
An Extended TopoART Network for the Stable
On-Line Learning of Regression Functions

Marko Tscherepanow

Applied Informatics, Bielefeld University
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Abstract. In this paper, a novel on-line regression method is presented.
Due to its origins in Adaptive Resonance Theory neural networks, this
method is particularly well-suited to problems requiring stable incremen-
tal learning. Its performance on five publicly available datasets is shown
to be at least comparable to two established off-line methods. Further-
more, it exhibits considerable improvements in comparison to its closest
supervised relative Fuzzy ARTMAP.
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1 Introduction

For many machine learning problems, the common distinction between a training
and an application phase is not reasonable (e.g., [13,18]). They rather require the
gradual extension of available knowledge when the respective learning technique
is already in application. This task can be fulfilled by on-line learning approaches.
But in order to use on-line learning, additional problems have to be tackled.
Probably the most important question is how new information can be learnt
without forgetting previously gained knowledge in an uncontrolled way. This
question is usually referred to as the stability-plasticity dilemma [11]. In order
to solve it, Adaptive Resonance Theory (ART) neural networks were developed,
e.g., Fuzzy ART [3] and TopoART [17].

In this paper, a regression method based on the recently published TopoART
model [17] is presented. As well as being able to incrementally learn stable rep-
resentations like other ART networks, TopoART is less sensitive to noise as it
possesses an effective filtering mechanism. But since ART networks constitute
an unsupervised learning technique, TopoART had to be extended in order to
adapt it to the application field of regression.

In Section 2, an overview of regression methods, in general, and particu-
larly related approaches is provided. Then, TopoART is briefly introduced in
Section 3. Afterwards, the required extensions of TopoART are explained in
Section 4. The resulting regression method is referred to as TopoART-R. It
is evaluated using several datasets originating from the UCI machine learning
repository [9] (see Section 5). Finally, the most important outcomes are sum-
marised in Section 6.
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2 Related Work

Regression analysis estimates a regression function f relating a set of p inde-
pendent variables ik to q dependent variables dk:

d = f(i) , with i = [i1, . . . , ip]
T

and d = [d1, . . . , dq]
T
. (1)

The models and techniques used to approximate f vary considerably; for
example, a linear model can be used [6]. Although this model is only capable
of reflecting linear dependencies, its parameters (slope, y-intercept) can directly
be derived from observed data without the need for an explicit optimisation. In
contrast, more advanced models such as support vector regression (SVR) [16]
or multi-layer perceptrons (MLPs) [8] can be applied so as to model complex
dependencies. But the underlying models have to be optimised by solving a
quadratic optimisation problem and by gradient descent, respectively. Recently,
extreme learning machines (ELMs) [12] have been proposed as a special type
of MLPs possessing a single hidden layer. Here, the weights and biases of the
hidden nodes are randomly assigned and the weights of the output nodes are
analytically determined based on a given training set.

In recent years, several approaches to on-line SVR have been proposed [14,15].
Since new input may change the role of previously learnt data in the model, they
require the complete training set to be stored. In contrast to SVR, MLPs are
inherently capable of on-line learning. But the training with new input alters
already-learnt representations and the network topology has to be chosen in
advance. The latter problem was solved by the Cascade-Correlation (CasCor)
architecture [8,7]. CasCor incrementally creates a multi-layer structure, but de-
mands batch-learning.

As mentioned above, ART networks [3,17] constitute a solution to the stabil-
ity-plasticity dilemma. They learn a set of templates (categories) which effi-
ciently represents the underlying data distribution; new categories are incorp-
orated, if required. Therefore, they are particularly well-suited to incremental
on-line learning. ART networks can be applied to supervised learning tasks
using the ARTMAP approach [2]. ARTMAP combines two ART modules, called
ARTa and ARTb, by means of an associative memory (map field). While ARTa

clusters i, ARTb clusters d. Furthermore, associations from categories of ARTa

to categories of ARTb are learnt in the map field. Although, in principle, the
dependent variables can be reconstructed based on the associated categories,
ARTMAP cannot directly be applied as a regression method. But there exist
ARTMAP variants dedicated to classification such as Default ARTMAP [1]. De-
fault ARTMAP has a simplified structure omitting the map field and ARTb.
Moreover, it enables a distributed activation during prediction, which increases
the classification accuracy.

