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ABSTRACT 

-I- 

Abstract 

In today’s pharmacological industry, fusion proteins are used for the production of 

recombinant proteins of therapeutic interest. However, to obtain the therapeutically 

important protein in its monomeric form, the fusion partner, generally a signal peptide for 

translocation, needs to be removed using either chemicals or enzymes. In the latter case, 

the cleavage of fusion proteins can be conducted with higher specificity and under milder 

reaction conditions. 

One of the biocatalysts used in laboratory scale is the serine protease enterokinase. In 

this study, enterokinase was applied in the cleavage of MUC1-IgG2a Fc for the generation 

of MUC1, a potential target in cancer immunotherapy.  

To make enterokinase an attractive candidate for industrial fusion protein cleavage, the 

process for biocatalyst production by recombinant E. coli was optimized with regard to 

fermentation conditions and used isolation and purification techniques. By the application 

of a newly developed batch-binding chamber, the downstream process was simplified and 

the process time could be reduced by half. Furthermore, the yield of isolated biocatalyst 

was increased 8-fold for an inducible expression system and 14-fold with constitutive 

protein expression. 

The enzymatic cleavage reaction needs to be economically feasible making an efficient 

utilization of the biocatalyst necessary. Therefore, different carrier materials for enzyme 

immobilization have been investigated, of which two – the porous Sepabeads® EC-HA203 

and non-porous magnetic particles – gave promising results. Remaining activities for 

immobilized enterokinase of 60 % could be achieved with an additional stabilizing effect 

when using the porous material. Enterokinase immobilized on Sepabeads® EC-HA203 

was successfully applied in fusion protein cleavage receiving the desired protein MUC1, 

compared to the non-porous support.  

Finally, enterokinase immobilized on porous support was applied in the preparative 

cleavage of MUC1-IgG2a Fc either in a continuous process or in repetitive utilization. 

According to the received process parameters, the repeated application of the 

enzyme-support preparation proved to be the more efficient method in fusion protein 

cleavage. Immobilized enterokinase was re-used 15 to 18 times for cleaving MUC1-IgG2a 

Fc increasing the total turnover number 419-fold compared to a single application of the 

biocatalyst.  

 



ZUSAMMENFASSUNG 

-II- 

Zusammenfassung 

In der heutigen pharmazeutischen Industrie werden Fusionsproteine für die Herstellung 

von therapeutisch wichtigen, rekombinanten Proteinen eingesetzt. Um jedoch das 

eigentliche Zielprotein in aktiver Form zu erhalten, muss zunächst der Fusionspartner, 

meist ein Signalpeptid für Translokation, durch eine chemische oder enzymatische 

Reaktion entfernt werden. Letzteres erlaubt eine sehr spezifische Spaltung des 

Fusionsproteins unter milden Reaktionsbedingungen. 

Ein im Labormaßstab eingesetzter Biokatalysator ist die Serinprotease Enterokinase. In 

dieser Arbeit wird Enterokinase für die Spaltung von MUC1-IgG2a Fc verwendet, um 

MUC1, ein potentielles Zielprotein für die Immuntherapie in der Krebsbehandlung, 

herzustellen. 

Damit Enterokinase zu einem attraktiven Kandidaten für die industrielle Spaltung von 

Fusionsproteinen wird, fand eine Optimierung des Prozesses für die 

Biokatalysatorproduktion durch rekombinanten E. coli in Bezug auf die Fermentations-

bedingungen und die eingesetzten Isolations- und Aufreinigungsmethoden statt. Durch 

eine neuartige Anbindungszelle wurde die Aufarbeitung vereinfacht und die Prozesszeit 

halbiert. Des Weiteren konnte die Ausbeute an isoliertem Biokatalysator um das 8fache 

durch ein induziertes Expressionssystem und um das 14fache durch konstitutive 

Expression gesteigert werden. 

Um eine enzymatische Spaltungsreaktion wirtschaftlicher zu machen, muss der 

Biokatalysator effizienter in die Reaktion eingebracht werden. Aus diesem Grund wurden 

verschiedene Trägermaterialien für die Immobilisierung des Enzyms untersucht, wobei 

zwei – die porösen Sepabeads® EC-HA203 und die nicht porösen Magnetpartikel – viel 

versprechende Ergebnisse zeigten. Es konnten Restaktivitäten von 60 % und eine 

zusätzliche Stabilisierung der Enterokinase bei Verwendung des porösen Trägers erzielt 

werden. MUC1-IgG2a Fc wurde erfolgreich durch auf Sepabeads® EC-HA203 

immobilisierte Enterokinase gespalten. Es zeigte sich, dass poröse Stoffe eher für die 

Immobilisierung von einem kleinen Biokatalysator, der anschließend für die Spaltung von 

großen Fusionsproteinen verwendet wird, geeignet sind. Abschließend wurde das 

Immobilisat sowohl in einem kontinuierlichen Prozess als auch in wiederholten 

Spaltungsreaktionen von MUC1-IgG2a Fc eingesetzt. Die erhaltenen Prozessparameter 

zeigen, dass die mehrmalige Anwendung des Immobilisats eine sehr effiziente Methode 

zur Spaltung des Fusionsproteins darstellt. Die immobilisierte Enterokinase wurde 

zwischen 15 und 18mal wieder verwendet, wodurch die Katalysatorausnutzung um das 

419fache, verglichen mit einer einzelnen Reaktion, gesteigert werden konnte.  
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-III- 

Abbreviations 

µ Specific growth rate 
2-MCE 2-mercaptoethanol 
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Symbols 
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1 Introduction 

1.1 Enterokinase 

1.1.1 Enzyme classification 

By the 1950s, great progress was achieved in isolating and characterizing enzymes, 

making the regulation of enzyme nomenclature indispensable. In 1961, a guideline named 

“Enzyme Nomenclature” was published, which has been constantly updated. This 

guideline suggests two names for each enzyme: 1) a recommended name for every day 

use and 2) the systematic name for minimizing ambiguity. In both cases, the name was 

chosen according to the catalyzed reaction. In Table 1-1 the main enzyme classes, the 

catalyzed reactions as well as examples of enzymes belonging to the specific group are 

listed [1]. 

Table 1-1 Enzyme Nomenclature.  
 Main enzyme classes and examples for the catalyzed reactions (modified) [1]. 

Enzyme class 
Catalyzed 
reaction 

Example Reference 

I. Oxidoreductases Redox reactions Alcohol 
dehydrogenase 

BH2 + A  B’ + AH2 

II. Transferases Transfer of 
functional groups 

Glycosyl 
transferase 

D-B + A-H  D-H + A-B 

III. Hydrolases Hydrolysis 
reaction 

Enterokinase A-B + H2O  A-H + B-OH 

IV. Lyases Group elimination 
(formation of 
double bonds) 

Benzaldehyde 
lyase 

A-B  A’ + B’ 

V. Isomerases Isomerization 
reactions 

Amino acid 
racemase 

R-A-B  A’-B’-R 

VI. Ligases Bond formation  Pyruvate 
carboxylase 

A-OH + BH  A-B 

ATP  ADP + Pi 
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Enterokinase belongs to the enzyme class III; enzymes that catalyze the hydrolysis of 

peptide bonds. The catalysis of this reaction is very important for the utilization of dietary 

proteins.  

Enterokinase belongs to the group of serine proteases which can be found in the intestinal 

tract being responsible for the specific cleavage of trypsinogen, the propeptide of trypsin. 

The developed active trypsin is further responsible for the activation of numerous 

enzymes of the pancreas (Figure 1-1) [2, 3]. The conversion of trypsinogen to trypsin is 

caused by the hydrolysis at a specific amino acid sequence (Lys(6)-Ile(7)) [4, 5]. The 

enterokinase shows a very strong affinity to the amino acid sequence (Asp)4-Lys, which is 

conserved in the amino terminus of most trypsinogens [6, 7]. This amino acid sequence is 

located at the N-terminus of the peptide bond to be cleaved retaining the N-terminus of 

the adjacent fusion partner. Thus, the biological activity of the target protein will not be 

influenced by the cleavage reaction [7]. Due to its high specificity for the (Asp)4-Lys 

sequence, the enzyme enterokinase has often been used for the in vitro cleavage of 

fusion proteins [8-12]. 

 

Figure 1-1 Activation of dietary proteins starting with trypsinogen by enterokinase. 
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1.1.2 Mode of action of serine proteases 

All enzymes belonging to this group of proteolytic enzymes – serine proteases – have a 

characteristic catalytic mechanism in common. This mechanism relies on the occurrence 

of a reactive serine residue which belongs to the catalytic triade (Figure 1-2). The 

catalytically important amino acids His 57 and Ser 195 as well as the invariant Asp 102, 

present in most serine proteases, are located in the substrate binding site of the enzyme. 

Additionally, Asp 102 is positioned in a valley not being exposed to any solvents [13-15]. 

 
Figure 1-2 Catalytic triade.  

The essential amino acids located in the active site of serine proteases [13]. 

After the substrate has bound to the substrate binding site of the serine protease, which 

contains the catalytic triade, the hydrolysis of the peptide bond is initiated (Figure 1-3). 

Since the reaction mechanism is very similar among all serine proteases, the catalytic 

reaction is described using the enzyme chymotrypsine.  

As soon as the substrate binds to the enzyme forming the Michaelis-complex (Figure 

1-3A), a nucleophilic attack of the carbonyl group by Ser 195 occurs, resulting in the 

formation of a tetrahedral intermediate (Figure 1-3B). Due to deprotonation of His 57, the 

tetrahedral intermediate disintegrates to the acyl-enzyme-intermediate (Figure 1-3C). 

The amino group (R2NH2) is released from the enzyme and is replaced by water of the 

solvent (Figure 1-3D). Due to the catalytic effectivity of the enzyme, the acyl-enzyme 

intermediate is easily cleaved hydrolytically. By the release of a carboxylate product, a 

new C-terminal part of the cleaved polypeptide chain (Figure 1-3E), the enzyme is 

regenerated (Figure 1-3F) [13-15]. 
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Figure 1-3 Reaction mechanism of a serine protease. 
The catalyzed hydrolysis of a peptide bond (modified) [13]. 
(A) Binding of substrate to the enzyme and formation of the Michaelis-complex 
(B) Nucleophilic attack of the carbonyl group by Ser 195 and formation of a 

tetrahedral intermediate 
(C) Deprotonation of His 57 and development of the acyl-enzyme-intermediate 
(D) Release of the amino group and replacement by a water molecule 
(E) Decarboxylation and formation of a second tetrahedral intermediate 
(F) Release of the carboxylate product and regeneration of the enzyme 
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1.1.3 Structure of enterokinase 

The enzyme enterokinase is composed of two subunits: a 115 kDa structural subunit and 

a 35 kDa catalytic subunit. The structural part of the protein allows the anchoring at the 

surface of the duodenum and the exposure of the smaller catalytic subunit into the lumen. 

Both subunits are linked via disulphide bonds [16, 17]. A drawing of the enzyme structure 

can be seen in Figure 1-4. 

 

Figure 1-4 Structure of enterokinase. 

1.1.4 Application of enterokinase in biotechnology 

Due to the high affinity to the amino acid sequence (Asp)4-Lys and the retention of the 

biological activity of the cleaved target protein, enterokinase is often and preferably used 

in the in vitro cleavage of fusion proteins [8, 10].  

In today’s pharmacological industry, fusion proteins are used for the production of 

recombinant proteins of therapeutic interest, such as antibodies, coagulation factors, 

growth hormones, vaccines and insulin [5, 10, 18]. However, to gain the therapeutically 

important protein in a monomeric form, the fusion tag, generally a signal peptide for 

translocation, needs to be cleaved away. This is the critical step influencing the yield, the 

purity of the protein as well as the manufacturing costs. The enzymatic cleavage of fusion 

proteins gives higher specificity and allows milder reaction conditions compared to the 

chemical cleavage using e.g. cyanogen bromide. However, the industrial application of 

proteolytic enzymes is often limited by the high cost for the biocatalyst which adds to the 

costs for the downstream processing.  

Several proteolytic enzymes have been used for fusion protein cleavage in laboratory 

scale such as factor Xa [4, 18], thrombin [4, 5, 19], urokinase [19, 20] and enterokinase. 

Using the enterokinase system, therapeutics for cancer treatment, such as mucin 1 [21-
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23] and deacetylases [24], human growth hormones [11] and cytokines [12] have been 

produced so far. A main reason for the use of enterokinase in the application of fusion 

protein cleavage is the distinct specificity of this enzyme for a defined amino acid 

sequence. Thus, the risk of unspecific cleavage and the resulting destruction of the target 

protein can be avoided. 

1.2 Fusion proteins 

1.2.1 Industrial importance 

“Since 2000, over a quarter of all new drug approved have been biopharmaceuticals.” 

(Gary Walsh, 2003) 

 

Humilin (recombinant insulin) produced by Genentech, San Francisco, CA, USA was the 

first human protein produced recombinantly by means of biotechnology. This was about 

26 years ago. Since then, the portfolio of biopharmaceutical products involves not only 

recombinant forms of natural proteins and from natural sources derived biologics, but also 

therapeutics based on monoclonal antibodies (mAb). More than 120 pharmaceutical 

products have been approved in the United States and the European Union by the end of 

2003, and about 500 additional products are currently undergoing clinical evaluation. As 

stated by Holmer in 2000, not only more than 250 million people, but also the 

biotechnology business have benefited from this new “era” of biotechnology products [25, 

26]. 

Most of the new approved biopharmaceuticals are protein-based drugs, of which some 

are unmodified recombinant proteins, and others have undergone some type of 

engineering for improving their functionality. Those drugs are medicines against the major 

killers of the West civilization: diabetes, hemophilia, myocardial infarction and various 

cancers (Figure 1-5A). According to the Pharmaceutical Research and Manufacturers of 

America (PhRMA), representing the US drug industry, approximately 370 of the 500 

candidate biopharmaceuticals undergo clinical evaluation in the United States. Around 

half of these drugs find their application in the treatment of cancer, others are involved in 

the therapy of infectious disease, autoimmune disorders, neurological disorders and 

AIDS/HIV-related conditions (Figure 1-5B) [25]. 

Several different technologies are used for the production of recombinant proteins, such 

as transgenic animals, transgenic plants, mammalian cells and the production using 

microorganisms [27]. The application of transgenic animals or plants may represent a 

more cost effective production system compared to mammalian or microbial cell cultures, 

but does still not belong to the standard techniques. One explanation for this is that the 
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biologically active form of most glycosylated proteins could be produced only in 

mammalian cells so far. This is due to the potential of mammalian cells for glycosylation 

and protein folding. Glycosylation can of course also be achieved in transgenic animals, 

but at present the used technology does not sufficiently fulfill the GMP (Good 

Manufacturing Practice) regulations. 

 
Figure 1-5 Target markets for new biopharmaceuticals.  

A) Approved biotechnology products applied for the treatment of the major killers of 
the West civilization,  

B) Number of drugs undergoing clinical evaluation in the United States. [25] 

 

A 

B 
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For industrial production it is of importance to achieve high yields and excellent purity of 

the desired recombinant proteins. One useful technique is the expression of the 

recombinant polypeptide as part of a larger fusion protein [28, 29]. The fusion of the target 

protein to a peptide sequence has several advantages, such as the secretion of the 

products from yeast [30] and E. coli [31] cells into the culture medium. Additionally, the 

fused polypeptide sequence can serve as an aid in identification and purification of the 

product. When using a fusion partner, this may also contribute in the correct folding of the 

target protein by functioning as chaperone.  

The most prominent and most abundantly used fusion tag is the green fluorescent protein 

(GFP). It can be linked genetically to almost every protein making the visualization of 

many processes within a cell possible. Due to the broad range of applications, the GFP 

has become one of the most important tools in biological research. In 1961, the 

researcher Osamu Shimomura discovered the GFP in the Pacific jellyfish Aequorea 

Victoria. Later, in the early Nineties, Martin Chalfie isolated the gene for GFP making it 

available for modern biotechnology. The mechanism by which GFP is glowing was first 

described by Roger Tsien. Now in 2008, these three scientists have been awarded with 

the Nobel Prize for chemistry for their outstanding and significant work regarding the 

green fluorescent protein [32]. 

Although being beneficial for the production of recombinant proteins, the fusion protein 

approach also has several drawbacks. First, the added polypeptide sequence may hinder 

the protein to fold properly into a native, active state. Second, the fused peptide needs to 

be removed in a sensitive way, so the target protein is not damaged or destroyed [8]. 

Misfolding can be overcome by the treatment with a strong denaturant followed by a 

refolding procedure. The removal of the fusion peptide is preferably done using enzymatic 

reactions such as for the production of cytokines in Chinese Hamster Ovarian cells using 

factor Xa, in which the fusion partner IgG, used for detection and purification, is removed 

[12]. In a fungal expression system using Aspergillus niger, a glycoamylase-TNF fusion 

protein is cleaved using enterokinase [9]. In Table 1-2, examples of approved 

biopharmaceuticals produced as fusion proteins are given. 
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Table 1-2 Approved biopharmaceuticals produced as fusion proteins in industrial scale 
(added) [25]. 

Product Company Information 

CAT-hANF (chloramphenicol 
transferase-atrial natriuretic factor) 

Glaxo Group LTD (US) 
 

1987, GB 2180538 

hGh-x (human growth hormone) Eli Lilly CO 1988, CA 1291068 

Fc-hEPO (human erythropoetin), 
Fc-hGCSF (human granulocyte 
colony stimulating factor) 

Merck Patent GmbH (D), 
Sudo Yukuo (JP) 

1999. WO 958662 

Amevive (alefacept) Biogen Idec Inc. Approved 2003 (US) 
aEnbrel  Amgen (US), Wyeth (EU) Approved 1998 (US), 

2000 (EU) 

Ontak Seragen/Ligand 
Pharmaceuticals 

Approved 1999 (US) 

1.2.2 Glycoproteins and glycosylation mechanisms 

Many cellular biomolecules have glycans attached to their structure. Those biomolecules 

can also be named glycoconjugates and are divided into glycoproteins, glycolipids, and 

proteoglycans. In case of glycoproteins, the glycan chains are covalently linked to 

functional groups of amino acid side chains within a protein or peptide.  

Glycosylation is one mechanism of post-translational modifications, meaning the transfer 

of sugars by enzymes, such as glycosyltransferases. The complexity of glycosylation is 

caused by the number of enzymes catalyzing the reaction, which can be described as the 

“one enzyme-one linkage” concept proposed by Hagopian and Eyler (1986) [33]. This 

concept states the general rule that for each carbohydrate linkage a specific 

glycosyltransferase gene has to be provided. Besides the glycosyltransferases, five 

different parameters further affect the structural diversity of glycans: 

1. the composition of the unit monosaccharide, e.g. Gal, GalNAc, Glc, GlcA, GlcNAc, 

Fuc, Man, Neu5Ac and Xyl, 

2. the length of the glycan chain (varies between one to several hundred 

monosaccharide units), 

3. the linkage type of the glycosidic bond between the carbohydrates and the peptide 

chain, 

4. the anomeric configuration of the corresponding groups, 

5. the branching; the number of carbohydrates connected to one monosaccharide 

[34, 35]. 
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The mechanism of glycosylation can be differentiated into three main types depending on 

the chemical function by which the glycans are transferred. The types of transfer 

mechanisms are: 

O-glycosylation: the carbohydrates are attached to the hydroxyl group of serine and 

threonine residues, when the protein/peptide is transported from the cis Golgi to the 

trans Golgi, 

N-glycosylation: the starting sugar is bound to the carboxy amide group of an 

asparagine occurring in the endoplasmic reticulum and the Golgi apparatus, 

C-glycosylation: the sugar mannose is linked to the carbon 2 of tryptophan of RNAse 2 

[36]. 

According to the glycosylation pattern, glycoproteins are divided into O-linked and 

N-linked glycans. Many important functions are mediated by those glycans. Thus, 

glycoproteins play an important role in cell-cell interaction and signaling. Moreover, 

glycosylation as a post-translational tool greatly influences proteins by: 

 stabilizing protein structure, 

 assisting in protein folding, 

 shielding the protein from proteases, 

 mediating protein half-life in vivo,  

 orienting the protein on the cell surface 

 participating in protein regulation by competing with other post-translational 

modifications [37, 38]. 

For the use of biopharmaceuticals in mammalians, it is therefore of great importance to 

produce proteins with the correct glycosylation pattern to receive the biologically active 

form of the protein with the desired functioning. 

1.3 The target protein MUC1 

1.3.1 General aspects 

MUC1 belongs to the mucin family, being an O-linked (mucin-type) glycoprotein. In 

humans, eight mucins have been identified, of which seven are secreted and one (MUC1) 

is the only membrane-anchored molecule. All proteins are produced by epithelial cells of 

the gastrointestinal, respiratory and genitourinary tracts, and also by the cancers that arise 

from these tissues.  
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MUC1 was the first member of the mucin family to be described and characterized. It was 

first isolated from human milk as a glycoprotein with a high molecular weight and a large 

extracellular domain [39]. There are alternative names for MUC1 existing, such as PAS-O, 

non-penetrating protein, DF-3 antigen, polymorphic epithelial mucin (PEM) and episialin 

[40]. The gene encoding MUC1 is located at chromosome 1q21-24 and the resulting 

protein has an apparent molecular mass of 300-600 kDa. The structure of the glycoprotein 

can be divided into a long (69 amino acids) cytoplasmic tail and a structural variable 

extracellular domain, which is almost entirely composed of between 20 to 100 tandem 

repeats of a 20 amino acid motif [41, 42]. Each tandem repeat contains five potential 

glycosylation sites, allowing the highly glycosylated MUC1 to carry typically between 60 

and 200 oligosaccharide side chains. In humans, approximately 50 % of the mass of the 

mucin molecule are carbohydrates [40]. 

Extensive studies have shown that MUC1 plays a diverse role in normal cells, including 

the involvement in anti-adhesion processes [43-45]; it may prevent interactions between 

other molecules located on the opposing side of the membrane preventing adhesion and 

thereby maintaining the lumen. It may also inhibit adhesion and extravasation of 

lymphocytes in high endothelial venules. Furthermore, MUC1 was found to be involved in 

signal transduction [46, 47]; it protects and lubricates the tissue surface [48], modulates 

the immune response and regulates cellular motility [49]. Furthermore, MUC1 is an 

important component of the glycocalyx and functions as a barrier against microbial toxins 

and protector against proteolytic degradation. 

MUC1 synthesized by normal cells, has a short and highly immunogenic amino acid 

sequence (caused by the glycosylation of specific amino acids) between the glycan side 

chains, which can be recognized by several monoclonal antibodies, such as HMFG-1, 

HMFG-2 and SM-3. The mucin molecule can be found at the apical surface of glandular 

epithelial cells, e.g. lactating mammary gland, pancreas, bronchus and salivary gland, and 

is also synthesized by many types of cancer. 

1.3.2 MUC1 and cancer 

MUC1 as a large glycoprotein being expressed at the cell surface possesses numerous 

functions, but its potential role in the progression of tumors and metastasis has to be 

emphasized. An over-expression of tumor-associated MUC1 has been observed in many 

epithelial malignancies. There is also a change in the glycosylation pattern of MUC1: the 

N-terminal domain becomes aberrantly glycosylated with shortened carbohydrate side 

chains. This leads to the unmasking of the epitopes on its peptide core [50]. This could be 

documented for breast and ovarian cancer [51], and is also suggested to be true for lung, 

pancreatic and prostate cancer [46, 52]. The changed topology of MUC1 occurs also at 
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the basolateral surface. Differences in the number of O-glycosylation sites could be 

observed between mucins produced by the normal lactating mammary gland and 

produced by the breast cancer cell line T47D. This contributes to the different expression 

profiles assumed in normal and malignant cells [46].  

Besides the number of glycosylation sites, there are also variations in the compositions of 

O-glycans added to MUC1. In mucin-type O-glycosylation, N-acetylgalactosamine 

(GalNAc) is the first sugar added to serine or threonine. In normal human mammary gland 

cells, galactose (Gal) is added to form the core 1 structure; a reaction catalyzed by 

β-1,3-galactosyl transferase (β-1,3-GalNAc transferase). The enzyme 

β-1,6-acetylglucosamine transferase (β-1,6-GlcNAc transferase) then catalyzes the 

addition of N-acetylgucosamine (GlcNAc) to GalNAc to form core 2. This structure is 

further extended to form polylactosamide side chains (Figure 1-6, left pathway). 

