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Abstract

Modeling interaction with robots raises new and differ-
ent challenges for dialog modeling than traditional dia-
log modeling with less embodied machines. We present
four case studies of implementing a typical human-
robot interaction scenario with different state-of-the-art
dialog frameworks in order to identify challenges and
pitfalls specific to HRI and potential solutions. The re-
sults are discussed with a special focus on the interplay
between dialog and task modeling on robots.

Introduction
The extension of the focus of research on robotics from
vision-based physical interaction with the environment to-
wards more social multi-modal, including speech-based,
interactions with humans brings fundamentally new chal-
lenges to dialog modeling. Instead of designing interactions
for information-oriented query systems – which have also
been extended to virtual agents – it has now become neces-
sary to take physical situatedness into account. This means
that questions of reactability to dynamic environmens, pos-
sibly involving multiple modalities, and of potentially open-
ended, unstructured interactions, infolving multiple tasks at
a time play an important role and have to be considered in
the dialog model. Also, the idea of the robot as a partner re-
quires a mixed-initiative interaction style that enables both
interaction partners to exchange information on their own
initiative, to suggest new tasks, and ultimately the capability
to learn from each other.

In light of these challenges, we have suggested an ap-
proach to dialog modeling on robots that – while keeping
task and dialog structure well separated – tightly integrates
dialog and domain level and includes concepts that sup-
port rapid prototyping of interaction scenarios which in our
research has proven a valuable factor to boost dialog de-
velopment through gathering wide spread experience and
sampling data (Peltason and Wrede 2010b), (Peltason and
Wrede 2010a).

In this article, we focus on the special demands that robot
applications impose on the developer and compare our ap-
proach, called PaMini (for Pattern-Based Mixed-Initiative
Human-Robot-Interaction), with existing, well-established
dialog modeling approaches to identify problematic issues
and potential remedies from different approaches (being

well aware that most of them originally had not been in-
tended for robotics).

The aim of this comparison is twofold. On the one hand, it
is meant to give an overview of state-of-the-art dialog mod-
eling techniques, and to illustrate the differences between
these. On the other hand, we attempt to illustrate the differ-
ences between robotics and traditional domains for speech
applications, and to point out potential pitfalls in robotics.

The target scenario: a Curious Robot

Figure 1: The Curious Robot scenario on the robot platform Flobi.

As target scenario for our case studies, we chose a sim-
plified version of the Curious Robot, an object learning
and manipulation scenario that we have presented recently
(Lütkebohle et al. 2009). This is a typical robotic applica-
tion as it includes problems of perception and learning as
well as action oriented communication. Figure 1 shows the
current setup.

As previous studies have shown, it is beneficial to allow
for mixed-initiative by letting the robot ask for unknown ob-
jects and by allowing the user to initiate a teaching or a query
episode at any time. Thus, whenever the robot detects an
unknown object, it asks for its label (for the case studies we



have neglected the problem of reference through non-verbal
gestures). Once the label is given by the user, the robot asks
how to grasp the object, which the human is expected to an-
swer by naming the grip type. Having acquired both label
and grip, it autonomously grasps the object, while reporting
both begin and completion or failure of the action. Grasping
may also be rejected by the back-end right away, or the user
may cancel the ongoing grasping action. Additionally, the
user can at any time ask the robot to enumerate the objects
learnt so far or how to grasp a specific object. Finally, the
user ends the interaction by saying goodbye.

Although the target scenario is kept extremely simple, it
presents a number of typical challenges that dialog systems
in robotics have to face. First of all, the robot must react
dynamically to its environment. Timing and order of the
robot’s questions can not be fixed beforehand since they de-
pend on the robot’s perception of the world. We therefore
assume for our case studies that the action to select the next
object comes from a back-end component, in form of an in-
teraction goal which may be either label, grip or grasp. Sec-
ond, the user’s test questions require the dialog system to
cope with focus shifts and, as they may be asked during the
robot’s grasping action, even with multitasking abilities. Fi-
nally, going on with the interaction during grasping while
still enabling feedback about the on-going action and the
possibility to cancel it requires some kind of asynchronous
coordination between dialog system and back-end.

As the focus of the case studies lays on dialog modeling,
the goal was not to achieve a fully fledged implementation
running on a robotic platform. Therefore, speech recogni-
tion and speech synthesis were replaced by text in- and out-
put and all perception and motor activities have been simu-
lated. Also, we ignored subtle yet important aspects of the
interaction such as nonverbal cues, social behavior or the
engagement process that typically precedes the interaction.

Case study 1: Implementing the Curious
Robot with Ravenclaw

The first case study investigates the Ravenclaw dialog man-
ager which is being developed at Carnegie Mellon Univer-
sity (Bohus and Rudnicky 2009). A large number of speech
applications have been implemented with it, spanning from
a bus information system, to calendar applications, to a sup-
port application for aircraft maintenance. A well-maintained
documentation including step-by-step tutorials is provided.

At the core of Ravenclaw is the dialog task specification
which encapsulates the domain-specific aspects of the con-
trol logic and forms a hierarchical plan for the interaction
and is executed by the domain-independent dialog engine at
runtime. It consists of a tree of dialog agents, each handling
a subtask of the interaction, such as greeting the user or
presenting the result of a database lookup. There are two
types of dialog agents: dialog agencies that represent tasks
that are further decomposed and fundamental dialog agents
that are terminal nodes in the tree, implementing atomic
actions. The fundamental dialog agents further fall into
four categories. An Inform agent produces an output, a
Request agent requests information from the user, an Expect

agent expects information from the user without explicitly
requesting it, and an Execute agent performs back-end calls,
such as database access. During interaction, the dialog
engine traverses the tree in a depth-first manner, unless
otherwise specified by pre- and postconditions or by error
handling and repair activities. Agents from the task tree are
put on top of a dialog stack in order to be executed and are
eliminated when completed.
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Figure 2: The Ravenclaw task specification for the Curious Robot
scenario. As Ravenclaw does not support visualization, the tree
was created by hand.