In this paper, a regression method based on TopoART is proposed. In order
to increase its accuracy, a distributed activation during prediction similar to
Default ARTMAP was incorporated.
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3 TopoART

Like Fuzzy ART [3], TopoART [17] represents input samples by means of hyper-
rectangular categories. These categories as well as the associated learning mech-
anisms avoid catastrophic forgetting and enable the formation of stable repre-
sentations. Similar to the Self-Organising Incremental Neural Network (SOINN)
[10], TopoART is capable of learning the topological structure of the input data
at two different levels of detail. Here, interconnected categories form arbitrarily
shaped clusters. Moreover, it has been shown to be insensitive to noise as well.
But TopoART requires significantly fewer parameters to be set and can learn
both representational levels in parallel. Figure 1 shows the clusters resulting from
training TopoART1 with a 2-dimensional dataset comprising 20,000 samples, 10
percent of which are uniformly distributed random noise.
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Fig. 1. Input distribution and clustering results of TopoART. After presenting each
training sample of the dataset (a) to a TopoART network, it created a noise-free repre-
sentation at two levels of detail. While only one cluster was formed by TopoART a (b),
TopoART b distinguishes five clusters reflecting the data distribution in more detail
(c). The categories associated with the same cluster share a common colour.

The two representational levels are created by two identical modules called
TopoART a and TopoART b. As TopoART a controls which input samples are
propagated to TopoART b, it functions as a filtering mechanism; in particular,
only samples, which are enclosed by a category of TopoART a are propagated
to TopoART b. In this way, noise regions are filtered effectively. Furthermore,
the maximum category size is reduced from TopoART a to TopoART b. As a
result, the structures represented by TopoART b exhibit a higher level of detail.

4 Using TopoART for Regression Analysis

Even though regression analysis constitutes a completely new application field
for TopoART, its principal structure and mechanisms were directly adopted (see
Fig. 2): TopoART-R consists of two modules (TopoART-R a and TopoART-R b)

1 LibTopoART (version 0.20), available at www.LibTopoART.eu

www.LibTopoART.eu
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Fig. 2. Structure of TopoART-R. Like TopoART, TopoART-R encompasses two mod-
ules (TopoART-R a and TopoART-R b) sharing the input layer F0. But the connections
of the F2 neurons can either be traced back to i or to d. Furthermore, TopoART-R b
has an additional input control layer (F0m) that is required for prediction.

performing a clustering of the input at different levels of detail. As a consequence,
the properties mentioned in Section 3 hold for the new application field as well.
Nevertheless, several extensions had to be incorporated.

During training, the propagation of input to TopoART-R b depends on the
activation of TopoART-R a: only input samples lying in a subspace defined by
TopoART-R a reach TopoART-R b. Therefore, it is also called the ‘attention
network’. Predictions are provided by TopoART-R b. In order to fulfil this task,
it requires the additional control layer F0m.

4.1 Training TopoART-R

During training, the independent variables ik and the dependent variables dk are
treated in the same way. For each time step t, the corresponding vectors i(t) and
d(t) are concatenated and fed as input xF0(t) into the TopoART-R network:

xF0(t) =

[
i(t)
d(t)

]
=
[
i1(t), . . . , ip(t), d1(t), . . . , dq(t)

]T
. (2)

At the F0 layer, the input vectors xF0(t) are encoded using complement coding:

xF1(t) =
[
i1(t), . . . , dq(t), 1− i1(t), . . . , 1− dq(t)

]T
. (3)

Due to the usage of complement coding, each element of an input vector xF0(t)
has to lie in the interval [0, 1].

