Biochemische und funktionelle Charakterisierung des potentiellen Calciumionenkanalproteins Maus Transient Receptor Potential 1**b** (mTRP1**b**)

Dissertation zur Erlangung der Doktorwürde der Fakultät für Chemie der Universität Bielefeld

vorgelegt von

Olaf Friedrich

aus Reinbek

März 2001

Biochemische und funktionelle Charakterisierung des potentiellen Calciumionenkanalproteins Maus Transient Receptor Potential 1**b** (mTRP1**b**)

Dissertation zur Erlangung der Doktorwürde der Fakultät für Chemie der Universität Bielefeld

vorgelegt von

Olaf Friedrich

aus Reinbek

März 2001

Dekan:	Prof. Dr. K. Kohse-Höinghaus
Prodekan:	Prof. Dr. J. Mattay
Leiter der Arbeit:	Prof. Dr. J. Frey
Vorsitzender des Prüfungsausschusses:	Prof. Dr. L. Weber
1. Gutachter:	Prof. Dr. J. Frey
2. Gutachter:	Prof. Dr. N. Sewald
Protokollführer:	Dr. K. Tönsing
Termin der mündlichen Prüfung:	30.03.2001

Die vorliegende Arbeit wurde in der Abteilung Biochemie II der Fakultät für Chemie der Universität Bielefeld in der Zeit von September 1997 bis März 2001 unter wissenschaftlicher Anleitung von Herrn

Prof. Dr. J. Frey

angefertigt. ich für die ständige Ihm danke interessante Themenstellung, seine Diskussionsbereitschaft, fachliche und finanzielle Unterstützung sowie sein fortwährendes Interesse an meiner Arbeit und die Möglichkeit, diese frei zu gestalten.

Herzlich bedanken möchte ich mich bei meiner Familie, insbesondere meiner Mutter, die mir ihre uneingeschränkte Unterstützung zukommen ließ.

Herrn Prof. Dr. N. Sewald danke ich für die kurzfristige Übernahme des Koreferats.

Frau Dr. P. Budde danke ich für die wissenschaftliche Betreuung der Arbeit und die anregenden Diskussionen, die wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Mein besonderer Dank gilt Dipl. Biol. U. Günther, Dipl. Chem. C. Schäfer und insbesondere TRP-Projektes, Dipl. Biochem. M. Engelke, den Mitarbeitern des die durch ihre außerordentliche Kooperationsbereitschaft, tatkräftige Unterstützung und stete Diskussionsbereitschaft den Verlauf dieser Arbeit entscheidend beeinflußt haben.

C. Geerds und M. Duckert danke ich herzlich für die tägliche tatkräftige praktische Unterstützung, die ein rasches Vorankommen dieser Arbeit ermöglicht hat.

S. Boese, S. Dittmann und M. Lohf danke ich für die Übernahme zahlreicher praktischer Tätigkeiten im Labor, die sie während ihrer Ausbildungszeit bei mir im Labor durchführen durften ;-)

Den (ehemaligen) Studenten A. Berndt, A. Mc Hardy, O. Barton und K. Dittmann danke ich für die experimentelle Unterstützung während ihrer Blockpraktika.

Allen Mitgliedern der Biochemie II danke ich für ihre ständige Hilfsbereitschaft und die angenehme Arbeitsatmosphäre.

Inhaltsverzeichnis

Ι	Abkürzungen und Akronyme	V
II	Symbole für die Aminosäuren	XII
III	Symbole für die DNA-Basen	XII
1	Einleitung	1
1.1	Calciumionenfreisetzung aus intrazellulären Speichern	1
1.2	Calciumionenkanäle	3
1.2.1	Speicherregulierte Calciumionenkanäle und kapazitativer	
	Calciumioneneinstrom	4
1.2.2	"Ca2+-release-activated" Calciumionenkanäle	5
1.2.3	Aktivierungsmechanismen für SOCs	5
1.3	Kandidaten für speicherregulierte Calciumionenkanäle	8
1.3.1	Die TRP-Proteinfamilie	8
2	Problemstellung	20
3	Zusammenfassung	22
4	Material	24
4.1	Zellinien und deren Kultivierung	24
4.2	E. coli-Bakterienstämme	24
4.3	Hefe-Stamm	25
4.4	Plasmide	25
4.5	cDNAs	26
4.6	Oligonukleotide	27
4.7	Antikörper	28
4.8	Enzyme	29
4.9	Chemikalien	29
4.10	Sonstige Materialien	30
4.11	"Kits"	30
4.12	Puffer, Medien und Lösungen	30
4.13	Geräte	34