In comparison to this, truncated side chains are found in breast cancer cells. The enzyme 

-2,3-sialyl transferase is suggested to compete with β-1,6-GlcNAc transferase for the 

core 1 structure as substrate. Sialic acid (SA) is added to the Gal of core 1 by -2,3-sialyl 

transferase, thereby inhibiting carbohydrate side chain extension (Figure 1-6, right 

pathway). This side chain termination may also be caused by the addition of fucose 

instead of sialic acid [53-55]. Therefore, normally glycosylated mucins possess core 2 

based O-glycans, whereas the structure of O-glycans of mucins isolated from breast 

cancer cell lines were found to be core 1 based. Differences in enzyme activity of 

β-1,6-GlcNAc transferase and -2,3-sialyl transferase were found in breast cancer cell 

lines compared to normal epithelial cells, suggesting an explanation for the truncated 

carbohydrate side chains found in tumor-associated MUC1 [56]. 

The enzyme -2,6-sialyl transferase was found to add sialic acid to GalNAc, the first sugar 

linked to serine or threonine resulting also in side chain termination. The carbohydrate 

antigens Tn, T and sTn are preferentially expressed by malignant cells. The expression of 

tumor-associated carbohydrate moieties are suggested to increase the metastatic 

potential through interactions between sialic acid residues and components of the 

extracellular matrix [56]. 
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Figure 1-6 Pathway of O-linked glycosylation of MUC1 by the mammary gland for normal 
and malignant cells.  
Core 1 glycans are converted to core 2 glycans in normal cells, whereas in cancer 
mucin the glycans are core 1 based with a high level of sialic acid [46, 57]. 

In recent studies it is suggested that MUC1 plays a role in tumorgenicity, tumor cell 

migration, and also in immunosuppression. The latter might be promoted by MUC1 due to 

enhancing the resistance to apoptosis and genotoxic agents. As mentioned before, 

malignant cells over-express MUC1, which is claimed to be advantageous under 

conditions of oxidative or other forms of stress, thus contributing to the survival of 

carcinoma cells [58]. Furthermore, the anti-adhesive action of MUC1 may also influence 

the anti-tumor response of the body. MUC1 may, thereby, interfere the interactions 

between tumor cells and cells of the immune system [59]. It was suggested that the 

negative effect of mucins on the suppression of the immune response is caused to some 

extent by the carbohydrate portion of the glycoprotein. It has been claimed by Hilkens and 

co-workers that the aberrant expression mediates the initial step in the metastatic cascade 

of tumor cells due to the anti-adhesive effects of MUC1 [60].  
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1.3.3 MUC1 as therapeutic agent 

Although the immune responses to MUC1 are considered to be beneficial for cancer 

patients, the expression of MUC1 on tumors is usually correlated with a worse prognosis. 

In virtually every adenocarcinoma, the level of expression of MUC1 on the cell surface is 

increased. Furthermore, the numerous roles of MUC1 in cellular transformation, tumor cell 

migration, chemoresistance, and also in immunosuppression support the increased 

interest in the MUC1 mucin as a “cancer-associated antigen” which may be useful in 

immunotherapy [57, 61]. 

There are multiple other reasons for considering MUC1 as a target antigen. Firstly, MUC1 

may be among the first cellular structures to be encountered by the immune system as a 

result of its physical size. Secondly, MUC1 expression is up-regulated in malignant cells, 

and as a consequence of aberrant glycosylation, new epitopes are exposed on the cell 

surface. Thirdly, the distribution of MUC1, which is apical in normal glandular epithelia, but 

is being all over the surface of cancer cells, allows selectivity in any cell killing involving 

the whole molecule [46]. Finally, and of most importance, both cellular and humoral 

responses have been observed in cancer patients. 

Before initiating clinical studies, preclinical testing was done using animal models. MUC1 

was shown to be highly immunogenic in mouse models, thus many antibodies have been 

developed to the MUC1 mucin by various groups. Here, normal or malignant epithelial 

cells, or their membranes, were used as immunogens. Particularly, membranes of 

lactating mammary epithelial cells were widely used as an immunogen and it could be 

demonstrated that MUC1 apparently dominates the induction of an immune response [62-

64]. Cytotoxic antibodies recognize membrane mucins, making the use of antigens based 

on MUC1 in active specific immunotherapy even more interesting [46]. Several 

investigations, however, showed that antibodies against MUC1 exert only a limited effect 

against the primary tumor, while being more effective against circulating single tumor 

cells. Due to their role in antibody-dependent cell-mediated cytotoxicity and complement-

mediated cell lysis, anti-MUC1 may uncover cell surface receptors causing cell adhesion 

to be restored and tumor cells to be recognized and destroyed. It has been shown that 

naturally occurring anti-MUC1 in the sera of breast cancer patients favorably influenced 

the overall survival of these patients in stage I and stage II studies [65, 66].  

Apart from being a target for the B cell immune response, MUC1 can also serve as T cell 

immunotarget. The first evidence for this were demonstrated by Jerome and co-workers 

[67]. It was shown that tumor-reactive T cells from peritumoral lymph nodes of breast 

cancer patients were able to destroy MUC1 positive cancer cells. The epitopes that were 

recognized by the T cells were localized within the tandem repeat domain of MUC1. It can 
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therefore be said, that a site-specific O-glycosylation has a significant impact on the 

antigenicity of the tandem repeat domain and also on the strength of the glycopeptide-

mediated effect on human T cell proliferation. These facts have to be considered in the 

future designs of MUC1-based vaccines. 

Several attempts have already been made to use MUC1 as therapeutic agent. MUC1 

cDNA was for example used as immunogen. Unfortunately, the cDNA alone failed to give 

protection against MUC1-expressing tumors in MUC1 transgenic mice. However, the 

immunization of breast cancer patients in a small phase I/II clinical trail with a recombinant 

vaccinia virus expressing MUC1 and interleukin-2 showed two partial responses of the 

patients [57].  

In other experiments, peptides were used to generate MUC1-specific immune responses. 

These peptides have been derived from the tandem repeat sequence of MUC1 [57, 68]. A 

more direct way to exploit the aberrant glycosylation of MUC1 for the use in 

immunotherapy is the application of tumor-associated carbohydrate antigens found on 

MUC1. Immunized patients pre-treated intravenously with cyclophosphamide showed 

strongly increased median survival than groups treated differently [46]. 

Recently published data of a clinical trial involves a peptide vaccine strategy for the 

treatment of non-small lung cancer. In this study, L-BLP25, a peptide vaccine that targets 

the exposed core peptide of MUC1 is used. Preclinical studies showed a cellular immune 

response induced by L-BLP25, which is characterized by T-cell proliferation in response to 

MUC1 and by the production of interferon-. Updated analysis show a strong survival 

trend in favor of L-BLP25 [61]. This liposomal cancer vaccine also shows promise in 

prostate cancer in which the doubling time of prostate-specific antigens could be 

prolonged. [50] 

Concluding, it can be said that MUC1 has many characteristics to be an interesting 

candidate molecule for active specific immunotherapy. This is also reflected by the 

number and scope of publications and early clinical studies that have been initiated. 
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2 Aim of the Project 

The main focus of this project is the optimization of the enzymatic cleavage of the fusion 

protein MUC1-IgG2a Fc to receive a potential target in immunotherapy for cancer 

treatment. This fusion protein is produced by recombinant Chinese Hamster Ovarian K1 

cells and is composed of the extracellular part of human MUC1 and the Fc-part of 

immunoglobuline G, which functions as a secretion signal. Both fusion partners are linked 

by an enterokinase recognition site allowing an enzymatic cleavage of the fusion protein. 

This is necessary to receive MUC1 in its monomeric, active form for its utilization in 

therapeutic and immunological investigations. The currently applied process for the 

cleavage of MUC1-IgG2a Fc by enterokinase is highly inefficient and is causing 

production costs of about 100.000 € per gram MUC1, in part due to the high costs of the 

biocatalyst. 

Therefore, the enzymatic cleavage reaction shall be characterized followed by the 

development of an improved process for fusion protein cleavage with emphasis on the 

efficient utilization of the biocatalyst. 

The tasks of the project can be summarized as follows: 

PRODUCTION, ISOLATION AND PURIFICATION OF THE REACTING PROTEINS 

 Optimization of the fermentation and purification procedure for enterokinase 

produced by recombinant E. coli strains to increase the yield of isolated 

biocatalyst; 

 Optimization of the purification procedure for MUC1-IgG2a Fc produced by 

recombinant Chinese Hamster Ovarian K1 cells. 

INVESTIGATIONS ON THE BIOCATALYST 

 Development of fluorometric and analytical methods to determine optimal 

reaction conditions and measure enzyme activities; 

 Investigation of different carrier materials for immobilizing enterokinase; 

establishment of an immobilization technique to receive high remaining 

activities and to increase the stability of the enzyme, demonstrate the suitability 

of the enzyme-support preparation for fusion protein cleavage under process 

conditions; 

 Determination of the reaction conditions for the immobilized enterokinase. 
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PREPARATIVE CLEAVAGE OF MUC1-IGG2A FC 

 Application of the enzyme-support preparation in appropriate reactor setups 

and improvement of the reactor performance by applying optimized reaction 

conditions; 

 Comparison of the optimized process to the currently applied method; 

 Development of a suitable procedure for the isolation of MUC1. 
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3 Investigations concerning MUC1-IgG2a Fc 

3.1 Theoretical Background 

The fusion protein of interest, MUC1-IgG2a Fc, consists of the human extracellular part of 

MUC1 and a murine IgG2a Fc (Figure 3-1). The N-terminus of MUC1 contains 16 tandem 

repeats, of which each has 5 potential O-glycosylation sites. The C-terminal part of the 

fusion protein is composed of exon 1-3 of IgG2a Fc, having a stabilizing effect on the 

fusion protein. Furthermore, the IgG2a Fc functions as signal peptide for the transport of 

MUC1-IgG2a Fc to the cell culture medium. The two proteins are linked by an 

enterokinase recognition site allowing the enzymatic cleavage of the fusion protein after 

purification to receive the final target protein MUC1 in its monomeric, active form [21]. 

 

Figure 3-1 Protein structure of the fusion protein MUC1-IgG2a Fc. 

The fusion protein has an apparent molecular weight of about 170 kDa, of which 40 % are 

glycans and the remaining 60 % represent the peptide part. The percentile distribution 

varies according to the number of glycosylation sites and the length of the glycans [69]. 

The cDNA encoding the fusion protein was cloned into a pcDNA3-vector und is under the 

control of a human cytomegalovirus promoter (CMV promoter). This vector is an 

expression vector with high transcription rates allowing an increased expression of the 

recombinant protein in mammalian cells. Therefore, Chinese Hamster Ovarian K1 (CHO 

K1) cells were transfected with the MUC1-IgG2A-pcDNA3-vector (Figure 10-1, Materials 

and Methods) for the production of the fusion protein. 
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3.2 Isolation and Purification of MUC1-IgG2a Fc 

The cultivation of CHO K1 cells for the production of MUC1-IgG2a Fc was performed in 

cooperation with the former Cell Culture Group of the Institute of Biotechnology 2 of the 

Research Centre Juelich. Starting from a cryo culture of the working cell bank, 1*107 

viable cells are used as inoculum for a T75 T-flask having a final cell concentration of 

about 1*106 viable cells/mL. Cultivation was performed at 37°C and 5-8 % CO2. A T-flask 

with 1*106 viable cells/mL was then used for inoculation of a spinner flask, thereby 

entering a dynamic culture system. A spinner flask with 1*106 viable cells/mL was then 

used as inoculum for a 3-5 L cultivation system. Further information is given in section 

10.2.4 and 11.1. 

The fusion protein MUC1-IgG2a Fc, which is secreted into the cell culture medium, has to 

be purified for further investigations. In the first purification step, the protein of interest is 

removed from the cell culture medium and, in parallel, is concentrated within the standard 

reaction buffer using filtration (10.2.14). Table 3-1 summarizes the concentrated 

MUC1-IgG2a Fc solutions received from different perfusion cultures. After the first 

purification step, concentrations of around 200 mg*L-1 MUC1-IgG2a Fc were obtained for 

each product solution. 

Table 3-1 Concentrated MUC1-IgG Fc solutions received from different perfusion 
cultures of CHO-K1 cells after the first purification step. 

Fermentation (see 
appendix 11.1) 

Vcell culture medium / L 
Vconcentrate / L after first 

purification step 

1) R CWPer3 8.6 0.70 

2) R CWPer4 10.5 

6.0 

0.85 

0.60 

3) RMUC1 Prot2 5.7 0.64 

 

The received product solutions containing MUC1-IgG2a Fc were analyzed using 

SDS-PAGE. A protein band with the expected molecular size of about 170 kDa was 

detected and was specifically identified as the desired fusion protein MUC1-IgG2a Fc 

using specific antibodies in Western Blot analysis (Figure 3-2). As it can be seen on 

SDS-PAGE, there are still impurities in the protein solution that may disturb within the 

cleavage reaction using immobilized enterokinase as well as in analytical investigations. 

Therefore, further purification of the fusion protein was required. 
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Figure 3-2 Detectable MUC1-IgG2a Fc after the first purification step using filtration. 

 

To receive a sufficient purity of the fusion protein, ion exchange chromatography was 

applied for removing undesired proteins. Each protein possesses a specific isoelectric 

point, which is the pH value at which the overall net charge of the protein is zero. By 

changing the pH in the surrounding medium, the charge of the protein can be changed 

accordingly. Therefore, the proteins will bind more or less specific to the ion exchange 

material and can be eluted using a salt gradient.  

Ion exchange chromatography has been applied before for the separation of MUC1 from 

the reaction mixture [21], which has similar properties as the fusion protein 

MUC1-IgG2a Fc. Thus, for the preparative purification of MUC1-IgG2a Fc, ion exchange 

chromatography seemed applicable.  

Two slightly different ion exchange materials have been investigated, which differ mainly 

in the size of the agarose beads and thus in the overall loading capacity: 1) HiTrap QHP – 

Q Sepharose™ High Performance and 2) HiPrep QFF – Q Sepharose™ Fast Flow. By 

varying the salt gradient and regulating the flow rate, MUC1-IgG2a Fc could be further 

purified using the strong anion exchange material HiPrep QFF. A reference gel and the 

applied gradient with the resulting chromatogram are demonstrated in Figure 3-3. 
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Figure 3-3 Second purification step for MUC1-IgG2a Fc using ion exchange 
chromatography. 
A) SDS-PAGE of the two purification steps and the comparison of the two different 

ion exchange materials (2MM – 2 membrane module);  
B) representative chromatogram received for MUC1-IgG2a Fc after ion exchange 

chromatography. 

Using anion exchange chromatography as a second purification step, undesired proteins 

were removed (Figure 3-3A) by applying a specific salt gradient (Figure 3-3B). The purity 

of the received fusion protein was now sufficient for further experiments involving the 

cleavage reaction with immobilized enterokinase and analytical investigations. The 

batches of MUC1-IgG2a Fc were obtained having different purity degrees ranging from 

27 % to more than 94 % (Figure 3-4). 

 

Figure 3-4 Received fractions of MUC1-IgG2a Fc with the corresponding chromatogram 
(left) and the specific purity after IEC (right). 
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3.3 Stability of MUC1-IgG2a Fc 

As observed by various research groups and as described in chapter “Enzyme 

characterization”, enterokinase activity can be observed at temperatures between 25 °C 

and 40 °C and in a pH range between 6 to 9 [7, 70]. Due to the broad range of possible 

reaction conditions, it is of importance to investigate the stability of the substrate protein 

MUC1-IgG2a Fc at those reaction conditions.  

Figure 3-5 shows a representative SDS-PAGE with samples of MUC1-IgG2a Fc taken 

after specific time intervals when being incubated under sterile conditions at 25 °C and 

37 °C at pH 8. According to the intensities of the protein bands (analysis done as 

described in section 10.2.19), a degradation of the fusion protein under the investigated 

conditions did not occur. Same results were received for 30 °C, 35 °C and 40 °C at pH 8 

and for 25 °C to 40 °C at pH 9. Thus, MUC1-IgG2a Fc seems to be stable for at least 14 

days under sterile conditions at temperatures between 25 °C to 40 °C and at pH 8 and 9. 

 

Figure 3-5 Stability of MUC1-IgG2a Fc at pH 8 (representative SDS-PAGE).  
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3.4 Summary: MUC1-IgG2a Fc 

The results of this chapter can be summarized as follows:  

 The fusion protein MUC1-IgG2a Fc, produced by CHO K1 cells, is transported into 

the cell culture medium. Using a two-membrane module, the protein was 

separated from the remaining medium components and concentrated within the 

standard reaction buffer.  

 With an additional purification step undesired proteins were removed to receive 

MUC1-IgG2a Fc with high purities sufficient for analytical investigations and for the 

analysis of the cleavage reaction. 

 In total, 30.8 L of cell culture medium from three different perfusion cultures 

containing MUC1-IgG2a Fc were purified using the 2-membrane module receiving 

2.8 L concentrated MUC1-IgG2a Fc solution with a concentration of 200 mg*L-1. 

 The received MUC1-IgG2a Fc solution was applied to ion exchange 

chromatography for further purification. The different fractions were collected and 

concentrated using filtration to obtain the following batches: 

batch 
MUC1-IgG2a Fc 

concentration 
Purity 

I 

II 

III 

0.55 mg*mL-1 

2.33 mg*mL-1 

0.97 mg*mL-1 

27.6 % 

94.6 % 

94.4 % 

 MUC1-IgG2a Fc was stable under sterile and protease-free conditions at pH 8 and 

pH 9 within a temperature range of 25 °C to 40 °C allowing a wide range of 

applicable reaction conditions. 
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4 Enterokinase production1 

4.1 Theoretical Background 

4.1.1 Metabolism of Escherichia coli 

The microorganism Escherichia coli is one of the most investigated and abundantly used 

microorganism in the scientific world. Due to the innumerable information about 

Escherichia coli, this gram-negative bacterium became a versatile tool in the production of 

recombinant proteins and fine chemicals in industrial processes. 

In large scale fermentation, it is of importance to supply the microorganism with sufficient 

amounts of carbon and nitrogen, which are not only required for microbial growth but also 

for the production of heterologous proteins [71]. During microbial growth, the generation of 

undesired by-products, such as acetate may occur, which have a negative influence on 

the production of recombinant proteins. Acetate formation may take place under aerobic 

and anaerobic conditions. Thus, a sufficient supply with oxygen has to be guaranteed to 

avoid an anaerobic environment, and thus decreased microbial growth, increased acetate 

formation, and decreased production of the target protein.  

Nevertheless, at high growth rates and high glucose concentrations, the supplied carbon 

source may be converted into biomass and energy too slowly leading to the accumulation 

of acetate. This phenomenon is also called the bacterial “Crabtree-effect” [72-74]. 

Depending on the bacterial strain the formation of acetate above a certain concentration 

(5-10 gacetate*L
-1) [75, 76] may negatively influence growth behavior as well as the 

formation of heterologous proteins [73, 77].  

There are several techniques to avoid the accumulation of acetate and therefore the 

reduction in product formation: 

1) Limitation of the carbon source  controlled feed reduces growth rate and the 

formation of undesired by-products; 

2) Variation of carbon source  glycerine is taken up slower than glucose [78]; 

3) Cultivation in a “Dialysis” reactor  acetate is continuously removed from the 

medium [79-81]; 

4) Alternative E. coli strains  strains that are either resistant against high acetate 

concentrations or generate only low amounts of acetate at high glucose 

concentrations [74, 82-84]. 

                                                 
1 In this project the light chain of enterokinase, which is catalytically active, is used. The sequence 
originates from bovine enterokinase. 
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4.1.2 Fermentative process engineering 

For the production of enterokinase using recombinant E. coli, the fermentation can be 

divided into two different phases; a batch phase and a fed-batch phase. The growth 

during the batch phase can be calculated according to the following equations:  

 CALCULATION OF BIOMASS CHANGE OVER TIME 

      µmax :  maximum specific growth rate / h-1 

      x : biomass concentration / g*L-1 

      t : time / h 

CALCULATION OF GROWTH RATE DEPENDENT ON SUBSTRATE CONCENTRATION 

(MONOD-EQUATION) 

µmax : maximum specific growth rate / h-1 

µ : specific growth rate / h-1 

Sl : concentration of the limiting substrate / 

g*L-1 

Ks : saturation constant of the limiting 

substrate / g*L-1 

The theoretical growth of the microorganism during batch fermentation can be divided into 

6 stages: a lag phase, an acceleration phase, an exponential growth phase, a delay 

phase, a stationary phase and a dying phase (Figure 4-1).  

 

Figure 4-1 Schematic drawing of the growth behavior of microorganisms in a batch 
fermentation. 

A batch fermentation is a so called “closed” system, in which a defined medium without a 

controlled substrate feed (neglecting the oxygen supply) is used. Growth rate and product 

x
dt

dx
max

sl

l

KS

S
µ


 max
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formation is mainly spontaneous and cannot be controlled. In contrast to this, a fed-batch 

fermentation, a “semi-open” system, cannot be divided into specific growth phases. In this 

case, a continuous feed of a certain substrate, for example glucose, is initiated, by which 

the growth behavior and product formation can be controlled. With this fermentation 

technique, possible limitations can be avoided allowing longer process times and a 

maximum utilization of the biosynthetic capability of the biomass [85]. The main 

differences between batch and fed-batch fermentation with regard to the change in reactor 

volume over time are summarized in Figure 4-2. 

 

Figure 4-2 Fermentation strategies: batch fermentation (left) and fed-batch fermentation 
(right) [85]. 

4.1.3 Product isolation and purification 

Recombinant microorganisms are widely used for the production of heterologous proteins. 

Besides optimizing the fermentation process itself, product isolation is the most important 

part in the production process.  

The method of choice for product isolation depends greatly on the location of product 

accumulation; whether it is formed intracellularly, stored in inclusion bodies or secreted 

into the medium. Furthermore, the concentration and the physical and chemical properties 

of the target protein also influence the method applied for product isolation. The final 

application, either as a chemical precursor or as a pure supplement in the pharmaceutical 

industry, must be considered for the development of an appropriate downstream process 

with the necessary purity of the final product [86].  

In case of intracellular product formation, microbial cells need to be lysed to gain the 

desired protein. Methods for cell disruption and thereby for product recovery are 

summarized in Table 4-1. Regardless of the isolation method, the target protein will be 

received in either a protein suspension containing all the proteins of the lysed cells or in 



ENTEROKINASE PRODUCTION 

- 28 - 

the culture broth together with the supplements. One of the most widely used technique 

for isolating and purifying proteins from suspension is affinity chromatography. 

Table 4-1 Selected methods for cell disruption. 

Affinity chromatography involves the specific binding of proteins to metal ions, which have 

been immobilized to a stationary phase. Amines, amino acids or nucleotides, which are 

present in the mobile phase bind to the metal ions and can then be eluted specifically. The 

most abundantly method used involves immobilized nickel ions to which the amino acid 

histidine binds with a very high affinity. On a genetic level, the so called His-Tag, a 

sequence of at least six histidines, can be linked to the protein. Thereby, the affinity of the 

target protein for nickel ions is increased compared to naturally occurring proteins, which 

allows a simplified isolation and purification from protein suspensions and culture broths. 

4.2 Fermentation of Escherichia coli2 

For the determination of the best expression host for enterokinase production, both 

strains, E. coli K12 G1968 and E. coli BL 21 DE3*, have been compared with regard to 

growth behavior, glucose consumption and acetate formation. Furthermore, product 

formation was also analyzed and compared to the different fermentation parameters. 

For a better understanding three representative fermentations will be discussed in the 

following sections. 

4.2.1 Growth of expression hosts 

To compare the growth of both strains in the pre-culture, minimal medium was inoculated 

with cryo-cultures having similar optical densities. However, as it can be seen in Figure 

4-3 E. coli K12 reaches an optical density of about 3.5 after ~10 h, whereas E. coli BL21 

requires ~18 h. A prolonged incubation of the pre-cultures was avoided due to possible 

limitations. The differences in growth behavior might be explained by differing biomass 

concentrations within the cryo-cultures, taking living and dead cells into account. 
                                                 
2 The results in this section were generated by Daniel Minör for his diploma thesis. 

Physical & mechanical methods Chemical methods 

freeze and thaw detergents 

ultrasonication osmosis 

French press acid-base treatment 

high pressure homogenisator enzymatic cell lysis 
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Figure 4-3 Growth behavior of the expression strains E. coli K12 and E. coli BL21 in the 
pre-culture.  
The cultures with a starting optical density (OD600) of 0.08 were incubated at 37 °C 
and 150 rpm in minimal medium M9. 

The main culture, carried out in a 30 L bioreactor, was inoculated with pre-cultures having 

similar optical densities to be able to compare the different fermentations. The growth of 

the microorganisms was quantified by determining the optical density and the cell dry 

weight (CDW).  

