
DIUM – An Incremental Dialogue Manager
That Can Produce Self-Corrections

Okko Buß
University of Potsdam

Germany
okko@ling.uni-potsdam.de

David Schlangen
Bielefeld University

Germany
david.schlangen@uni-bielefeld.de

Abstract

Incremental processing offers the potential
for dialogue systems to produce more natu-
ral, spontaneous conversational behaviour. This
processing strategy comes at a price, though,
which is that processing results may have to
be revised when more input becomes available.
We distinguish between two possible conse-
quences of such revisions: a) If no observable
system reaction has been produced yet, revi-
sion is just a matter of properly keeping inter-
nal state, and can be handled along the lines
of the IU model of (Schlangen and Skantze,
2009). b) If however an observable reaction
has been produced, revocation itself becomes
a dialogue move, and as such must be handled
by the dialogue manager. In this paper, we de-
scribe a dialogue manager that is capable of
doing so, and provide a first discussion of how
to handle such self-corrections when produc-
ing output. This dialogue manager makes a
connection between utterance-level incremen-
tality and dialogue-level incrementality by us-
ing concepts from the IU model also internally;
we discuss some of the implications of this
approach.

1 Introduction

As much recent work has shown, incremental (or
online) processing of user input or generation of sys-
tem output helps spoken dialogue systems to pro-
duce behaviour that is perceived as more natural than
and preferable to that produced by systems that are
bound by a turn-based processing mode (Aist et al.,
2006; Skantze and Schlangen, 2009; Buß et al., 2010;
Skantze and Hjalmarsson, 2010).

However, incremental processing adds another di-
mension of uncertainty to the dialogue management
task, which is that hypotheses can be unstable and
get revised in the light of later information. This has
been studied mostly in the context of speech recogni-
tion, where word hypotheses may change as more of
the utterance is heard (see e.g. (Baumann et al., 2009;
Selfridge et al., 2011) — for example, a hypothesis
of “four” may turn into one of “fourty” — but it can
in principle occur in all modules that are made to
work with incomplete input (see e.g. (DeVault et al.,
2009; Atterer and Schlangen, 2009; Schlangen et al.,
2009; DeVault et al., 2011) for Natural Language
Understanding, (Skantze and Hjalmarsson, 2010) for
Natural Language Generation).

In their abstract model of incremental processing
(henceforth, the IU model, where IU stands for In-
cremental Unit), Schlangen & Skantze (2009, 2011)
describe in general terms methods for dealing with
such revisions,1 and note that additional work may
be needed if hypotheses are revoked on which ob-
servable system behaviour has already been based.
Previous work on dialogue management for incre-
mental systems—to our knowledge, this comprises
only (Buß and Schlangen, 2010; Buß et al., 2010)–
does not yet carry out this additional work. In this
paper, we aim to rectify this, and provide a dialogue
management model that can deal in a principled way
with this situation.

The rest of this paper is structured as follows: in
Section 2 we describe in more detail the problem
mentioned above and list possible strategies for deal-

1See (Schlangen et al., 2010) for concrete instantiations of
this model in middlewares for dialogue systems.

A
B

C

Figure 1: Schematic illustration of the problem (as de-
scribed in text below)

ing with it. In Section 3 we develop our variant of
one of those and illustrate how it offers a principled
solution. We briefly describe our test implementation
in Section 4. In Section 5 we discuss some further
directions beyond addressing this particular problem
are for our approach. We finish with a conclusion and
outlook in Section 6.

2 The Problem, and Possible Solutions

Figure 1 gives a schematic illustration of the problem
that we set out to tackle in this paper. In the beginning,
a module A (which could be a module that processes
user input or it could be a module that realises system
intentions in an incremental fashion) decides that is
can form an hypothesis about its input (the three
bars on the left in the illustration), and passes this
hypothesis on to later modules B and C. These in turn
produce hypotheses, which they pass on, ultimately
producing observable system behaviour (the three
bars on the right in the illustration).