II	Inhaltsverzeichnis	
4.14	Computersoftware	36
5	Methoden	37
5.1	Molekularbiologische Methoden	37
5.1.1	Kultivierung und Lagerung von Bakterien	37
5.1.2	CTAB-Lyse zur Plasmidisolierung in kleinem Maßstab	37
5.1.3	Plasmidpräparation über Ionenaustauscher-Säulen	37
5.1.4	Hydrolyse von DNA durch Restriktionsendonukleasen	38
5.1.5	Klenow-Behandlung restringierter DNA	38
5.1.6	Dephosphorylierung von Vektor-DNA	38
5.1.7	Agarosegelelektrophorese	38
5.1.8	Ligation von DNA-Fragmenten	38
5.1.9	Phenolextraktion und Dialyse von DNA	38
5.1.10	Herstellung chemisch kompetenter E. coli und deren Transformation	39
5.1.11	Isolierung von Gesamt-RNA aus Kulturzelllen	40
5.1.12	Konzentrationsbestimmung von Nukleinsäuren	40
5.1.13	Reverse Transkription	41
5.1.14	Polymerase-Kettenreaktion	41
5.1.15	LexA Hefe-Two-Hybrid-System	42
5.2	Zellbiologische Methoden	46
5.2.1	Bestimmung der Zellzahl	46
5.2.2	Einfrieren und Auftauen von Zellen	46
5.2.3	Stabile Transfektion von IIA1.6-Zellen mittels Elektroporation	47
5.2.4	Stabile und transiente Transfektion von HEK293-Zellen mittels	
	aktivierten Dendrimeren	47
5.2.5	Transfektion von COS-M6-Zellen mittels DEAE-Dextran	48
5.2.6	Immunfluoreszenzenmikroskopie an IIA1.6-Zellen	48
5.2.7	Immunfluoreszenzenmikroskopie an HEK293- und COS-M6-Zellen	49
5.2.8	Calciumfluß-Analyse an IIA1.6-Zellen im Durchflußzytometer	49
5.2.9	Calciumfluß-Analyse an HEK293-Zellen am "Calcium-Imaging"-	
	System	50
5.3	Proteinbiochemische Methoden	51
5.3.1	Affinitätsreinigung von His ₆ -Fusionsproteinen an Nickel-NTA-Agarose	51
5.3.2	Proteinkonzentrationsbestimmung nach Bradford	52

		Inhaltsverzeichnis	III
	5.3.3	Immunisierung eines Kaninchens bei Eurogentec zur Gewinnung	
		polyklonaler Antikörper	52
	5.3.4	Aufreinigung von IgG-Fraktionen aus Antiseren	52
	5.3.5	Immunpräzipitation an stabil transfizierten HEK293-Zellen	53
	5.3.6	Immunpräzipitationen an transient transfizierten COS-M6-Zellen	53
	5.3.7	SDS-Polyacrylamid-Gelelektrophorese	54
	5.3.8	Silberfärbung von Proteingelen	55
	5.3.9	Elektroelution von Gelbanden aus einem SDS-PAA-Gel	55
	5.3.10	Trocknung von Gelbanden	55
	5.3.11	Reduktion von Proteinen im Gel	55
	5.3.12	Western Blot	56
	5.3.13	Western-Blot-Analyse (immunologischer Nachweis, Immunblot)	56
	5.3.14	Stripping von Western Blot-Membranen	57
6		Ergebnisse	58
6.1		Klonierung von mTRP1 b -FLAG und Mutanten	58
6.2		Generierung und Charakterisierung eines mTRP1-spezifischen	
		Antiserums	59
	6.2.1	Rekombinante Expression von mTRP1-CT	59
	6.2.2	Charakterisierung des anti-mTRP1-CT Kaninchenantiserums	59
6.3		Interaktionsstudien	61
	6.3.1	Hefe-Two-Hybrid-System	61
	6.3.2	Co-Immunpräzipitationen	65
	6.3.2.1	Plasmamembranlokalisierung von mTRP1 β und Mutanten, mTRP2 und	
		hTRPC3 in COS-M6-Zellen	65
	6.3.2.2	Interaktionen von mTRP1 β , mTRP2 und hTRPC3	68
	6.3.2.3	Interaktionen von mTRP1 β , mTRP2 und hTRPC 3 mit LAT	77
	6.3.2.4	Interaktionen von TRP1 mit Caveolin	79
	6.3.2.5	Interaktion von mTRP1 β mit Aktin	79
6.4		Calciumioneneinstrom in stabil mTRP1 b und -Mutanten	
		exprimierenden HEK293-Zellen	80
	6.4.1	Proteinexpression in HEK293-Zellen	80
	6.4.2	$[Ca^{2+}]$ -Messungen an stabil mTRP1 β - oder Mutanten exprimierenden	
		HEK293-Zellen	82

IV	Inhaltsverzeichnis	
6.5	Expression von mTRP1b in IIA1.6-Zellen	86
7	Diskussion	88
7.1	Expression und Plasmamembranlokalisierung von mTRP1b und	
	Mutanten, mTRP2 sowie hTRPC3 in COS-M6- und HEK293-	
	Zellen	89
7.2	Homo- und Heterooligomerisierung von TRP1, 2 und 3	91
7.3	Adapterproteine von TRP	93
7.4	Einfluß der postulierten funktionellen Domänen von mTRP1 b auf	
	den Calciumioneneinstrom in stabil transfizierten HEK293-Zellen	94
7.5	Expression von mTRP1 b in IIA1.6-Zellen	99
7.6	Zusammenfassung	101
8	Ausblick	103
9	Literaturverzeichnis	105
	Anhang	132
	Abbildungs- und Tabellenverzeichnis	141