Figure 2 shows a possible dialog task specification for our
test scenario. Its main part is the PerformTask agency, which
is divided into two agencies handling human and robot ini-
tiative respectively. The SystemInitiative agency is reset af-
ter completion and executed repeatedly unless the user ini-
tiative agency is triggered or the user ends the interaction. It
consists of an Execute agent fetching the current interaction
goal from the back-end, and the agencies ObtainLabel, Ob-
tainGrip and Grasp. ObtainLabel and ObtainGrip request
label and grip respectively, and communicate it to the back-
end where it gets stored. Grasp first announces grasping,
then executes it and finally reports success, rejection or fail-
ure. The three agencies are not executed in succession, but
alternatively, depending on conditions such as the current in-
teraction goal (not shown in the figure). The UserInitiative
agency can be activated by the user’s test questions at any
time. This is achieved by adding a trigger directive to its
subagents, making ListObjects and GripQuery respectively
the currently focused agent, i.e. the topmost agent on the
stack. Table 1 illustrates a typical dialog example.

Technically, the dialog agents are defined as C++
macros that communicate with the back-end by exchang-
ing user-defined frame data structures via a centralized
message-passing architecture. Figure 3 illustrates the
portion of the dialog task specification that defines the
Grasp agency and its subagents Announce, Execute, In-
formCompleted, InformRejected and InformFailed. Grasp
is only executed if the interaction goal has the value label
(line 2), and it succeeds if the grasp action has either been
rejected, completed, or has failed (lines 12-14). Announce
prompts the speech output specified for this situation (line
17). Execute then calls the associated back-end function
(line 21-23) and stores its result (line 24). Depending on



Utterance Comment
U1 Hello.
R1 Hi, hello.
R2 What is that? Back-end returns interaction goal label
U2 This is an apple.
R3 How should I grasp the apple? Back-end returns interaction goal grip
U3 What objects do you know already? Focus shift: ListObject focused agent
R4 I know ’apple’.
R5 How should I grasp the apple? ObtainGrip focused agent again
U4 How do you grasp a banana? q Focus shift: GripQuery focused agent
R6 Sorry, I don’t know.
R7 How should I grasp the apple? ObtainGrip focused agent again
U5 With the power grasp.
R8 I am going to grasp the apple now. Back-end returns interaction goal grasp

Back-end blocks during grasping
R9 Sorry, I failed to grasp the apple.
U6 Goodbye.
R10 Goodbye.

Table 1: An example dialog for the Curious Robot implementa-
tion with Ravenclaw, including two focus shifts for the user’s test
questions (U3 and U4). Since the back-end blocks during grasping
(R8), an on-going grasping action can not be canceled. The failure
of grasping is reported back from the back-end (R9).

whether the result is rejected, completed or failed (lines 28,
33, 38), the appropriate output is generated (lines 29, 34,
39).

1 DEFINE_AGENCY( CGrasp ,
2 PRECONDITION ((int)C("result.interactiongoal") == 2
3 )
4 DEFINE_SUBAGENTS(
5 SUBAGENT(Announce , CAnnounce , "")
6 SUBAGENT(Execute , CExecute , "")
7 SUBAGENT(InformCompleted , CInformCompleted , "")
8 SUBAGENT(InformRejected , CInformRejected , "")
9 SUBAGENT(InformFailed , CInformFailed , "")

10 )
11 SUCCEEDS_WHEN(
12 (SUCCEEDED(InformCompleted) ||
13 SUCCEEDED(InformRejected) ||
14 SUCCEEDED(InformFailed )))
15
16 DEFINE_INFORM_AGENT( CAnnounce ,
17 PROMPT( "inform grasping <result")
18 )
19 DEFINE_EXECUTE_AGENT( CExecute ,
20 EXECUTE(
21 C("query_type") = NQ_GRASP;
22 pTrafficManager -> Call(this ,
23 "backend.query <query_type >new_result");
24 C("result") = C("new_result");)
25 )
26 DEFINE_INFORM_AGENT( CInformCompleted ,
27 PRECONDITION(
28 (int)C("result.taskstate") == RC_COMPLETED)
29 PROMPT( "inform grasping_completed <result")
30 )
31 DEFINE_INFORM_AGENT( CInformRejected ,
32 PRECONDITION(
33 (int)C("result.taskstate") == RC_REJECTED)
34 PROMPT( "inform grasping_rejected <result")
35 )
36 DEFINE_INFORM_AGENT( CInformFailed ,
37 PRECONDITION(
38 (int)C("result.taskstate") == RC_FAILED)
39 PROMPT( "inform grasping_failed <result")
40 )

Figure 3: Ravenclaw’s dialog task specification for the
Grasp agency and its subagents.

Most requirements of our target scenarios could be real-
ized with Ravenclaw. When it comes to a real-world robotic
scenario, a shortcoming might however be that the dialog
task tree largely pre-defines the interaction flow. As sug-
gested in our target scenario, a robot needs to react not only
to the user’s utterance, but also to many kinds of events
that occur in its environment. With Ravenclaw, this can be
achieved by controlling the navigation through the task tree
with pre- and postconditions. However, for highly unstruc-

tured scenarios with many possible paths through the task
tree, the dialog structure may thus become unclear, up to
unstructured spaghetti code at the worst. Already our toy
scenario contains a number of ”jumps” in the control flow in
order to react to the current interaction goal, the user’s focus
shifts and the back-end results.