The fact that output has been produced now lends
a special status to the hypothesis on which it was
based; in the terms of the IU model (Schlangen and
Skantze, 2011), this hypothesis is now committed.
Unfortunately, however, while this further processing
has been going on, additional input to A has become
available which leads this module to substitute a new
hypothesis for the old one. Now not only that new
hypothesis has to be communicated to the later mod-
ules, but also the fact that the old hypothesis is not
deemed viable anymore. If only internal state is con-
cerned, as is the case with module B, that poses no
problem: the hypothesis that was based on the now
defunct input hypothesis is revoked as well, and the
new input hypothesis is used to generate a new one.

This, however, is not possible for modules that ulti-
mately realise the system behaviour (here, module
C), since their output may have been observed and
thus become public knowledge already.

What is a dialogue system to do in such a case? In
the following, we discuss several possible strategies.

2.1 Solution 1: Reducing Revisions
The first strategy for tackling the problem that one
might think of is to try to attack it at its root, the
instability of hypotheses: if revisions would never (or
only very rarely) occur, situations in which system
behaviour has to be ‘taken back’ would not (or rarely)
occur.

Previous work has shown that hypothesis insta-
bility shows itself typically only with respect to the
most recent input (Baumann et al., 2009). If sending
out hypotheses is delayed until more potentially rele-
vant material has been seen—i.e., some right context
is allowed—some of this instability can be reduced.
However, as shown in that paper, if done in such
a way that all or even only most of the revisions
are removed, a rather long delay (roughly 800ms)
is needed, which would reduce responsiveness and
hence the potential advantages of incremental pro-
cessing dramatically. (For comparison, silence thresh-
olds used for end-pointing in non-incremental sys-
tems are commonly set around 700ms, thus this solu-
tion would actually mean performing more poorly on
end-pointing than non-incremental systems.) More
importantly, this approach does not offer a principled
way of dealing with the problem, as there is no the-
oretical limit on how much right context might be
needed to disambiguate earlier hypotheses (cf. the
well-known garden path sentences in parsing).

2.2 Solution 2: Ignoring the Problem
The second possible strategy addresses the other end
of the processing chain, as it were, by simply treat-
ing output as revokable. The idea would be to let
all modules change their internal state if revokes
are requested. In our example, this would mean that
module C removes its internal hypothesis which has
turned out to be based on false assumptions, pro-
cesses the revised input, and possibly produces the
appropriate behaviour without further comment.

This is the strategy followed in the system de-
scribed in (Buß and Schlangen, 2010), which pro-

duced mostly non-verbal signals such as highlighting
areas on a computer screen. While ‘revoking’ such
behaviour is easy to do and less noticeable than, for
example, the system stepping back from a decision to
interrupt the user mid-utterance, it still is a publicly
observable action, and as such in danger of being
interpreted (and possibly even overtly addressed) by
the observant. If the system itself, having returned to
an earlier state, has no record of having performed
such an “undo” of actions, inconsistencies may arise
later on when the user explicitly refers to the mistak-
enly realised action.

2.3 Solution 3: Explicitly Representing and
possibly Acknowledging the Situation

The discussion of the downsides of these two strate-
gies suggests a third strategy, namely to let the system
a) represent to itself that it is in a conflicting state,
and b) decide whether to publicly address it (e.g., by
reverting the effects of its previous action and apolo-
gizing for the ‘mistake’. This is indeed the strategy
that we will detail in the next section.

3 Information States as Graphs of IUs

We will now describe the main ideas behind DIUM,
the IU-based Dialogue Manager that we have devised
for use in incremental dialogue systems, and show
how it handles the problem. For concreteness, we
will use a typical travel-information domain for our
examples, and contrast our approach with a ‘classical’
information state update (ISU) approach (Larsson,
2002) and our own previous attempt at formulating
an incremental ISU variant, iQUD (Buß et al., 2010).

Figure 2 shows prototypical information states
(ISs) according to these approaches. From the left:
the IS labeled QUD is the aforementioned ‘classi-
cal’ IS (example simplified from (Larsson, 2002)),
which keeps record of a current ‘issue’, a ‘plan’ and
latest user and system moves. Next, iQUD, adapted
from (Buß et al., 2010), is an incrementalised version
thereof which uses a compact representation of the
plan (the first column). It also contains in the sec-
ond column for each plan item output instructions
such as relevant non-linguistic actions (RNLA) that
are to be triggered once the appropriate information
is collected; this is used to showcase how the dia-
logue manager (DM) can be made to react as soon

as possible. The structure also records the grounding
status of each relevant bit of information, in the third
column.