I Abkürzungen und Akronyme

βMe	β-Mercaptoethanol
[Ca ²⁺]	Calciumionenkonzentration
$[Ca^{2+}]_i$	intrazelluläre Calciumionenkonzentration
$[Ca^{2+}]_{rel}$	relative Calciumionenkonzentration (Quotient aus der Fluoreszenzintensität von
	Fluo-3/Snarf-1)
°C	Grad Celsius
μΜ	Micromolar
3F10	mAk gegen das HA-Epitop
9E10	mAk gegen das c-myc-Epitop
А	Ampere
AA	Acrylamid-Bisacrylamid
Abb.	Abbildung
Ac	Acetyl
AD	Aktivierungsdomäne (THS)
AG	Agonist
Amp	Ampicillin
AMPS	Ammoniumpersulfat
ank	Ankyrin-ähnlich
AS	Aminosäure
ATCC	American Type Culture Collection
ATP	Adenosin-5'-triphosphat
B42	DNA-Aktivierungsdomäne (THS)
BCR	B-Zellrezeptor
BD	Bindungsdomäne (THS)
bp	Basenpaar
BSA	Rinderserumalbumin
bzw.	beziehungsweise
ca.	circa
CaM	Calmodulin

VI	Abkürzungen
cAMP	cyclische Adenosin-3',5'-phosphorsäure
Cav	Caveolin
сс	Coiled-Coil
CCE	kapazitativer Calciumioneneinstrom ("capacitative calcium entry")
CCh	Carbachol
cDNA	komplementäre DNA
cGMP	cyclische Guanosin-3',5'-phosphorsäure
CIF	Calciumeinstromfaktor ("Calcium Influx Factor")
c-myc	Decapeptid, das vom humanen c-myc Onkogenprodukt abgeleitet ist:
	EQKLISEEDL (AS 410 bis 419), wird als spezifisches Epitop für Ak verwendet
CRAC	"Ca ²⁺ -released-activated" Ca ²⁺ -Kanäle
СТ	cytosolischer Carboxy-Terminus
CTAB	Hexadecyltrimethylammoniumbromide (Cetyltrimethylammoniumbromide)
Cy2	Carbocyanin
Cy3	Indocarbocyanin
d	Schichtdicke bei OD-Messungen
DAG	Diacylglycerol
DEAE	Diethylaminoethyl
DMEM	Dulbeccos Minimal Essential Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyriobonuklease
dNTP	Desoxyribonukleosidtriphosphat
DO	"Dropout"
DTT	1,4-Dithiothreitol
dys	Dystrophin-ähnlich
e	Esel
E. coli	Escherichia coli
ECL	"Enhanced Chemiluminescence"
ECS	extrazelluläre Lösung (Extracellular solution)
EDTA	Dinatriumsalz der Ethylendiamin-N,N,N',N'-tetraessigsäure
EGTA	Dinatriumsalz der Ethylenglycol-bis(β -aminoethylether)-N, N, N', N'-

	tetraessigsäure
ER	Endoplasmatisches Retikulum
F(ab')	Antigenbindendes Fragment (,,Fragment antigen binding")
FACS	"Fluorescent activated cell sorter"
Fc	kristallisierbares Fragment von Antikörpern ("Fragment crystalline")
FcR	Fc-Rezeptor
FCS	fötales Kälberserum
FcγR	IgG-Rezeptor
FLAG	Octapeptid DYDDDDDK, ® eingetragenes Warenzeichen der Firma Sigma-
	Aldrich, wird als spezifisches Epitop für Ak verwendet
Fluo-3	4-(2,7-Dichloro-6-hydroxy-3-oxo-9-xanthenyl)-4'-methyl-2,2'-
	(ethylendioxy)dianilin-N,N,N',N'-tetraessigsäure
Fluo-3-AM	Fluo-3-tetrakis-(acetoxymethyl)-ester
FP	Fusionsprotein
Fura-2	1-[2-(5-Carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-
	methylphenoxy)-ethan-N,N,N',N'-tetraessigsäure
Fura-2-AM	Fura-2-pentakis-(acetoxymethyl)-ester
g	Erdbeschleunigung oder Gramm
Gal	Galactose
GDP	Guanosin-5'-diphosphat
Glu	Glucose
Gms	Gentamycinsulfat
GTP	Guanosin-5'-triphosphat
$G_{\alpha\beta\gamma}$	trimeres G-Protein
h	Human oder Stunde/n
h	Human
HA	Nonapeptid aus dem Hämagglutininprotein: YPYDVPDYA, wird als spezifisches
	Epitop für Ak verwendet
HEPES	2-[4-(2-Hydroxyethyl)-1-piperazino]-ethansulfonsäure
His	Medium, in dem Histidin fehlt
HMW	Proteinmarker für SDS-PAA-Gele bis 212 kDa ("high molecular weight")
I _{CRAC}	durch Ca ²⁺ -Freisetzung aktivierter Ca ²⁺ -Strom ("Ca ²⁺ -released-activated Ca ²⁺ -

	current'')
Ig	Immungluobulin
IgG	Immunglobulin G
IP	Immunpräzipitation
IP ₃	Inositol-1,4,5-trisphosphat
IP ₃ -R	IP ₃ -Rezeptor
IP_4	Inositol-1,3,4,5-tetrakisphosphat
IP ₄ -R	IP ₄ -Rezeptor
IPTG	Isopropylthiogalaktosid
k	Kaninchen
kDa	Kilodalton
Konz.	Konzentation
LAT	Adapterprotein zur Aktivierung von T-Zellen ("Linker for Activation of T-Cells")
LB	Luria Broth
Leu	Medium, in dem Leucin fehlt
LexA	DNA-Bindungsdomäne (THS)
LGCC	ligandkontrollierter Ca2+-Kanal ("ligand-gated Ca2+-channel")
LMP-Agarose	niedrig schmelzende Agarose ("Low Melting Point")
LMW	Proteinmarker für SDS-PAA-Gele bis 94 kDa ("Low molecular weight")
LRD	Lipid Raft Domäne
m	Maus
Μ	Marker für Molekularmasse im Western Blot oder Molar
M2	mAk gegen das FLAG-Epitop
M5	muskarinischer Acetylcholinrezeptor Typ 5
mAk	monoklonler Antikörper
min	Minute
mind.	mindestens
mМ	Millimolar
mRNA	Boten-RNA
MβCD	Methyl- β -cyclodextrin
n. red.	nicht reduziert
Na-Mops	Natriumsalz der 3-(N-Morpholino)propansulfonsäure