Further, we encountered difficulties regarding the asyn-
chronous coordination of back-end calls. While Ravenclaw
does support asynchronous back-end calls, it does not pro-
vide mechanisms that support a further communication be-
tween dialog and back-end about a running back-end action.
In the target scenario, grasping was therefore implemented
using a blocking back-end call, which enables the robot to
report success or failure when it is done. With the blocking
back-end call however, the interaction can not be maintained
during action execution, and also the possibility to cancel the
action could not be realized.

Another issue is reusability. Even for our basic test
scenario, the dialog task specification shown in figure 2
contains several agencies that have a similar structure,
e.g. ObtainLabel and ObtainGrip, or ListObjects and
GripQuery, and one can easily think of another agency with
the same structure as the Grasp agency, e.g. a following or
navigation task. With the Inform, Expect and Execute agents
as the only unit of pre-modeled conversational capabilities,
Ravenclaw does not account for such recurring structures,
which are not specific to robotics but will occur in any
domain.

A new version of the Olympus dialog architecture (in
which Ravenclaw is embedded) was described briefly in
(Raux and Eskenazi 2007). This new version (which is not
the one we have used) features a multi-layer architecture
for event-driven dialog management. It was originally
designed to address the issue of reacting to conversational
events in real-time so as to enable flexible turn-taking and
to react on barge-ins. With the proposed architecture, also
non-conversational events (e.g. perceptual events) can
be handled. It therefore seems probable that some of the
above difficulties could be resolved with it. In particular,
with an event-based architecture, the dialog manager could
react directly to a change of the current interaction goal.
Also, it could react to update events of a robot action (such
as grasping begins), while keeping the interaction going.
However, it lacks an overarching structure for temporally
extended actions (such as the tasks in the PaMini framework
described in case study 4), and it lacks a generic mechanism
for handling such events (such as the task state protocol in
PaMini). This means that the event processing, i.e. keeping
track of the dialog moves associated with events, is still left
to the developers.

Apart from the above difficulties, Ravenclaw has proven
to support many aspects of the target scenario very effi-
ciently. For one, speech understanding integrates naturally
into dialog modeling and output generation. The concepts
of the semantic speech understanding grammar designed by
the scenario developer are available within the dialog speci-
fication and within the output generation component. Dialog



variables need not be specified explicitly.
Further, Ravenclaw uses a generic grounding model that

provides several strategies for concept grounding, such
as implicit and explicit confirmation strategies, and non-
understanding recovery strategies, such as repeating the
original prompt, or asking the user to repeat or rephrase (Bo-
hus and Rudnicky 2008). The grounding policies are speci-
fied in a configuration file, which is the reason why the dia-
log task specification in figure 2 does not contain agents for
confirming and correcting label and grip.

Finally, the fact that Ravenclaw does not provide pre-
modeled conversational structures can also be viewed as a
benefit: the scenario developer does not have to stick to the
structures provided, but has full control over the dialog flow.

Case study 2: Implementing the Curious
Robot with Collagen/Disco

The second approach we looked at is the collaboration man-
ager Collagen (for Collaborative agent) (Rich and Sidner
1998). Even though it is rather a plug-in for intelligent user
interfaces than a dialog system in the narrower sense, we
included it in our case studies because it investigates some
aspects that are very relevant for robotics, such as agents
communicating about a task and coordinating their actions
in order to work towards a shared goal, while accounting for
physical actions as well. Unlike a real dialog system, Col-
lagen takes rather an observational role, relying on the col-
laborative interface paradigm. In this paradigm, a software
agent assists the user in operating an application program,
both communicating with each other as well as with the ap-
plication. They are informed about each others’ actions ei-
ther by a reporting communication (”I have done x”) or by
direct observation. The Collagen framework can be seen as
the mediator of the communication between the agent and
the user.

Various desktop applications have been developed based
on Collagen, including assistants for air travel planning,
email and a programmable thermostat. Our case study was
however not conducted with the Collagen framework itself,
but with its open-source successor Disco.

Collagen has a task model that defines for the specific
application domain the typical domain goals and procedures
for achieving them. The task model is a collection of
goal decomposition rules, called recipes. Collagen tracks
the user’s progress with respect to the task model and
automatically generates system utterances and choices for
user utterances, based on the current discourse state. One
component of the discourse state is the focus stack, rep-
resenting its attentional aspects. The focus stack contains
hierarchical discourse segments, each contributing to a
specific SharedPlan. A Shared plan corresponds to the
intentional aspects of the discourse and is represented as
(possibly still incomplete) plan tree, specifying the actions
to be performed, and by whom.

Figure 4 shows a collection of recipes that specify our tar-
get scenario. The upper part of the figure shows the top-level
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Figure 4: Collagen’s recipes for the Curious Robot scenario.

goals Greeting, ObjectQuery (i.e. the user asks to enumer-
ate the objects learnt), GripQuery (i.e. the user queries the
appropriate grip for a specific object) and Goodbye, each of
which can be achieved by a robot’s action. For instance, the
goal Greeting can be achieved by the robot’s SayHello ac-
tion. It may seem somewhat surprising that the mutual greet-
ing can be achieved by the robot’s SayHello action alone,
but the user’s greeting was already carried out with the user
selecting the top-level goal Greeting (utterances U1, R1 in
table 2). The top-level goal RobotInitiative, shown in the
lower part of figure 4, covers the goals and actions concern-
ing the robot’s initiative. It is divided into the subgoals Ob-
tainLabel, ObtainGrip and Grasp, each with an applicability
condition over the current interaction goal. The subgoal Ob-
tainLabel can be achieved with the user executing TellLabel
and the robot executing SaveLabel; likewise with Obtain-
Grip. Again, it might seem surprising that the ObtainLabel
subgoal does not imply a robot action such as AskLabel, but,
similar as with the greeting, the robot’s label query is ex-
pressed as a suggestion to the user to execute TellLabel (cf.
table 2, utterances R2 and U3).