The cultivation of the microorganisms can be divided into two phases, a batch phase for 

biomass production and a fed-batch phase with reduced temperature for product 

formation. During the fed-batch phase, glucose was added to avoid reduced microbial 

growth due to substrate limitation. Furthermore, a reduction in growth temperature results 

in deceleration of the metabolism of the microorganisms and thereby in the inhibition of 

inclusion body formation. 
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Figure 4-4 Growth behavior of the expression strains E. coli K12 and E. coli BL21 in the 
main culture.  
Microbial fermentation was performed using minimal medium M9 and 37 °C in the 
batch phase. With initiation of the glucose feed, the temperature was reduced as 
stated: A) E. coli K12 at 25 °C; B) E. coli BL21 at 20 °C, C) E. coli BL21 at 25 °C. 
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After inoculation, the cultivation of the microorganisms was carried out in a batch mode to 

generate biomass for product formation. During that phase the growth parameters were 

identical for all fermentations. Figure 4-4 shows the growth curves received for the main 

culture separated into batch and fed-batch phase for the two expression hosts.  

Despite having the same fermentation parameters, there were differences in growth for 

E. coli K12 and E. coli BL21. E. coli K12 possessed a very short lag phase of about 2 h 

entering a negligible acceleration phase which was followed by exponential growth (Figure 

4-4A). During fermentation, E. coli K12 reached a growth rate (µ) during the batch mode 

of 0.47 h-1. In comparison, the lag phase of E. coli BL21 took 3 to 4 h (Figure 4-4B & C). 

Nevertheless, this strain reached higher growth rates of 0.53 h-1 and 0.79 h-1. The higher 

growth rates for E. coli BL21 compensated for the longer lag phase, resulting in similar 

cultivation times during the batch phase of about 7 h (E. coli K12) to 7.5 h (E. coli BL21) 

for both production strains. The growth rates for the investigated strains are summarized 

in Table 4-2.  

Table 4-2 Growth rates µ of the expression hosts reached during batch phase. 

Strain 
Temperature during 

batch (fed-batch) / °C 

Specific growth rate (µ) 

during batch phase / h-1
 

E. coli K12 37 °C (25 °C) 0.47 

E. coli BL21 37 °C (20 °C) 

37 °C (25 °C) 

0.53 

0.79 

After the batch phase, a fed-batch mode was applied in which the temperature was 

decreased to avoid the formation of inclusion bodies and to increase accessible product 

formation. Furthermore, glucose was continuously added to supply the culture with a 

carbon source and to further increase biomass concentration.  

As it can be seen in Figure 4-4, exponential growth was replaced by linear or stagnated 

growth after the temperature has been reduced from 37 °C to 20 °C or 25 °C. Linear 

growth with slight stagnation could be observed for E. coli K12, which has to adjust to the 

reduced temperature of 25 °C (Figure 4-4A). A final optical density of 100 and a CDW of 

26.48 g*L-1 were achieved after approximately 22 h (Table 4-3). In case of E. coli BL21, 

this could not be observed under the same conditions. Instead, exponential growth 

changed into a linear behavior when reducing growth temperature to 20 °C, whereas at 

25 °C a strong linear growth was observed (Figure 4-4B&C). Optical densities and cell dry 

weights for E. coli BL21 varied depending on the temperature applied during the fed-batch 
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phase (Table 4-3). When grown at 20 °C, the optical density and the cell dry weight 

received were below the values for E. coli K12. In comparison, an improvement in cell 

growth was achieved at 25 °C, at which the optical density and the cell dry weight were 

increased. 

Table 4-3 Final values for OD and CDW received in the main culture. 

Strain 
Temperature 

during 
fed-batch / °C 

Duration of 
fermentation / 

h 
Final OD600 

Final CDW / 
g*L-1 

E. coli K12 25 21.75 100 26.48 

E. coli BL21 20 

25 

23.00 

19.50 

64 

120 

19.15 

33.24 

According to the final values summarized in Table 4-3, E. coli BL21 cultivated at 25 °C 

during fed-batch phase, reached the highest biomass concentration in a short 

fermentation time. In contrast, E. coli BL21 cultivated at 20 °C reached only 57 % of the 

CDW after 23 h fermentation time, which emphasized the suboptimal growth conditions at 

this temperature. After approximately 22 h of fermentation, E. coli K12 measured about 

80 % of CDW.  

The given biomass yield in relation to the starting glucose concentration (Table 4-4) 

shows that the glucose was more efficiently converted into biomass by E. coli BL21 

(20 °C: YS = 0.30, 25 °C: YS = 0.34) than by E. coli K12 (25 °C: YS = 0.22). This might be 

caused by a surplus of glucose in the metabolism, causing the glucose taken up not to be 

converted completely. In case of E. coli K12, the starting glucose concentration might 

have been too high resulting in a bacterial Crabtree-effect [74, 83, 84, 87]. Taking the 

resulting space-time yield into account emphasizes the high productivity of biomass over 

the duration of the fermentation for E. coli BL21 grown at 25 °C, which was 1.7 g*L-1*h-1 

(Table 4-4). For E. coli K12 and E. coli BL21 grown at 20 °C the space-time yield was 

either 1.21 g*L-1*h-1 or 0.85 g L-1*h-1, being lower than for E. coli BL21 at 25 °C.  

In case of biomass production at the given fermentation parameters, E. coli BL21 with a 

reduced fed-batch temperature of 25 °C seems to be the better candidate for the 

production process of enterokinase. Nevertheless, other factors have to be taken into 

account before choosing the final production strain, such as glucose consumption, acetate 

formation and most important product formation. 
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Table 4-4 Biomass yield in correlation with the utilized glucose and resulting biomass 
production rate. 

Strain Temperature 
during 

fed-batch / °C 

Duration of 
fermentation / 

h 

Specific 
biomass yield 
in relation to 
substrate YS 

Biomass 
production 

rate / g*L-1*h-1 

E. coli K12 25 21.75 0.22 1.21 

E. coli BL21 20 

25 

23.00 

19.5 

0.30 

0.34 

0.85 

1.70 

4.2.2 Glucose consumption 

Glucose was used as carbon source throughout the fermentation. Since the culture 

medium of the main culture was sterilized in situ causing slight variations in the starting 

concentration of the substrate which should be 30 g*L-1. The utilization of glucose during 

the three different fermentation processes is visualized in Figure 4-5.  

The decrease of the glucose concentration correlates to the exponential growth of the 

microorganisms. As stated before, the growth behavior of the used strains differs in the 

batch phase causing different concentrations of glucose before going into the fed-batch 

mode. The glucose feed was adjusted according to the rate of glucose consumption at the 

end of the batch phase, which is stated in Table 4-5. The glucose concentration before 

starting the glucose feed varied from 4.95 g*L-1 for E. coli K12 to 12.5 g*L-1 for E. coli 

BL21. Thus, E. coli K12 has the highest rate of glucose consumption with 2.77 g*L-1*h-1 

compared to E. coli BL21 grown at 20 °C with 2.06 g*L-1*h-1 and 2.28 g*L-1*h-1 when 

decreasing the temperature to 25 °C. 

Table 4-5 Rate of glucose consumption during batch fermentation. 

Strain 
Temperature during fed-

batch / °C 
Rate of glucose 

consumption / g*L-1*h-1 

E. coli K12 25 2.77 

E. coli BL21 20 

25 

2.06 

2.28 

The concentration of the glucose feed was set to 500 g*L-1. To define an appropriate feed 

rate, a limiting glucose concentration of 0.1 g*L-1 was defined. At this substrate 
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concentration and a KS value of 0.001 g*L-1, E. coli is still able to grow with 99 % of the 

maximum growth rate possible [88].  
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Figure 4-5 Glucose concentration during the fermentation process. 

The feed rate was adjusted according to the calculated consumption rates of glucose. 

When decreasing the temperature to 25 °C within the fed-batch phase, a feed rate of 

250 mL*h-1 for the glucose supply was sufficient to avoid substrate limitation in the stated 

fermentations for E. coli K12 and E. coli BL21 (Figure 4-5). An even lower feed rate of 

100 mL*h-1 was applied in case of E. coli BL21 with 20 °C as cultivation temperature. The 

differences in glucose consumption and feed rate adjustment can be explained by the 

change in metabolism influenced by the growth temperature. 
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Table 4-6 Rate of glucose consumption during fed-batch phase. 

Strain Temperature during 
fed-batch / °C 

Rate of glucose 
consumption / g*L-1*h-1 

E. coli K12 25 6.57 

E. coli BL21 20 

25 

3.34 

6.80 

According to the rates of glucose consumption during the fed-batch phase (Table 4-6) 

glucose was taken up in similar concentrations by both E. coli strains when being grown at 

25 °C. The utilization of substrate for E. coli K12 was 6.57 g*L-1*h-1, only slightly lower 

than for E. coli BL21, which measured 6.80 g*L-1*h-1. Nevertheless, it has been described 

before that the conversion of glucose to biomass is much more efficient for E. coli BL21 

than for E. coli K12. As it was expected, the consumption of glucose for E. coli BL21 at 

20 °C was much lower, measuring only 3.34 g*L-1*h-1. In all cases, a limitation of glucose 

could be avoided throughout the entire fermentation processes. 

4.2.3 Acetate formation 

When using glucose as carbon source for the fermentation of microorganisms, the 

formation of undesired by-products, such as acetate, may occur. The development of 

acetate is not only dependent on anaerobic conditions during fermentation, it can also 

take place under aerobic conditions [74, 83, 84, 87]. To avoid the formation of acetate, a 

sufficient supply of oxygen has to be guaranteed. High growth rates and high glucose 

concentrations, however, may lead to acetate accumulation due to an excess of the 

carbon source which cannot be converted into biomass fast enough. 

Since the accumulation of acetate negatively influences the formation of heterologous 

proteins, a continuous control of acetate formation is necessary throughout fermentation. 

For the selection of the most effective production strain, it is of importance to have as low 

acetate formation as possible to ensure the utilization of glucose for biomass production 

and product development. In Figure 4-6, the formation of acetate during the course of the 

fermentation is visualized. In general it can be said that E. coli K12 produced much more 

acetate than E. coli BL21. The final acetate concentrations, summarized in Table 4-7, 

measured less than 1 g*L-1 for E. coli BL21 and more than 5 g*L-1 for E. coli K12.  
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Figure 4-6 Acetate formation of the expression hosts during fermentation. 

Expecting similar results for the acetate formation in case of all E. coli strains, 

independent of the temperature during the fed-batch phase, significant variations could be 

observed. During the batch phase, a maximum in acetate concentration occurred within 

the exponential growth, reaching its highest value of 1.21 g*L-1 for E. coli BL21 (25 °C). In 

all three cases, the acetate concentration slightly decreased again, before going into the 

fed-batch mode. Here, the differences in acetate formation are even more significant. 

E. coli K12 seemed to accumulate acetate in high quantities reaching a final concentration 

of 5.16 g*L-1, whereas for E. coli BL21 (25 °C) acetate concentration further decreased to 

0.69 g*L-1. A negligible increase to 0.13 g*L-1 was observed for E. coli BL21 grown at 

20 °C during fed-batch.  
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Table 4-7 Final acetate concentrations measured during large scale fermentation. 

Strain Temperature during 
fed-batch / °C 

Acetate concentration / 
g*L-1 

E. coli K12 25 5.16 

E. coli BL21 20 

25 

0.13 

0.69 

The measured values for final acetate concentrations do not correlate with values 

described in the literature for E. coli K12 of 14 g*L-1 and 2 g*L-1 for E. coli BL21 [74, 83]. 

This could be explained with the reduction in growth temperature to 20 °C and 25 °C, 

which is below the optimal growth temperature for this microorganism. Nevertheless, 

E. coli K12 accumulates acetate in higher quantities than E. coli BL21, which 

demonstrates the same tendency as described by other researchers. 

The high amount of acetate found in the culture medium may have caused the stagnated 

growth for E. coli K12 in the fed-batch phase. Furthermore, the low biomass yield 

(YS = 0.22) can also be explained with the high acetate concentration, since the majority 

of glucose was used for the formation of acetate instead of biomass formation. 

4.2.4 Summary of fermentation 

According to the received results of the fermentation concerning glucose consumption, 

utilization of glucose to biomass, acetate formation and received optical densities and cell 

dry weights, the favored expression host was selected. It was shown, that E. coli BL21, 

cultivated at 25 °C in the fed-batch phase has several advantages compared to the other 

expression host, E. coli K12. It reached the highest growth rate with an optical density of 

120 and a cell dry weight of 33.2 g*L-1. Furthermore, the glucose consumption was 

moderate with high conversion into biomass and a very low acetate formation. By 

choosing E. coli strain BL21 as expression host, the production of recombinant 

enterokinase occurs constitutively. 
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4.3 Product isolation and purification3 

4.3.1 Enterokinase isolation with IMAC 

The received biomass, after fermentation, was constantly cooled to reduce the action of 

proteases and a resulting loss of the produced enterokinase fusion protein. For cell 

disruption, the cell mass was applied to ultrasonication in a constant flow. Different times 

of sonication have been investigated to guarantee complete cell disruption. Prior to 

applying the protein solution to affinity chromatography, the lysed cells were separated 

from the solution by centrifugation. The recombinant protein DsbA/EKL (50 kDa) consists 

of two fusion partners which are linked by an enterokinase cleavage site and an adjacent 

His-Tag (Figure 4-7). This allows the purification of the desired protein by ion metal affinity 

chromatography (IMAC).  

 

Figure 4-7 Structure of the fusion protein DsbA/EKL for the production of the catalytic 
subunit of enterokinase.  
After cleavage of the fusion protein by enterokinase at the specific cleavage site, two 
product proteins develop: the fusion partner with the His-Tag and the desired 
enzyme without a purification Tag. 

The general technical set-up involves the use of columns packed with sepharose onto 

which nickel ions have been immobilized. Purification using column affinity 

chromatography has some experimental limitations for the purification of large amounts of 

biomass, such as 1) application of protein solutions with low concentration to ensure the 

complete utilization of the entire binding capacity, which in part depends on the column 

                                                 
3 The results in this section were generated by Daniel Minör for his diploma thesis. 
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size and the applied flow rate, 2) pressure limit and possible clogging of the material, and 

most important 3) long process times. The latter point is the most critical step in case of 

enterokinase purification using this specific expression system. Long purification 

procedures enhance spontaneously occurring autocatalysis of the desired fusion protein 

and thus, the loss of active enterokinase, since the protein lacks the important His-Tag for 

binding to the purification material.  

To circumvent these difficulties, we established a new approach – a batch binding 

chamber, in which the sepharose is hold back by a nylon net (Figure 4-8). In both cases, 

the target protein was bound to the sepharose, non-specifically bound proteins were 

washed off and elution was initiated by increasing the imidazole concentration. The eluted 

fractions were pooled and analyzed using SDS-PAGE (Figure 4-9). 

 
Figure 4-8 Batch binding chamber used for the isolation of enterokinase by affinity 

chromatography.  

In case of the column set-up, autocatalysis seems to occur during the long purification 

process, causing the undesired fusion partner to remain bound to the sepharose, while 

the target protein enterokinase flows through the column and is lost. This correlates with 

the protein bands found in SDS-PAGE, in which the fusion partner DsbA-linker-His 

(23.7 kDa) was found in much larger quantity than enterokinase (Figure 4-9A). 

Furthermore, enzyme activity could not be found in the eluted fractions, independent of 

the E. coli strain used. To allow autocatalysis of the possibly remaining fusion protein to 

occur, the protein solution was incubated at 4 °C before a concentration of the eluate was 

carried out. As it can be seen in Figure 4-9A, the incubation of the eluted fraction at 4 °C 

showed no difference to the non-incubated sample indicating that no further autocatalysis 

occurred. Therefore, the measured activities are due to the concentration of the eluate.  

In case of E. coli K12, an enzyme activity of 0.07 U*gwcw
-1 could be measured, which 

corresponds to 2.16 µgEK*gwcw
-1. For E. coli BL21, enterokinase activity measured 

0.005 U*gwcw
-1 (= 0.152 µgEK*gwcw

-1) produced (Table 4-8). Compared to the enterokinase 
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yields of about 8 µgEK*gwcw
-1 received by Collins-Racie [7], our application proves that 

large quantities of active enterokinase get lost during purification using the common 

column chromatography, which is verified by the large quantities of fusion partner purified 

(Figure 4-9A).  

 
Figure 4-9 SDS-PAGE of isolated enterokinase using different technical setups. 

(* enterokinase with 26.3 kDa, # DsbA-Linker-His with 23.7 kDa) 
A) column affinity chromatography : M – size marker, 1-3 E. coli K12 (1 – eluted 

fraction, 2 – eluted fraction after incubation at 4°C for 12 h, 3 – concentrated 
enterokinase), 4 & 5 E. coli BL21 (4 – eluted fraction, 5 – concentrated 
enterokinase); 

B) batch binding chamber: M – size marker, 1 & 2 E. coli K12 (1 – eluted fraction 
1:10, 2 – concentrated enterokinase 1:30), 3 & 4 E. coli BL21 (3 – eluted fraction 
1:10, 4 – concentrated enterokinase 1:30). 

Due to very high amounts of biomass received after 20 L fermentations and the need of a 

fast and simple downstream process for enterokinase production, a more efficient 

purification method was developed. By using a batch binding chamber (Figure 4-8), 

pressure limitations could be avoided and the process time was reduced by at least half, 

compared to Collins-Racie. Furthermore, the entire purification process is much more 

simplified allowing fast buffer changes without any loss of eluted protein. Loss of 

enterokinase due to autocatalysis could also be avoided due to the shortened process 

time. Spontaneous autocatalysis is assumed to start when the protein solution reaches a 

concentration of at least 1 mg*mL-1, which was achieved by ultrafiltration. The velocity of 

fusion protein cleavage rises with increasing protein concentration in the eluate. During 

the purification process, the fusion partner DsbA-Linker-His is lost, since it could not be 

detected on SDS-PAGE (Figure 4-9B). After concentration, activity of the isolated 

enterokinase was determined, measuring 2.05 U*gwcw
-1 for E. coli K12 and 3.61 U*gwcw

-1 
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for E. coli BL21 (Table 4-8). Thus, the isolated enterokinase using the batch binding 

chamber was calculated to be 63.29 µgEK*gwcw
-1 in case of E. coli K12 and 

111.5 µgEK*gwcw
-1 for E. coli BL21 (Table 4-8). With the original method developed by 

Collins-Racie 8 µgEK*gwcw
-1 could be isolated. Using the same expression system, E. coli 

K12, and applying our newly developed purification procedure, the enzyme yield was 

increased by a factor of 8. Taking into account that with E. coli BL21 protein yields should 

be increase due to constitutive production, the total yield of enzyme isolated was 

improved by a factor of 14 (Figure 4-10). 

Table 4-8 Activity and amount of isolated enterokinase produced by different expression 
hosts using varying purification procedures. 

In addition to increasing the amount of active enterokinase isolated, the required time for 

purification was significantly decreased by half, making the entire downstream process 

more efficient. Furthermore, the procedure can be carried out with only minimum effort 

resulting in large quantities of pure, active enterokinase. 
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Figure 4-10 Enterokinase yields received by using an improved downstream process 
involving the use of a batch binding chamber for enzyme isolation (a [7]). 

 Method Column Batch 

E. coli  K12 BL12 K12 BL21 

Activity / U*gwcw
-1 0.07 0.005 2.05 3.61 

Yield / µgEK*gwcw
-1 2.16 0.152 63.29 111.50 
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Enterokinase production using different yeast strains reaches a volumetric productivity of 

31.5 µgEK*L-1*h-1 to 182 µgEK*L-1*h-1 [89, 90]. With our isolation and purification approach a 

formulation rate of 214 µgEK*L-1*h-1 could be achieved, which means a maximum increase 

by a factor of 7. 

4.3.2 Enterokinase purification with anion exchange chromatography 

The main goal was to develop a fast and efficient purification procedure for enterokinase, 

making it an attractive tool for the cleavage of pharmacologically important fusion proteins. 

By introducing an additional purification step using ion exchange chromatography the 

purity of the isolated enterokinase could be improved further. This is of great importance 

when using enterokinase for more complex applications, such as immobilization, in which 

undesired proteins can disturb the coupling reaction and can influence the remaining 

activity of the immobilized enzyme.  

By using a strong anion exchanger, proteins can be eluted using a specific salt gradient 

according to their isoelectric point (Figure 4-11). As a result, remaining impurities were 

removed as it can be seen on the corresponding SDS-PAGE (Figure 4-11A). In Figure 

4-11B, a representative chromatogram with the applied salt gradient is shown. The 

additional purification step using ion exchange chromatography was performed without 

any loss in activity of the biocatalyst (Figure 4-11C). 

 
Figure 4-11 Purification of isolated enterokinase using ion exchange chromatography.  

A) SDS-PAGE: M – size marker, 1 – enterokinase after Ni-IDA sepharose, 2 – 
enterokinase after IEC;  
B) corresponding chromatogram received for IEC;  
C) activity of purified enterokinase. 

In conclusion, enterokinase can be produced in sufficient quantities without losing activity 

during the purification process. Furthermore, enterokinase can be applied to 

immobilization without the coupling reaction or enzyme activity being influenced by protein 

impurities.  
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4.4 New Expression plasmid 

As it has been emphasized before, the purification process of enterokinase with the 

existing expression plasmid has one particular disadvantage: during a long downstream 

process spontaneous autocatalysis occurs cleaving off the fusion partner with the 

significant His-Tag required for purification. Thus, the desired protein, the enzyme 

enterokinase, cannot actively be bound and purified. Instead, the fusion partner 

DsbA-linker-His binds to the nickel ions and is eluted during the purification process, 

whereas the enterokinase is eliminated from the system (Figure 4-12 left). 

By changing the technical set-up of the purification procedure the time required for the 

downstream process was drastically decreased resulting in a significant increase in the 

enzyme yield. However, by introducing a change at the genetic level, the loss of the 

purification Tag could be avoided completely. Therefore, a new expression plasmid for 

enterokinase production was constructed, in which the His-Tag was shifted from the 

N-terminal side of the enterokinase to the C-terminal side. If autocatalysis occurs 

spontaneously, the fusion partner will be cleaved off with the His-Tag still being linked to 

enterokinase, which could now be purified (Figure 4-12 right). According to literature 

research, the activity of enterokinase should not be affected by aligning additional amino 

acids to the C-terminal side of the protein structure, whereas any N-terminal extensions 

may block enzyme activity [89, 91]. 

 

Figure 4-12 Comparison of the two expression systems for the production of enterokinase. 
Left: existing system with the His-Tag being N-terminal to the enterokinase cleavage 
site; 
Right: new system with the His-Tag being at the C-terminal side of the enterokinase. 
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The expression host E. coli B21 DE3* was transformed with the new expression plasmid, 

which is under the control of the T5 promoter. Therefore, the induction of the promoter 

was necessary to initiate expression. 

Fermentation of the new expression host was carried out with the previously described 

method with an additional induction step. The fusion protein DsbA-linker-EK-His was 

isolated and purified with the optimized downstream process, which has been described in 

previous sections of this chapter. As it can be seen in Figure 4-13 (left), a protein with the 

appropriate size of about 50 kDa could be isolated and purified representing the desired 

fusion protein. Furthermore, a 26 kDa protein, possibly enterokinase, was also isolated. 

Unexpectedly, when analyzing the received protein solution, no enzyme activity could be 

detected. Several explanations for the loss of enzyme activity are summarized in Figure 

4-13 (right). However, changes in the purification procedure to circumvent any negative 

influences on enzyme activity did not result in enzyme activity in the eluted protein 

solution. 

 

Figure 4-13 Results for isolation and purification of enterokinase using the new expression 
system. 
Left: representing SDS-PAGE showing distinct protein bands at 26 kDa (EK) and 
50 kDa (DsbA/L-EK-His); 
Right: explanations for the lack in enzyme activity in eluted fraction. 
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The downstream process has been varied as described below to eliminate any influential 

factors: 

to 1) Extensive washing with standard reaction buffer to ensure complete removal 

of imidazole from the solution; 

to 2) Significantly increasing biomass for enzyme isolation to receive higher protein 

concentration in eluate; 

to 3) Decreasing the exposure time to imidazole by reducing process times. 

Early investigations on the development of expression systems for the production of 

enterokinase showed, that N-terminal extensions negatively influence enterokinase 

activity, whereas alignments at the C-terminus of the protein still result in full enzymatic 

activity [7, 89, 91]. Despite this, the translocation of the His-Tag to the C-terminal side 

may have changed the folding of the protein causing the active site to be shielded or not 

sufficiently accessible for autocatalysis to occur. 
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4.5 Summary: Enterokinase production 

The results received for the production of the enzyme enterokinase can be summarized 

as follows:  

 The light chain of enterokinase produced as fusion protein DsbA/EKL is expressed 

by the recombinant E. coli strains K12 and BL21. The fermentation procedure has 

been optimized with regard to glucose consumption, acetate, biomass, and 

product formation. 

 Investigations proved E. coli BL21 cultured at 25 °C to be the best suited 

expression host for the production of enterokinase receiving the highest biomass 

yield of 33.2 g*L-1 with a very low acetate formation of 0.69 g*L-1 and a moderate 

glucose consumption of 6.8 g*L-1*h-1. 