Lastly, DIUM is the IS introduced here, consist-
ing of a network of IUs. We will now discuss this
formalisation in some more detail.

3.1 The DIUM Information State

The DIUM information state in Figure 2 represents
the DM’s initial state in our example travel informa-
tion domain. Like the discourse plan in the other two
approaches, it has to be hand-crafted by the system
designer for the domain at hand.

The nodes in the graph can best be thought of
as discourse units (roughly as in (Traum, 1994)),
structuring which ‘chunks’ of information the user is
expected to provide during the dialogue, prompted
or unprompted. These units are incremental units
(IUs) in the terms of the IU-model mentioned above,
and will be called DiscourseIUs henceforth; but note
that these units incrementally build up the dialogue,
where the IUs more typically dealt with in previous
work using the IU model are those building up an
utterance. These nodes take on the role of the findout
items on the QUD or the slots of the iQUD in the
other models mentioned above.

In this example, DiscourseIUs are either termi-
nal slots or inner topic nodes on a tree structure.
Again following the IU-model, they are connected
with one another by two types of same-level links
(SLL, i. e. links that connect IUs from the same mod-
ule; the other type being grounded-in links, GRIN,
which link units across levels of processing.) The
first are called seq, which indicate a sequential re-
lationship (for example to encode order preference
or expectations) and are depicted with dotted arrows
in the figure. The second are dom, which indicate a
dominance/hierarchical relationship, depicted with
solid lines.2 For example, the topic:date unit
dominates slots day and month, which in turn are
connected by a seq link. The semantics of these links
here is essentially: ‘to collect a date, learn about a
day and a month’ and ‘preferably, learn about the day
before the month’, respectively.3

2This taxonomy of relations is inspired by the dominance and
satisfaction-precedence relations of (Grosz and Sidner, 1986).

3Arrangement of DM states or plans in tree-like graphical
structures is of course rather popular and used in various ap-

{ a < origin=O=?; display(O); U >,
 < dest=Ds=? ; display(Ds); U >,
 < date=Da=? ; display(Da); U >,
 < time=T=? ; display(T); U >,
 < ; showRoutes(a); U >}

ISSUE: ?x.routes(x)
PLAN: ⟨
findout(?x.depart city(x)),
findout(?x.dest city(x)),
findout(?x.depart month(x)),
findout(?x.depart day(x)),
findout(?x.depart hour(x)),
findout(?x.depart minute(x)),
consultDB(?x.routes(x))
⟩
LATEST: ⟨ ⟩ PUBLIC: ⟨ ⟩

topic:
origin

topic:
route

topic:
date

city:?

topic:
time

hour:? minute:
?month:? day:?

topic:
dest

city:?

QUD iQUD DIUM

Figure 2: Three types of information states for modelling a travel timetable domain

In this sense, DiscourseIUs represent at the same
time items that the system can ask for as well as
underspecified projections of expected, future input.
This lets them serve both main goals of any DM,
which are to provide context for new input and to ini-
tiate the production of relevant system behaviour. The
former is achieved by checking whether input IUs can
ground DiscourseIUs, fulfilling expectations about
how the dialogue will proceed. The latter similarly
works by linking DiscourseIUs and other IUs, but
this time by creating appropriate output IUs which
are grounded in specific DiscourseIUs. How these
processes work in detail will be discussed next.

3.1.1 Integrating Input
Initially, DiscourseIUs are not connected to any

input (much like the QUD plan items are unanswered
or iQUD slots are unfilled). Incoming incremental in-
put will trigger update rules whose effect includes the
creation of new grounded-in links between relevant
DiscourseIUs and input. Figure 3 provides an exam-
ple showing a subset of the DIUM network. Here, the
DiscourseIUs have become grounded in input-IUs
representing the spoken user input “from hamburg”,
where the WordIUs represent word hypotheses and
the SemIUs are representations of the content of those
words.

Note that the WordIUs arrive incrementally so
that DiscourseIU topic:origin may become
grounded in “from” possibly before “Hamburg” was
even spoken.

