follows. Section2 gives a brief
overview of the mathematical background of elliptic curve
cryptography. In Sect.3 the evaluation platform that is used
to integrate and verify the hardware accelerators is discussed.
The proposed hardware accelerators as well as the metric for
analyzing their resource efficiency are explained in detail in
Section4. Finally, Sect.5 concludes the paper.

2 Elliptic Curve Arithmetic

In this section the elliptic curve cryptography based on bi-
nary field arithmetic is introduced. The general equation for
a non-supersingular elliptic curveE over the binary finite
field F2m is given by equation:

E : y2
+ xy = x3

+ ax2
+ b (1)
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Fig. 1. Arithmetic hierarchy of elliptic curve cryptography.

for appropriate parametersa, b∈F2m . The set of points
(x, y)∈F2m×F2m , which satisfy Eq. (1), together with the
identity elementO, generate an additive abelian group. Let
P=(xp, yp) and Q=(xq , yq) be two given points on the
curve in Eq. (1). The point additionP+Q as well as the
point doublingP+P are two operations defined on the ellip-
tic curveE, which can geometrically be represented by the
tangent and chord operation, respectively. By applying the
point addition and point doubling operations, we are able to
multiply an integerk with a pointP, which is the result of
k − 1 times adding the pointP to itself. This operation is
known as scalar or point multiplicationk×P. Figure1 de-
picts this hierarchical structure of arithmetic operations used
for elliptic curve cryptography over finite fields.

2.1 Projective Coordinates

Naturally, point addition and point doubling also require a
field inversion when using affine coordinates(x, y). Since
inversion is a very expensive operation compared to mul-
tiplication, addition and squaring in finite fields, we use
projective coordinates. In standard projective coordinates
the points on the elliptic curve are represented as a triple
(X, Y,Z) in such a way thatx→X/Z andy→Y/Z. By us-
ing projective coordinates only one finite field inversion is
required at the end of a scalar multiplication in order to trans-
form the projective coordinates back to affine coordinates.

2.2 Montgomery Ladder Algorithm

In Montgomery(1987) a very efficient method to perform
the scalar multiplication is presented, which was applied to
elliptic curve cryptography byLópez and Dahab(1999). The
method is known as montgomery ladder and is shown at point
level in Algorithm 1. Since in every loop iteration the same
operations are performed, namely one point addition and one
point doubling, the montgomery ladder algorithm is shielded
against timing attacks and simple power analysis attacks.
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Algorithm 1 The Montgomery ladder algorithm for scalar
multiplication expressed at point level.
Input: A pointP on the elliptic curveE, together with the binary

representation of the scalark as(ki−1ki−2 . . . k1k0)2.
Output: k · P

P1 ← P, P2 ← 2P
for j from i− 2 downto 0 do

if kj = 1 then
P1 ← P1 + P2, P2 ← 2P2

else
P2 ← P1 + P2, P1 ← 2P1

end if
end for

2.2 Montgomery Ladder Algorithm

In Montgomery (1987) a very efficient method to perform
the scalar multiplication is presented, which was applied to
elliptic curve cryptography by Ĺopez and Dahab (1999). The
method is known as montgomery ladder and is shown at point
level in Algorithm 1. Since in every loop iteration the same
operations are performed, namely one point addition and one
point doubling, the montgomery ladder algorithm is shielded
against timing attacks and simple power analysis attacks.

2.3 Polynomial Basis Representation

As illustrated in Figure 1, finite field arithmetic represents
the base operations. Therefore, an efficient representation of
the finite field elements inF2m is important. The polynomial
basis representation can be described as a vector space of di-
mensionm over the fieldF2 and is one of the most common
representations in ECC. Field elements in polynomial basis
representation are expressed as binary polynomials of degree
m − 1 as follows:

a(x) =

m−1∑

i=0

ai · x
i with ai ∈ {0, 1} (2)

One benefit of binary fields is that the finite field addition
is calculated by a carry-free XOR operation of corresponding
coefficients. Finite field squaring can be achieved by shifting
each bitai to a2i and filling the gaps with zeros. Similar to
finite field multiplication, the result is a binary polynomial
of degree2m − 2, which has to be reduced modulo an irre-
ducible, sparse polynomial of degreem. However, the finite
field multiplication is equivalent to the product of the corre-
sponding polynomials, which is, compared to addition and
squaring, the most computational intensive operation.