Listing 5 shows how the recipe for RobotInitiative is
coded in the XML task specification language. It is decom-
posed into its three subtasks (lines 3, 12 and 21), which
again are decomposed further (lines 5-6, 14-15 and 22).
Lines 4, 13 and 22 encode the applicability conditions for
the respective subtask. The value of the built-in variable ex-
ternal indicates whether it is the user or the system who is
supposed to execute the subtask. For example, TellLabel is
assigned to the user (line 7), while SaveLabel is assigned to
the system (line 8). Further, variables can be passed from
one subtask to another, for instance the label (line 9) or the
grip name (line 18). A task model description may also con-
tain JavaScript fragments that connect the model with the
underlying application or device, as required for polling the
current interaction goal (lines 5, 19, 33).

The dialog example shown in table 2 illustrates in detail
how the dialog evolves from these recipes: the user selects
the top-level goals, and the robot either performs its part of
the task, if possible, or suggests an appropriate action to the
user.

A fundamental difference to the implementation with
Ravenclaw is that rather than the dialog flow itself, only
the task needs to be specified. Based on the current dis-
course state and the recipes, the dialog is generated auto-
matically out of a generic rule framework (Rich et al. 2002).
Rules specify the system’s next action for a particular situa-



Configured utterance Generated utterance Comment
U1 Hello. Let’s achieve Greeting. User selects goal Greeting
R1 Hello. Ok. Robot executes SayHello
U2 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal label

R2 What is that? Please execute TellLabel. Robot asks user to perform TellLabel
U3 An apple. An apple. User asserts that TellLabel done
R3 Ok. Ok. Robot executes SaveLabel
U4 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal grip

R4 How should I grasp it? Please execute TellGrip. Robot asks user to perform TellGrip
U5 What objects do you What objects do you Focus shift: User selects goal ObjectQuery

know already? know already?
R5 Ok. Ok. Robot executes ListObjects
R6 How should I grasp it? Please execute TellGrip. Back to TellGrip
U6 With the power grasp. With the power grasp. User asserts that TellGrip done
R7 Ok. Ok. Robot executes SaveGrip
U7 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal grasp
Robot executes Grasp

R8 Ok. Ok. Grasp failed
U8 Goodbye. Let’s achieve Goodbye. User selects goal Goodbye
R9 Goodbye. Ok. Robot executes SayGoodbye

Table 2: Example dialog for the Curious Robot implementation with Collagen/Disco.

1 <task id="RobotInitiative">
2
3 <subtasks id="ObtainLabel">
4 <applicable > interactionGoal () == "label" </applicable >
5 <step name="TellLabel" task="TellLabel"/>
6 <step name="SaveLabel" task="SaveLabel"/>
7 <binding slot="$TellLabel.external" value="true"/>
8 <binding slot="$SaveLabel.external" value="false"/>
9 <binding slot="$SaveLabel.label" value="$TellLabel.label"/>

10 </subtasks >
11
12 <subtasks id="ObtainGrip">
13 <applicable > interactionGoal () == "grip" </applicable >
14 <step name="TellGrip" task="TellGrip"/>
15 <step name="SaveGrip" task="SaveGrip"/>
16 <binding slot="$TellGrip.external" value="true"/>
17 <binding slot="$SaveGrip.external" value="false"/>
18 <binding slot="$SaveGrip.grip" value="$askGrip.grip"/>
19 </subtasks >
20
21 <subtasks id="Grasp">
22 <applicable > interactionGoal () == "grasp" </applicable >
23 <step name="ExecGrasping" task="ExecGrasping"/>
24 <binding slot="$ExecGrasping.external" value="false"/>
25 <binding slot="$success" value="$ExecGrasping.success"/>
26 </subtasks >
27
28 </task>

Figure 5: Collagen’s recipes for the Robot Initiative goal.

tion. For instance, the Execute rule specifies that a primitive
task that is assigned to the agent should be executed directly,
whereas the AskWho rule says that for a task whose executor
is not determined, the system should return an utterance of
the form ”Who should perform goal?”. Collagen provides a
collection of default rules, and further rules can be plugged
in to implement a different collaboration style.

The generated output can be customized as to how tasks
can be referred to and how their execution is confirmed.
Table 2 contrasts the customized version of the output with
the automatically generated version, e.g. ”Hello” versus
”Let’s achieve Greeting” in utterance U1. Additionally, the
rules generate not only the system’s next action but present
also the agenda for the user, i.e. choices for the user to say,
or rather to type. For example, choices generated after the
robot’s label query include rejecting the proposed action
(”I’m not going to anwer your question”), abandoning the
top-level goal (”Let’s not explore the objects on the table”)

and focus shifts (”What objects do you know already?”,
”How do you grasp a banana?”).

Although our target scenario is not at all the type of sce-
nario Collagen was intended for originally, many require-
ments of the target scenario could be realized with it. Its
model of collaborative discourse, wherein two interaction
partners collaborate on a task by proposing and performing
actions, supports very well the focus shifts that were stipu-
lated in the specification. In contrast, the robot’s task ini-
tiative that generates its query for label and grip could not
be implemented using the default agent that comes with the
framework since it does not suggest top-level goals on its
own. It should however be easily possible to adapt the de-
fault implementation such that it is able to propose Obtain-
Label, ObtainGrip and Grasp autonomously. For the case
study, we worked around this problem by introducing the
top-level goal RobotInitiative, which the user is to select ex-
plicitly (”Let’s explore the objects on the table.”), where-
upon the robot chooses between ObtainLabel, ObtainGrip
and Grasp, depending on the current interaction goal.