 A newly developed, simpler downstream process (Figure 4-14) using a batch 

binding chamber for affinity chromatography circumvented the loss of enterokinase 

due to autocatalysis and reduced the process time by half.  

 The enterokinase yield was increased 8-fold for the induced expression system 

E. coli K12 from 8 µgEK*gwcw
-1 to 63.3 µgEK*gwcw

-1, and a 14-fold increase was 

achieved using a constitutive expression system with E. coli BL21 receiving 

111.5 µgEK*gwcw
-1. 

 In comparison with yeast expression systems, a 7-fold increase in the formulation 

rate from 31.5 g*L-1*h-1 to 214 g*L-1*h-1 was achieved. 

 A new expression system, in which the His-Tag is linked to enterokinase instead of 

to the fusion partner, could not further simplify the downstream process. The 

eluted protein showed no enzymatic activity. 

The final fermentation and purification strategies are summarized and compared in Figure 

4-14. 
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Figure 4-14 Comparison of the final production processes for enterokinase. 
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5 Enzyme characterization 

5.1 Theoretical Background 

Within an organism, the catalytic activity of various enzymes has to be regulated to 

coordinate numerous metabolic processes successfully. Nevertheless, each enzyme 

represents a highly specific catalyst for single reactions. Enzymes at large, however, 

become so diverse, as it is required by the organism. The velocity of an enzyme-catalyzed 

reaction is not just dependent on the thermodynamic factors of the reaction itself, but also 

by the catalytic properties of the enzyme. Parameters such as temperature, pH, and the 

ionic strength of the reaction medium can influence enzyme properties. Apart from this, 

the velocity of the enzymatic reaction is also determined by the substrate concentration 

[S]. In general, reaction velocity increases with rising substrate concentration until a 

steady state is reached, representing the maximum reaction velocity (Vmax). The simplest 

case, in which only one substrate is converted, can be described with the Michaelis-

Menten equation: 

][

][max
0 SK

SV
V

M 


   

[S] substrate concentration at the beginning of the reaction / µM 

V0 starting reaction velocity at a specific substrate concentration / U*mgEK
-1 

Vmax maximum velocity of the reaction achieved with this substrate 
concentration / U*mgEK

-1 

KM Michaelis constant; reaction takes place with half the maximum reaction 
velocity at this substrate concentration; represents the degree of affinity of 
the enzyme towards the substrate / µM 

Enzymes contain a large number of acid and base groups, which are mainly located on 

their surface. As it is known from general chemistry, the charges of these groups vary 

according to the pH of the reaction medium. This, of course, influences the total net 

charge of the molecule, the distribution of charges on the outer surface of the enzyme and 

in consequence the reactivity of the catalytically active groups. Considering these facts, 

the pH of the reaction medium affects the activity, the structural stability and solubility of 

the enzyme. 

The ionic strength of the solution is an important factor affecting enzyme activity in 

catalytic reactions which depend on the movement of charged molecules relative to each 
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other. Thus, it is of importance to choose the most effective buffer system for a specific 

enzymatic reaction. Considering the effect of the temperature on the activity of enzymes, 

reaction rates will rise with increasing temperature in accordance with the Arrhenius 

equation: 

RTEAAek /  

k kinetic rate constant for the reaction / - 

A Arrhenius constant (frequency factor) / - 

EA standard free energy of activation / J*mol-1 

R gas law constant / J*mol-1*K-1 

T absolute temperature / K 

Generally, using enzymes at high temperatures would have some advantages such as 

exploitation of the increasing reaction rates and the cumulative protection against 

microbial contamination. However, enzymes as proteins undergo essentially irreversible 

denaturation entailing a significant loss in catalytic activity at temperatures above those to 

which they are ordinarily exposed in their natural environment. Thus, enzyme activity with 

regard to enzyme stability at certain temperatures has to be considered to determine 

specific reaction parameters. 

For the characterization of enterokinase light chain two different substrates were used: a 

synthetic substrate composed of the enterokinase recognition sequence linked via an 

amide bond to the fluorophore 2-naphthylamide (2NA) and the recombinant fusion protein 

with the enterokinase cleavage site as linker. To find the optimal reaction parameters for 

both substrates, investigations on the activity influenced by temperature, pH, substrate 

concentration, and buffer composition have been carried out for both substrates. 

5.2 Synthetic substrate GD4K-2NA4 

The use of the synthetic substrate GD4K-2NA was first introduced by Antonowicz in 1980 

[92]. Since that time, this substrate is widely used for fluorometric and colorimetric assays 

utilized for enterokinase investigations. As it can be seen in Figure 5-1 enterokinase 

activity and half-life time has been determined in dependency of pH, temperature, 

substrate concentration, and buffer composition.  

                                                 
4 All results presented in this section were obtained using EKMax™ (Invitrogen, Carlsbad, USA). 
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Figure 5-1 Determination of reaction parameters for the synthetic substrate GD4K-2NA.  
All measurements were performed in 50 mM Tris-HCl, pH 8.0 using 0.1 mM 
GD4K-2NA, if not stated otherwise. A) pH dependency of enterokinase activity 
measured at 25 °C, B) substrate dependency of enterokinase activity measured at 
33 °C, C) temperature dependency of enterokinase activity, D) half-life time of 
enterokinase at different temperatures, E) activity and half-life time at 33 °C of 
enterokinase using different buffer compositions. 
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Using the synthetic substrate GD4K-2NA, a pH optimum of 8.0 (Figure 5-1A) as well as a 

KM of 0.39 mM and a Vmax of 37.3 U*mgEK
-1 (Figure 5-1B) were determined. Enterokinase 

purified from rat small intestine was shown to have a pH optimum at 8.2 and a KM of 

0.17 mM [92]. For human enterokinase produced in recombinant E. coli, the KM value was 

calculated to be 0.16 mM with a pH optimum at 7.5 [93]. The variation for the given values 

may be the result of different buffer compositions used in activity measurements. 

Furthermore, variable excitation filters (337 nm or 350 nm) and emission wavelengths 

(420 nm or 460 m) were applied, which may has also contributed to the slight variations in 

the measured values. 

When investigating the activity at different reaction temperatures, enterokinase shows 

highest activity at 33 °C with 18.0 ± 2.3 U*mgEK
-1 and measuring less than 80 % at 25 °C 

and 40 °C (Figure 5-1C). However, at temperatures different from their natural 

environment, enzymes may undergo irreversible denaturation which can result in a 

significant loss of biological activity. Therefore, the half-life at various temperatures was 

also determined, measuring about 8.38 ± 0.07 days at 25 °C. With increasing 

temperature, the storage stability decreased more than 50 % for 30 °C and 33 °C. A 

half-life time of about 1.9 ± 0.1 days was determined for 37 °C (Figure 5-1D). Although 

having highest activity at 33 °C, optimal reaction conditions include a temperature of 25 °C 

due to a maximum half-life of 8 days.  

Considering a wide variety of buffer compositions, enterokinase activity and half-life time 

were determined to find optimal reaction solutions for fusion protein cleavage and 

immobilization of enterokinase. Buffers with higher ionic strength, such as sodium 

carbonate buffer, are preferred for the immobilization of enterokinase, but also sodium 

phosphate buffer was recommended by the vendor of the carrier material investigated 

(see chapter 6). Although activity was highest for sodium carbonate buffer with 

18.1 ± 1.4 U*mgEK
-1, the half-life time was less than 7 days. For sodium phosphate buffer 

an activity of 15.2 ± 2.0 U*mgEK
-1 was determined with a half-life time of 8.61 ± 0.01 days 

(Figure 5-1E). Taking into account that during the coupling of enterokinase to a carrier 

material the activity of the biocatalyst is of minor interest, the half-life time of the enzyme 

in that buffer system, however, is much more important considering the time required for 

the coupling reaction. Thus, sodium phosphate buffer was used for immobilization. 

Finding the most suited buffer for the cleavage reaction, the activity in combination to the 

half-life time had to be considered. When comparing the different buffer variations using 

Tris-HCl either supplemented with Mg2+ or Ca2+, similar activities of approximately 

13 U*mgEK
-1 were found. Mikhailova and co-workers already investigated the effect of 

calcium ions on the hydrolysis of low molecular weight substrates catalyzed by different 

forms of enterokinase [94]. They found a 3-fold activation in hydrolysis of the synthetic 
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substrate GD4K-2NA by the natural full-length enterokinase. In case of enterokinase light 

chain, an activation effect using different concentrations of Ca2+ was not detected by 

Mikhailova. This correlates with our findings, in which the activity of enterokinase could 

not be increase by adding metal ions. The enzyme stability, however, seems to be greatly 

influenced by the addition of metal ions. The half-life time of 8.38 ± 0.07 days could be 

increased adding Ca2+ to 10.65 ± 0.06 days and even to 14.59 ± 0.09 days when using 

Mg2+ as supplement (Figure 5-1E).  

5.3 MUC1-IgG2a Fc as substrate5 

As mentioned before, enzyme activity is influenced by a variety of parameters. Therefore, 

reaction parameters had to be determined when changing the substrate to MUC1-IgG2a 

Fc. While it is unlikely to receive significant changes in temperature and pH dependency, 

a difference in the measured activity and substrate affinity of enterokinase was expected.  

As before, using the synthetic substrate, enterokinase shows highest activity 

(11.9 ± 1.3 U*mgEK
-1) at pH 8.0, reaching about 70 % at pH 7.0 and approximately 35 % at 

pH 9.5. As mentioned before, the charge of acid and base groups within a protein 

changes with varying pH influencing the activity, the structural stability and also the 

solubility of proteins. Nevertheless, it could be shown in Chapter 3 that the fusion protein 

MUC1-IgG2a Fc is stable at pH 8 and 9 in a temperature range between 25 °C and 40 °C. 

Considering the findings for enterokinase activity with the synthetic substrate, the enzyme 

exhibits its highest half-life time (8.38 ± 0.07 days) at 25 °C. Increasing temperatures 

result in loss of activity over time. Thus, even when measuring highest activity of 

7.2 ± 0.4 U*mgEK
-1 at 40 °C / 45 °C in fusion protein cleavage, it can be assumed that 

degradation of both proteins at such high temperatures occur. Furthermore, performing 

the cleavage reaction at temperatures above 25 °C drastically reduces the half-life time of 

the biocatalyst. 

In contrast to the synthetic substrate GD4K-2NA, an increase of fusion protein 

concentration in the reaction solution above 5 µM (0.8 mg*mL-1) causes a drastic 

reduction in enzyme activity. Highest activities of 26.2 ± 1.3 U*mgEK
-1 were measured at a 

concentration range between 2.7 µM and 4.5 µM of MUC1-IgG2a Fc. A drastic decrease 

of about 80 % was observed at substrate concentrations of 9 µM to 10 µM measuring 

5.5 ± 0.3 U*mgEK
-1. The inhibitory effect of MUC1-IgG2a Fc suggests a substrate surplus 

                                                 
5  All results presented in this section were obtained using isolated EK produced by the expression 

host E. coli BL21. 



ENZYME CHARACTERIZATION 

- 54 - 

inhibition, but might in parallel be caused by additional side reactions, such as a possible 

product inhibition of either MUC1 or IgG2a Fc. 

 

 

Figure 5-2 Determination of reaction parameters for MUC1-IgG2a Fc as substrate.  
All investigations were performed in 50 mM Tris-HCl, pH 8.0 using 0.233 mg*mL-1 
MUC1-IgG2a Fc at 33 °C, if not stated otherwise. A) pH dependency of enterokinase 
activity, B) enterokinase activity dependent on different temperatures, C) activity 
influenced by different substrate concentrations. 

Comparing the activity of enterokinase for the synthetic substrate GD4K-2NA and for the 

fusion protein MUC1-IgG2a Fc, a slight reduction in specific activity of enterokinase for the 

different substrates was determined. The affinity of enterokinase for the substrate 

MUC1-IgG2a Fc differs compared to the synthetic substrate GD4K-2NA, which might be 

caused by the different sizes of the substrates as well as the accessibility of the 

enterokinase cleavage site within the substrate molecule. A KM of 0.39 ± 0.06 mM could 

be determined for GD4K-2NA, whereas the KM for the fusion protein lies in the µM range. 
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5.4 Summary: Enzyme Characterization 

The findings of the chapter “Enzyme Characterization” can be concluded as follows: 

SYNTHETIC SUBSTRATE GD4K-2NA 

 The optimal reaction parameters for the hydrolysis of GD4K-2NA were determined 

fluorometrically. Enterokinase shows highest enzymatic activity at pH 8.0 and 

25 °C. Under those reaction conditions, enterokinase possesses a half-life time of 

8.38 ± 0.07 days. The influence of substrate concentration can be described by 

Michaelis-Menten kinetics yielding a KM of 0.39 ± 0.06 mM and a VMax of 

37.3 ± 1.4 U*mgEK
-1.  

 Investigating buffer compositions, 50 mM Tris-HCl, pH 8.0, proved to be the most 

suited reaction buffer, whereas 20 mM NaPi, pH 8.0, is preferably used for 

immobilizing enterokinase. Measured activity and reached half-life time are 

comparable for both buffer systems. 

MUC1-IGG2A FC  

 The reaction parameters for the cleavage of MUC1-IgG2a Fc have not changed 

significantly with regard to the influence of temperature or pH of the reaction 

medium compared to the values determined for GD4K-2NA. Enterokinase shows 

highest enzymatic activity at pH 8.0 and 25 °C. 

 With concentrations above 5 µM MUC1-IgG2a Fc, inhibitory effects negatively 

influence enzyme activity. 

 Enterokinase shows a lower specific activity for MUC1-IgG2a Fc compared to the 

synthetic substrate. This is supported by the fact, that substrate affinity of 

enterokinase to the fusion protein MUC1-IgG2a Fc is lower with a KM in the µM 

range. 
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6 Immobilization of enterokinase6,7 

6.1 Theoretical Background 

In general, enzymes are used as catalysts that are not recovered from the reaction. In this 

case, they are added to the substrate solution, incubated at certain reaction conditions 

and subsequently destroyed. Such processes involve mainly bulk enzymes such as 

amylase and dehydrogenases. In case of more expensive enzymes, the reaction setup 

needs to be changed with regard to efficient utilization of the biocatalyst. This can either 

be achieved by holding back the enzyme by a membrane using for example an enzyme-

membrane reactor [95] or by immobilizing the biocatalyst on or in a carrier material [96]. In 

both cases, several advantages can be achieved: 

 the stabilization of the biocatalyst, 

 the recovery and re-use of enzymes, for example in batch reactors, 

 the development of continuously operated enzyme reactors, 

 the possibility of multi-enzyme systems, and 

 the easy removal of the biocatalyst from the reaction mixture and thus, simplified 

product purification. 

It has to be considered, however, that apart from the named advantages the enzyme also 

loses activity, which results in higher enzyme amounts required. Furthermore, the process 

may become technically more complex, but may also be simplified with regard to product 

purification.  

Different immobilization techniques have been developed including covalent coupling [97, 

98], enzyme cross-linking molecules (cross-linked enzyme aggregates) [99-101], 

adsorption on a carrier [102], ionic interactions [103] and the encapsulation in polymeric 

gels or membranes [104-106]. A summary of possible immobilization techniques is given 

in Figure 6-1.  

In the last decades, only a few attempts have been made to immobilize enterokinase for 

different purposes involving the enclosure into synthetic phospholipid-vesicles [107] or 

                                                 
6 The results of this chapter have been published: Kubitzki T, Noll T, Lütz S (2008) Immobilization 

of bovine enterokinase and application of the immobilized enzyme in fusion protein cleavage. 
Bioprocess Biosystems Engineering 31:173-182 

7 All investigations involved the use of EKMax™ (Invitrogen, Carlsbad, USA). 
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reconstituted soybean phospholipid-vesicles [108]. Other groups covalently immobilized 

enterokinase followed by solid-phase refolding of the enzyme [109]. 

 

Figure 6-1 Immobilization techniques. 

For the immobilization of enterokinase several different porous or non-porous carrier 

materials have been investigated differing in their properties, such as: 

 particle size,  

 density of functional groups,  

 the degree of porosity,  

 pore sizes and lengths of spacer.  

In the following section only the most promising carrier materials, Sepabeads® EC-HA203 

and Estapor paramagnetic microspheres M2, will be described in more detail. 
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6.2 Immobilization on porous beads 

Prior to detailed investigations on the immobilization technique, the loading capacity of the 

carrier material was analyzed using either enterokinase or the fusion protein MUC1-IgG2a 

Fc as offered protein. The received results are presented in Figure 6-2. Varying amounts 

of protein were offered to the same amount of carrier material. By determining the protein 

bound to the carrier material, the loading capacity of the support can be determined. To 

investigate whether there is an influence of the protein load on enzyme activity; the 

biocatalyst and the substrate MUC1-IgG2a Fc have been analyzed separately. 

Independent of the protein applied to the carrier, a linear correlation was determined 

between the offered protein and the protein adsorbed to the porous support. A maximum 

of 0.04 mgMUC1-IgG2a Fc was adsorbed on one mg carrier. 
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Figure 6-2 Loading capacity of activated Sepabeads® EC-HA203. 

In case of the biocatalyst, equal amounts of protein adsorbed to the carrier material. The 

remaining activity, however, is mainly influenced by the loading capacity of the enzyme-

support preparation. It has to be emphasized that by immobilizing enzymes, a reduction in 

catalytic activity can occur. This can be caused by possible changes in the protein 

structure or by a reduced accessibility of the active site for the substrate. This, however, 

can be compensated by loading high amounts of biocatalyst on the carrier. Nevertheless, 

increasing the amount of enzyme bound to the carrier, may in turn lead to steric hindrance 

resulting in a further decrease of enzyme activity.  
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With increasing amount of enterokinase offered to the porous support, enzyme activity 

also increased, reaching its maximum with 0.04 mgprotein*mgcarrier. A further increase in 

loaded biocatalyst caused a drop in relative activity to approximately 75 % (Figure 6-2).  

As it was expected, enzymatic activity decreased after a maximum of adsorbed protein 

was reached (Figure 6-2). This leads to the conclusion that only a limited number of 

functional groups can be occupied by enterokinase before steric hindrance causes the 

active site to be blocked. Figure 6-3A shows the binding of small amounts of enzyme to 

the carrier support with sufficient accessibility of the active site allowing easy binding of 

the substrate. In contrast to this, if more biocatalyst is present in the solution, the binding 

behavior may change to allow every enzyme molecule to couple to a single functional 

group of the carrier material. Thereby, the structure of the protein may change resulting in 

the shielding and a reduced accessibility of the active site. Thus, substrate molecules can 

not reach the enzyme molecule leading to a decrease in measurable enzyme activity 

(Figure 6-3B).  

This phenomenon was only observed when using enterokinase as offered protein. When 

blocking remaining functional groups with glycine, 2-mercaptoethanol or even the fusion 

protein MUC1-IgG2a Fc, a decrease in remaining activity could not be observed. This 

further contributes to the assumption that surrounding enzyme molecules may compete 

for the accessibility of the active site.  

 

Figure 6-3 Influence of bound enzyme to enzyme activity. 
A) Enzyme bound to the carrier still allows substrate to reach the active site of 

enzyme molecule;  
B) Increased enzyme load causes enzyme molecules to bind in a different 

conformation to the carrier decreasing the accessibility of the active site and 
leading to lower remaining activity of the immobilized enzyme. 

For the immobilization of enterokinase on hexamethylamino Sepabeads, a low ionic 

strength buffer was used to ensure fast binding of the protein to the carrier [110]. Prior to 

coupling, a pre-activation of the functional groups of the carrier with glutardialdehyde 

(GDA) is necessary to allow covalent binding of the enzyme to the carrier material via 

nucleophilic groups. Investigations, however, showed that increasing concentrations of 
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glutardialdehyde resulted in decreased remaining activities of the enzyme-support 

preparation (Figure 6-4).  

 
Figure 6-4 Immobilization of enterokinase on activated porous material.  

The carrier material Sepabeads® EC-HA203 was activated with 0.02 % 
glutardialdehyde prior to the coupling reaction.  
A) Activation reaction using glutardialdehyde followed by the coupling of the 

enzyme,  
B) Remaining activity of the enzyme-support preparation reaching a maximum of 

about 60 % and decreasing with increasing glutardialdehyde concentration. 

A low ionic strength buffer with a glutardialdehyde concentration of 2 % (v/v) yielded a 

remaining activity of the enzyme-support preparation of only 1 %. A reduction of 

glutardialdehyde concentration to 0.5 % (v/v) resulted in a fourteen-fold increase and a 

further decrease of glutardialdehyde to 0.01 % (v/v) gave a remaining activity of about 

60 %, which is comparable with the immobilization to a non-activated carrier material 

(Figure 6-4). Passive adsorption rather than covalent coupling will predominantly occur 

when activation takes place with low glutardialdehyde concentrations.  

Confirming that the enterokinase is stably bound to the support material is crucial for 

continuous applications. To determine whether the immobilization procedure has a 
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stabilizing effect on the enzyme, the storage stabilities of the different enzyme-support 

preparations were analyzed at 23 °C and 4 °C (Figure 6-5). At 23 °C, a half-life time of 

8.4 ± 0.1 days was determined for the free enzyme. The enzyme-support preparation 

produced by passive adsorption showed a half-life time of 29 ± 4 days at the same 

storage temperature. Inducing covalent binding with 0.1 % glutardialdehyde, the 

immobilized enzyme showed a 4.3-fold increase in stability (36 ± 5 days). A further 

increase in glutardialdehyde concentration causes a decrease in stability to 16 ± 4 days, 

still meaning 2-fold increase compared to the free enzyme at 23 °C.  
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Figure 6-5 Storage stability of enterokinase immobilized on Sepabeads® EC-HA203. 

It has been reported that the post-treatment with 2-mercaptoethanol is a convenient 

method for blocking remaining aldehyde groups of the carrier. 2-mercaptoethanol reacts 

with the free aldehyde groups resulting in an O,S-acetal formation. For the immobilization 

of an alcohol dehydrogenase, 2-mercaptoethanol has been used as a blocking agent 

having no significant influence on the remaining activity, but showing a strong effect on 

stabilizing the enzyme-support preparation [98]. Investigations have demonstrated that a 

post-treatment with 1 % 2-mercaptoethanol had no significant effect on the remaining 

activity of 60 % when activating the carrier with 0.01 % glutardialdehyde (Figure 6-4). 

Furthermore, treating the remaining functional groups with 2-mercaptoethanol further 

stabilizes the immobilized enzyme reaching a half-life time of 48 ± 5 days (Figure 6-5).  

When storing the enzyme-support preparation at 4 °C, the half-life time increases by a 

factor of 3.6-3.8 (more than 10 months) compared to the free enzyme stored at the same 

temperature (84.9 ± 8.9 days). This allows long-time storage and a large scale 
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immobilization of enterokinase without significant loss in activity over time. Under the 

storage conditions mentioned above, the enzyme is not washed off the carrier between 

the activity measurements indicating a stable coupling of the enzyme to the support 

material with covalent and adsorptive interactions and a sufficient stabilizing effect (Figure 

6-5).  

6.3 Immobilization on magnetic particles 

There are several advantages to use magnetic particles for the immobilization of the 

enzyme enterokinase, such as  

i) the higher specific surface area per reactor volume compared to the 

Sepabeads®, 

ii) lower mass transfer limitations due to the absence of pores, and  

iii) fast and facile separation of the immobilized enzyme from the reaction mixture 

by applying a magnetic field [111].  

Many techniques for activating magnetic particles have been reported. For the 

immobilization of enterokinase on paramagnetic microspheres, functional groups were 

activated with either glutardialdehyde (GDA) or N-(3-dimethylaminopropyl)-N-

ethylcarbodiimide (EDCA). Taking into account the influence of glutardialdehyde on the 

activity of enterokinase for the immobilization on Sepabeads®, glutardialdehyde 

concentrations below 1 % (v/v) were used for the activation of the paramagnetic 

microspheres. With this approach remaining activities of approximately 20 %, regardless 

of the glutardialdehyde concentration (Figure 6-6) could be achieved. 
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Figure 6-6 Half-life time and remaining activity of enterokinase immobilized on magnetic 
microspheres activated with glutardialdehyde. 
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By immobilizing enterokinase on Sepabeads® EC-HA203, a stabilizing effect of the 

biocatalyst could be observed, which was also expected for the immobilization on 

paramagnetic microspheres. Unfortunately, the half-life time of the enzyme-support 

preparation drops to 3.6 ± 0.6 days when activating with 0.1 % (v/v) glutardialdehyde. 

With higher glutardialdehyde concentration the stability decreased even more (Figure 

6-6).  