The set I summarises the indices of the elements of xF1(t) related to i(t) and
its complement, while the set D gives the indices for d(t) and its complement:
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I = {1, . . . , p, p+q+1, . . . , 2p+q}, (4)

D = {p+1, . . . , p+q, 2p+q+1, . . . , 2p+2q}. (5)

The complement-coded input vectors xF1(t) are propagated to the F1 layer
of TopoART-R a. Then, the F2 nodes j of TopoART-R a are activated:

zF2a
j (t) =

∣∣xF1(t) ∧ wF2a
j (t)

∣∣
1

α+
∣∣wF2a

j (t)
∣∣
1

, with α > 0. (6)

Here, | · |1 and ∧ denote the city block norm and an element-wise minimum
operation, respectively. The activation zF2

j (t) (choice function) measures the

similarity between xF1(t) and the category represented by neuron j. Like with
the original TopoART, the weights wF2a

j (t) span hyperrectangular categories.
The F2 node that has the highest activation is selected as the best-matching

node bm. But it is only allowed to learn xF1(t) if it fulfils the match function∣∣xF1(t) ∧ wF2a
bm (t)

∣∣
1∣∣xF1(t)

∣∣
1

≥ ρa; (7)

i.e., if the category represented by its weights wF2a
bm (t) is able to enclose the pre-

sented input vector without surpassing a maximum size defined by the vigilance
parameter ρa.

Using the original match function (7), a high variance of the dependent vari-
ables dk could be compensated for by a low variance of the independent variables
ik. The result would be a high regression error. Therefore, the match function is
independently computed for both components of the input vector xF0(t):∑

k min
(
xF1
k (t), wF2a

bm,k(t)
)∑

k x
F1
k (t)

≥ ρa , for k ∈ I and for k ∈ D. (8)

If (8) can be fulfilled, resonance of TopoART-R a occurs. Otherwise, the acti-
vation of neuron bm is reset and a new best-matching node is searched for. If no
existing neuron is able to represent xF1(t), a new node with wF2a

new(t+1)=xF1(t)
is incorporated.

Provided that TopoART-R a reached resonance, the weights wF2a
bm (t) are

adapted as follows:

wF2a
bm (t+ 1) = xF1(t) ∧ wF2a

bm (t). (9)

If a second-best-matching neuron sbm fulfilling (8) can be found, its weights are
adapted as well:

wF2a
sbm(t+ 1) = βsbm

(
xF1(t) ∧ wF2a

sbm(t)
)

+ (1− βsbm)wF2a
sbm(t). (10)

This is intended to reduce the sensitivity to noise, since the growth of categories
in relevant areas of the input space is intensified.
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As the weights are adapted after the presentation of single input samples
and TopoART-R does not rely on the processing of whole datasets in order to
compute weight changes (batch learning), it is always trained on-line.

In contrast to TopoART, no edge needs to be established between node bm
and node sbm, as the topological structure of the input data is not used by
TopoART-R. However, TopoART-R could learn topological structures, as well,
if required by future applications.

Besides its weights, each F2 neuron j has a counter denoted by naj , which
counts the number of input samples it has learnt. Every τ learning cycles, all
neurons with a counter smaller than φ are removed. Therefore, they are called
node candidates. After naj has reached the value of φ, the corresponding neuron
can no longer be removed; i.e., it has become a permanent node.

xF1(t) is only propagated to TopoART-R b if one of the two following con-
ditions is fulfilled:

(i) TopoART-R a is in resonance and nabm≥φ.
(ii) The input control layer F0m is activated; i.e.,

∣∣mF0(t)
∣∣
1
>0.

As during training all elements of mF0(t) are set to 0, only input samples
which lie in one of the permanent categories of TopoART-R a are learnt by
TopoART-R b. By means of this procedure, the network becomes more insensi-
tive to noise but is still able to learn stable representations.

After input has been presented to TopoART-R b, it is activated and adapted
in the same way like TopoART-R a. Just the vigilance parameter is modified:

ρb =
1

2
(ρa + 1). (11)

As a result of the increased value of the vigilance parameter, TopoART-R b
represents the input distribution in more detail.