nd	nicht untersucht ("not determined")
NK-Zellen	Natürliche Killerzellen
nM	Nanomolar
nm	Nanometer
NP40-Ersatz	Nonidet P40-Ersatz
NT	cytosolischer Amino-Terminus
NTA	Nitrilotriacetat
o/n	über Nacht
OAc	Acetat
OAG	1-Oleayl-2-acetyl-sn-glycerol, membrangängiges DAG-Derivat
OctA	pAk gegen das FLAG-Epitop
OD	Optische Dichte
OdT	oligo-Desoxythymidin
pA	Picoampere
PAA	Polyacrylamid
PAGE	Polyacrylamidgelelektrophorese
pAk	polyklonaler Ak
PBS	phosphatgepufferte physiologische Kochsalzlösung
PCR	Polymerasekettenreaktion
pF	Picofarad
PFA	Polyformaldehyd
PIP ₂	Phosphatidylinositol-4,5-bisphosphat
РКС	Proteinkinase C
PLC	Phospholipase C
PM	Plasmamembran
PMSF	Phenylmethylsulfonylfluorid
рр	potentielle Porenregion
proz.	prozentig
pS	Picosimens
r	Ratte
r	Ratte
RACC	rezeptoraktivierte Ca2+-Kanäle ("receptor-activated Ca2+-channels")

Х	Abkürzungen
Raf	Raffinose
red.	reduziert
RIPA	Radio-Immuno-Präzipitationsassay
RNA	Ribonukleinsäure
RNase	Ribonuklease
RT	Raumtemperatur oder Reverse Transkription
RT-PCR	Reverse Transkription-PCR
S.E.	Standardabweichung
SD	synthetisches Minimalmedium ("synthetic drop out")
SDS	Natriumdodecylsulfat
sek	Sekunde/n
SERCA	Sarcoplasmatisches und Endoplasmatisches Retikulum-Ca2+-ATPase
SNARF-1®	2(oder 4)-[10-(Dimethylamino)-3-oxo- 3H-benzo[c]xanthen-7-yl]-
	benzoldicarbonsäure, eingetragenes Warenzeichen der Firma Molecular Probes,
	Inc.
SNARF-1-AM	3-(Acetyloxy)-10-(dimethylamino) -3'-oxo-spiro[7H-benzo[c]xanthen-7,1'(3H)-
	isobenzofuran]-ar'-carbonsäure-acetoxymethyl-ester
SOC	speicherregulierter Ca^{2+} -Kanal ("store <i>o</i> perated Ca^{2+} channel")
Strep	Streptomycin
Tab.	Tabelle
TAE	Tris-Acetat-EDTA
TBS	Tris-Borat-EDTA
TCA	Trichloressigsäure
TEMED	N,N,N',N',-Tetramethylethylendiamin
Tet	Tetracyclin
Tet-On/Off	Tet-reguliertes Expressionssystem der Firma Clontech
TF	Transkriptionsfaktor/en
Tfb	Transformationspuffer (m für MC1061, x für XL1-Blue)
THS	Two-Hybrid-System
TM	Transmembransegment/e
Tris	Tris-(hydroxymethyl)-ammoniummethan
TRITC	Rhodamin

Triton X100	4-(2',2',4',4',-Tetramethylbutyl)-phenyldecaehtylglycol
TRP	Transient Receptor Potential
Trp	Medium, in dem Tryptophan fehlt
TRPC	humaner TRP Kanal ("channel")
Trx	Thioredoxinprotein
Tween 20	Polyoxyethylen-(20)-sorbitanmonolaureat
U	Einheit der Enzymaktivität
Ura	Medium, in dem Uracil fehlt
urea	Harnstoff
V	Volt
v/v	Verhältnis Volumen/Volumen
VOCC	spannungsregulierter Ca ²⁺ -Kanal ("voltage-gated Ca ²⁺ -channel)
Vol.	Volumen
W	Watt
w/v	Verhältnis Gewicht/Volumen
WB	Western Blot
wt	Wildtyp
Х	Xenopus
X-Gal	5-Brom-4-chlor-3-indolyl-β-D-galactopyranosid
YPD	Hefe-Vollmedium
Z	Ziege
Δ	Deletion

II Symbole für die Aminosäuren

Aminosäure	Abkürzung	Buchstabensymbol
Alanin	Ala	А
Arginin	Arg	R
Asparagin	Asn	Ν
Asparaginsäure	Asp	D
Cystein	Cys	С
Glutamin	Gln	Q
Glutaminsäure	Glu	Е
Glycin	Gly	G
Histidin	His	Н
Isoleucin	Ile	Ι
Leucin	Leu	L
Lysin	Lys	K
Methionin	Met	М
Phenylalanin	Phe	F
Prolin	Pro	Р
Serin	Ser	S
Threonin	Thr	Т
Tryptophan	Trp	W
Tyrosin	Tyr	Y
Valin	Val	V