What the illustration does not show is how the
update rules arrive at identifying relevant Discour-
seIU-SemIU pairs. For this, the rules encode a search

proaches, see e. g. (Xu and Rudnicky, 2000; Stede and Schlangen,
2004; Ljunglöf, 2009; Bangalore and Stent, 2009). As we will
discuss presently, it is the easy integration into the general IU
model that makes this form of representation attractive here.

topic:
origin

city:?

from

hamburg

topic:
origin

city:
hamburg

WordIU SemIU DiscourseIU

U: from
hamburg_

Figure 3: Integrating “from hamburg” incrementally.

over the DIUM information state, starting from
a ‘focus’ DiscourseIU, i. e. the most recent one to
link with input. When new input arrives, a narrow
search space is traversed, including only Discour-
seIUs that are dominated by this focus node in the
tree structure. If a single matching pair is found here
(a ‘match’ meaning that the two IUs unified, such as
city:hamburg and city:?), the GRIN link is
created as shown. If more than one pair was found,
the system asks the user to clarify between them (as
discussed below). If no matching pairs are found, the
search is extended to cover the entire information
state (not just the subgraph ‘below’ the focus node).
If this second iteration still yields no matching pair(s),
the system requests more information from the user.
In this way recent input (here, “from”) determines
the appropriate context for the current input (here,
“Hamburg”, which without this focus would be am-
biguous, as there there are two city nodes in this
dialogue model where it could fit). At the same time
this mechanism allows users to over-answer (“from
Hamburg on the third of may”) or switch topic (“from,
uhm hold on, on the third of may”) within a single
utterance.

3.1.2 Producing Output
DM output is similarly produced by adding GRIN

links, this time between DiscourseIUs and newly

created output IUs. At each DM step that integrates
input, further update rules specify what kind of output
may be appropriate. Figure 4 illustrates this. Here,
after grounding the topic:origin DiscourseIU
in input, a DialogueActIU representing an intention
to enquire about the departure city is immediately
added; it will be the role of a later component (which
we call the action manager, AM) to decide on how
(or even whether) to realise this intention.

It is important to note that adding such a Dialogue-
ActIU only signals an intention to act, a temporary
projection. (This is in contrast to the RNLA instruc-
tions of the iQUD approach.) Whether such a kind
of intention gets turned into action right away (or at
all) depends on the overall system setup as well as
what information the user provides next. In a multi-
modal system it might be turned into a “relevant
non-linguistic action” RNLA immediately, such as an
on-screen signal that a departure city is expected now.
In the speech modality, it might only be realised if
there is no overlap with user speech; in the example
here, the user continues to talk and hence no oppor-
tunity is given for the system to produce a spoken
utterance (nor is there need to do so). If however a
hesitation had been detected, the system could have
realised some form of request for more information;
depending on further rules, perhaps gently as a con-
tinuer (“mhm?”) or more explicitly (“from where?”).

topic:
origin

city:?

topic:
origin

city:
hamburg

SemIU DiscourseIU

act:
request

act:
ground

DialogueActIU

U: from
hamburg_

Figure 4: Producing incremental output.

The example shown here however continues with
the city DiscourseIU being grounded in “Ham-
burg”, and again a DialogueActIU is generated, this
time to achieve grounding (mutual knowledge) of
the system’s understanding. Again, in a multi-modal
system it can be left to a later module to decide on
the best way to realise this dialogue act.

Note also that at this point the previous Dia-
logueActIU has been made irrelevant by new input
(act:request is answered with “hamburg”). If

it hasn’t lead to actual output, it no longer needs to
be realised to the user and can be downdated by be-
ing revoked (in other words, the projected intention
to act is retracted). Though this is not indicated in
the illustration, an update rule to take care of this
is triggered when grounding a DiscourseIU in new
input. The rule then revokes any unrealised Dialogue-
ActIUs grounded in that DiscourseIU. For the DM
this may be just good housekeeping. However for the
system’s behaviour this is critical to avoid that the
AM overproduces output based on projections that
were over-generated by the DM.

3.2 How DIUM Addresses the Problem

So far we’ve looked at how the DIUM IU network
information state can be incrementally updated dur-
ing two common DM activities: contextualising input
and producing relevant output. Now we’ll look at how
the IU graph approach can be leveraged to implement
the solution strategy identified in Section 2.3.