2.4 Karatsuba Multiplication Method

In order to reduce the complexity of polynomial multipli-
cation, the method of Karatsuba and Ofman (1963) is ap-
plied. Whereas “classically” the coefficients of the product
(a1x + a0)(b1x + b0) = a1b1x

2 + (a1b0⊕a0b1)x + a0b0

2.3 Polynomial Basis Representation

As illustrated in Fig.1, finite field arithmetic represents the
base operations. Therefore, an efficient representation of the
finite field elements inF2m is important. The polynomial
basis representation can be described as a vector space of
dimensionm over the fieldF2 and is one of the most common
representations in ECC. Field elements in polynomial basis
representation are expressed as binary polynomials of degree
m − 1 as follows:

a(x) =

m−1∑
i=0

ai × xi with ai ∈ {0, 1} (2)

One benefit of binary fields is that the finite field addition
is calculated by a carry-free XOR operation of corresponding
coefficients. Finite field squaring can be achieved by shifting
each bitai to a2i and filling the gaps with zeros. Similar to
finite field multiplication, the result is a binary polynomial
of degree 2m − 2, which has to be reduced modulo an irre-
ducible, sparse polynomial of degreem. However, the finite
field multiplication is equivalent to the product of the corre-
sponding polynomials, which is, compared to addition and
squaring, the most computational intensive operation.

2.4 Karatsuba Multiplication Method

In order to reduce the complexity of polynomial mul-
tiplication, the method ofKaratsuba and Ofman(1963)
is applied. Whereas “classically” the coefficients of the
product(a1x+a0)(b1x+b0)=a1b1x

2
+(a1b0⊕a0b1)x+a0b0

from the four input coefficientsa1, a0, b1, andb0 are com-
puted with 4 multiplications and 1 addition, the Karatsuba
formula uses only 3 multiplications and 4 additions in binary
fields:

(a1x + a0)(b1x + b0) = (3)

a1b1x
2
+ ((a1⊕a0)(b1⊕b0)⊕a1b1⊕a0b0)x + a0b0.

By applying the Karatsuba method to larger polynomials
the costs of extra additions vanish compared to those of the
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Fig. 2. N-Core processor architecture providing a three-stage
pipeline.

saved multiplications and an asymptotical cost ofO(m1.59)

compared to the classical cost ofO(m2) is achieved (Han-
kerson et al., 2004).

3 Evaluation Platform

In Niemann et al.(2007) we presented the development of
a scalable and hierarchical multiprocessor system-on-chip
(MPSoC) architecture. This system architecture is used here
as an evaluation platform for the integration of hardware ac-
celerators.

3.1 N-Core Processor Element

The core processing element is our 32-bit RISC microproces-
sor named N-Core (Niemann et al., 2007). The N-Core com-
prises a common load-store architecture that is depicted in
Fig. 2. The processor provides a three-stage pipeline, which
performs instructionfetch, decodeandexecute. Two inde-
pendent banks of sixteen 32-bit registers allow fast program
context switching, e.g. for fast interrupt handling. Although
the N-Core provides a 32-bit data bus, instructions have a
fixed width of 16 bit, which delivers a high code density. Due
to 11% free opcode space, instruction set extensions can be
added to the microprocessor.