The second approach for the activation of the magnetic microspheres involves EDCA, 

which has also been applied for immobilization of alcohol dehydrogenase on this carrier 

[111]. After activating the functional groups, enterokinase was successfully immobilized 

receiving remaining activities of 60 % without blocking free functional groups.  

For blocking the non-occupied functional groups, two different compounds were 

investigated. 2-mercaptoethanol as blocking agent yielded a remaining activity of 

approximately 40 %. When using glycine the activity of the enzyme-support preparations 

varied depending on the incubation time between 50 % and 64 % (Figure 6-7A). 

Furthermore, the treatment with sodium borohydride reduces the Schiff bases making the 

binding of the enzyme to the support more stable. The treatment with sodium borohydride, 

however, decreases the remaining activity of the immobilized enzyme (data not shown). 

Different immobilization procedures have been described for magnetic particles, in which 

the coupling reaction to NH2-modified magnetic particles was performed at pH 6.0 

(according to vendor’s recommendations). This however, is in contrast to the pH 

dependency determined for enterokinase activity, at which enterokinase shows highest 

activity at pH 8.0 [17]. Therefore, storage stability of enterokinase immobilized on 

magnetic particles was also investigated at pH 8.0. Interestingly, the half-life time is 

influenced by the pH as well as the blocking agent used. When blocking with 

2-mercaptoethanol, higher stability of 7.5 ± 2 days was obtained when stored at pH 8.0 

than at pH 6.0 (t1/2 = 3.8 ± 1 days, Figure 6-7B). In case of glycine as a blocking agent, it 

is vice versa. Here, the half-life time is increased at pH 6.0 (11.9 ± 1 days) compared to 

pH 8.0 (5.7 ± 1 days). However, the stability of the free enzyme of 8 ± 0.1 days was only 

slightly increased by immobilization on magnetic particles (Figure 6-7B). 
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Figure 6-7 Remaining activity (A) and half-life time (B) of enterokinase immobilized on 
paramagnetic microspheres activated with EDCA. 

A major aim in industrial application of enzymes is to recover the biocatalyst from the 

reaction mixture and to receive a stabilizing effect for example by immobilization, but there 

is no guaranteeing that immobilization stabilizes the enzyme structure. It has been stated 

that only a multipoint covalent attachment may improve stability by conserving the original 

enzyme structure [112]. Although having high remaining activities after immobilizing EK on 

paramagnetic microspheres, we observed a decrease in half-life time, which might be 

caused by structural changes occurring during storage. This indicates that the enzyme is 

bound by single-point rather than a multipoint covalent attachment. In this case, there are 

two possible explanations for the missing stabilizing effect: 1) being bound at a single 

point to the carrier allows protein refolding changing the structure of the active site or 

shielding it from the reaction mixture, or 2) surrounding functional groups, either blocked 

or non-blocked, react with the protein inducing a structural change. In both cases, activity 

of the enzyme is diminished which is reflected by lower half-life times. 
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6.4 Reaction parameters of immobilized enterokinase 

Enzyme immobilization can cause changes in the tertiary structure of the protein. This in 

turn may influence the activity at specific reaction conditions. Therefore, it was 

investigated how the activity of immobilized enterokinase either on magnetic microspheres 

or on Sepabeads® EC-HA203 is influenced by temperature or pH. These results were 

generated using the synthetic substrate GD4K-2NA and were compared to the free 

enzyme (Figure 6-8). Free enterokinase displays highest activity at pH 8.0 and 33 °C. 

Nevertheless, it has been stated before that enterokinase possesses a higher stability at 

25 °C, thus being the reaction temperature of choice.  

After immobilization, those parameters may change depending on the carrier material 

used for immobilization. In case of Sepabeads® EC-HA203, highest activity of the 

immobilized enzyme was measured at pH 9.0 and 25 °C (Figure 6-8 A & B). Enterokinase 

immobilized on magnetic microspheres (activated with EDCA) showed highest activity at 

pH 6.0 and 25 °C (Figure 6-8 C & D). Despite this, soluble enterokinase as well as both 

immobilized forms has lowest activity at pH 5. Thus, when applying the enzyme-support 

preparation to the cleavage reaction of fusion proteins, the reaction parameters have to be 

adjusted accordingly depending on the immobilization technique employed. 
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Figure 6-8 Reaction parameters of immobilized enterokinase compared to the free 

enzyme. 
Activities of the enzyme-support preparations (iEK) using either Sepabeads® 
EC-HA203 (A & B) or paramagnetic microspheres (C & D) dependent on 
temperature and pH. 
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6.5 Fusion protein cleavage by immobilized enterokinase 

The aim of immobilization was the repeated application of enterokinase in fusion protein 

cleavage. The substrate protein MUC1-IgG2a Fc has to be cleaved by enterokinase to 

gain the biologically active form of MUC1. The specific glycosylation pattern of MUC1 is 

used to develop MUC1-based immunogens in cancer therapy [21, 49, 113]. 

The samples, taken at specific time points, were analyzed by SDS-PAGE and Western 

Blot, which specifically visualize proteins possessing IgG Fc. Thus, only the fusion protein 

MUC1-IgG2a Fc and the cleaved signal peptide IgG Fc can be detected. Besides Western 

Blot analysis, proteins were also visualized using Alcian blue, which specifically stains 

glycoproteins, such as MUC1-IgG2a Fc and MUC1. All results presented in this section 

have been generated using Alcian Blue. However, MUC1 and IgG Fc are generated in 

equimolar amounts, making the confirmation of only one product sufficient for the 

verification of the applicability of enterokinase immobilized onto a certain support material. 

It was shown by other research groups that free enterokinase can be used to cleave the 

fusion protein MUC1-IgG2a Fc gaining the desired product MUC1, which could also be 

affirmed (Figure 6-9) [21]. To investigate whether the immobilized enterokinase can still be 

used for the cleavage reaction of the fusion protein, the developed enzyme-support 

preparations have been applied to the cleavage reaction. 

 

Figure 6-9 Cleavage of MUC1-IgG2a Fc by free enterokinase. 
 The control cleavage reaction was performed in 50 mM Tris-HCl, pH 8.0 at 37 °C 

according to Bäckström et al. [21]. 

Prior to the cleavage reaction, however, the fusion protein was incubated in the presence 

of the different carrier without enzyme for detection of any side reactions. A degradation of 

the fusion protein caused by the carrier could not be observed for both materials, Estapor 

paramagnetic microspheres M2 and Sepabeads® EC-HA203 (Figure 6-10). This suggests 

that no undesired side reactions occurred, which is verified by the lack of additional 

protein bands resulting from degradation. This was additionally confirmed by Silver Stain, 

which is a more sensitive staining procedure. 
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The cleavage of the fusion protein with immobilized enterokinase was induced by adding 

MUC1-IgG2a Fc to the enzyme-support preparation and the reaction proceeded under 

shaking conditions. After 72 h the entire reaction mixture was removed from the 

immobilized biocatalyst.  

 

Figure 6-10 Incubation of MUC1-IgG2a Fc in presence of the carrier material. 
0.233 mg*mL-1 MUC1-IgG2a Fc were incubated at 25 °C in the presence of 50 mg 
carrier material in 50 mM Tris-HCl, pH 8.0 and 1400 rpm. 
A) Magnetic particles (MP) activated with EDCA and blocked with 

2-mercaptoethanol (MCE); 
B) Sepabeads® EC-HA203 activated with glutardialdehyde (GDA). 

Figure 6-11A summarizes the results for the cleavage of MUC1-IgG2a Fc with 

enterokinase immobilized on Estapor magnetic microspheres at the stated reaction 

conditions (pH 6.0, 25 °C). As can be seen on the gel, MUC1-IgG2a Fc is present 

throughout the cleavage reaction without significant decrease in band intensity up to 72 h. 

Additionally, MUC1, the desired target protein, could not be detected using Alcian stain. 

Investigating the samples using Silver Stain or, more specifically, Western Blot, did also 

not reveal the development of IgG Fc which should be cleaved off during the reaction. 

Thus, the fusion protein MUC1-IgG2a Fc could not be cleaved by enterokinase 

immobilized on Estapor magnetic microspheres, a non-porous carrier material. The 

reason might be the very small size of the magnetic particles (particle diameter: 

1.0-2.0 µm) with the functional groups on the outer surface. Since all functional groups of 

the support material were occupied either by the bound enterokinase or by 

2-mercaptoethanol, steric hindrance between the neighboring groups might prevent the 

large fusion protein to reach the active site of the small enterokinase. Consequently, 

MUC1-IgG2a Fc was not cleaved into the desired products MUC1 and IgG Fc. Thus, 

Estapor magnetic particles seemed not to be suitable for immobilizing small enzymes, 

which are used for the cleavage of large fusion proteins. 
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Figure 6-11 Cleavage reactions of MUC1-IgG2a Fc using enterokinase immobilized on 

different carrier. 
The cleavage reaction was performed by applying 1.16 mg*mL-1 MUC1-IgG2a Fc in 
50 mM Tris-HCl to 100 mg immobilized enzyme. 
A) magnetic particles (MP) activated with EDCA and blocked with MCE, cleavage 

reaction occurred at pH 6 and 25 °C;  
B) Sepabeads® EC-HA203 activated with GDA, cleavage reaction occurred at pH 

9.0 and 25 °C.  

Another immobilization technique for enterokinase involved the activated porous carrier 

Sepabeads® EC-HA203. The received results are demonstrated in Figure 6-11B. Using a 

specific antibody in Western Blot analysis, IgG2a Fc could already be detected after 

6.5 hours (data not shown). With Alcian stain, MUC1 could also be found after 6.5 hours 

increasing with proceeding reaction time. Furthermore, the amount of MUC1-IgG2a Fc 

decreases, whereas MUC1 increased indicating complete fusion protein cleavage after 

72 h. Same results were received for IgG2a Fc using different analytical methods. 

This data reveals that enterokinase immobilized on the porous carrier material 

Sepabeads® EC-HA203 was successfully applied to the cleavage of the fusion protein 

MUC1-IgG2a Fc leading to complete fusion protein cleavage and the generation of the 

desired target protein MUC1. For efficient utilization of the biocatalyst, the enzyme-

support preparation has to be applied to several repeated cleavage reactions, on the one 

side to prove its process stability, and on the other side to justify the additional 

immobilization procedure in the reaction process. 

6.6 Reaction kinetics for MUC1-IgG2a Fc cleavage by 

immobilized enterokinase 

Due to the previous findings that reaction parameters might slightly vary depending on the 

use of soluble or immobilized enterokinase in the hydrolysis of the synthetic substrate 

GD4K-2NA (see section 6.4), the activity of enterokinase immobilized on Sepabeads® 

EC-HA203 has been determined also using the fusion protein MUC1-IgG2a Fc as 

substrate. The received results are summarized in Figure 6-12. 
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As determined before for the soluble enterokinase, highest activity is found at pH 8 and 

25 °C for the hydrolysis of the synthetic substrate GD4K-2NA (Figure 5-1A & C) and also 

for the cleavage of MUC1-IgG2a Fc (Figure 5-2A & B). At these reaction conditions, 

enterokinase possesses the highest half-life time of 8.38 ± 0.07 days (Figure 5-1D). Using 

the immobilized biocatalyst for the determination of the reaction parameters, similar 

results were obtained. Enterokinase immobilized on Sepabeads® EC-HA203 exhibits 

highest activity of 3.7 ± 0.2 U*mgiEK
-1 at pH 8.0. The activity at this pH is more pronounced 

compared to the results received for the free enterokinase, observing a more distinct 

decrease in remaining activity to 0.6 ± 0.03 U*mgiEK
-1 at pH 7.0 and 1.1 ± 0.05 U*mgiEK

-1 at 

pH 9.0. Due to immobilization, the structure of the protein molecule might have changed 

exposing different amino acids to the reaction mixture. By changing the pH in the 

surrounding medium, the side chains of specific amino acids become charged, which 

might influence the enzymatic activity of the biocatalyst as well as the binding behavior of 

the substrate molecule. 

 

Figure 6-12 Reaction parameters for the cleavage of MUC1-IgG2a Fc by immobilized 
enterokinase (iEK). 
All measurements were performed in 50 mM Tris-HCl, pH 8.0 at 25 °C and 1400 rpm 
using 1.16 mg*mL-1 MUC1-IgG2a Fc. 
A) influence of pH on activity of immobilized enterokinase; B) influence of 
temperature on activity of enterokinase immobilized on porous material; C) activity of 
the enzyme-support preparation dependent on substrate concentration showing a 
linear correlation. 
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The optimum temperature for highest enzymatic activity was determined in correlation 

with the stability of the biocatalyst. Using the synthetic substrate GD4K-2NA, highest 

activity was measured at 33 °C, but enterokinase possess only a half-life time of 

30.2 ± 5.9 days. Considering the stability, working temperature was set to 25 °C, at which 

enterokinase has a half-life of 65.5 ± 5.2 days (Figure 5-1C & D). Using MUC1-IgG2a Fc 

as substrate, soluble enterokinase seems to be most active at temperatures as high as 40 

to 45 °C. This, however, might be caused by partial degradation of the substrate molecule 

as well as the biocatalyst. The enzyme-support preparation possesses the highest activity 

of 3.4 ± 0.2 U*mgiEK
-1 at 25 °C, which correlates with the determined half-life time for the 

enzyme. As it was expected, enzyme activity decreases with rising reaction temperature. 

As stated before, an inhibition at MUC1-IgG2a Fc concentrations higher than 5 µM were 

observed for soluble enterokinase. In case of the enzyme-support preparation this effect 

could not be observed. Instead, a linear correlation between the applied substrate 

concentration and the measured enzyme activity could be found. In chapter 6.2 the 

loading capacity of porous material was investigated showing that 0.04 mg MUC1-IgG2a 

Fc can adsorb to one mg support material even if the carrier was not activated with 

glutardialdehyde prior to incubation.  

 

Figure 6-13 Influence of immobilization on substrate surplus inhibition. 
The presence of porous support material causes unspecific adsorption of 
MUC1-IgG2a Fc reducing the concentration in the reaction solution (A), remaining 
MUC1-IgG2a Fc binds to the active site of EK (B) and is cleaved into MUC1 and 
IgG2a Fc (C). Uncleaved MUC1-IgG2a Fc in the solution binds to the enzyme or 
adsorbs to carrier material (D). 
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By immobilizing enterokinase on a porous support, substrate surplus inhibition seems to 

be circumvented (Figure 6-13). Due to an adsorptive effect, MUC1-IgG2a Fc present in 

the reaction solution unspecifically binds to the carrier material, mimicking a lower 

concentration in the reaction mixture (Figure 6-13A). Substrate concentration in the 

solution further decreases due to additional binding of MUC1-IgG2a Fc to immobilized 

enzyme (Figure 6-13B). At the same time, cleavage of the fusion protein takes place 

generating the product proteins MUC1 and IgG2a Fc and making immobilized 

enterokinase again available for substrate binding and cleavage (Figure 6-13C). Thus, 

new MUC1-IgG2a Fc either being released by desorption from the carrier material due to 

a concentration gradient or being present as free molecules in the reaction medium binds 

to the immobilized biocatalyst for further cleavage (Figure 6-13D). If desorption of the 

fusion protein from the support material occurs, other protein molecules may at the same 

time adsorb to the carrier, thus reducing substrate concentration in the reaction mixture 

and avoiding the inhibition of the immobilized enzyme by MUC1-IgG2a Fc. 

Taking these findings into account, an additional saturation step of the carrier material had 

to be implemented, prior to initiating the actual cleavage reaction. For saturation, 

MUC1-IgG2a Fc should preferably be used, to avoid the introduction of other possible 

reactants, such as chemicals or even proteins. These components may interfere with the 

cleavage reaction and need to be removed from the reaction mixture making the 

purification process of the final product more complicated. Furthermore, MUC1-IgG2a Fc 

used for saturation of the support is still available for the cleavage reaction due to 

desorption of the substrate proteins from the carrier, which was described in Figure 6-13. 
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6.7 Summary: Immobilization 

The results of immobilizing enterokinase can be summarized as follows:  

 Enterokinase can be immobilized on either non-porous (Estapor magnetic 

microspheres) or porous material (hexamethylamino Sepabeads®) receiving 

remaining activities of up to 60 %. 

 Such high remaining activities are yet unreported compared to the few attempts 

yielding only 30 % by coupling the enzyme to glyoxyl agarose beads [19, 109].  

 The immobilization of enterokinase on Estapor paramagnetic microspheres did not 

stabilize the biocatalyst. The produced enzyme-support preparation was not able 

to cleave the fusion protein MUC1-IgG2a Fc. 

 A stabilizing effect was only observed with hexamethylamino Sepabeads® 

increasing half-life time at 25 °C to approximately 50 days. An additional treatment 

with 2-mercaptoethanol resulted in a significant 6-fold increase in half-life time 

compared to the free enzyme without influencing enzyme activity.  

 When stored at 4 °C, a supreme stabilizing effect, displayed by a half-life time 

greater than 330 days was achieved. This allows large-scale immobilization set-

ups and long-time storage of the enzyme-support preparation.  

 Enzyme immobilized on hexamethylamino Sepabeads® could successfully be 

applied to fusion protein cleavage producing the target protein MUC1. 

 Reaction parameters have been determined showing similar results as received 

for the free enzyme: pH 8.0 and 25 °C are used for further investigations. 

 By using porous carrier material, substrate surplus inhibition observed for the 

soluble enzyme can be overcome, showing a linear correlation between the 

activity of the enzyme-support preparation and the applied substrate 

concentration. 

 The immobilized enzyme can easily be removed from the reaction system and the 

re-use of the biocatalyst is now possible. 
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7 Application of the immobilized enterokinase in fusion 

protein cleavage8 

7.1 Theoretical Background 

For applying the enzyme-support preparation in a preparative cleavage of the fusion 

protein MUC1-IgG2a Fc, a suitable reactor set-up needs to be found. Generally, there are 

three types of an ideal reactor: 

1) Discontinuously operated stirred batch reactor, 

2) Continuously operated stirred tank reactor, and 

3) Plug flow reactor. 

The cleavage reaction with immobilized enterokinase was carried out either in a 

continuously operated stirred tank reactor (CSTR) or in repetitive batch reactors. 

Therefore, only these two ideal reactor types will be describes in more detail. 

In case of a CSTR, the reaction will be performed continuously making a constant supply 

with substrate solution and a permanent product removal necessary (Figure 7-1A). Thus, 

it is an open reaction system. At steady-state, equilibrium develops between the flow rate 

into and the mass flow rate out of the reactor. The reaction proceeds at the reaction rate 

associated with the final (output) concentration. Such a reactor system is well suited for 

reactions that are influenced by substrate surplus inhibitions, because of the low substrate 

concentrations that can be applied [85]. 

In contrast to this, the batch reactor is characterized as a closed reaction system, since a 

supply with substrate or the removal of product does not occur (Figure 7-1B). In the 

beginning of the reaction, the reaction vessel is filled with all required substances before 

the catalyst – the enzyme – is added to start the reaction. As soon as the desired 

conversion is achieved, the reaction is stopped by either inactivating or removing the 

biocatalyst. Figure 7-1B shows the change of reaction conditions over time. The reaction 

starts with high substrate and low product concentrations, which is vice versa at the end of 

the reaction [85]. 

                                                 
8  All results presented in this section were received using isolated EK produced by the expression 

host E. coli BL21. 
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Figure 7-1 Comparison of CSTR and batch reactor. 
A) Scheme of a CSTR; 
B) Scheme of a batch reactor with the change in concentration over time. 

7.2 Continuous process 

As it could be shown in the previous chapter, enterokinase immobilized on Sepabeads® 

EC-HA203 was successfully applied in fusion protein cleavage. The re-utilization as well 

as the stability of the enzyme-support preparation has to be investigated under process 

conditions. Therefore, the biocatalyst was applied in a continuous reaction process 

(Figure 7-2, scheme in section 10.2.20), which was performed under sterile and protease-

free conditions to avoid the degradation of MUC1-IgG2a Fc or the product MUC1.  

It was mentioned before that a saturation of the carrier material is necessary. Therefore, 

fusion protein was added to the enzyme-support preparation to allow a cleavage reaction 

to occur in a batch mode. To guarantee complete saturation, this batch reaction was 

repeated under the same conditions (Figure 7-2 I). A conversion of approximately 80 % 

could be achieved for the two batch reactions. Afterwards, a flow rate of 1.7 mL*h-1 was 

applied to initiate a continuous reaction mode. Regularly withdrawn samples showed a 

constant cleavage of the fusion protein receiving about 60 % conversion. The CSTR 

shows a stable production of MUC1 for ~1.5 residence times followed by a drastic drop in 

conversion to 40 % (Figure 7-2). To increase conversion and to analyze the activity of the 

immobilized enterokinase, the continuous process was stopped going back into a batch 

reaction. This, however, could not increase conversion, which further decreased to less 

than 20 % (Figure 7-2 II).  
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Figure 7-2 Continuous reactor setup for the cleavage of MUC1-IgG2a Fc by immobilized 
enterokinase. 
The set reaction conditions involved 2.32 mg*ml-1 MUC1-IgG2a Fc in standard 
reaction buffer incubated with 2.2 U*gSepabeads

-1 (determined with GD4K-2NA) 
immobilized enterokinase in a reaction volume of 40 mL at pH 8.0, 25 °C and stirring 
with 700 rpm. A flow rate of 1.7 mL*h-1 was applied. Section I & II represent cleavage 
reactions by the enzyme-support preparations under batch conditions. 

The continuous cleavage reaction under the given reaction conditions yielded a 

space-time yield of 1.34 g*(L*d)-1 and a total turnover number of 6000. The 

enzyme-support preparation was used for a total of 3 batch reactions and a continuous 

reaction mode of 1.5 residence times, which added to a total process time of 7.5 days. 

Within the described process, the conversion decreased from 80 % to 60 % after going 

into a continuous process, and further to 40 % after 1.5 residence times. Generally, 5 

residence times are required to either reach a steady-state in conversion or to recognize 

desorption of the biocatalyst from the support material. In the collected fractions, however, 

no enterokinase activity could be measured verifying that no biocatalyst was washed off 

the carrier. Furthermore, the enzyme-support preparation showed also no enzymatic 

activity at the end of the process suggesting a possible inactivation of the biocatalyst. This 

might be caused by the physical stress induced by the constant stirring of the reaction 

solution and the developing shear forces. The high substrate concentrations applied and 

the long reaction times might have also contributed to enzyme inactivation.  

Apart from this, sample evaluation further complicated the course of the continuous 

process. The collected fractions were analyzed with the method described in section 

10.2.19 using SDS-PAGE and a staining technique specific for glycoproteins. Due to the 

long time required for sample evaluation, an online-monitoring of the continuous process 

could not take place. Thus, it was not possible to respond to changes within the process in 
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a fast manner to prevent the conversion from decreasing by e.g. increasing the residence 

time or increasing the mixing rate to reduce film diffusion.  

Due to insufficient conversion and the difficulties in monitoring the reaction, the cleavage 

reaction of MUC1-IgG2a Fc in a continuous process was not further investigated. Instead, 

the enzyme-support preparation was used repeatedly for fusion protein cleavage. 

7.3 Repetitive batch experiments 

In repetitive batch experiments, MUC1-IgG2a Fc was added to the enzyme-support 

preparation initiating the cleavage reaction. After 24 hours the reaction was stopped and 

new substrate solution was again mixed with the same immobilized enzyme. Instead of 

stirring, the reaction mixture was mixed by constant shaking to reduce shear forces and 

thereby possible inactivation of the biocatalyst. For each batch experiment, enzyme 

activity was determined. The results of the repeated utilization of immobilized 

enterokinase are summarized in Figure 7-3.  
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Figure 7-3 Application of immobilized enterokinase (iEK) in repetitive fusion protein 
cleavage. 
The experiment was performed in duplicates. The reaction solution was removed 
after 24 h (increased process time: #1 – 27 h, #2 – 33 h) and new substrate solution 
was added to the enzyme-support preparation starting a new cleavage reaction. The 
set reaction conditions involved 1.16 mg*mL-1 MUC1-IgG2a Fc in standard reaction 
buffer incubated with 1.1 U*gSepabeads

-1 (determined with GD4K-2NA) immobilized 
enterokinase in a reaction volume of 1 mL at pH 8.0, 25 °C and under shaking 
conditions.  
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The first batch reaction was required to saturate the carrier material, which is 

accompanied by a low conversion of 12.0 ± 3.3 % and an enzyme activity of 

0.18 ± 0.03 U*mgiEK
-1. Enzyme activity is determined by the amount of product, which is 

produced over a specific time. Since the majority of the fusion protein adsorbed to the 

support material, only a small amount could be cleaved by immobilized enterokinase 

resulting in a low enzyme activity. This, however, does not reflect the actual activity of the 

enzyme-support preparation, as can be seen in the second batch. Here, the measured 

enzyme activity measured 1.22 ± 0.02 U*mgiEK
-1. A conversion of 97.8 ± 3.9 % was 

achieved after a reaction time of 24 h. A similar result was received for the third batch 

reaction with a slight decrease in enzymatic activity. In the following cleavage reactions 

re-using the immobilized enterokinase, a further decrease in enzyme activity was 

observed, subsequently leading to a decrease in conversion. Due to the reduction in the 

activity of the enzyme-support preparation, less MUC1-IgG2a Fc is cleaved in the same 

reaction time. Thereby, a conversion of 77.5 ± 1.1 % with a remaining activity for 

enterokinase of 0.85 ± 0.05 U*mgiEK
-1 were received. To determine whether 100 % 

conversion can still be achieved using the enzyme-support preparation, the process time 

of the cleavage reaction was prolonged. As it can be seen with the results for the batch 

reactions 9 and 10, conversion of MUC1-IgG2a Fc could be increased by a longer 

process time, reaching 100 % conversion after 33 h in batch 10. Activity of the enzyme-

support preparation of this batch reaction measured 0.78 ± 0.01 U*mgiEK
-1.  