Let’s revisit the problem and the solution for a
moment. Input that triggers a decision to produce
output is revoked. If the output was already made
public by that point, it cannot simply also be revoked,
and the DM must resolve the clash explicitly. For this,
it needs to be able to do three things: (1) to compute a
new state reflecting that input was revoked and (2) to
check its own output to determine whether projected
dialogue acts have indeed already been realised into
observable output. In cases where such a clash arises,
it needs to then (3) initiate explicit repair.

3.2.1 Handling Revokes and Checking Output
Requirements (1) and (2) turn out to be already

addressed by basic mechanisms of the IU model. In
that model, IU graphs can be modified using RE-
VOKE edits, which in turn are communicated as ‘edit
messages’ among modules in an incremental spoken
dialogue system. In DIUM, we simply use reception
of such an edit message as an additional type of up-
date rule trigger. This trigger can then be used in
update rules that compute the appropriate new IS.
In Figure 5 this happens at step 2. Here, revoked in-
put city:hamburg triggers an update that causes
the grounded-in links from any DiscourseIUs to the
revoked input to be removed.

A similarly simple solution exists for monitor-
ing DM output. The IU formalism specifies that

city:
hamburg city:?

act:
ground

U: from hamburg…

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

act:
undo

S: highlight hamburg
on screen S: un-highlight hamburg

DialogueActIU
(ground) added,
leads to output,
commited

DialogueActIU(undo) is
added

DiscourseIUs(city:?)
grounded in input

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

System checks if
revoked input grounds

commited output…

input hamburg'
revoked, GRIN
removed

S: sorry about that

DialogueActIU(undo) is
realised in two steps

Public Events

Update Rule
Effects

DIUM State

Timeline 0 1 2 3 4 5

…it did, so

Figure 5: Trace of example: revoke clashes with commit, leading to an UNDO, which is realised as an apology.

the commit-status of IUs is recorded. We assume
that if a DialogueActIU has been realised, it will be
committed by the realiser, as shown in step 1 for
act:ground. This status of the IU in turn is acces-
sible to the DM, and can form a trigger in an update
rule. After input to the DM module is revoked, the
update rules check whether there are output IUs, and
if so, what their commit status is. If a clash is de-
tected (an IU needs to be revoked, but is committed),
appropriate steps can be taken; this is what happens
at step 3 in Figure 5.

3.2.2 Undo Dialogue Acts
The reaction to the detected clash takes the form

of adding to the output of the DM a dialogue act
(intention) of a special type, UNDO. This is shown in
step 4 in the example. Here, this act is in turn realised
in two steps: Visual output is updated immediately
(the highlighting is removed), whereas at a later mo-
ment (as the system decided that it held the turn, not
indicated in detail here), additionally an apology is
issued (step 5).

This is only one strategy for realising such UNDOs,
though. Determining the best strategy for doing so is
an empirical question that we have not turned to yet
and leave for future work; here we wanted to lay the
groundwork needed to explore this question. Strate-
gies to test in an implemented system might come
from studies on human repair strategies. For example,
speakers tend to self-repair as soon as possible (Lev-
elt, 1983) and different types of repair are associated
with different costs, determined by modality as well
as who initiates it (Clark and Brennan, 1991). In dia-
logue systems, (Skantze and Hjalmarsson, 2010) also

offer some ideas for how a system might incremen-
tally produce overt and covert self-repairs (however
of spoken output only).

4 Implementation

We have implemented the DIUM approach in a small
but fully functional example system, using the In-
proTK framework (Schlangen et al., 2010). Using
DIUM and otherwise comparable components, the
implemented system achieves the same coverage of
phenomena relevant to incremental processing as the
iQUD system, namely being able to react to user hes-
itations by producing continuer feedback utterances,
and showing RNLAs. Additionally, DIUM is able to
handle revoke-commit-clashes in the way described
above; this adds occasional self-corrections of the
type described above to the conversational flow.

While the initial domain in which we tested DIUM
was the travel domain described here, we have also
realised the puzzle domain described in (Buß and
Schlangen, 2010) in this new approach. It proved to
be straightforward to encode the expected dialogue
shapes in the DiscourseIU graphs used by DIUM.
Moreover, only very few changes to the DIUM-rule
set were necessary; in combination, this shows that a
certain domain-independence is given by the DIUM
approach.