Tab. II.I Drei- und Einbuchstabencode der natürlichen a-L-Aminosäuren

III Symbole für die DNA-Basen

Tab. II.II Einbuchstabencode für die DNA-Basen

Base	Buchstabensymbol	
Desoxyadenosin	a	
Desoxycytidin	с	
Desoxyguanosin	g	
Desoxythymidin	t	

1 Einleitung

Eine der wichtigsten Eigenschaften von Zellen ist die Fähigkeit zur Interaktion mit anderen Zellen innerhalb eines Organismus. Diese Kommunikation wird durch eine große Anzahl von Primärsignalen ermöglicht, die die Zelloberfläche erreichen. Diese Signale stimulieren entweder Oberflächenrezeptoren, die das Signal weiterleiten oder besitzen durch ihre Membrangängigkeit einen direkten Einfluß auf intrazelluläre Prozesse wie Zellteilung, Sekretion und Mobilität, die aber auch über sekundäre Botenstoffe ausgelöst werden können, die an das Primärsignal gekoppelt sind. Einer der wichtigsten dieser sekundären Botenstoffe ist in nahezu allen Zellen das Calciumion (Ca²⁺). Es ist an der Regulierung von Schlüsselprozessen wie Genexpression, Sekretion, Kontraktion und zellulären Stoffwechselprozessen beteiligt. Eukarvotische Zellen können die cytosolische Ca^{2+} -Konzentration ([Ca^{2+}]) über zwei Wege erhöhen: erstens durch Freisetzung von in intrazellulären Speichern kompartimentiertem Ca²⁺ oder durch Ca²⁺-Einstrom aus dem Extrazellularraum über die Plasmamembran (Berridge, 1993). Die Ca²⁺-Freisetzung aus den Speichern ist im allgemeinen transient und nach einigen Sekunden vollständig deaktiviert. Da aber viele Prozesse einen anhaltend erhöhten cytosolischen Ca²⁺-Spiegel benötigen (z.B. für Hormonsekretion, Kontraktion oder Gentranskription), ist der längerfristige Ca²⁺-Einstrom entscheidend.

1.1 Calciumionenfreisetzung aus intrazellulären Speichern

Sowohl G-Protein-gekoppelte als auch Tyrosinkinsase-gekoppelte Rezeptoren werden durch Signale (wie Hormone, Wachstumsfaktoren, Neurotransmitter und Neuropeptide) externe aktiviert. Diese Aktivierung resultiert in der Generierung von Inositol-1,4,5-trisphosphat (IP₃), einem Schlüsselmolekül für die Ca²⁺-Freisetzung aus intrazellulären Speichern (Berridge, 1993). Die G-Protein-gekoppelten Rezeptoren (wie z.B. der muskarinische Acetylcholinrezeptor in HEK293-Zellen (Nakai et al., 1988)) sind sieben-Transmembrandomänen-Rezeptoren, die eine ligandeninduzierte Konformationsänderung erhalten, wodurch Phospholipase C- β (PLC- β) aktiviert wird (über GTP-bindende G-Proteine). PLC-B hydrolysiert das membranständige Phosphatidyl-4,5-bisphosphat (PIP₂) und generiert so Inositol-1,4,5-trisphosphat (IP₃) und Diacylglycerin (DAG). Tyrosinkinasen-gekoppelte Rezeptoren (wie z.B. die B-Zellrezeptoren, BCR) werden durch Liganden guervernetzt, wodurch die Kinasen sich gegenseitig an spezifischen Tyrosinen Diese Phosphotyrosinreste phosphorylieren können. sind Bindungsdomänen für die Phospholipase C-y (PLC-y). Somit wird die primär cytosolischlokalisierte PLC- γ an die Plasmamembran translokalisiert und spaltet PIP₂ in DAG und IP₃. IP₃

1

bindet an IP_3 -Rezeptoren, woraufhin diese Ca^{2+} aus den internen Speichern, wie dem Endoplasmatischen Retikulum (ER), freisetzen (Abb. 1.1).

Abb. 1.1Schematische Darstellung der Generierung des Ca²⁺-Signals durch Tyrosinkinsasen- und G-
Protein-gekoppelte Rezeptoren am Beispiel des B-Zell- (A) und des muskarinischen
Acetylcholin-Rezeptors (B)

Agonisten (AG) binden an die Plasmamembranrezeptoren, wodurch entweder über Tyrosinkinasen oder G-Proteine PLC- β oder - γ aktiviert wird. Diese spalten membranständiges PIP₂ in DAG und das lösliche intrazelluläre IP₃. IP₃ aktiviert IP₃-Rezeptoren und Ca²⁺ wird aus intrazellulären Speichern in das Cytosol freigesetzt. Die Öffnungsmechanismen und die Art der Plasmamembran-Ca²⁺-Kanäle sind bisher noch zum größten Teil unbekannt.