Another problem we encountered affects the communica-
tion of back-end results, such as the success of grasping or
the robot’s enumeration of the objects learnt. Collagen does
not support variable system utterances, e.g. by template-
based output generation. This is the reason why the robot
simply answers Ok when the user asks to enumerate the
known objects (cf. R5 in table2), or why the robot does
not communicate that grasping has failed (cf. R8 in table
2). Admittedly, Collagen does not claim to be a complete
natural-language processing system, and within the collabo-
rative interface-agent paradigm it would probably be the un-
derlying application that is responsible for representing the
application-specific results to the user.

The automatic generation of system utterances is a very



1 infostate(record ([is:record ([
2 utterance:atomic ,
3 interpretation:atomic ,
4 task_event:atomic ,
5 interaction_goal:atomic ,
6 listening:atomic ,
7 awaiting_event:atomic ])])).
8
9 urule(getInteractionGoal ,

10 [eq(is:interaction_goal ,’’)],
11 [solve(getInteractionGoal(X),
12 [assign(is:interaction_goal ,X)]) ,]).
13
14 urule(waitForUtterance ,
15 [eq(is:listening ,yes)],
16 [solve(recognize(X, Y),
17 [assign(is:utterance , X),
18 assign(is:interpretation , Y),
19 assign(is:listening , no )])]).
20
21 urule(processLabel ,
22 [eq(is:interpretation ,label),
23 eq(is:interaction_goal , label)],
24 [solve(store(is:utterance)),
25 solve(say(is:utterance Okay)),
26 assign(is:interaction_goal , ’’),
27 assign(is:utterance , ’’),
28 assign(is:interpretation , ’’)]).
29
30 urule(LabelQuery ,
31 [eq(is:interaction_goal ,label)],
32 [solve(say(’What is that ’),
33 [assign(is:listening ,yes )])]).

Figure 6: Dipper’s information state definition and update
rules for the robot’s label query.

powerful technique. However, while the wording of the gen-
erated utterances can be configured, the developer can not
control when utterances are generated. This is the reason
why the begin of grasping can not be announced (cf. R8 in
table 2). Also, generating utterances automatically leads to
asymmetry in the task model: while some of the user utter-
ances are explicitly represented as subtasks (e.g. TellLabel
and TellGrip), the system utterances are not present in the
task model.

The most serious shortcoming pertains to error handling.
The task model provides a built-in success variable, indicat-
ing the success of a subtask. It is used to control replanning.
However, a binary value might not always provide sufficient
information. Some applications might want to discriminate
between a failure and a rejection of the subtask, or between
different error causes. For instance, if a plan fails because
the underlying application is otherwise busy, it might be rea-
sonable to re-execute the plan later, whereas retrying might
be pointless if the requested functionality is unavailable in
general.

Finally, just as the Ravenclaw framework, Collagen does
not provide mechanisms for asynchronous coordination of
task execution. Thus, neither the continuation of the interac-
tion during grasping could be realized, nor could the grasp-
ing action be canceled.

Case study 3: Implementing the Curious
Robot with Dipper

In the third case study, we explored the Information State
(IS) approach to dialog modeling (Traum and Larsson 2003)
whose key idea is that the dialog is driven by the relevant
aspects of information (the information state) and how they
are updated by applying update rules, following a certain
update strategy. The term information state is intentionally
kept very abstract. One may choose to model the external
aspects of the dialog, such as variables to assign, or rather
the internal state of the agents, such as goals, intentions,
beliefs and obligations, in order to realize a plan-based

dialog management. The Prolog-based TrindiKit is known
as the original implementation of the IS approach (Traum
and Larsson 2003). Others followed, based on different
programming languages. For our case study, we chose the
stripped-down re-implementation Dipper (Bos et al. 2003).

Dipper is set on top of the Open Agent Architecture
(OAA), a C++ framework for integrating different software
agents in a distributed system (Martin, Cheyer, and Moran
1999). OAA agents provide services that other agents may
request by submitting a high-level Interagent Communica-
tion Language (ICL) expression (a solvable, which can be
viewed as a service request) to the facilitator agent that
knows about all agents and mediates the interaction be-
tween them. In addition to the facilitator and the Dipper
agent, the implementation of the target scenario includes
a SpeechRecognitionAgent and a TTSAgent for (simulated)
speech in- and output, a MotorServer agent that simulates
grasping, an ObjectDatabase that stores object labels and
the associated grip, and an ActionSelection agent that selects
the current interaction goal.

The upper part of listing 6 (lines 1-7) shows the informa-
tion state for the Curious Robot scenario, which is designed
such that it models the most obvious information, namely
the current interaction goal (line 5), the current user utter-
ance and its interpretation (line 2-3), and incoming events
from the back-end task (line 4). Further, it contains control
flags that determine whether the system is ready to receive
speech input (line 6) or task events (line 7).

The lower part of listing 6 (lines 9-33) shows the update
rules that are necessary to realize the robot’s label query.
Update rules are written in the Prolog-like Dipper update
language, specified by the triple 〈name, conditions, effects〉,
with name a rule identifier, conditions a set of tests on
the current information state, and effects an ordered set of
operations on the information state. The first rule, getInter-
actionGoal, deals with the situation when no interaction
goal is set (line 10). In that case, an OAA solvable is sent
that polls the interaction goal (line 11) and updates the
information state with the result (line 12). The second rule,
waitForUtterance, is applicable if the listening flag is set
(line 15). It posts a solvable for the SpeechRecognitionAgent
(line 16), integrates the result into the information state
(lines 17-18) and resets the flag (line 19). The processLabel
rule applies if the user has given an object label (line 22-23).
It posts solvables for acknowledging and storing the label
(lines 24-25) and resets the information state (lines 26-18).
The last rule, LabelQuery, posts a solvable that will trigger
the label query and set the flag for receiving speech input
(lines 32-33), if the current interaction goal is label (line 31).