5 Further Directions

In this paper, we have focussed on how the approach
to dialogue management followed in DIUM helps
tackle the revoke-commit-problem. We are currently
exploring further possible advantages that the graph-

based representation format affords, of which we will
discuss a few now.

5.1 Dialogue History & Grounding

For one, DIUM does not require its own housekeep-
ing for dialogue history. Since IUs encode start and
end times, the information state is, in fact, a very
finely granular dialogue history. Knowledge of user
and system actions (and their timing) becomes a mat-
ter of querying the network. A special data structure
keeping track of recent moves is thus redundant.

We are also currently exploring to what extent
properties of the IU network can be used to account
for ‘grounding’ of input and output (in the sense
of (Clark and Brennan, 1991; Clark, 1996)). Where
spoken dialogue systems usually use symbolic repre-
sentations of different grounding ‘statuses’ attached
to input and output, e. g. (Skantze, 2007; Buß et al.,
2010) or, alternatively, keep input and output rep-
resentations in a special location within the IS to
represent this status, e. g. (Larsson, 2002), in the
DIUM approach grounding status may be reduced
to configurations of an IU network. For example (us-
ing an informal taxonomy), DIUM’s ‘private’ beliefs
about user input can be thought of as DiscourseIUs
grounded in SemIUs, but with no observable reac-
tion realised by DialogueActIUs, and beliefs that are
made public are DiscourseIUs that ground commit-
ted DialogueActIUs while being grounded in one or
more committed SemIUs. How far this reduction can
be carried will be explored in future work.

5.2 DIUM & Discourse Theories

We also see exciting possibilities for forging con-
nections to dialogue and discourse theories such as
RST (Mann and Thompson, 1987) and SDRT (Asher
and Lascarides, 2003), where discourse structure is
represented through relations between smaller units,
and where discourse meaning is jointly constituted
by the contributions of the units and those of the re-
lations.4 While in the current implementations we
have used pre-authored graphs of expected contribu-
tions, we are exploring a more dynamic construction

4It is an interesting historical coincidence that dialogue man-
agement has benn more influenced by theories (such as KOS
(Ginzburg, 1995; Ginzburg, forth)) that in contrast chose a fea-
ture structure- or record-based approach rather than a graph-
based one.

process that combines a notion of coherence (as in
SDRT) for use in integration of new material, with a
notion of projection of next system moves that must
be coherent and move the dialogue further towards a
goal.

6 Conclusions

In this paper, we have introduced an approach to
the representation of dialogue knowledge for dia-
logue management and operations on such represen-
tations, that lends itself to being used in incrementally
working dialogue systems. In particular, the approach
affords a straightfoward handling of what we have
called the revoke-commit problem, where a system
for internal reasons decides to ‘take back’ some of its
actions. We have introduced this approach with exam-
ples from a simple information-seeking domain, for
which we have realised an implementation that can
produce certain naturalistic interactive phenomena
(backchannels, continuers). In future work, we will
explore the additional directions mentioned in the
previous section, such as investigating the potential
of the approach for handling grounding phenomena
in a fine-grained way, and for connecting the underly-
ing dialogue representations with theoretically better
motivated approaches.

References
Gregory Aist, James Allen, Ellen Campana, Lucian

Galescu, Carlos A. G. Gallo, Scott C. Stoness, Mary
Swift, and Michael Tanenhaus. 2006. Software Ar-
chitectures for Incremental Understanding of Human
Speech. In Proceedings of the 6th Interspeech.

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Studies in Natural Language Processing.
Cambridge University Press.

Michaela Atterer and David Schlangen. 2009. RUBISC-a
Robust Unification-Based Incremental Semantic Chun-
ker. In EACL 2009 Workshop on Semantic Representa-
tion of Spoken Language, Athens, Greece.

Srinivas Bangalore and Amanda J Stent. 2009. Incre-
mental Parsing Models for Dialog Task Structure. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 94–102, Athens, Greece.

Timo Baumann, Michaela Atterer, and David Schlangen.
2009. Assessing and Improving the Performance of
Speech Recognition for Incremental Systems. In Pro-
ceedings of Human Language Technologies: The 2009

Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Boulder,
Colorado.

Okko Buß and David Schlangen. 2010. Modelling Sub-
Utterance Phenomena in Spoken Dialogue Systems. In
Proceedings of SemDial, Poznań, Poland.