Wenn Agonisten das Ca^{2+} -Signal durch Generierung von IP₃ aktivieren, führt dies typischerweise zu einem biphasischen Anstieg der intrazellulären cytosolsichen [Ca²⁺]. Das initiale Signal resultiert direkt aus der Bindung von IP₃ an ligandenaktivierte Ca²⁺-Kanäle in den intrazellulären Ca²⁺-Speicherorganellen (Berridge, 1993). Die Freisetzung dieses intrazellulären Ca²⁺ ist nur transienter Natur und gewöhnlich folgt ein länger anhaltender Anstieg der intrazellulären Konzentration durch Ca²⁺-Einstrom über die Plasmamembran (Putney et al., 1981).

1.2 Calciumionenkanäle

In erregbaren Zellen wie Neuronen, Muskel- oder endokrinen Zellen, erfolgt der Ca²⁺-Einstrom meist über spannungsregulierte Ca^{2+} -Kanäle (VOCCs). Diese Ca^{2+} -spezifischen Kanäle werden während kurzzeitig des Aktionspotentials aktiviert generieren dadurch und einen Ca^{2+} -Strom. einwärtsgerichteten Auf der Grundlage von Einzelkanalströmen, Spannungsabhängigkeit, pharmakologischem Profil und Molekularbiologie wurden verschiedene Klassen dieser Ca²⁺-Kanäle charakterisiert, die als L-, T-, N-, P- und O-Typen bezeichnet werden (Tsien et al. 1995).

In nicht erregbaren Zellen, wie z.B. denen des Immunsystems, Endothel- oder Epithelzellen, werden spannungsregulierte Kanäle nicht exprimiert. Der Ca²⁺-Einstrom in diesen Zellen wird nicht durch die ligandkontrollierten spezifischen Kationenkanäle (LGCCs) oder die rezeptoraktivierten Ca2+-Kanäle (RACCs) kontrolliert.¹ Die physiologische Funktion dieser drei Kanaltypen ist die Versorgung mit extrazellulärem Ca^{2+} zur Erhöhung der $[Ca^{2+}]$ in bestimmten Regionen des cytoplasmatischen Raumes und zur Wiederauffüllung der intrazellulären Speicher im Sarkoplasmatischen und Endoplasmatischen Retikulum (Putney und Bird, 1993; Fasolato et al., 1994; Berridge 1995; Catterall, 1995; Clapham, 1995-a; Dunlap et al., 1995; Berridge 1997). Von diesen Plasmamembran-Ca²⁺-Kanälen sind die RACCs die am wenigsten verstandenen, was unter anderem an der großen Zahl an RACC-Subtypen liegt. Ein bestimmter Zelltyp besitzt wahrscheinlich mehrere RACC-Typen, die wohl unterschiedliche physiologische Funktionen elektrophysiologische verschiedene Eigenschaften, haben sowie Strukturen und Aktivierungsmechanismen (Fasolato et al., 1994; Parekh und Penner, 1997).

RACC ist definiert als ein Plasmamembran-Ca²⁺-Kanal, der nach Bindung eines Agonisten an seinen Rezeptor geöffnet wird, wobei das Rezeptorprotein vom Kanalprotein getrennt ist und für dessen Öffnungsmechanismus keine Depolarisierung der Plasmamembran benötigt wird (Putney und Bird, 1993; Fasolato et al., 1994; Berridge 1995; Clapham, 1995-a; Parekh und Penner, 1997). Die große Anzahl an RACC-Subtypen kann auf der Basis ihrer Kationenselektivität, des Öffnungsmechanismus und der physiologischen Funktion unterschieden werden. Die Selektivität der Ca²⁺-Kanäle variiert von hoch selektiv für Ca²⁺, bezeichnet als Ca²⁺-Kanäle, bis gering selektiv, als nicht selektive Kationenkanäle bezeichnet, wobei letztere hauptsächlich für Na⁺ permeabel sind (Fasolato et al., 1994; Berridge 1995; Parekh und Penner, 1997).

Die zur Zeit am meisten untersuchte Subgruppe der RACCs ist die Gruppe der speicherregulierten Ca²⁺-Kanäle (SOCs oder auch kapazitative Ca²⁺-Einstromkanäle (CCE für

¹ Unterteilung nach Barrit (1999): Die Einteilung in die beiden Klassen von nicht spannungsabhängigen Ca^{2+} -Kanälen in LGCCs und RACCs ist nicht allgemein verbreitet. Andere Unterteilung siehe z.B. Fasolato et al. (1994).

capacitative calcium entry)) (Lewis und Cahalan, 1989; Hoth und Penner, 1992; Putney und Bird, 1993; Berridge 1995; Clapham, 1995-a; Birnbaumer et al., 1996; Friel, 1996; Lepple-Wienhues und Cahalan, 1997; Montell, 1997; Parekh und Penner, 1997). Diese sind definiert als Kanäle, die nach einem Abfall der Ca²⁺-Konzentration im Lumen des ER geöffnet werden (Casteels und Droogmans, 1981; Putney, Jr., J. W., 1986; Putney und Bird, 1993).

1.2.1 Speicherregulierte Calciumionenkanäle (SOCs) und kapazitativer Calciumioneneinstrom (CCE)²

In einer Vielzahl von nicht erregbaren Zellen existieren Rezeptoren, deren Stimulation durch verschiedene Liganden zu einer IP₃-induzierten Ca^{2+} -Freisetzung aus den intrazellulären Speichern führt. Dieses Entleeren der Speicher bewirkt daraufhin einen zusätzlichen Ca^{2+} -Einstrom über die Plasmamembran in das Cytosol der Zelle. Die hierfür verantwortlichen Kanäle werden als speicherregulierte Ca^{2+} -Kanäle (SOCs) bezeichnet (Casteels und Droogmans, 1981; Putney, 1986).