4.2 Predicting with TopoART-R

In order to predict missing variables with TopoART-R, the mask vector mF0(t)
must be set accordingly. Consequently, TopoART-R a can be neglected, as∣∣mF0(t)

∣∣
1
>0 (see Section 4.1). The mask vector comprises the values mi

k and

md
k which correspond to the elements of the input vector xF0(t):

mF0(t) =

[
mi(t)
md(t)

]
=
[
mi

1(t), . . . ,mi
p(t),md

1(t), . . . ,md
q(t)

]T
. (12)

If these mask values are set to 1, the corresponding variables are to be pre-
dicted. Hence, they cannot be given in xF0(t) and the respective elements of
xF0(t) are ignored. Presented variables are characterised by a mask value of 0.
Hence, mi

k=0 and md
k=1 for usual regression tasks. TopoART-R can even pre-

dict based on incomplete information; if the value of an independent variable il
is unknown, mi

l has to be set to 1. Then, il is not required as input and will be
predicted like the dependent variables.
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Each connection of all F2b neurons can be traced back to a specific element
of the input vector xF0(t) and to two elements of the complement-coded input
vector xF1(t) (see Fig. 2). Depending on the corresponding mask values, two
disjunct sets M0 and M1 of F1b nodes are generated:

M0 =
{
x, x+p+q : mF0

x (t) = 0
}
, (13)

M1 =
{
x : mF0

x (t) = 1
}
. (14)

As the neurons of the mask layer F0m inhibit the corresponding F1b nodes
(see Fig. 2), the activation of the F2b neurons is computed solely based on the
non-inhibited F1 neurons summarised inM0. The activation function suggested
for prediction with TopoART (cf., [17]) had to be adapted accordingly:

zF2b
j (t) = 1−

∑
k∈M0

∣∣∣min
(
xF1
k (t), wF2b

jk (t)
)
− wF2b

jk (t)
∣∣∣

1
2

∑
k∈M0 1

. (15)

The activation zF2b
j (t) computed according to (15) therefore denotes the simi-

larity of xF1(t) with wF2b
j (t) along those dimensions for which mF0

x (t)=0. The
corresponding hyperrectangle is called a partial category.

In order to reconstruct the missing variables using a distributed activation,
two cases are distinguished. Firstly, xF1(t) lies inside the partial categories of one
or more F2b neurons j. Then, the activation zF2b

j (t) equals 1 for these neurons.

Secondly, xF1(t) is not enclosed by any partial category; i.e., the activation of
all F2b neurons is lesser than 1.

In the first case, the missing variables are determined based on the informa-
tion encoded in the partial categories: a temporary category τ(t) is computed as
the intersection of all categories that enclose xF1(t). This intersection decreases
in size if more neurons are involved. Thus, the more partial categories contain
xF1(t), the better is it represented by the network.

Since the weight vectors encode lower and upper bounds along all coordinate
axes, the intersection is computed as the hyperrectangle with the respective
largest lower bound and the smallest upper bound over all considered categories.
Due to the usage of complement coding, this operation can be performed using
the element-wise maximum operator ∨:

τ(t) =
∨
j

wF2b
j (t) , ∀j : zF2b

j (t) = 1. (16)

As τ(t) covers all dimensions including those corresponding to the missing
variables, it can be applied for computing predictions. These predictions are
summarised in the output vector y(t). Its elements yk(t) are set to −1 if the

corresponding variable was contained in the input vector xF0(t). Otherwise, it
gives a prediction which is computed as the mean of the temporary category’s
upper and lower bound along the k-th axis of the input space:
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yk(t) =

{
−1 , for k /∈M1

1
2τk(t) + 1

2

(
1− τk+p+q(t)

)
, for k ∈M1 . (17)

In the second case, i.e, if no partial category contains xF1(t), an intersection
similar to (16) does not lead to a valid temporary category. Therefore, the tem-
porary category is constructed as a weighted combination of the categories with
the smallest distances to xF1(t):

τ(t) =

∑
j∈N

(
1

1−zF2b
j (t)