Okko Buß, Timo Baumann, and David Schlangen. 2010.
Collaborating on Utterances with a Spoken Dialogue
System Using an ISU-based Approach to Incremen-
tal Dialogue Management. In Proceedings of SigDial
2010, Tokyo, Japan.

Herbert H. Clark and Susan E. Brennan. 1991. Grounding
in communication. In L. B. Resnick, J. Levine, and
S. D. Behrend, editors, Perspectives on Socially Shared
Cognition, pages 127–149. American Psychological
Association Books, Washington D.C., USA.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press, Cambridge.

David DeVault, Kenji Sagae, and David Traum. 2009.
Can I Finish? Learning When to Respond to Incremen-
tal Interpretation Results in Interactive Dialogue. In
Proceedings of the SIGdial 2009, London, UK.

David DeVault, Kenji Sagae, and David Traum. 2011.
Incremental interpretation and prediction of utterance
meaning for interactive dialogue. Dialogue & Dis-
course, 1. Special Issue on Incremental Processing in
Dialogue.

Jonathan Ginzburg. 1995. Resolving questions I. Linguis-
tics and Philosophy, 18:459–527.

Jonathan Ginzburg. forth. The interactive Stance: Mean-
ing for Conversation. CSLI Publications.

Barbara J. Grosz and Candace L. Sidner. 1986. Attention,
intentions, and the structure of discourse. Computa-
tional Linguistics, 12(3):175–204.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, Göteborg University.

Willem J.M. Levelt. 1983. Monitoring and self-repair in
speech. Cognition, 14:41–104.

Peter Ljunglöf. 2009. Dialogue Management as Inter-
active Tree Building. In Proceedings of DiaHolmia,
13th Workshop on the Semantics and Pragmatics of
Dialogue, Stockholm, Sweden.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical structure theory: A theory of text organi-
zation. In Livia Polanyi, editor, The Structure of Dis-
course. Ablex Publishing Corporation, Norwood, N.J.

David Schlangen and Gabriel Skantze. 2009. A General,
Abstract Model of Incremental Dialogue Processing.
In Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, Athens, Greece.

David Schlangen and Gabriel Skantze. 2011. A general,
abstract model of incremental dialogue processing. Di-
alogue & Discourse, 2(1). Special Issue on Incremental
Processing in Dialogue.

David Schlangen, Timo Baumann, and Michaela Atterer.
2009. Incremental reference resolution: The task, met-
rics for evaluation, and a bayesian filtering model that
is sensitive to disfluencies. In Proceedings of SigDial
2009, London, UK.

David Schlangen, Timo Baumann, Hendrik Buschmeier,
Okko Buß, Stefan Kopp, Gabriel Skantze, and Ramin
Yaghoubzadeh. 2010. Middleware for Incremental
Processing in Conversational Agents. In Proceedings
of SigDial 2010, Tokyo, Japan, September.

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and Jason
Williams. 2011. Stability and accuracy in incremental
speech recognition. In Proceedings of the SIGDIAL
2011 Conference, pages 110–119, Portland, Oregon,
June. Association for Computational Linguistics.

Gabriel Skantze and Anna Hjalmarsson. 2010. Towards
Incremental Speech Generation in Dialogue Systems.
In Proceedings of SigDial 2010, Tokyo, Japan.

Gabriel Skantze and David Schlangen. 2009. Incremental
dialogue processing in a micro-domain. In Proceedings
of EACL 2009.

Gabriel Skantze. 2007. Error Handling in Spoken Dia-
logue Systems. Ph.D. thesis, KTH.

Manfred Stede and David Schlangen. 2004. Information-
Seeking Chat: Dialogue Management by Topic Struc-
ture. In Proceedings of SemDial 2004, Barcelona,
Spain, July.

David R. Traum. 1994. A Computational Theory of
Grounding in Natural Language Conversation. Ph.D.
thesis, Computer Science, University of Rochester,
Rochester, USA, December.

Wei Xu and Alexander I. Rudnicky. 2000. Task-based
Dialog Management Using an Agenda. In Proceedings
of ANLP/NAACL 2000 Workshop on Conversational
systems, pages 42–47, Seattle, Washington.