When implementing the target scenario, we found the idea
of a central information state that determines the next steps
of the interaction to be very intuitive. Also, the division of
responsibilities between distributed agents enables a mod-
ular approach that roughly resembles the distributed event-
based architecture of the original system.

However, we encountered problems with respect to the
update rules and the update strategy. While TrindiKit leaves



it to the developer to implement the (possibly highly com-
plex) update strategy, Dipper provides a built-in update strat-
egy that simply selects the first rule that matches, applies its
effects to the information state, and starts over with check-
ing the first rule again. This means that rules are executed
on a first-come, first-served principle, where the order of the
rules matters, resulting in a brittle system behavior. In our
case study, this is the reason why e.g. the processLabel rule
is defined before the LabelQuery rule. If it was the other
way round, the system would loop over the LabelQuery and
never execute ProcessLabel. Of course, we could overcome
the problem by introducing additional control flags, which
would make the information state unnecessarily complex.
As a result of this update strategy, some requirements of the
target scenario could not be realized.

Focus shifts could only partly be implemented. The prob-
lem was not to define the appropriate update rules (e.g.
processListObjects), but rather that user utterances are pro-
cessed only at specific points in time, that is, only if the
listening flag (which we have adopted from the example in
(Bos et al. 2003)) is set. Thus, a focus shift may be initiated
only when the robot expects the user to speak, e.g. after hav-
ing asked the label query. If the rule for speech recognition
was applicable at any time, it might conflict with other rules.

Also, asynchronous coordination, which the OAA frame-
work actually supports well, could only partly be realized,
due to the first-come, first-served update strategy that en-
ables speech input only at certain points. Thus, the robot’s
feedback on the grasping action could be realized by explic-
itly waiting for respective task events by virtue of the wait-
ForTaskEvent rule, whereas the possibility to cancel an on-
going grasping action could not be implemented because the
waitForUtterance rule would have conflicted with the wait-
ForTaskEvent rule.

Another issue is that the update rules handle both orga-
nizational tasks (such as polling different input sources or
producing output) and dialog management tasks. A clear
separation of concerns could make the dialog strategy more
obvious and prevent the information state from being over-
loaded with control flags.

In a real-world application, testability and maintainability
might become issues. As rule systems get more complex,
their behavior can become very hard to predict. Already
in our simplified Curious Robot implementation, which re-
quired about 15 rules, it was not easy to identify the actual
dialog flow.

Case study 4: Implementing the Curious
Robot with PaMini

Finally, we re-implemented the target scenario with the
PaMini approach that we have suggested recently (Peltason
and Wrede 2010b), (Peltason and Wrede 2010a). In contrast
to the above dialog frameworks, PaMini targets specifically
human-robot interaction.

One key idea of the approach is the concept of tasks that
can be performed by components. Tasks are described by
an execution state and a task specification that contains the
information required for execution. A task state protocol

specifies task states relevant for coordination and possible
transitions between them. Typically, a task gets initiated, ac-
cepted, may be canceled or updated, may deliver intermedi-
ate results and finally is completed. Alternatively, it may be
rejected by the handling component or execution may fail.
Task updates cause event notifications which are delivered
to PaMini (and to other participating components). From di-
alog system perspective, the task state protocol establishes
a fine-grained – yet abstract – interface to the robotic sub-
system. PaMini is backed by the integration toolkit XCF
(Wrede et al. 2004), but could in principle be used with any
middleware that supports the task state protocol.

Internally, PaMini relies on generic interaction patterns
that model recurring conversational structures, such as mak-
ing a suggestion or negotiating information. They are
defined at an abstract level, but can be tailored with an
application-specific configuration. Interaction patterns are
visualized as a finite-state transducer, taking as input either
human dialog acts or the above task events, and producing
robot dialog acts as output. In the states, actions such as
task or variable updates may be executed. By combining the
task states with robot dialog acts, the conversation level is
related with the domain level. At run-time, patterns can be
interleaved to achieve a more flexible interaction style.

The interaction patterns have been extracted from dif-
ferent human-robot interaction scenarios, most notably
a home-tour scenario in which a mobile robot acquires
information about its environment, and the (original)
Curious Robot scenario. Since then, PaMini has been
used in many further scenarios, ranging from a virtual
visitor guide to a robot assistant that has been sent to
the RoboCup@Home 2011 competition. Technically, the
patterns are implemented as statecharts (Harel 1987), using
the Apache Commons SCXML engine (Apache Commons
2007), and wrapped in a Java API.

To realize the target scenario, we have set up a distributed
system with (simulated) components that communicate via
the task state protocol. The system includes components for
speech in- and output, an action selection component, and
a motor server. This breakdown is similar to the one in the
Dipper-based implementation.

When selecting the interaction patterns to use, we found
that in some cases more than one pattern provided by PaMini
was appropriate. For instance, there are a few patterns mod-
eling a robot information request, differing in the confirma-
tion strategy (implicit or explicit). Also, the system-initiated
action may be cancelable or not, and the robot may ask
for permission before action execution or not. For our tar-
get scenario, we chose an explicit confirmation strategy and
non-acknowledged yet cancelable action execution. Alto-
gether, we used seven patterns, one each for greeting, part-
ing, the robot’s label and grip query, the user’s test questions
and the robot’s self-initiated grasping.

The upper part of figure 7 shows the Robot Self-Initiated
Action pattern, required for the grasping action. First, the
robot announces its intended action. Next, PaMini initiates
the associated system task. As the handling system com-
ponent accepts the task, the robot asserts action execution.



Once the task is completed, the robot acknowledges. Ad-
ditionally, the pattern handles the various possible faults.
Listing 8 shows an excerpt of the associated dialog act con-
figuration. It determines conditions for the human dialog
acts and how exactly the robot dialog acts should be ex-
pressed, both being possibly multimodal. The dialog act
R.acknowledge in the state asserted, for instance, is specified
as the utterance I finished grasping (lines 1-5). Similarly, in
order to be interpreted as H.cancel, the XML representation
of the user utterance has to match the XPath expression /ut-
terance/cancel (lines 13-16).