3.2 Hierarchical MPSoC Architecture

The processor core is extended with local data and instruc-
tion memory, a programmable interrupt controller (PIC) and
a timer module to form aN-Core subsystem. The N-Core
subsystem represents the lowest level of hierarchy within the
MPSoC system. At the next higher level, a parametrizable
amount of N-Core subsystems are connected via an on-chip
Wishbone bus. Together with a shared memory this multipro-
cessor arrangement forms acluster. At cluster level the pro-
cessor elements can send messages directly to each other via
the Wishbone bus as well as exchange data via the common
shared memory. In this way, applications can be parallelized

switch box

cluster and

shared memory

N-Core subsystem
with local memory

crypto accelerator

wishbone 
on-chip bus

network-on-chip

Fig. 3. Integration of hardware accelerators at different levels of our
MPSoC-based evaluation platform.

and processed cooperatively by the N-Core subsystems. At
the top level of hierarchy, several clusters are connected
through switch boxes over the network-on-chip (NoC). The
NoC communication structure is described inPuttmann et al.
(2007) and features packet-switched wormhole routing with
up to 42 GBit/s data throughput.

3.3 Coupling of Hardware Accelerators

Depending on the requirements of the application scenario,
hardware accelerators can be coupled at different levels of hi-
erarchy, resulting in several resource utilization variants. As
depicted in the top right cluster of Fig.3, hardware accelera-
tors in terms of instruction set extensions can be added to the
N-Core subsystem. This integration means a very close cou-
pling to the processor with little hardware overhead. In the
bottom right cluster of Fig.3, the accelerator is connected to
the local on-chip bus of the cluster. In this way, each proces-
sor of the corresponding cluster can access the hardware ac-
celerator. Moreover, the direct coupling to a switch box (see
bottom left cluster in Fig.3) results in high data throughput
due to the close connection to the network-on-chip. Here,
every processor of the whole system can access the hardware
accelerator. In order to easily integrate the same hardware
unit at different levels, we developed wrapper modules that
automatically provide an interface for the desired coupling
(Niemann et al., 2007).

3.4 Rapid Prototyping Environment

Depending on the software program under test, the simula-
tion of a complex multiprocessor system-on-chip can take
very long. Our approach to speed up the system verifica-
tion is based on fast hardware emulation instead of compa-
rable slow software simulation. For this purpose, we have
developed an FPGA-based rapid prototyping environment
called RAPTOR2000 (Kalte et al., 2002). As depicted in
Fig. 4, the prototyping system consists of the RAPTOR2000
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Fig. 4. Fast emulation of new hardware accelerators by using our FPGA-based rapid prototyping system RAPTOR2000.

Table 1. Synthesis results for a 65 nm standard cell technology and
a Xilinx Virtex-II FPGA implementation, respectively.

area power

[mm²] [mW] [slices] [RAM16]

N-Core processor 0.078 17.20 3206 0

N-Core subsystem
1

0.613 45.16 3662 16

Cluster
2

3.443 357.14 15362 80

Switch box 0.449 315.12 14133 0

ASIC FPGA

utilization

1
N-Core processor, 32 KB local memory, interrupt controller, timer module

2
4 N-Core subsystems, 32 KB shared memory, on-chip wishbone bus

motherboard, which can be equipped with up to six appli-
cation specific daughterboard modules. Based on FPGA
daughterboard modules, RAPTOR2000 is able to emulate
circuits with a complexity of more than 200 million transis-
tor gates. The host computer can communicate via a PCI bus
interface with the RAPTOR2000 board and each attached
daughterboard, respectively. Additionally, we have devel-
oped daughterboard modules that provide various commu-
nication standards. For example, an ethernet daughterboard
can be used to stimulate the design under test with real world
network traffic.

The implementation result of the MPSoC core compo-
nents are shown in Table1. We mapped the system to a
65 nm technology for ASIC fabrication as well as to a Xilinx
XC2V8000-4 FPGA for rapid prototyping. The ASIC imple-
mentation is based on a low power (regular threshold volt-
age) standard cell library under typical operating conditions.
The N-Core subsystem runs at a frequency of 400 MHz,
which is also the operating frequency of a cluster. How-
ever, the network-on-chip as well as the switch box achieves
a maximum clock frequency of 718 MHz. Each XC2V8000-
4 FPGA can host one cluster including 4 N-Core subsystems
and a switch box, which runs at 12.5 MHz. The system can
be easily scaled by using more than one FPGA daughter-
board (Niemann et al., 2007).
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Fig. 5. Architecture of the high performance hardware accelerator
for scalar multiplication.