Thus, immobilized enterokinase was successfully applied in repeated cleavage reactions, 

in which 100 % conversion can be achieved taking the decrease in enzyme activity into 

account and increasing the process time accordingly. Table 7-1 summarizes the process 

results achieved with this reaction concept. For the determination of the half-life time, the 

highest activity measured was considered as starting activity and adding the days of the 

already proceeded reaction. 

Table 7-1 Process parameters for the repeated utilization of immobilized enterokinase. 

t1/2 of enzyme-support preparation 

space-time yield 

ttn 

15.40 ± 0.99 days 

0.92 g*(L*d)-1 

33500 
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Since the application of the enzyme-support preparation in repetitive cleavage reactions 

was successful, slight changes in process conditions have been introduced to improve the 

half-life of the immobilized enzyme:  

1) reduction of MUC1-IgG2a Fc concentration to reduce the stress on the 

enzyme; 

2) addition of metal ions to the reaction mixture. 

The addition of magnesium to the standard reaction buffer caused a significant increase in 

the half-life by almost 50 % measuring 14.59 ± 0.09 days for the free enzyme (Figure 

5-1D). Thus, it can be assumed that by adding magnesium to the reaction mixture, the 

stability of the immobilized enterokinase might also be increased. In case of the free 

enterokinase, magnesium may stabilize the protein structure preventing conformational 

changes of the protein during incubation. By immobilization, the enzyme stability could 

already be increased (Figure 6-5), which might be further improved by using magnesium 

as a supplement. 

To investigate the influence of magnesium and the reduced substrate concentration on 

the half-life time of the enzyme-support preparation, repeated fusion protein cleavages 

were carried out either in the presence or absence of magnesium. Prior to use, the 

immobilized enterokinase was stored for about 2 months at 4 °C, which should have no 

significant influence on the activity according to previous investigations (Figure 6-5).  

Table 7-2 Process parameters of the repeated utilization of immobilized enterokinase in 
the presence or absence of Mg2+. 

process parameters without Mg2+ with Mg2+ 

t1/2 of enzyme-support preparation / days 13.70 ± 3.47 11.75 ± 1.98 

space time yield / g*(L*d)-1 0.33 0.32 

ttn 22700 23500 

As it is presented in Figure 7-4, the enzyme-support preparations were used in 18 

cleavage reactions showing similar reaction modes independent on the presence or 

absence of magnesium. About four batch reactions are necessary to saturate the carrier 

material, which is indicated by rising conversion and enzyme activity. The fifth cleavage 

reaction carried out with the immobilized enzyme yielded a conversion of 96 % and a 
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remaining activity of 1.44 U*mgiEK
-1 when Mg2+ was added to the reaction mixture. Without 

Mg2+, 99 % conversion with 1.16 U*mgiEK
-1 could be determined. With proceeding re-

utilization, activity of the enzyme-support preparation decreased, as it could be observed 

before, reaching final values of 0.36 U*mgiEK
-1 (with Mg2+) and 0.39 U*mgiEK

-1 (without 

Mg2+). In both reaction setups, the conversion decreased to 50 % in batch 18. The 

process parameters received are summarized in Table 7-2. 
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Figure 7-4 Repeated fusion protein cleavage by immobilized enterokinase (iEK) in the 
absence and presence of magnesium. 
The reaction solution was removed after 24 h and new substrate solution was added 
to the enzyme-support preparation starting a new cleavage reaction. The set reaction 
conditions involved 0.63 mg*mL-1 MUC1-IgG2a Fc incubated with 1.1 U*gSepabeads

-1 
(determined with GD4K-2NA) immobilized enterokinase in a reaction volume of 1 mL 
at pH 8.0, 25 °C and 1400 rpm. The enzyme-support preparation was stored at 4 °C 
for 2 months prior to use. The standard reaction buffer was supplemented with 1 mM 
magnesium ions. 
A) repetitive batches in the absence of magnesium; 
B) influence of magnesium on activity and stability of immobilized enterokinase. 
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According to the received results, a stabilizing effect for the enzyme-support preparation 

could not be observed when adding Mg2+ to the reaction mixture, as it was expected with 

regard to the data received for free enterokinase (Figure 5-1E). This suggests that Mg2+ 

has the same effect on preserving a specific protein structure as when immobilizing the 

biocatalyst. In both cases, a conformational change of the protein leading to decreased 

enzyme activity is prevented. 

7.4 Summary: Application of immobilized enterokinase 

The received results during the application of the enzyme-support preparation in the 

cleavage reaction of MUC1-IgG2a Fc can be summarized as follows: 

 Of the investigated reactor systems, the repeated utilization of the immobilized 

enterokinase is the most suited concept in the cleavage of MUC1-IgG2a Fc with 

regard to conversion, enzyme stability, enzyme utilization and reaction monitoring. 

 The enzyme-support preparation was re-used for a maximum of 18 batch 

reactions proving its process stability and significantly increasing the utilization of 

the biocatalyst (ttn = 33500) and reaching a space-time yield of 0.92 g*(L*d)-1. 

 100 % conversion can be achieved with every batch reaction taking enzyme 

inactivation into account and increasing the process time accordingly. 

 The supplementation of Mg2+ does not contribute to the stability of the enzyme-

support preparation. 
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8 Product purification 

8.1 Improvement of the purification procedure 

After the fusion protein MUC1-IgG2a Fc is cleaved into IgG2a Fc and the target protein 

MUC1, it is of importance to obtain a pure product protein. Several different purification 

techniques have been applied including ion exchange chromatography and ultrafiltration. 

In case of ion exchange chromatography, a strong anion exchange material has been 

used allowing the elution of the proteins with a specific salt gradient according to the 

isoelectric point of the different proteins. This method has already been described by 

Bäckström et al [6] for the purification of MUC1. Here, the fusion protein was incubated 

with soluble enterokinase until complete cleavage of the fusion protein was detected. The 

reaction mixture was then applied to ion exchange chromatography separating IgG2a Fc 

and MUC1.  

Although using the same purification procedure and receiving a similar chromatogram for 

elution some distinct impurities at 30 kDa and 43 kDa were detected with SDS-PAGE 

followed by Silver staining (Figure 8-1A). This suggests that the undesired proteins 

possess a similar isoelectric point as the target protein MUC1 being eluted at the same 

salt concentration. By changing the pH of the used elution buffer the overall charge of the 

proteins changes resulting in a different elution pattern. Since the amino acid composition 

of the unwanted proteins was not known, it was investigated whether a change in pH and 

in the elution gradient may improve product purity. Unfortunately, this did not yield higher 

purity of MUC1. With this purification procedure, a product purity of approximately 60 % 

was achieved. For further research or a pharmaceutical application, a purity degree of 

more than 95 % of the product is at least necessary. 

According to SDS-PAGE, the size of the unwanted proteins is smaller than 100 kDa. 

Therefore, ultrafiltration using a membrane with a 100 kDa cut-off was applied after ion 

exchange chromatography. As it can be seen on the SDS-gel (Figure 8-1B), the product 

solution was more concentrated rather than further purified. When comparing the solution 

before (B) and after (A) the filtration step, the two major impurities at 30 and 43 kDa are 

still present in the product solution suggesting these proteins to have sterically large 

structures that cannot diffuse through the pores of the membrane. This is supported by 

the fact that no proteins were found in the filtrate (F) solution.  

Keeping in mind the size of MUC1 with 140 kDa, membranes with a cut-off higher than 

100 kDa may lead to a loss of the product protein, which might diffuse through the pores 
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of the membrane. Nevertheless, a membrane with a molecular weight cut-off of 300 kDa 

(XM300) was used for ultrafiltration. After the cleavage reaction was completed, the 

protein solution was directly applied to ultrafiltration. To wash out the undesired proteins 

and to remove residual salt, the retentate was washed several times with ultra-pure water. 

According to Figure 8-1C, the main impurities at 30 and 43 kDa are washed out with each 

washing step. Comparing the product solution before (B) and after filtration (A) the amount 

of impurities was significantly reduced with regard to the proteins found at 30 and 43 kDa. 

For complete removal, the number of washing steps was increased, which resulted in the 

production of MUC1 with a purity of more than 90 %. 

 

Figure 8-1 Techniques applied for the purification of MUC1. 
A) MUC1 was eluted with a gradient of NaCl in IEC: I and II represent different 

fractions of the eluting process; 
B) Solution of cleavage reaction was applied to ultra-filtration with a 100 kDa cut-off: 

B – before filtration, F – filtrate, A – after filtration; 
C) Reaction solution was applied to a membrane with a 300 kDa cut-off: B – before 

filtration, A – after filtration, circle – very slight MUC1 band. 
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With the finally used membrane having a 300 kDa cut-off, the unwanted proteins were 

successfully removed, with only a neglectable amount of MUC1 – less than 5 % - being 

lost in the first washing step.  

 

Figure 8-2 SDS-PAGE of the obtained lyophilisates containing MUC1. 
  I to V – different lyophilisates (1:100). M – size marker, S – first extracted standard: 

MUC1-IgG2a Fc (0.233 mg*mL-1). 

The reaction mixtures of the different cleavage reactions – using free enterokinase, using 

immobilized enterokinase, continuous cleavage, and repetitive cleavage – were purified 

according to the finally developed purification procedure involving the membrane XM300. 

The received retentates were lyophilized and analyzed for their MUC1 content using 

SDS-PAGE followed by Silver and Alcian staining (Figure 8-2). Afterwards, the MUC1 

content was determined using the analytical method described in 10.2.19. With the 

received results, the purity of the lyophilisates was determined, which are summarized in 

Table 8-1.  

Table 8-1 MUC1 content and purity degree of the obtained lyophilisates. 

  Lyophilisate / 
mg 

MUC1 
content / mg 

Purity / % 

I 

II 
 

III 

IV 
 

V 

repetitive batch 1 

repetitive batch 2 (Mg-
dependency) 

continuous cleavage 

analytical investigations 
soluble EK 

analytical investigations 
immobilized EK 

43.0 

42.7 
 

30.0 

12.0 

 
11.0 

40.9 

39.3 
 

18.6 

11.3 

 
10.3 

95.1 

92.1 
 

62.0 

94.6 

 
93.5 
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So far, the purification method for MUC1 involved the application of ion exchange 

chromatography, which is limited by the amount of protein that can be loaded onto the 

column and the long process time. Furthermore, a sufficient purity could not be achieved. 

Now, ultrafiltration using a membrane with a cut-off of 300 kDa is applied, significantly 

reducing process time and increasing product purity from 60 to more than 90 %. Although, 

this is still not sufficient for pharmaceutical applications, the approach, however, gave 

promising results, with still some room for improvements. 

8.2 Summary: Product purification 

The findings of this chapter can be summarized as follows: 

 The application of ion exchange chromatography results in a purity of MUC1 of 

60 %, not sufficient for further investigations or pharmaceutical applications. 

 The purity of MUC1 can be improved by using ultrafiltration. Here, a membrane 

with a molecular weight cut-off of 300 kDa was most suited increasing the purity of 

MUC1 to more than 90 % and significantly reducing process time. The entire 

purification procedure was more simplified. 

 Finally, 100 mg lyophilized MUC1 with a purity of 94 % could be produced (Figure 

8-3). 

 

Figure 8-3 Lyophilized MUC1 with a purity of 94 %. 
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9 Conclusion and Outlook 

The aim of the project was to characterize the cleavage reaction of the fusion protein 

MUC1-IgG2a Fc by the enzyme enterokinase finding the optimal reaction parameters. 

With the received results an improved process for fusion protein cleavage had to be 

developed with emphasis on the efficient utilization of the biocatalyst. 

9.1 Supply of the reacting proteins 

Prior to process optimization, the availability of the reacting proteins had to be guaranteed 

making the optimization of the fermentation and purification procedure for MUC1-IgG2a 

Fc necessary. In a corporative research project between the Goteborg University, Sweden 

and the Research Centre Juelich, Germany, the production and purification of the fusion 

protein by recombinant CHO K1 cells has been investigated improving the productivity of 

the expression host and the amount of isolated fusion protein [21]. Thus, the substrate 

protein could be supplied sufficiently.  

Apart from this, the supply of the biocatalyst was of more importance. Although, 

enterokinase is commercially available, the high purchasing costs, however, do not 

contribute to making enterokinase an attractive tool in fusion protein cleavage. Therefore, 

it was necessary to establish an improved and very efficient production and purification 

procedure receiving high amounts of pure and active biocatalyst. Collins-Racie et. al [7] 

developed a very suitable expression host; enterokinase light chain could be produced as 

a fusion protein by recombinant E. coli K12. The fusion protein contains an enterokinase 

recognition site and a His-Tag, allowing the purification of the protein using column affinity 

chromatography followed by autocatalysis to receive active enterokinase light chain in its 

monomeric form. Using this process, Collins-Racie and co-workers were able to produce 

8 µgEK*gwcw [7].  

Within this project, the production procedure was further optimized with regard to 

fermentation conditions and the applied downstream process, when using E. coli K12 as 

well as E. coli Bl21 as production hosts. The fermentation procedure was optimized with 

regard to glucose consumption, acetate, biomass, and product formation. When 

comparing the two different expression strains, E. coli BL21 seemed to be more suited 

due to higher optical densities and cell dry weights reached. Furthermore, moderate 

glucose consumption with high conversion into biomass accompanied by very low acetate 

formation was observed. After fermentation, the downstream process needed to be 

improved. By introducing a new technical setup for affinity chromatography – a batch 

binding chamber – the purification process was significantly simplified and the process 
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time was reduced by half. Using E. coli K12, an inducible expression system, for 

enterokinase production under optimized fermentation conditions and applying the 

improved purification procedure, the yield of biocatalyst was increased 8-fold, measuring 

63.3 µgEK*gwcw. In comparison to this, E. coli BL21 represents constitutive protein 

expression expecting higher enzyme yields, subsequently. With this expression host, an 

increase in isolated enterokinase by a factor of 14 (111.5 µgEK*gwcw) was achieved. Apart 

from using recombinant E. coli for enterokinase production, the utilization of different yeast 

strains has also been described. In these cases, volumetric productivities of 

31.5 µgEK*L-1*h-1 to 182 µgEK*L-1*h-1 were received [89, 90]. With the isolation and 

purification approach developed in this project, a formulation rate of 214 µgEK*L-1*h-1 was 

determined, which means a maximum increase by a factor of ~ 7. 

By introducing several modifications in the downstream process of an existing production 

procedure described by Collins-Racie and co-workers [7], the diversity of bioreaction 

engineering could be demonstrated. Enzyme yield was greatly improved making a 

commercial supply of the biocatalyst unnecessary and thereby decreasing production 

costs. Furthermore, the new procedure possess some more significant advantages, such 

as 1) allowing fast and simple buffer change, 2) avoiding pressure limitations, 3) decrease 

process time and therefore 4) limit the effect of spontaneous autocatalysis and diminish 

the amount of lost enterokinase during the purification process.  

9.2 Immobilization of enterokinase 

To efficiently utilize enterokinase in fusion protein cleavage, the biocatalyst needs to be 

recycled or re-used either by holding back the enzyme by a membrane or by immobilizing 

it on or in a carrier material. Withholding the biocatalyst by a membrane cannot be applied 

in this reaction due to the specific molecular weights of the involved proteins, with the 

enzyme being smaller than the fusion protein and having the same size as one of the 

product proteins. Therefore, it was mainly focused on the immobilization of enterokinase 

using different carrier materials. By immobilizing enterokinase either on Estapor magnetic 

microspheres or hexamethylamino Sepabeads®, supreme remaining activities of 60 % 

were received, compared to the few attempts yielding only 30 % by coupling the enzyme 

to glyoxyl agarose beads [109]. With the latter approach, the cleavage of a fusion protein 

producing human growth hormone was carried out in only one cycle. 

A stabilizing effect was not achieved using the amino-modified magnetic microspheres 

possibly due to refolding after binding to the carrier. In contrast to the magnetic particles, 

enterokinase was stabilized by binding to hexamethylamino Sepabeads®. An additional 

treatment with 2-mercaptoethanol resulted in a significant 6-fold increase in half-life time 
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compared to the free enzyme without influencing the remaining activity. When stored at 

4 °C, we achieved a supreme stabilizing effect, displayed by a half-life time greater than 

330 days. This allows large-scale immobilization setups and long-time storage of the 

enzyme-support preparation.  

The immobilized enzyme on hexamethylamino Sepabeads® could successfully be applied 

to fusion protein cleavage showing the decrease in MUC1-IgG2a Fc and the development 

of the desired product protein MUC1. Thereby, it was proved that the carrier material 

(hexamethylamino Sepabeads®) is suitable for immobilizing the small protein enterokinase 

and allowing the large fusion protein to enter the pores and to be cleaved by the enzyme. 

In conclusion, enterokinase was successfully immobilized to a specific carrier material, 

making it possible to simply remove the biocatalyst from the reaction mixture. This allows 

further utilization of the immobilized enzyme to continuous or repetitive cleavage 

reactions. 

9.3 Comparison of CSTR and repeated utilization of immobilized 

enterokinase 

The developed enzyme-support preparation was applied in the cleavage of MUC1-IgG2a 

Fc either in a continuous process or in repeated reactions. With a continuous reaction 

setup, a conversion of 60 % for 1.5 residence times was obtained, before an unexpected 

drop in conversion was observed. Within the collected fraction, no enzyme activity was 

measured, showing that the biocatalyst was either still bound to the carrier material or was 

inactivated. Enzyme inactivation may result as a consequence of the physical stress 

induced by the constant stirring of the reaction solution and the development of shear 

forces. Additionally, high substrate concentrations and the long reaction times might have 

also contributed to enzyme inactivation. Furthermore, sample evaluation is a time-

consuming procedure making an online-monitoring of the continuous process difficult. Due 

to insufficient conversion and the difficulties in monitoring the reaction, the continuous 

process is not a suitable reaction setup for the cleavage of MUC1-IgG2a.  

Another reaction setup investigated involved the application of the immobilized 

enterokinase in repeated cleavage reactions. The cleavage of MUC1-IgG2a Fc proceeded 

until full conversion is achieved. The reaction mixture is then removed from the enzyme-

support preparation followed by the addition of new substrate solution. With this 

procedure, a maximum of 18 repeated cycles of fusion protein cleavage using the same 

enzyme support preparation were performed. A decrease in conversion was observed, 

which correlated with enzyme inactivation. However, 100 % conversion was achieved in at 
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least 3 batch reactions within 24 h. Taking enzyme inactivation into account, process time 

has to be increased to receive full conversion with every reaction cycle. Thus, it was 

proven that the enzyme-support preparation is stable under process conditions and can 

be recycled within the reaction. 

Up to now, Suh and co-workers described the application of enterokinase immobilized in 

glyoxyl agarose beads for the cleavage of a fusion protein for the production of human 

growth hormone [109]. In this case, the enzyme-support preparation, however, was used 

in only one cycle. According to this, the results presented here demonstrate for the first 

time that enterokinase can be re-used in a maximum of 18 reactions for fusion protein 

cleavage after being immobilized on hexamethylamino Sepabeads®.  

The pharmaceutical industry focuses mainly on the use of fusion proteins for the 

production of biopharmaceuticals. To receive the therapeutically important protein, the 

fusion partner needs to be removed either chemically or enzymatically. In the latter case, 

higher specificity is obtained and milder reaction conditions can be applied. Enzymatic 

reactions, however, are generally more expensive than chemical reactions due to the 

costs for the biocatalyst, which add to the costs for the downstream process. Therefore, 

an enzymatic reaction for fusion protein cleavage has to fulfill some criteria: 

1) full conversion, 

2) efficient utilization of the biocatalyst, 

3) simple downstream process, and 

4) high purity of the final product. 

The efficient utilization of the biocatalyst can be achieved by recycling the enzyme and re-

using it in a number of cleavage reactions. By removing the immobilized biocatalyst from 

the reaction mixture in addition to full conversion, the downstream process is simplified 

and a high purity of the product can be obtained. 

Finally, the continuous process and the repeated utilization of immobilized enterokinase in 

fusion protein cleavage are compared with regard to the criteria important for industrial 

application (Table 9-1). The repeated utilization of the enzyme-support preparation is the 

method of choice for fusion protein cleavage by immobilized enterokinase due to a more 

efficient utilization of the biocatalyst accompanied by a sufficient stability under process 

conditions. Full conversion can be achieved taking enzyme inactivation into account. 
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Table 9-1 Comparison of the continuous process and the repeated utilization of 
immobilized enterokinase. 

 Continuous process Repetitive batch 

Full conversion 60 % X 100%  

Enzyme utilization (ttn) 6000  33500  

Further information Process monitoring difficult 

Moderate enzyme stability 
under process conditions 

Process time needs to be 
prolonged according to 
enzyme inactivation 

9.4 Comparison of soluble and immobilized enterokinase in 

fusion protein cleavage 

As stated in the beginning of this chapter, an optimized procedure for the cleavage of 

fusion proteins had to be developed with emphasis on efficient enzyme utilization. The 

latter does not necessarily mean to immobilize the biocatalyst. Of course, several 

advantages arise when using enzyme-support preparations, but the efficiency has to be 

compared to the soluble enzyme under optimized reaction conditions. The immobilized 

biocatalyst has to be re-used adequately to cope with the reduced enzyme activity, 

generally received after immobilization, and the additional work load necessary.  

In Table 9-2, different reaction processes for the cleavage of MUC1-IgG2a Fc using either 

soluble or immobilized enterokinase were compared. The existing method was firstly 

described by Bäckström and co-workers [21], in which under the given reaction 

conditions, 100 % conversion and a total turnover number of 80 was obtained. After 

characterizing enterokinase and determining the reaction parameters for the substrate 

MUC1-IgG2a Fc, the cleavage reaction was performed under optimized reaction 

conditions using soluble as well as immobilized biocatalyst. In case of soluble 

enterokinase, commercially available enterokinase and isolated enzyme were compared. 

The cleavage reaction was performed under the given reaction conditions reaching 100 % 

conversion in both cases. With enterokinase commercially purchased a ttn of 400 was 

achieved, whereas a ttn of only 200 was obtained with isolated enterokinase. This, 

however, can be explained by the different substrate concentrations used. As it was 

shown in Figure 5-2 in section 5.3, enzyme activity increases with increasing 

concentration until reaching 5 µM, when inhibitory effects negatively influence enzyme 
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activity. Thus, the calculated total turnover number was expected to be higher for the 

commercial enzyme compared to the isolated enterokinase. For the immobilized 

biocatalyst no substrate inhibition was observed as it was demonstrated in Figure 6-12 

and Figure 6-13 of section 6.6. Thus, higher substrate concentrations can be applied in 

the cleavage reaction using less biocatalyst. This in turn significantly increased enzyme 

utilization reaching total turnover numbers of 3800 in a single reaction or 33500 in 

repetitive reaction cycles. 

By adjusting the reaction conditions and considering inhibitory effects, enzyme utilization 

was improved 3-fold for isolated enterokinase or 5-fold for commercially purchased 

enzyme compared to the method described by Bäckström et al. [21]. By immobilizing 

enterokinase, substrate inhibition was avoided further increasing the total turnover number 

by a factor of 48 in a single batch reaction. As it was expected, a supreme rise in the total 

turnover number by a factor of 419 was determined when using the immobilized 

enterokinase in repeated batches under the given reaction conditions. 