Apart from the dialog acts, the developer has to config-
ure the task communication (i.e. the task specification for
tasks initiated by the dialog system, and possible task state
updates), as well as the definition of variables (used for pa-
rameterizing the robot’s dialog acts and within the task spec-
ification). While the dialog act configuration is written in the
domain-specific XML configuration language as depicted in
listing 8, the latter two are specified by extending Java base
classes. Since not each pattern involves task communication
or the use of variables, only the dialog act configuration is
obligatory.

The definition of variables and the task communica-
tion often goes hand in hand. For instance, the robot’s
label query is modeled using the Correctable Information
Request pattern, shown in the lower part of figure 7. As
soon as the human answers the robot’s information request
(R.question and H.answer, respectively), the object label
is extracted from the user utterance and assigned to an
appropriate variable (cf. update-variable-context in state
await confirmation), which is then used to parameterize
the robot’s confirmation request R.askForConfirmation (e.g.
’Apple. Is that correct?’), and to augment the task specifi-
cation with the label so as to transfer it to the responsible
system component.

As the Curious Robot has been one of the development
scenarios for PaMini, it is not surprising that all of the stip-
ulated requirements could be met. With the task state pro-
tocol, state updates of temporally extended back-end calls
such as grasping are delivered by event notification, enabling
PaMini to give feedback on the on-going action, as illus-
trated in table 3 (R8, R10). Conversely, PaMini can update
or cancel tasks on-line (U7-R10). By admitting interleav-
ing interaction patterns, the interaction can be maintained
during task execution. During the robot’s grasping action,
for instance, the user initiates a focus shift by asking a ques-
tion (U6-R9), which is modeled by interleaving a Robot Self-
Initiated Action pattern with a Human Information Request.

Perhaps the most striking difference to the other dialog
frameworks affects discourse planning. While local dis-
course planning is determined by the interaction patterns,
global discourse planning – i.e., how the patterns are com-
bined – is not done within the dialog framework, but is de-
cided by the back-end (or by what the user says, of course).
This enables the dialog system to respond to the dynamic
environment in a flexible and reactive way.

While the other frameworks discussed provide generic
strategies for grounding or collaboration, PaMini goes

1 <robotDialogAct
2 state="asserted"
3 type="R.acknowledge">
4 <verbalization
5 text="I finished grasping."/>
6 </robotDialogAct >
7
8 <robotDialogAct
9 state="asserted"

10 type="R.apologize">
11 <verbalization
12 text="Sorry , I failed to grasp the %OBJECT %."/>
13 </robotDialogAct
14
15 <humanDialogAct
16 state="asserted"
17 type="H.cancel"
18 xpath="/utterance/cancel"/>

Figure 8: An excerpt from PaMini’s dialog act configuration
for the robot’s grasping action.

one step further in this respect by providing pre-modeled
”building blocks of interaction”, intended to encapsulate the
subtleties of dialog management and domain integration.
Both a usability test (Peltason and Wrede 2010a) and our
first experiences with the framework support that interaction
patterns enable developers to rapidly implement new inter-
action scenarios. Furthermore, as the interaction patterns
are kept self-contained, new features can be added without
breaking existing functionality (of which we are running
the risk e.g. with Dipper’s update rules). This significantly
eases incremental system development.

As PaMini has been developed with robotics in mind, it
might exhibit a couple of deficiencies when applied to non-
robotics scenarios. First, the definition of variables is not
as straightforward as e.g. with Ravenclaw, where variables
are derived directly from the semantic speech recognition
grammar. PaMini, in contrast, leaves variable handling to
the developer. Also, as PaMini does not maintain an explicit
representation of the information that needs to be gathered
during the dialog, overanswering is not supported. Relying
on tasks as the fundamental concept that drives the inter-
action, PaMini could be referred to as an action-oriented,
rather than as information-oriented approach.

Also, as PaMini outsources much of the responsibility for
discourse planning to the back-end, little support is provided
for interactions whose structure is determined by the current
dialog state (or the current information state) rather than by
an ”intelligent back-end”. This might be a hassle in informa-
tion negotiating scenarios, in which the back-end typically
plays a more passive role.

In general, the interaction patterns, how useful they may
be, definitely impose restrictions on the developers. Though
patterns for many purpose do exist, the framework is not
designed such that new patterns can be implemented by non-
experts easily.

Discussion
Our case study was performed with the goal to identify
pitfalls and potential remedies as well as potential future
challenges for dialog modeling on robots. As the case
studies have shown, none of the investigated frameworks
overcomes all problems in one solution. However, the
summary of the results as depicted in Table 4 allows to draw
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initiate-task()

 / R.announce task.rejected / R.refuse

asserted
 

task.accepted / R.assert
task.completed / R.acknowledge

task.failed / R.apologize

cancel_requested
update-task-state(abort)

H.cancel / task.canceled / R.acknowledge

task.cancel_failed / R.refuse

asked
update-dialog-task-state(accepted)

 / R.question
await_confirmation

update-variable-context(userInput)
update-dialog-task-spec

update-dialog-task-state(result_available)

H.answer / R.askForConfirmation
H.negate / R.question

H.correct / R.askForConfirmation

confirmed
update-dialog-task-state(completed)

H.confirm / R.acknowledge  / 

Figure 7: Two example interaction patterns. The upper part shows the Robot Self-Initiated Cancelable Action pattern, which
is used to model the robot’s grasping action. The lower part shows the Robot Information Request With Explicit Confirmation
pattern, which is used to model the robot’s label and grip queries.