4 Hardware Accelerators

In this section, various hardware accelerators for elliptic
curve cryptography are presented. As explained in Sect.2,
we concentrate on the scalar multiplication in binary fields.
Throughout the rest of this paper, we refer to the binary field
F2233, which is one of the recommended extension fields by
the National Institute of Standards and Technology(2000).
The hierarchy level for integration into the evaluation plat-
form is chosen in respect to the application scenario. Fur-
thermore, a metic for analyzing the resource efficiency is
proposed and exemplarily applied to select the best hardware
accelerator for a given application scenario.

4.1 High Performance Scenario

High performance hardware accelerators are required for
systems such as internet servers, which have to handle many
secure data transactions at one time, e.g. for online-banking
applications. Fast computation and high data throughput are
more important in this application scenario than power con-
sumption and costs in terms of chip area.

We have developed a hardware accelerator for this ap-
plication scenario, whose architecture is shown in Fig.5.
The hardware accelerator provides a modular structure com-
prising arithmetic units for finite field multiplication, squar-
ing and addition (cf. Fig.1). Addition as well as squar-
ing is performed in one clock cycle, whereas multiplication
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Table 2. Resource utilization for 65 nm standard cell technology at
200 MHz clock frequency and typical operating conditions.

absolute relative absolute relative absolute relative
[μm²] [%] [mW] [%] [ms] [%]

N-Core 57190 0.00 9.23 0.00 57.59 0.00
N-Core (ISE1) 57519 0.58 9.49 2.82 50.92 -11.58
N-Core (ISE2) 59290 3.67 7.35 -20.37 26.42 -54.12
N-Core (ISE3) 64734 13.19 12.00 30.01 20.19 -64.94

chip area power consumption execution time

based on the Karatsuba method requires 3 clock cycles in
a pipelined fashion. Furthermore, the register file can store
7 finite field elements, which is sufficient for calculating the
scalar multiplication. Due to the generic architecture, the
hardware accelerator can easily be adapted to different field
sizes. The scalar multiplication is calculated using the mont-
gomery ladder algorithm as explained in Sect.2. Moreover,
the hardware accelerator handles coordinate transformation,
i.e. affine coordinates are supported as input and output for-
mat, while internally projective coordinates are used for cal-
culation.

The proposed hardware accelerator is coupled to a switch
box port at the highest hierarchy level of the evaluation plat-
form (cf. Fig.3) for several reasons. At this level, the highest
data throughput is achieved due to the close coupling to the
network-on-chip. Furthermore, the hardware accelerator can
operate autonomously without the need for an attached mi-
croprocessor.

Again, the hardware accelerator was synthesized using a
65 nm standard cell technology with typical operating condi-
tions. A total chip area of 0.279 mm2 is required to support
the binary fieldF2233. The hardware accelerator achieves a
clock frequency of 625 MHz, i.e. the complete scalar mul-
tiplication is calculated in 7.2µs and consumes 72.8 mW
power. Respectively, 15365 slices are needed on a Xilinx
XC2V8000-4 FPGA, which runs with 50 MHz clock fre-
quency, resulting in 90µs calculation time.

4.2 Low Power Scenario

In contrast to the high performance scenario, we now con-
sider low power devices like smartcards. These are com-
monly used in mobile devices with limited energy resources
and restricted chip area. Instead of high performance, the
motivation for hardware accelerators here is to save energy
with little increase of chip area. In order to reach this aim,
we analyzed several types of instruction set extensions (ISE).
Regarding the evaluation platform, instruction set extensions
are directly implemented to the N-Core processor and hence
coupled at the lowest hierarchy level. For a smartcard sce-
nario, the evaluation platform is scaled down to a minimum
of only one single N-Core comprising instruction set exten-
sions.
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Fig. 6. Resource efficiency of different types of instruction set ex-
tensions.