· wF2b
j (t)

)
∑

j∈N
1

1−zF2b
j (t)

. (18)

The contribution of each node j is inversely proportional to 1−zF2b
j (t); i.e., more

similar categories have a higher impact. The set N of very similar categories is
determined as follows:

N = {x : zF2b
x (t) ≥ µ+ 1.28σ}. (19)

Here, µ and σ denote the mean and the standard deviation of zF2b
j (t) over all F2b

neurons. Assuming a Gaussian distribution, N would only contain those 10% of
the neurons that have the highest activations. For computational reasons, N is
further restricted to a maximum of 10 nodes.

5 Results

For the evaluation of TopoART-R, we chose five different datasets from the UCI
machine learning repository [9]: Concrete Compressive Strength [19], Concrete
Slump Test [20], Forest Fires2 [5], and Wine Quality [4]. These datasets were
selected, since they can be used with regression methods and contain real-valued
attributes without missing values. For computational purposes and comparison
reasons, all variables were normalised to the interval [0, 1].

The performance of TopoART-R was compared to three different state-of-
the-art methods: ν-SVR (with a radial basis function kernel) implemented in
LIBSVM (version 3.1), CasCor, and Fuzzy ARTMAP. SVR and CasCor learn the
regression function in batch mode; i.e., the training requires a complete dataset
to be available. In contrast, Fuzzy ARTMAP and TopoART-R learn a sample
directly after its presentation independently of other samples (on-line learning).
Since Fuzzy ARTMAP learns a mapping to categories representing the depend-
ent variables rather than a mapping to the dependent variables themselves (cf.
Section 2), the centre of the ARTb category connected to the best-matching node
of the map field was used as prediction.

For all regression methods, the mean squared error (MSE) was computed
for each dataset using five-fold cross-validation. The most relevant parameters

2 The integer attributes X and Y as well as the nominal attributes month and day
were ignored.
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were determined by means of grid search.3 The minimum MSEs reached by
each approach using the optimal parameter setting are given in Table 1. For
SVR and CasCor, the respective batch learning scheme was applied. Since the
number of samples contained in the datasets is rather small (e.g., 103 samples in
the Concrete Slump Test dataset), the training sets were repeatedly presented
to Fuzzy ART and TopoART until their weights converged. Although these
methods learn on-line, they require a sufficiently high number of training steps
which depends on the chosen learning rates (β, βab, and βsbm).

Table 1. Minimum MSEs. The bold numbers indicate the best result for each dataset.

dataset SVR CasCor Fuzzy ARTMAP TopoART-R

Concrete Compressive
Strength

0.0054 0.0069 0.0302 0.0119

Concrete Slump Test 0.0656 0.0370 0.0597 0.0475

Forest Fires 0.0034 0.0035 0.0037 0.0032

Wine Quality (red) 0.0161 0.0164 0.0188 0.0143

Wine Quality (white) 0.0122 0.0147 0.0173 0.0105

Table 1 shows that TopoART-R achieved the lowest MSEs for three of five
datasets. Furthermore, it performed always better than Fuzzy ARTMAP, which
is its closest supervised relative. Thus, TopoART-R constitutes a promising al-
ternative to established regression methods.

6 Conclusion

In this paper, a regression method based on the unsupervised TopoART network
was introduced. Due to its origins in ART networks, it is particularly suited
to tasks requiring stable on-line learning. The performance of TopoART-R on
standard datasets has been shown to be excellent. This is most likely a result of
its noise reduction capabilities inherited from TopoART as well as the distributed
activation during prediction. Finally, TopoART-R offers some properties which
might be of interest for future applications: it can learn the topological structure
of the presented data similar to TopoART and predict based on incomplete
information if the mask vector is set appropriately. The latter property could
be crucial if predictions are to be made using data from sensors with different
response times.
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3 SVR: ν, C, and γ; CasCor: learning rate and activation function of the output nodes
(logistic, arctan, tanh); Fuzzy ART: ρ, β, and βab; TopoART: ρa, φ, and βsbm
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