To finally conclude, the cleavage reaction of MUC1-IgG2a Fc by enterokinase was 

characterized and the optimal reaction parameters have been determined for soluble and 

immobilized biocatalyst. With the developed immobilization technique a suitable 

compromise between reduced enzyme activity, enzyme stabilization and additional effort 

was found. An optimized procedure for the cleavage of MUC1-IgG2a Fc using either 

soluble or immobilized enterokinase was developed significantly increasing enzyme 

utilization. 
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Table 9-2 Comparison of the reaction processes for the cleavage of MUC1-IgG2a Fc 
using soluble or immobilized enterokinase. 
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9.5 Product Purification 

For the purification of MUC1-IgG2a Fc and the cleaved MUC1, Bäckström and co-workers 

use ion exchange chromatography [21]. Due to the similar amino acid composition of 

MUC1-IgG2a Fc and MUC1, both proteins possess a similar pI in the range of 7.0. This 

makes a complete cleavage of the fusion protein necessary to make protein separation 

possible. In this project, the purification procedure described by Bäckström was used 

receiving a similar chromatogram for elution. Despite this, analysis using SDS-PAGE 

revealed two undesired proteins at 30 kDa and 43 kDa. Since these proteins were eluted 

with the same salt gradient, it has to be assumed that these proteins possess a similar pI 

as MUC1. Therefore, a change in pH of the elution buffer might not change the elution 

pattern. By using ion exchange chromatography, MUC1 with a purity of 60 % could be 

produced, which is not yet sufficient for further research or pharmaceutical applications.  

To improve the purity, a filtration step using a membrane with a 100 kDa cut-off was 

applied. Unfortunately, the product solution was more concentrated instead of further 

purified. The two undesired proteins do not just have a similar pI, but must also have 

sterically large structures preventing the diffusion through the pores of the membrane. 

When applying a membrane with a cut-off of 300 kDa not only the undesired proteins may 

diffuse through the membrane, but also the target protein MUC1. Despite the expectations 

of losing MUC1, the target protein was retained and the undesired proteins were washed 

out. With the first washing step, less than 5 % of MUC1 were lost, which is neglectable 

with regard to the improvement in product purity.  

In conclusion, product purification was significantly simplified by applying ultrafiltration with 

a 300 kDa membrane achieving a product purity of as much as 94 %. Disadvantages of 

ion exchange chromatography, such as a limited loading capacity, a specific pH range, 

pressure limitations and a long process time, can be circumvented when using 

ultrafiltration. Furthermore, scaling-up can be accomplished more easily compared to ion 

exchange chromatography.  
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9.6 Outlook 

With this work it could be shown that enterokinase is an efficient and attractive tool for the 

cleavage of fusion proteins. In an optimized procedure enzyme utilization was 

successfully improved. Since the pharmaceutical industry focuses on the use of fusion 

proteins for the production of therapeutically important proteins, well investigated 

procedures for the cleavage of these fusion proteins are necessary. In contrast to 

chemicals, proteolytic enzymes, especially enterokinase, possess a very high specificity 

avoiding unspecific cleavage of the fusion protein and allow the cleavage reaction to occur 

under mild reaction conditions.  

Immobilization generally stabilized the enzyme, which could be demonstrated by the 

repeated utilization of the enzyme-support preparation. By investigating different 

techniques for post-translational modifications, the immobilized enterokinase might be 

further stabilized. This may, subsequently, result in a higher number of repeated reaction 

cycles and therefore in a further improvement of enzyme utilization. It would also be of 

interest to investigate different immobilization techniques, for example cross-linking a 

number of enterokinase molecules. Thereby, an enlargement of the biocatalyst occurs 

which could then be applied in a membrane reactor. 

Although a continuous process seemed only moderately suited for fusion protein 

cleavage, technical improvements of the reactor setup may lead to the improvement of 

process parameters. A better mixing, an increased retention time and the use of a higher 

amount of enzyme-support preparation may lead to full conversion. Furthermore, by 

applying a different immobilization technique, the enzyme may be bound to the support 

material more stable to be suited for a continuous process. 

In case of product purification, ion exchange chromatography using a mixed mode 

polymeric ion exchanger, such as PolyCSX (Mallinckrodl Baker BV, The Netherlands) 

should be investigated. By using polyethylenimine (PEI) as spacer, hydrophilic 

interactions with proteins are provided. A subsequent modification of PEI with carboxylic 

acid and sulfonic acid groups results in a mixed mode functionality. Thus, it might be 

possible to bind proteins via different reactions and different affinities making the 

separation of protein with similar pIs possible. 

In biotechnological research, enterokinase has often been used for the cleavage of fusion 

proteins for the production of antibodies, coagulation factors, growth hormones, vaccines 

and insulin. Therefore it would be of great interest to apply immobilized enterokinase in 

the cleavage of other fusion proteins for the production of therapeutically important 

proteins. In combination with this, reaction parameters for the new substrates need to be 

determined. 
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10 Materials and Methods 

10.1 Materials 

10.1.1 Chemicals, biological materials and other substances 

Bio-Rad, Munich Germany Precision Plus Dual Color Standard 

Calbiochem, Bad Soden, 
Germany 

Bovine Serum Albumin (BSA) 

Fluka, Steinheim, Germany 2-mercaptoethanol 
Ammonia 
Ammonium sulphate 
D(+)-glucose monohydrate 
Dipotassium hydrogen phosphate 
Disodium-EDTA 
Disodium hydrogen phosphate dihydrate 
L-tryptophan 
Magnesium chloride hexahydrate 
Magnesium sulphate 
Nickel chloride hexahydrate 
Peptone from casein 
Potassium dihydrogen phosphate 
Sodium benzoate 
Sodium dihydrogen phosphate 
Yeast extract 

Invitrogen, Carlsbad, USA E. coli BL21* DE3™ 
EKMax™ Enterokinase 
NuPAGE® Antioxidant 
NuPAGE® MES SDS Running Buffer 
NuPAGE® Sample Reducing Agent 
NuPAGE® Transfer Buffer 
SeeBlue® Plus2 Pre-Stained Standard 
SilverQuest™ Silver Staining Kit 
Simply Blue™ SafeStain 

Merck KGaA, Darmstadt, 
Germany 

Acetic acid 
Agar-Agar 
Aluminium chloride hexahydrate 
Boric acid 
Calcium chloride dihydrate 
Glutardialdehyde (25 %) 
Glycerine 
Glycine 
Hydrochloric acid 
Imidazole 
Iron sulphate heptahydrate 
Manganese sulphate monohydrate 
Sodium chloride 
Sodium citrate dihydrate 
Thiamin dichloride 
Tris(hydroxymethyl)-aminomethane 
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Roche AG, Mannheim, 
Germany 

Protease inhibitor “complete EDTA-free” (CAS: 
04693132001) 

Roth GmbH & Co., Karlsruhe, 
Germany 

Alcianblau 8 GS 
Carbenicillin disodium salt 
Isopropylthiogalactoside (IPTG) 

Sigma-Aldrich, Taufkirchen, 
Germany 

4-Nitrophenyl phosphate disodium salt hexahydrate 
(pNPP) 
Antifoam 204 
Bradford Reagent 
Gly-Asp-Asp-Asp-Asp-Lys-2-naphthylamide 
Goat-anti-mouse-IgG 
Goat-anti-mouse-IgG + alkaline phosphatase-
conjugate  
N-(3-dimethylaminopropyl)-N-ethylcarbodiimide 
SIGMAFAST BCIP/NBT 

Sloning Biotechnology GmbH, 
Puchheim, Germany 

Plasmid pQE60_DsbA-EK-H6 

VWR International GmbH, 
Langenfeld, Germany 

Cobalt(II) chloride hexahydrate 
Copper(II) sulphate pentahydrate 
Ethanol 
Sodium molybdate dihydrate 
Zinc sulphate heptahydrate 

Wyeth Research, Cambridge, 
USA 

Escherichia coli K12 pSEC-DsbA/EKL 

 

10.1.2 Materials 

Abimed Reaction columns (5 mL, 10 mL) 

Bio-Rad, Munich, Germany Profinity IMAC Uncharged Resin 

Greiner Bio-One GmbH, 
Solingen, Germany 

Polypropylene centrifuge tubes 

Invitrogen, Carlsbad, CA, 
USA 

NuPAGE® Novex 4-12 % Bis-Tris Gel, 1.0 mm 
PVDF membrane, 0.2 µm pore size 

Merck Chimie SAS, France Estapor Microspheres M2 (070/40 & 070/60) 

Millipore GmbH, Schwalbach, 
Germany 

Ultracell, regenerated cellulose YM-5, YM-30 

Nunc Immunologie 96 Well Immuno Plates, Transparent, F96, MaxiSorp 

Pall Life Sciences, 
Hauppauge, NY, USA 

Ultrasette™ Lab Tangential Flow Device 100 kDa, 
30 kDa 

QIAGEN GmbH, Hilden, 
Germany 

QIAprep Spin Miniprep Kit 

Resindion Sepabeads® EC-HA203 

Schott AG, Mainz, Germany Fermentation shaking flasks (1 L) 
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10.1.3 Equipments 

Agilent Technologies, Inc., 
Santa Clara, USA 

Autosampler 
HPLC system 

ALS G1329A 
Agilent Series 1100 

Beckman Coulter Inc., 
Fullerton, USA 

Centrifuge 
Centrifugation device 

Avanti centrifuge J-20XD 
Polypropylene centrifuge 
bottles 

Bio-Rad, Munich, Germany HPLC column Aminex HPX-87H 

Branson, Danbury, USA Ultrasonic device Sonifier W-250 

Broadley James 
Corporation, Irvine, USA 

pH-electrode  

Chemap AG, Volketswil, 
Switzerland 

Chemap Fermentation 
Plant (30 L) 

 

Deutsche Metrohm GmbH & 
Co., Filderstadt, Germany 

pH meter pH meter 632 

Eppendorf, Hamburg, 
Germany 

Glucose Analyser 
Thermostat 

EBIO compact 
Thermostat plus 

Federgari, Pavia, Italy Autoclave FVA/3 

GE Healthcare, Munich, 
Germany 

FPLC-System 
 
 
 
Ion exchange column 

Äkta Purifier 10 
Fraction collector Frac-950 
Monitor pH/C-900 
Autosampler A-900 
HiTrap QFF (1 mL) 
HiPrep 16/10 QFF 

GMB Glasmechanik AG, 
Basel, Switzerland 

Cryostat  K20 

Invitrogen, Carlsbad, CA, 
USA 

Electrophoretic chamber XCell SureLock  
Mini-Cell CE mark 

Isotopenmessgeräte GmbH, 
Straubenhardt, Germany 

Scanning system for gels 
and membranes 

Raytest Stella® 

Kendro Laboratory 
Products, Osterode, 
Germany 

Centrifuge Multifuge 3S-R 
Biofuge pico 

Mechanical workshop, 
Research Centre Juelich, 
Juelich, Germany 

“Batch binding chamber” 
Ultrafiltration cell (3 L) 

 

Mettler Toledo, Urdorf, 
Switzerland 

O2-electrode  

Perkin Elmer, Rodgau, 
Germany 

Victor2 1420 Multilabel 
Counter 

Fluorescence reader 

Sartorius, Goettingen, 
Germany 

Scales 
 
Shaking incubator 

BP 2100S 
BP 211D 
Certomat BS1 

Shimadzu, Duisburg, 
Germany 

Photometer UV-1700 PharmaSpec 
Spectrophotometer UV-150-
02 
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10.2 Methods 

10.2.1 Expression hosts 

a) Mammalian cells 

Recombinant Chinese Hamster Ovarian (CHO) K1 cells were used for the expression of 

MUC1-IgG2a Fc. These cells were transfected with the expression vector 

MUC1-IgG2a-pcDNA3 (Figure 10-1) and integrated the genomic DNA for MUC1-IgG2a in 

its genome. The glycoprotein MUC1 is linked via an enterokinase recognition sequence to 

the Fc-region of immunoglobulin G 2a (IgG2a Fc). The signal peptide IgG2a Fc transports 

the fusion protein to the cell culture medium, allowing easy purification.  

 

Figure 10-1 Simplified scheme of the expression vector for the fusion protein 
MUC1-IgG2a Fc.  
Chinese Hamster Ovarian K1 cells were transfected with the pcDNA3 plasmid. 
 
 
 
 

b) Bacterial cells 

For the production of enterokinase, the following two expression hosts were used: 

E. coli K12 GI698 (F- lacIq lacPL8 ampC::lambdacI+) [7] 

E. coli BL21* DE3™ (F- ompT hsdSB(rB
- mB

-) gal dcm rne 131 (DE3)) (Invitrogen, 
Carlsbad, USA) 

The expression plasmids pSEC-DsbA/EKL (Figure 10-2A) encoding the fusion protein 

DsbA/EKL and pQE-60_DsbA-EK-H6 (Figure 10-2B) encoding DsbA-EK-His were used for 

transformation. DsbA represents a Thioredoxin homologue, which is responsible for 

transporting the protein to the periplasmic space of the bacterial cells. The light chain of 

the enterokinase (EKL) is connected to DsbA by a linker sequence and the recognition 

sequence for enterokinase allowing autocatalytic cleavage. Furthermore, the use of a 

His-Tag allows the purification of the fusion protein by using affinity chromatography. 
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Figure 10-2 Simplified scheme of the expression plasmids for enterokinase production as 
fusion protein DsbA/EKL.  
A) Expression of the fusion protein DsbA/EKL with His-Tag fused to the fusion 
partner;  
B) Expression of the fusion protein DsbA-EK-H6 with His-Tag fused to enterokinase. 

10.2.2 Plasmid transformation 

The expression plasmid was isolated from E. coli K12 according to the vendor’s 

description using the QIAprep Spin Miniprep Kit (QIAGEN GmbH, Hilden, Germany). For 

transformation, 1 µL plasmid DNA was added to 30-50 µL competent E. coli BL21cells 

and treated as follows: 

 Plasmid uptake:    50 min at 4 °C 

 Nuclease inactivation:    90 sec at 42 °C 

 Further plasmid uptake:    5 min at 4 °C 

 Repair of cell membrane and   adding 500 µL LB-medium (antibiotic-free),  
development of antibiotic   incubation for 1 h at 37 °C, 350 rpm 
resistance     (Thermostat plus, Eppendorf, Hamburg,  

Germany) 

For the selection of positively transformed cells, 100 µL of the bacterial suspension was 

plated onto LB-medium agar plates containing 0.1 g*L-1 carbenicillin and incubated for 

16 h at 37 °C. 

10.2.3 Fermentation of recombinant E. coli  

Fermentation of E. coli K12 GI698 and E. coli BL21* DE3 were done on a 20 L-scale 

using minimal medium M9. After fermentation, the cells were harvested by centrifugation 

and stored at -20 °C. Carbenicillin was added to the medium to select cells containing the 

vector pSEC-DsbA/EKL coding for enterokinase. 

A pre-culture was inoculated with a cryo-culture (50 % (v/v) glycerine) of positively 

selected cells (see 10.2.2) and incubated for at least 12 h at 30 °C with 160 rpm 

(Certomat BS1, Sartorius, Goettingen, Germany). The main culture of 20 L was inoculated 
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with about 2 L of pre-cultured cells (10 % v/v). The compositions of the used media are 

summarized in Table 10-1.  

Table 10-1 Composition of the used media for the fermentation of Escherichia coli. 

Component Concentration / g*L-1 

 LB-Medium (Cryo-culture) 

Peptone 
Yeast extract 
Sodium chloride 
Carbenicillin 

10 
5 

10 
0.1 

 Minimal media – M9 

 Pre-culture Main culture 

Potassium dihydrogen phosphate 
Dipotassium hydrogen phosphate 
Ammonium sulphate 
Magnesium sulphate 
Sodium chloride 
Calcium chloride dihydrate 
Thiamin dichloride 
Iron citrate stock solution 
Trace elements stock solution 
Glucose 
Carbenicillin 

3 
12 

5 
0.6 

1 
0.015 

0.0075 
15 mL L-1 

1 mL L-1 
5 

0.1 

3 
 

5 
2 
1 

0.015 
0.0075 

15 mL L-1 
1 mL L-1 

30 
0.1 

 Iron citrate stock solution (150x) 

Iron sulphate heptahydrate 
Sodium citrate dihydrate 

7.5 
100 

 Trace elements stock solution (1000x) 

Aluminium chloride hexahydrate 
Cobalt chloride hexahydrate 
Copper sulphate pentahydrate 
Boric acid 
Manganese sulphate monohydrate 
Sodium molybdate dihydrate 
Nickel chloride hexahydrate 
Zinc sulphate heptahydrate 

0.75 
0.6 
2.5 
0.5 

17.1 
3 

1.7 
15 

In the beginning of the fermentation, the oxygen supply was guaranteed by an aeration 

rate of 10 L*min-1 and the mixing of the fermentation broth with 400 rpm (Chemap 

Fermentation Plant). The decreasing oxygen concentration with ongoing fermentation time 

was compensated by increasing the mixing rate to a maximum of 1000 rpm (Chemap 

Fermentation Plant) and later by increasing the aeration rate. The pH was constantly 

adjusted to 6.7 with 25 % ammonia. After reaching a specific optical density of ~20, the 

initial fermentation temperature of 37 °C was decreased to 25 °C. After an adaptation time 

of 1 h, the expression in E. coli K12 cells was induced with 0.4 g*L-1 L-tryptophan. 
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According to the utilization of glucose, an additional supply with a glucose stock solution 

(500 g*L-1) was initiated in a fed-batch mode. To avoid excessive foam formation 1 % (v/v) 

Antifoam 204 (Sigma-Aldrich, Taufkirchen, Germany) were added to the fermentation 

broth. A summary of the fermentation protocol is given in Figure 10-3. 

 
Figure 10-3 Summary of the fermentation procedure for the production of enterokinase. 

All process parameters, such as pH, pO2, mixing rate and aeration rate, were recorded by 

the Software LabView (v.7.1, National Instruments). 

After fermentation, the cells were harvested by centrifugation at 8000 rpm (Avanti 

centrifuge J-20XD) for 20 min at 4 °C. While discarding the supernatant, the cells were 

stored in 50 mL fractions at -20 °C until further usage. 

10.2.4 Fermentation of CHO-K1 

Cultivation of CHO K1 was performed in corporation with the Cell Culture Group at the 

Institute of Biotechnology 2, Research Centre Juelich GmbH. 

Starting from a cryo culture of the working cell bank, 1*107 viable cells are used as 

inoculum for a T75 T-flask having a final cell concentration of about 1*106 viable cells/mL. 

Cultivation was performed at 37 °C and 5-8 % CO2. The cells were diluted with fresh 

medium to 3*105 viable cells/mL in repeated passages while filling up the T-flask. A 

T-flask with 1*106 viable cells/mL was then used for inoculation of a spinner flask (Schott, 

Germany) having a starting cell density of 3*105 viable cells/mL, thereby entering a 

dynamic culture system. As before with the T-flask, the cells were diluted to 3*105 viable 
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cells/mL with medium while filling up the spinner flask, which is then used as inoculum for 

3-5 L glass reactor (Applicon Biotek, Kunellwald, Germany).  

 CELL CULTURE MEDIUM 

 Pro CHO4-CDM (Lonza, Switzerland) 

 +       0.6 g*L-1 glutamine (Gibco, Invitrogen Corporation, Scotland) 

 +     1.68 g*L-1 sodium bicarbonate (Gibco, Invitrogen Corporation, Scotland) 

+ 0.0076 g*L-1 thymidine (Fluka, Germany) 

+ 0.0136 g*L-1 hypoxanthine (Serva, Germany) 

+     0.33 g*L-1 G418-sulphate in stock culture (Gibco, Invitrogen Corporation, 

Scotland) 

The culture media of three perfusion cultures were obtained for the isolation of the fusion 

protein MUC1-IgG2a Fc. Further information about the course of the cultivation is given in 

the appendix 11.1. 

10.2.5 Determination of fermentation process parameters 

Optical density (OD) 

For the observation of growth behavior, the optical density was determined by measuring 

the increase in turbidity of the culture medium at a wavelength of 600 nm. 

Dry cell weight (DCW) 

The cell dry weight was determined by centrifuging 25 mL culture medium at 5000 rpm 

(Multifuge 3S-R, Kendro Laboratory Products, Osterode, Germany) for 10 min at 4 °C in a 

50 mL falcon tube. The received cell pellet was dried at 60 °C until reaching a constant 

weight. After cooling, the difference in weight between a cell pellet containing falcon tube 

and an empty falcon tube was determined, giving the cell dry weight. 

Glucose concentration 

Using a glucose analyzer (Eppendorf, Hamburg, Germany), the glucose concentration in 

the cell-free medium was determined. For the measurement within a range of 0 to 

5 gglucose*L
-1, the samples were diluted with buffer (pH 7.3). 

 Analyzing buffer: 6.27 g*L-1 disodium hydrogen phosphate 
    1.15 g*L-1 sodium dihydrogen phosphate 
    1.5   g*L-1 sodium benzoate 
    0.5   g*L-1 disodium-EDTA 
    2.5   g*L-1 sodium chloride 
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Acetate concentration 

Cell-free culture medium is used for the analytical determination of the acetate 

concentration by a chromatographic separation of organic acids. For quantification, an 

external one-point calibration with a standard concentration of 1 mM was carried out. Prior 

to measurement, all samples were diluted 1:10 with deionized water.  

The received data was process with the Software Chromeleon 6.8 (Dionex). 

 SPECIFICATION OF HPLC ANALYSIS 

   Injection volume  100 µL 
   Column   Aminex HPX-87H, 300 x 7.8 mm 
   Mobile phase   0.1 M sulphuric acid (H2SO4) 
   Flow rate   0.5 mL min-1 
   Wavelength   215 nm 

10.2.6 Cell disruption 

The biomass received after fermentation was slowly thawn and resuspended in lysis 

buffer having a wet cell weight of about 15-30 % (w/v). For minimizing unspecific binding 

during the purification process, imidazole was added to the lysis buffer in a low 

concentration. Additionally, protease inhibitors were added to the cell suspension to avoid 

proteolysis during cell disruption. 

Cells were disrupted using ultrasound in a 30 mL flow-through ultrasound cell with a flow 

rate of 2 mL*min-1.  

 SPECIFICATION OF THE ULTRASOUND PROCEDURE 

   Time of ultrasound   8 sec 
   Time of pause    4 sec 
   Temperature    2 °C 
    

The received suspension was centrifuged for 40 min at 13,000 rpm (JA14, Avanti 

centrifuge J-20XD, Beckman Coulter Inc., Fullerton, USA) and 4 °C for separating cell 

debris and soluble protein. The protein solution in the supernatant was applied to affinity 

chromatography as described in 10.2.7. 

10.2.7 Affinity chromatography for EK isolation 

The fusion protein DsbA/EKL contains a His-Tag by which the protein can be specifically 

separated from the remaining proteins. For binding the desired protein, immobilized metal 

affinity chromatography (IMAC) was used. The applied material (Profinity™ IMAC 

Uncharged Resin, BioRad, Munich, Germany) was loaded with nickel-ions according to 

the vendor’s description.  
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Figure 10-4 Batch binding cell containing Ni2+-IDA sepharose for the purification of the 
fusion proteins DsbA/EKL and DsbA-EK-H6. 

The entire procedure was carried out in a batch binding cell (Figure 10-4) located on a 

rotational shaker at 50 rpm (Polymax 1040, Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany).  

 PROCEDURE OF AFFINITY CHROMATOGRAPHY 

 Resin equilibration with buffer B1   500 mL, 20 min, 3 times 
Protein binding     45 min 

 Washing with buffer B2    500 mL, 15 min, 5 times 
 Elution with buffer B3     500 mL, 30 min 
 Washing with deionized water   500 mL, 15 min 

The fractions of the elution as well as of the last washing step with deionized water were 

pooled, further purified and concentrated by ultrafiltration with a membrane having a 5 

kDa cut-off. In parallel, the buffer was changed to standard reaction buffer B4. Further 

purification of the enterokinase solution was achieved by ion exchange chromatography 

(10.2.8). 

Table 10-2 Buffer compositions for affinity chromatography. 

Buffer Component Concentration / g*L-1 

B1 (equilibration) Tris-HCl, pH 8.0 
Sodium chloride 

2.40 
11.60 

B2 (washing) Tris-HCl, pH 8.0 
Sodium chloride 
Imidazole 

2.40 
11.60 

2.04 

B3 (elution) Tris-HCl, pH 8.0 
Sodium chloride 
Imidazole 

2.40 
11.60 

13.6 

B4 (standard reaction buffer) Tris-HCl, pH 8.0 
Calcium chloride*dihydrate 

6.06 
0.15 
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For detailed analysis, samples were taken after each step of performance for 

investigations with SDS-PAGE (10.2.15) and enzyme activity testing (10.2.9). 

10.2.8 Ion exchange chromatography for protein purification 

Using an ÄKTApurifier system and a sepharose QFF column (HiPrep 16/10 QFF), target 

proteins, such as MUC1-IgG2a Fc and enterokinase were further purified. By choosing a 

pH value approximately 1-1.5 values above the pI of the protein allows the charged target 

protein to bind to the column material. Applying a salt gradient with NaCl the protein was 

be eluted from the resin. The received chromatograms of the purified proteins are listed in 

the appendix (11.2). 