Dieses Modell des speicherregulierten Ca²⁺-Einstroms beruht auf den Beobachtungen, daß die durch Bindung eines extrazellulären Liganden an einen Rezeptor ausgelöste Freisetzung von Ca²⁺ aus Ca²⁺-Speicherorganellen zu einem Ca²⁺-Einstrom in die Zelle aus dem umgebenden Medium führt (Putney, 1986). Hierbei wurden die Zellen zunächst in Abwesenheit von extrazellulärem Ca²⁺ mit verschiedenen Liganden stimuliert, die durch Bindung an einen Rezeptor in der Plasmamembran den Austritt von Ca²⁺ aus dem ER bewirken. Durch Zusatz des Ca²⁺-Chelators EGTA im extrazellulären Medium wurde das durch Ca²⁺-Pumpen und -Austauscher aus dem Cytosol in den Extrazellularraum gelangende Ca²⁺ aus den Zellen entfernt. Die anschließende Zugabe von Ca^{2+} in das die Zellen umgebende Medium bewirkte in Gegenwart eines rezeptorinaktivierenden Antagonisten einen rapiden Einstrom von Ca^{2+} in das Zellinnere und das ER der Zelle. Eine erhöhte cytosolische $[Ca^{2+}]$ der Zelle konnte Putney, der die $[Ca^{2+}]$ über den Efflux von ⁸⁶Rb⁺ durch Ca²⁺-abhängige K⁺-Kanäle in der Plasmamembran gemessen hat, erst nach erneuter Zugabe von rezeptoraktivierenden Liganden feststellen. Hieraus wurde geschlossen, daß die Aktivierung der Ca²⁺-Kanäle in der Plasmamembran durch den Ca²⁺-Gehalt des Speichers reguliert wird und (fälschlicherweise) daß der durch den Rezeptor ausgelöste Ca²⁺-Einstrom direkt aus dem umgebenden Medium in die internen Speicher gelangt. Zwei weitere Beobachtungen bestätigten das Phänomen der speicherregulierten Ca²⁺-Kanäle. die Zunächst Entdeckung des SERCA-Inhibitors Thapsigargin, einem pflanzlichen Sesquiterpenlacton, das durch Hemmung der Ca²⁺-ATPasen des ERs zu dessen passiver

 $^{^{2}}$ Da die Bezeichnung des kapazitativen Ca²⁺-Einstroms den Mechanismus nicht exakt beschreibt, gibt es Vorschläge ganz auf diesen Namen zu verzichten und auf speicherreguliert zurückzugreifen (Clapham, 1995-b).

Entleerung führt (Thastrup et al., 1989; Thastrup et al., 1990). Dies erlaubt Untersuchungen der Kanäle in Abwesenheit eines rezeptoraktivierenden Liganden. Es zeigte sich, daß ein Ca²⁺-Einstrom auch unabhängig von rezeptoraktivierenden Liganden nach Entleerung des ERs durch Thapsigargin in Anwesenheit extrazellulärer Ca²⁺-Chelatoren erfolgen kann. Zweitens wurde beobachtet, daß in vielen nicht erregbaren Zellen nach Entleerung der intrazellulären Speicher ein Mn^{2+} -Einstrom über die Plasmamembran induziert wird (Merrit et al., 1989).

Die Entwicklung neuer Fluoreszenzfarbstoffe wie Fura-2 (Grynkiewicz et al., 1985), mit Hilfe derer die cytosolische $[Ca^{2+}]$ direkt bestimmt werden kann (Tsien et al., 1985; Poenie et al., 1985; Lückhoff und Busse, 1990), zeigt bei Thapsigargin oder IP₃-induzierter SOC-Aktivität, daß das durch die SOCs aufgenommene extrazelluläre Ca²⁺ zuerst in das Cytosol in der Zelle eintritt, um anschließend von dort aus in die intrazellulären Speicher zu gelangen.

1.2.2 "Ca²⁺-release-activated" Calciumionenkanäle (CRACs)

Die Verwendung von elektropyhsiologischen "Patch-Clamp"-Messungen führte zu einem weiteren Verständnis der SOC-Eigenschaften. Der Ca²⁺-Einstrom in eine Zelle wird bei dieser Methode als Stromfluß über die Zellmembran gemessen. Diese Technik erlaubte die von in Lymphozyten und Mastzellen exprimierten Plasmamembran-Ca²⁺-Identifizierung Kanälen, die z.B. durch Thapsigargin oder IP₃ ausgelöst, einen Einstrom vermitteln. Diese Kanäle werden als "Ca²⁺-release-activated" Ca²⁺-Kanäle (CRACs) bezeichnet und der durch sie vermittelte Strom als I_{CRAC}. Die CRACs zeichnen sich durch sehr geringe Leitfähigkeit aus, die pro Kanal auf unter 1pS geschätzt wird. Sie besitzen eine hohe Spezifität für Ca2+ (Ca2+ > Ba2+ >> Mn²⁺, geringe Na⁺-Leitfähigkeit) und das damit verbundene stark positive reverse Potential. zeigen eine charakteristische Strom-Spannungs-Kurve und sind unabhängig Sie vom Membranpotential. Zusätzlich weisen die CRACs eine positive Feedback-Schleife bezüglich der cytosolischen [Ca²⁺] auf und werden durch verschiedene zwei- und dreiwertige Kationen, wie z.B. Zn^{2+} , Mn^{2+} oder La^{3+} und Gd^{3+} blockiert (Lewis und Cahalan, 1989; Hoth und Penner, 1992; Zweifach und Lewis, 1993; Fasolato et al., 1994; Petersen und Berridge, 1994; Zweifach und Lewis, 1995; Lepple-Wienhues und Cahalan, 1996; Lepple-Wienheus und Cahalan, 1997; Parekh und Penner, 1997). Die zur Zeit am besten charakterisierten SOCs, die je nach Typ unterschiedliche Ca²⁺-Selektivitäten aufweisen, sind die CRACs.