In Puttmann et al.(2008), we present a two-stage frame-
work for automatic instruction set extension. As a result,
we implemented three different instruction set extensions.
The first type of ISE combines already existing instructions,
which are frequently used, to newsuper instructions. The
analysis of the scalar multiplication showed that the instruc-
tion set of the N-Core processor can benefit from combi-
nations ofshift and xor. Therefore, we added three super
instructions to the N-Core, namelyLSRIxor , LSLIxor
and LSRIandadd . This modification is in the following
referred to asISE1. Whereas ISE1 only combines existing
instructions to new super instructions, the second type of in-
struction set extension (referred to asISE2) introduces a new
instruction, calledMULGF2. This instruction multiplies two
32-bit binary field polynomials by using existing functions of
the arithmetic logical unit (ALU). Multiplication with ISE2
is realized bit by bit utilizing the existing shift unit and xor
function of the ALU. The third type of instruction set ex-
tension (ISE3) also supports thisMULGF2instruction, but a
dedicated hardware unit for binary field multiplication is im-
plemented instead of using existing ALU functions.

Table2 shows the absolute resource utilization as well as
the relative changes compared to an original N-Core proces-
sor. The synthesis results are based on high threshold voltage
standard cells, since we are considering a low power sce-
nario. Therefore, the clock frequency of the N-Core is re-
duced to 200 MHz and only a chip area of 0.057 mm2 is re-
quired. The execution time in Table2 refers again to a scalar
multiplication inF2233.

4.3 Resource Efficiency

In order to select the best hardware accelerator for a given
application scenario, a metric for resource efficiency is in-
troduced in this section. The resource efficiency of the three
variants of instruction set extensions is exemplarily analyzed.
Therefore, we define resource efficiency (RE) as

RE = T α
× Eβ

× Aγ (4)

with execution time(T ), energy consumption(E) andchip
area (A). Each resource component can be weighted by an
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exponent (α, β, γ ) to characterize the focus of the considered
application scenario.

Figure 6 shows the resource efficiency of the three ISE
variants (cf. Table2), which are normalized to the resource
efficiency of the original N-Core processor. We character-
ized three resource weightings, namelynormal, power and
speed. The exponentsα, β andγ are all negative, so that a
better utilization of any resource results in a better resource
efficiency. The solid bars depict the resource efficiency with
each component equally weighted, i.e. chip area, energy con-
sumption and execution time are of the same importance.
However, for the smartcard application scenario, we focus
on low power implementations with little hardware overhead.
Therefore, the checkered bars depict the resource efficiency,
where energy consumption (β= − 3) is more important than
chip area (γ= − 2), which in turn is more important than ex-
ecution time (α= − 1). Therefore, ISE2 would be the best
suited implementation for this application scenario, since it
achieves the highest resource efficiency with emphasis on
power. In contrast, the striped bars show the resource effi-
ciency when focusing on speed. Consequently, the execution
time (α= − 3) is here more important than the energy con-
sumption (β= − 2), which again is more important than the
chip area (γ= − 1). In this case, ISE3 represents the best
suited hardware accelerator, because it achieves the highest
resource efficiency with respect to execution speed.

5 Conclusions

In this paper we have presented various hardware accelera-
tors for cryptography based on elliptic curves. The proposed
scalable multiprocessor system-on-chip evaluation platform
allows an easy integration of hardware accelerators at differ-
ent levels of hierarchy. In order to speed up the verification
of novel hardware accelerators, the evaluation system can be
emulated by using our FPGA-based rapid prototyping envi-
ronment RAPTOR2000. A high performance hardware ac-
celerator was developed, which calculates a scalar multipli-
cation inF2233 in 7.2µs. Moreover, different types of instruc-
tion set extensions were introduced that provide energy sav-
ings up to 63%. Finally, a metric for analyzing the resource
efficiency was defined, which helps to select the best suitable
hardware accelerator for a given application scenario.
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