Utterance Comment Active Interaction Pattern
U1 Hello. Human Interaction Opening
R1 Hi, hello. Human Interaction Opening
R2 What is that? Back-end publishes interaction goal label Robot Information Request with Explicit Confirmation
U2 This is a lemon. Robot Information Request with Explicit Confirmation
R3 Melon. Is that correct? Robot Information Request with Explicit Confirmation
U3 No, it’s a lemon! Robot Information Request with Explicit Confirmation
R4 Lemon. Is that correct? Robot Information Request with Explicit Confirmation
U4 Yes, this is correct. Robot Information Request with Explicit Confirmation
R5 How should I grasp the lemon? Back-end publishes interaction goal grip Robot Simple Information Request
U5 With the power grasp. Robot Simple Information Request
R6 Alright. Robot Simple Information Request
R7 I am going to grasp the lemon. Back-end publishes interaction goal grasp Robot Self-Initiated Cancelable Action

Grasp task initiated by PaMini Robot Self-Initiated Cancelable Action
R8 I start grasping now. Grasp task accepted by back-end Robot Self-Initiated Cancelable Action
U6 How do you grasp a banana? Focus shift and multi-tasking Human Information Request
R9 Sorry, I don’t know. Human Information Request
U7 Stop! Cancel requested by PaMini Robot Self-Initiated Cancelable Action
R10 Ok, I stop. Grasp task canceled by back-end Robot Self-Initiated Cancelable Action
U8 Goodbye. Human Interaction Closing
R11 Goodbye. Human Interaction Closing

Table 3: An example dialog for the Curious Robot implementation with PaMini. Not surprisingly, all requirements could be realized,
including focus shifts, multitasking, and cancellation of an on-going grasping action.

some interesting conclusions. On the one hand there are
challenges that have been solved by most of the four dialog
frameworks such as focus shifts, grounding and separation
between dialog and task structure. On the other hand, the
question how to model the interaction with the back-end
tends to be solved individually by each framework. Binary
success variables, as used in the reasoning-based Colla-
gen/Disco approach seem to be somewhat underspecified
for a satisfying information behavior of the robot. The
user-defined result frame allows for more freedom but also
imposes much knowledge and work on the developer. From
this perspective PaMini’s task state protocol appears to be
a good compromise between both, allowing the developer
an easy and standardized yet flexible interaction with the
back-end. Depending on the solution for the interplay
with the back-end, the discourse planning – which is an
important factor for the user experience – is affected in
different ways: frameworks that are more back-end driven
tend to allow for a less restricted dialog structure.

In order to keep our case studies simple, we have lim-

ited the target scenario to verbal interaction. Nevertheless,
nonverbal behaviors and multimodality are crucial aspects in
situated dialog. Except for Collagen/Disco, which relies on
text in- and output, multimodality could have been realized
with all of the discussed dialog managers, as they operate at
the semantic level below which the in- and output sources
may be exchanged. The new version of Ravenclaw supports
multimodal in- and output by providing agents for modal-
ity integration and for the production of multimodal output
(Raux and Eskenazi 2007). Both Dipper and PaMini rely on
a distributed architecture with arbitrary sources for in- and
output. PaMini, for instance, provides a collection of avail-
able output modalities such as pointing gestures or mimics
(depending on the robot platform), that can be combined.
However, neither Dipper nor PaMini handles the issues of
input fusion and output synchronization.

Moreover, human-robot interaction demands more than
classical 1:1 interactions. Often, the robot will be situated in
environments where multiple possible interaction partners
are present, or a robot might even have to collaborate with
other robots. Thus, the capability of multi-party interaction



is another crucial requirement. PaMini has recently been
extended so as to be able to manage multiple interactions
(with multiple participants each), and a multi-party engage-
ment model (Bohus and Horvitz 2009) has been integrated
(Klotz et al. 2011). Ravenclaw has provisions for the
opposite case, in which multiple robots collaborate, forming
a team (Dias et al. 2006).

Overall, the results and insights from our case studies in-
dicate that the focus of future research will lie on the seman-
tic processes, such as reasoning or back-end commnication.
This relates to the questions that we have not targeted in our
present investigation, such as how to couple reasoning with
dialog structure. This entails – among others – how to make
reasoning processes transparent to the user without over-
loading answers with technical details, but also how to in-
teractively incorporate user input into the reasoning process.
Semantic processes also relate to back-end communication
which grounds the communication in physical, real-world
actions and thus opens up new possibilities with respect to
core linguistic questions of semantic respresentation, refer-
ence resolution or non-verbal communication. From this
perspective we can expect human-robot interaction to have
a boosting effect on dialog modeling research.
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Ravenclaw Collagen/Disco Dipper PaMini
Type of approach Descriptive Plan-based Plan-based Descriptive
Dialog specification C++ Macros XML Prolog-like Dipper update

language
Java and XML

Back-end specification Arbitrary components JavaScript Arbitrary components Arbitrary components
Discourse planning Task tree Recipes Information state update

rules
Locally: Interaction
Patterns, globally:
Back-end

Communication with
Back-end

User-defined result frame Optional binary success
variable

Interagent
Communication
Language

Task State Protocol

Relationship between
dialog and task
structure

Separated Dialog structure emerges
from task structure

Separated Separated

Pre-modeled
conversational skills

Grounding and repair Collaborative plan
execution

No Patterns for various
situations

Visualization No No No Yes
Grounding model Explicit None Explicit Implicit
Plan recognition,
planning

No Yes Yes No

Focus shifts Yes Yes Partial Yes
Asynchronous
Coordination

No (latest version: Yes) No Yes (polling-based) Yes (event-based)

Multimodality Yes No Yes Yes
Multi-party interaction Yes, n systems:1 user No No Yes, 1 system:n users

Table 4: Comparison of dialog modeling approaches.
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