Buffer A: 50 mM Tris-HCl, pH 8.4 

Buffer B: 50 mM Tris HCl, pH 8.4 
  0.5 M NaCl 

SPECIFICATION OF RUNNING CONDITIONS 

Column equilibration   0.70 CV, 2.5 mL*min-1, 100 % Buffer A 

Sample injection   1.00 CV, 1.0 mL*min-1 

Washout unbound sample  0.50 CV, 1.0 mL*min-1, 100 % Buffer A 

Gradient for Elution   2.50 CV, 2.5 mL*min-1, 0-30 % Buffer B 

2.50 CV, 2.5 mL*min-1, 30 % Buffer B 

3.75 CV, 2.5 mL*min-1, 30-100 % Buffer B 

Column washing   2.00 CV, 2.5 mL*min-1, 100 % Buffer B 

Column equilibration   2.50 CV, 2.5 mL*min-1, 100 % Buffer A 

10.2.9 Determination of enzyme activity 

Enzyme activity was determined fluorometrically using the synthetic substrate 

Gly-Asp-Asp-Asp-Asp-Lys-2-naphthylamide (GD4K-2NA) [114]. The liberated fluorophore 

2-naphthylamine (2NA) was determined with a fluorescence spectrophotometer (Victor2 

1420 Multilabel Counter, Perkin Elmer, Rodgau, Germany) using an excitation filter of 

350 nm and an emission wavelength of 460 nm. For calibration a standard solution of 2NA 

was used. If not stated otherwise, all measurements were performed at 25 °C. The 

reaction setup was as described in Table 10-3. 
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Table 10-3 Reaction setups for activity determination of enterokinase. 

 
EK (Invitrogen, 
Carlsbad, USA) 

Isolated EK Immobilized EK 

Standard reaction buffer 

1 mM GD4K-2NA 

Enzyme solution 

70 µL 

25 µL 

5 µL 

200 µL 

25 µL 

25 µL 

750 µL 

250 µL 

 

Total reaction volume 

Measuring volume 

100 µL 

100 µL 

250 µL 

250 µL 

1000 µL 

100 µL 

 Standard reaction buffer: 50 mM Tris-HCl, pH 8.0 

One unit is defined as the amount of enzyme reducing one micromole of GD4K-2NA per 

minute under the described conditions. 

10.2.10 Determination of reaction kinetics 

Enterokinase was characterized either as soluble enzyme as well as immobilized on the 

specific carriers. 

Substrate GD4K-2NA 

All investigations concerning enzyme characterization for the substrate GD4K-2NA were 

performed using EKMAX (Invitrogen, Carlsbad, USA). 

TEMPERATURE DEPENDENCY 

Soluble and immobilized enzyme was incubated at different temperatures (20, 25, 30, 33, 

35, 37 and 40 °C) in standard reaction buffer, pH 8.0. Periodically withdrawn samples 

were assayed for activity as described earlier. The storage stability is given as half-life 

time after which half the original activity remains assuming exponential decay. 

PH DEPENDENCY 

Soluble and immobilized enzyme was incubated in standard reaction buffer with different 

pH (pH 5.0-9.0) at 25 °C. Periodically withdrawn samples were assayed for activity as 

described earlier.  

 

Substrate MUC1-IgG2a Fc2a 

All reaction setups involving the fusion protein MUC1-IgG2a Fc were performed under 

sterile and protease-free conditions. Enterokinase isolated from the expression host 

E. coli BL21* DE3 was used the following investigations. 
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TEMPERATURE DEPENDENCY 

Soluble (0.19 U*mL-1) and immobilized enzyme (0.35 U*mL-1) were added to 

0.233 mg*mL-1 MUC1-IgG2a Fc (for free EK) or 1.12 mg*mL-1 MUC1-IgG2a Fc (for 

immobilized EK) and incubated in standard reaction buffer, pH 8.0 at different 

temperatures (20, 25, 30, 33, 35, 37 and 40 °C). Periodically withdrawn samples were 

assayed by SDS-PAGE and Western Blot analysis. 

PH DEPENDENCY 

Soluble (0.19 U*mL-1) and immobilized enzyme (0.35 U*mL-1) were added to 

0.233 mg*mL-1 MUC1-IgG2a Fc (for free EK) or 1.12 mg*mL-1 MUC1-IgG2a Fc (for 

immobilized EK) and incubated in standard reaction buffer with different pH (pH 5.0-9.0) at 

25 °C. Periodically withdrawn samples were assayed by SDS-PAGE and Western Blot 

analysis. 

MUC1-IgG2a Fc was separately incubated without enterokinase under the same 

conditions for investigating the stability of the fusion protein. 

10.2.11 Immobilization on Sepabeads® 

The carrier material (pore diameter: 80-150 µm, mean particle diameter: 200-240 µm, 

functional group density: min. 0.7 mmol*g-1) was washed with 20 mM sodium phosphate 

buffer, pH 8.0. 100 mg of support were suspended in sodium phosphate buffer, pH 8.0, 

containing different amounts of glutardialdehyde (GDA) and were incubated for 1 hour 

under constant shaking. After intense washing of the support in sodium phosphate buffer, 

the carrier was mixed with enzyme solution (5 µg*mL-1, Invitrogen, Carlsbad, USA) and 

incubated for 16 hours at 4 °C. Afterwards the enzyme-support preparation was 

thoroughly washed and the activity was determined as described before. 

10.2.12 Immobilization on Estapor paramagnetic microspheres 

100 µL of the carrier suspension (particle diameter: 1.0-2.0 µm, ferrite content 35-45 %) 

were washed with 10 mM sodium phosphate buffer, pH 6.0. Afterwards, activation of the 

functional groups was carried out in the same buffer containing 

N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDCA) in a final concentration of 

20 mg*mL-1 or varying concentrations of glutardialdehyde for 1 hour under constant 

shaking at 23 °C. 5 µg*mL-1 of enterokinase (Invitrogen, Carlsbad, Germany) were added 

to the washed, activated paramagnetic microspheres and incubated for 16 hours at 4 °C. 

The enzyme-support preparation was washed and activity was determined as described 

before. 
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10.2.13 Post-treatment: Blocking the remaining functional groups 

In case of the Estapor paramagnetic microspheres, the remaining functional groups were 

either blocked with 1 % 2-mercaptoethanol for 40 min or 100 mM glycine for 20 to 40 

minutes. 

A post-treatment with either 1 % 2-mercaptoethanol or 1 M glycine for 50 min was initiated 

after the immobilization on hexamethylamino Sepabeads®. 

10.2.14 Purification of MUC1-IgG2a Fc 

The fusion protein MUC1-IgG2a Fc is produced by recombinant CHO K1 cells, which 

excrete the protein into the cell culture medium. The collected, almost cell-free medium is 

applied to a purification system (Figure 10-5) consisting of two membrane modules (Pall 

Life Sciences) with either a 100 kDa or a 30 kDa cut-off. Using this method, the fusion 

protein is purified and concentrated in one step. 

 
Figure 10-5 Technical drawing of the 2-membrane module used for the isolation and 

purification of MUC1-IgG2a Fc from the cell culture medium. 

Further purification of received protein solution was necessary. Therefore, ion exchange 

chromatography, as described in 10.2.8, was carried out. Afterwards, the pure fusion 

protein solution was concentrated using an ultrafiltration cell (mechanical workshop, 

Research Centre Juelich GmbH) with a membrane cut-off of 30 kDa. 

10.2.15 SDS-PAGE 

For the analysis of the entire protein content in a sample, a sodium dodecyl sulphate 

polyacrylamid gel electrophoresis (SDS-PAGE) under reducing conditions was carried 

out. NuPAGE 4-12 % Bis-Tris gels were used. The SDS-PAGE was performed according 

to the vendor’s description (Invitrogen, Carlsbad, USA). As molecular size standards, 

either the SeeBlue Plus2® prestained standard (Invitrogen, Carlsbad, USA) or the 
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Precision Plus Dual Color Standard (BioRad, Munich, Germany) were used. After the 

electrophoresis the gels were stained depending on the proteins to be detected (see 

10.2.16) 

 
Figure 10-6 Size marker used for protein identification. 

A) Invitrogen – SeeBlue Plus2® prestained standard;  
B) BioRad – Precision Plus Dual Color Standard. 

10.2.16 Gel staining techniques 

Comassie staining 

For the detection of enterokinase and the fusion protein DsbA/EKL, Simply Blue 

SafeStain (Invitrogen, Carlsbad, USA) was used. The SDS-gels were stained according to 

the vendor’s instructions. 

 
Silver staining 

Using the silver staining method allows the detection of very small traces of protein. This 

method was carried out by using the SilverQuest Silver Staining Kit (Invitrogen, 

Carlsbad, USA) according to the vendor’s instructions.  

This staining method was applied for the detection of MUC1-IgG2a Fc and IgG2a Fc as 

well as enterokinase. 

 

Alcian blue staining 

Alcian blue specifically visualizes glycosylated proteins such as MUC1-IgG2a Fc and 

MUC1. A 0.125 % alcian blue solution in 10 % acetic acid and 25 % ethanol was applied 

to the gel for 1 h under shaking conditions. Destaining was performed by incubating the 

gel 2 times for 30 min in 10 % acetic acid and 25 % ethanol followed by washing the gel 

for 1 h in deionized water. 
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10.2.17 Western Blot for MUC1-IgG2a Fc 

For the detection of MUC1-IgG2a Fc, Western blotting was performed after SDS-PAGE 

with unstained gels. Therefore, the protein was transferred to a polyvinyldifluorid (PVDF) 

membrane. The following immunodetection was done using goat-anti-mouse-IgG-AP 

antibody. The visualization of the specifically bound antibodies was achieved by applying 

a solution of BCIP/NBT to the membrane. The entire experimental procedure can be 

found in the appendix (11.3). 

10.2.18 ELISA for MUC1-IgG2a Fc 

The enzyme-linked immunosorbant assay (ELISA) is mainly used for the determination of 

specific protein concentrations starting as low as 0.2-1.0 µg*mL-1. Using this method, the 

concentration of MUC1-IgG2a Fc was determined. The IgG2a Fc specifically binds to the 

coating antibody (goat-anti-mouse-IgG), which was loaded onto the multi-well plate. By 

the binding of the conjugate antibody (goat-anti-mouse-IgG-AP) connected to alkaline 

phosphatase (AP), IgG2a-Fc can be detected specifically. The amount of bound enzyme 

is proportional to the amount of bound MUC1-IgG2a Fc.  

By adding the substrate solution (p-Nitrophenol phosphate – pNPP), an enzymatic 

cleavage of the phosphate residue occurs causing a coloration of the investigated 

solutions into yellow, representing the developed nitrophenol. This can be detected 

photometrically with a wavelength of 405 nm. The intensity of the coloration is proportional 

to the concentration of the conjugate antibody. 
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Figure 10-7 Example for data analysis of the ELISA. 
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The received data of the investigated samples and the data for the standard samples 

have to be blotted using a logarithmic scaling (Figure 10-7). Using the slope of the linear 

regression and taking the dilutions of the samples into account, the concentration of the 

single samples can be calculated. The entire experimental procedure can be found in the 

appendix (11.4) 

 DETERMINATION OF THE LINEAR REGRESSION 

 bxmy  )ln(   y optical density of the standard 
     m slope of the standard linear regression 
     x standard concentration / µg*mL-1 

b          intersection of standard linear regression with 
y-axis 

 DETERMINATION OF SAMPLE CONCETRATION 

 






 


m

bOD
c sample

sample exp   csample  product concentration / µg*mL-1 

      ODsample optical density of sample 
  b  intersection of standard linear  

regression with y-axis 
  m  slope of the standard linear 

regression 
 
 
 
 
 
 

10.2.19 Analytical investigations 

Analytical investigations of the cleavage reaction of MUC1-IgG2a Fc by either free or 

immobilized enterokinase was finally done using the automation Raytest “Stella”, a 

scanning system for gels and membranes (Isotopenmessgeräte GmbH, Straubenhardt, 

Germany). After staining, the gels were scanned and analyzed using the software AIDA 

Analyzer v.4.18, by which each stained protein band is scanned and analyzed according 

to the number of pixels. Using a standard for each gel, the measured pixels can be blotted 

over the concentration of the protein. All measurements were subjected to MUC1 as 

standard protein. In figure 10-8, an example of evaluation of the gel data and the resulting 

standard cure is given as example. 
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Figure 10-8 Applied analytical method for investigating the cleavage reaction of 
MUC1-IgG2a Fc using enterokinase. 
A) SDS-PAGE followed by Alcian blue staining for the visualization of glycosylated 

proteins,  
B) Scanning of the gel and determination of intensity of desired protein band, and  
C) plotting intensity of protein band over protein concentration. 

Other analytical methods, such as RP-HPLC, SEC, CE and IEC were also tested, but a 

sufficient analytical separation of MUC1-IgG2a Fc and MUC1 could not be achieved. 

Results received during the development of the analytical method are presented in the 

appendix (11.5). 

10.2.20 Continuous cleavage reaction 

For a continuous cleavage of the fusion protein MUC1-IgG2a Fc, 2.2 U*gSepabeads
-1 

enterokinase were immobilized according to the method described in 10.2.11 using 4 g 

Sepabeads® EC-HA203. Prior to this, the entire setup was sterilized using 1 % NaN3 

followed by extensive washing with sterilized standard reaction buffer. The glass reaction 

vessel was maintained at 25 °C using a water bath and was stirred with 700 rpm. The 

substrate solution containing 2.32 mg*mL-1 MUC1-IgG2a Fc was cooled to 4 °C to avoid 

protein degradation by proteases, although being treated under sterile conditions at all 

times. The enzyme-support preparation was saturated by inducing two repeated batch 

reactions. By applying a flow rate of 1.7 mL*h-1, a continuous flow was initiated. Fractions 

were collected for 90 minutes and analyzed according to 10.2.19. 
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Figure 10-9 Reactor scheme for continuous cleavage reaction of MUC1-IgG2a Fc by 
immobilized enterokinase. 

10.2.21 Repetitive batch reactions 

For repetitive batch experiments, 1.1 U*gSepabeads
-1 were immobilized according to the 

method stated in section 10.2.11. The setups were performed in duplicates. To start the 

reaction 1.16 mg*mL-1 MUC1-IgG2a Fc were added to the immobilized enterokinase 

under sterile conditions. The cleavage reaction proceeded at 25 °C and 1400 rpm. 

Regularly withdrawn samples were analyzed using the method described in section 

10.2.19. After 24 h, the reaction was stopped by removing the protein solution. Prior to the 

next batch reaction, the same enzyme-support preparation was washed with 50 mM 

Tris-HCl, pH 8.0. 

10.2.22 Product recovery and purification 

Two procedures have to be applied for the recovery of MUC1, which is present as soluble 

fraction in the reaction mixture and as protein adsorbed to Sepabeads® EC-HA203. 

SOLUBLE FRACTION 

The reaction solution was removed from the enzyme-support preparation and applied to 

ultrafiltration using a XM300 membrane. The retentate was washed with sterile deionized 

water. 

ADSORBED PROTEIN 

The enzyme-support preparation was washed with cold 1 M NaCl. The received protein 

solution was washed and the buffer was changed to standard reaction buffer before 
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applying the solution to ultra-filtration. Again, the retentate was washed with sterile 

deionized water. 

The purity of the received product solution was analyzed using the methods described in 

section 10.2.19. The fractions were lyophilized and stored at -20 °C. 
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11 Appendix 

11.1 Perfusion cultures of CHO-K1 

CHO-K1 cells produce MUC1-IgG2a Fc throughout the cultivation. Maximum production 

rate was observed with limiting glucose concentration and the decrease in lactate 

concentration in the cell culture medium. 

The concentrated solutions containing MUC1-IgG2a Fc were applied to ion exchange 

chromatography according to 10.2.8. Different fractions were collected and concentrated 

with an ultra-filtration membrane with a cut-off of 100 kDa, receiving the fractions 

described in section 3.2. 

 

FERMENTATION 1: R CWPer3 

0 100 200 300 400 500
0.01

0.1

1

10

0

10

20

30

40

fraction IIIfraction II

ce
ll

s 
/ 

*1
07

time / h

 viable cells    total cell count

batch perfusion
fraction I

c
g

lu
co

se , c
lactate  / m

M

 lactate      glucose    sampling 

 

Fraction II and III were used for the isolation and purification of MUC1-IgG2a Fc using the 

2-membrane module described in section 10.2.14. 
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FERMENTATION 2: R CWPer4 
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Fraction I and II were used for the isolation and purification of MUC1-IgG2a Fc using the 

2-membrane module described in section 10.2.14. 

FERMENTATION 3: RMUC1 Prot2 
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Fraction I was used for the isolation and purification of MUC1-IgG2a Fc using the 2-

membrane module described in section 10.2.14. 
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11.2 Chromatograms of purified proteins by IEC 

All proteins used in this project were purified with ion exchange chromatography (HiPrep 

16/10 QFF) according to the method described in 10.2.8. Chromatograms for each protein 

involved in this reaction are given in Figure 11-1. 

 

Figure 11-1 Chromatograms received after ion exchange chromatography using HiPrep 
16/10 QFF sepharose. 
A) enterokinase,  
B) IgG2a Fc,  
C) non-purified MUC1-IgG2a Fc,  
D) purified MUC1-IgG2a Fc. 
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11.3 Immunoblotting for MUC1-IgG2a Fc 

Transfer of proteins from a SDS-gel to a PVDF membrane 

Transfer Buffer:    50 mL 20x NuPAGE® Transfer Buffer 
850 mL deionized water 
100 mL methanol 

- Incubate filter papers and sponges in transfer buffer 

- Incubate membrane in methanol (increases protein capacity) 

- Remove plastic from the gel and incubate it in transfer buffer 

- Put the blotting chamber together according to Figure 11-2 

- Insert blotting chamber in gel chamber and fill with transfer buffer  

- 30 V for 60 min 

 
Figure 11-2 Stacking scheme of blotting chamber for the transfer of proteins from SDS-gel 

to PVDF membrane. 

Solutions 

Blocking/Washing Buffer (BWB):  6.060 g Tris-HCl (pH 7.4) 
2.920 g NaCl 
0.254 g MgCl2*6H2O 
2.5 mL Tween 20 

Antibody solution:  20 mL BWB + 40 µL anti-mouse IgG-AP (Sigma 5153) 

APase buffer:  1 tablet in 20 mL deionized water (Sigma 2770) 

Substrate solution: 1 tablet Sigma fast BCIP/NBT (Sigma 5655) in 10 mL 
deionized water 

Stop solution:   1x PBS 
20 mM EDTA pH 7.2 
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Development of the membrane 

- Incubate membrane 1 h at 37 °C under slight shaking conditions in BWB 

- Incubate membrane 1 h at 37 °C under slight shaking conditions in antibody 

solution  

- Wash membrane twice for 15 min with BWB  

- Equilibrate membrane for 3 min in APase buffer  

- Incubate membrane in substrate solution until protein bands are clearly visible  

- Shortly wash membrane in deionized water 

- Incubate membrane for 1 min in stop solution 
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11.4 ELISA for MUC1-IgG2a Fc 

Solutions: 

S1 :   PBS 10x 80.0 g*L-1 sodium chloride 
     11.5 g*L-1 disodium hydrogen phosphate 
        2.0 g*L-1 potassium chloride 
        2.0 g*L-1  potassium dihydrogen phosphate 

 
          PBS 1x  dilute 10 x PBS with deionized water 
 
S2:   Blocking buffer 
   Dissolve 1 % BSA (w/v) in 1x PBS  
 
S3:   Washing buffer 
   Dissolve 0.05 % (v/v) Tween20 in 1x PBS  
 
S4:   Coating antibody (Sigma M-8642) 
   Dissolve 1 mg goat-anti-mouse-IgG in 25 mL 1x PBS (40 µg*mL-1) 
   Aliquot á 1 mL and store at -20 °C 
   Before use, dilute with 1x PBS to 3 µg*mL-1 

 
S5:   Diluting buffer 
   Dissolve 0.1 % (v/v) BSA in 1x PBS 
 
S6:   Standard Solution 

Dilute 1 mg*mL-1 MUC1-IgG2a Fc Standard with S5 to 1 µg*mL-1 
 
S7:   Conjugate antibody (Sigma A-5153) 

Goat-anti-mouse-IgG + alkaline phosphatase-conjugate 
Dilute 1:1000 with S5 
 

S8:   Substrate solution (pNPP) (Sigma N-2770) 
   Dissolve 1 Tris buffer tablet in 20 mL deionized water 
   Dissolve 1 pNPP tablet in Tris buffer 

 

Procedure: 

- Coating of multi-well plate with 100 µL coating antibody (S4), seal plate with plate 
sealer and incubate over night at 25 °C 

- Wash plate 3x with 200 µL S3 

- Block unspecific binding sites by adding 200 µL S2, seal plate with plate sealer and 
incubate for 2 h at 37 °C 

- Wash plate 3x with 200 µL S3 

- Measure coated multi-well plate at 405 nm with fluorometric spectrophotometer 
(Victor2 1420 Multilabel Counter, Perkin Elmer, Rodgau, Germany) as a negative 
reference 

- Dilute Standard and samples with S5 

- Add 100 µL of S5 in B1-B12 to H1-H12, leave row A empty 

- Add 200 µL of standard solution (S6) to A1 and A2, and S5 to A12 
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- Add 200 µL of diluted samples in the remaining wells (each as duplets) 

- Pipette 100 µL from row A to row B and mix, continue diluting the entire plate 
according to this procedure until row H, 100 µL of row H will be discarded 

- Seal plate with plate sealer and incubate for 1 h at 37 °C 

- Wash plate 3x with 200 µL S3 

- Add 100 µL freshly prepared conjugate antibody (S7), seal plate with plate sealer and 
incubate for 1 h at 37 °C 

- Wash plate 3x with 200 µL S3 

- Wash plate with 200 µL deionized water 

- Add 100 µL freshly prepared substrate solution (S8) and directly measure absorbance 
at 405 nm 

- Repeat measurement after 10 to 30 min until reaching an extinction of 0.7 to 0.8 for 
the standard samples 
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11.5 The challenge of analytical protein separation 

For investigating the cleavage reaction of MUC1-IgG2a Fc by enterokinase, an analytical 

method needed to be developed, which guarantees sufficient separation of the involved 

proteins. It has to be considered, however, that the product proteins, MUC1 and IgG2a Fc, 

derive from the substrate protein, MUC1-IgG2a Fc. Thus, the properties of the proteins to 

be separated analytically possess similar properties with regard to size and amino acid 

composition. The most important characteristics of the proteins are summarized in Table 

11-1. 

Table 11-1 Properties of proteins involved in the cleavage reaction. 

 MUC1-IgG2a Fc MUC1 IgG2a Fc EK 

Origin recombinant 
(CHO K1) 

human murine 
recombinant 

(E. coli) 

Size (kDa) 170 140 30 26 

hydrophobic AA 310 208 102 79 

hydrophilic AA 492 343 149 102 

With the main focus on developing a continuously operated process, a fast and efficient 

analytical method was necessary. Therefore, the most commonly used techniques, such 

as RP-HPLC, IEC, SEC and CE have been investigated extensively using different 

columns. To improve peak separation, several parameters have been varied. 

Nevertheless, a sufficient separation of the proteins was not achieved. Analytical 

investigations were finally performed by separating the proteins by gel electrophoresis. 

VARIED PARAMETERS ACCORDING TO COLUMN SPECIFICITY 

pH 

temperature 

injection volume 

flow rate 

mobile phase 

gradient 
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ANALYTICAL TECHNIQUES AND COLUMNS 

1) Capillary electrophoresis 

SDS-coated capillary - Beckman (Fullerton, CA, USA)  
   (65 cm, 100 µm I.D.) 

2) Size exclusion chromatography 

MZ-Gel SDplus (co 200 kDa)- MZ-Analysentechnik, Mainz, Germany 

Superdex 200  - GE Healthcare, Munich, Germany 

TSK gel G3000 SWXL - Tosoh, Tokyo, Japan 

3) RP-HPLC 

Jupiter 5u C18 300 - Phenomenex Ltd., Aschaffenburg, Germany 

Jupiter 5u C4 300  - Phenomenex Ltd., Aschaffenburg, Germany 

Multospher 300-5 C4 - Macherey & Nagel, Düren, Germany 

Multo HighBio 300-5 C4 - Macherey & Nagel, Düren, Germany 

Nucleosil 300-5 C8 - Chromatographieservice GmbH, Langerwehe, Germany 

Nucleosil 300-5 C4 - Chromatographieservice GmbH, Langerwehe, Germany 

4) Ion exchange chromatography 

Mono Q   - GE Healthcare, Munich, Germany 

Source 15Q  - GE Healthcare, Munich, Germany 

HiTrap QFF 16/10 - GE Healthcare, Munich, Germany 
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