1.2.3 Aktivierungsmechanismen für SOCs

Die Entleerung intrazellulärer Ca^{2+} -Speicher scheint für die Aktivierung des Einstroms verantwortlich zu sein, doch ist der genaue Speicher und die exakte quantitative Beziehung zwischen Füllstand und Aktivierung noch unbekannt. Neben den IP₃-sensitiven Speichern

existieren noch ryanodinsensitive und Sphingosin-1-phosphat-sensitive Speicher (Mattie et al., 1994; Spiegel et al., 1996).

Die Aktivierung von I_{CRAC} wird durch die IP₃-sensitiven Speicher gesteuert, da nach maximaler Entleerung dieser Speicher, durch z.B. Ionomycin oder durch Dialyse mit einer hoch konzentrierten EGTA-Lösung, der gleiche Strom gemessen wird, wie nach Entleerung aller intrazellulären Ca²⁺-Speicher (Hoth und Penner, 1993; Parekh und Penner, 1996).

Für die Verbindung zwischen dem Ca^{2+} -Gehalt der IP₃-sensitiven Speicher und den SOC-Kanälen sind zwei Komponenten notwendig, erstens ein Ca^{2+} -Sensor im Speicher und zweitens das Aktivierungssignal. Als Sensor wurden bisher zwei Kandidaten vorgeschlagen. In dem nicht bestätigten Modell von Irvine (1990) übernimmt der IP₃-Rezeptor selbst die Funktion des Sensors in den Speichern. In anderen Hypothesen spielen Ca^{2+} -bindende Proteine wie Calmodulin (Alvarez et al., 1991) oder Calretikulin (Mery et al., 1996) die entscheidende Rolle.

1.2.3.1 Signaltransduktion

Trotz intensiver Forschung ist die Art des Aktivierungssignals bisher unbekannt. Die aktuellen Modelle lassen sich in zwei Hauptkategorien einteilen: indirekte und direkte Kopplung (**Tab. 1.1**). Die indirekte Kopplung beinhaltet einen intermediären Signaltransduktionsweg, der einerseits ein Signalmolekül aufweisen kann, das als aktivierender Ligand für die Kanäle wirkt oder biochemische Prozesse steuert, oder andererseits die Insertion von Kanalproteinen in die Plasmamembran bewirkt. In dem Modell des direkten Kopplungsmechanismus wird eine direkte Interaktion zwischen Proteinen in der Plasma- und der Organellenmembran angenommen.

Tab. 1.1Postulierte Mechanismen für den speicherregulierten Ca2+-Einstrom

Es werden die direkte und die indirekte Kopplung postuliert. Bei der indirekten Kopplung existieren intermediäre Signalmoleküle oder verschiedene Enzyme. Für die direkte Kopplung wird eine direkte Interaktion des Kanals in der Plasmamembran mit Proteinen der Organellen angenommen (reviewed in Parekh und Penner, 1997).

direkte	indirekte Kopplung		
Kopplung	Signalmolekül	Kinase/Phosphatase	andere
IP ₃ -R und IP ₄ -R	cGMP	CaM Kinase II	Fusion
IP ₃ -R 3	CIF	Tyrosinkinase	G-Protein
	IP ₄	Proteinphosphatase	Cytochrom P-450

• mobile intrazelluläre Botenstoffe:

Es existieren Hinweise auf verschiedene RACCs, die unter Beteilgung von cAMP (Finn et al., 1996; Lenz und Kleineke 1997), cGMP (Finn et al., 1996), IP₃ und IP₄ (Irvine und Moor, 1986; Kuno und Gardner, 1987; Mozhayeva et al., 1990; Vaca und Kunz, 1995; Khan et al., 1996; Restrepo et al., 1996; Kiselyov et al., 1997) und Arachidonsäure (Peppelenbosch et al., 1992; Shuttleworth, 1996; Munaron et al., 1997; Shuttleworth und Thompson, 1998) aktiviert werden.

• trimere G-Proteine

Möglicherweise existieren RACCs, deren Aktivierung über rezeptorassoziierte G-Proteine vermittelt wird, indem deren α - oder $\beta\gamma$ -Untereinheiten nach der Bindung eines Liganden an den Rezeptor von diesem abdissoziieren und direkt mit einem Kanal in Wechselwirkung treten. Patch-Clamp-Messungen haben gezeigt, daß durch GTP- γ [S], einem Aktivator heterotrimerer G-Proteine, nicht selektive Kationenkanäle aktiviert werden können, wobei jedoch die Beteilgung eines mobilen Botenstoffes nicht ausgeschlossen werden kann (von zur Mühlen et al., 1991; Krautwurst et al, 1992; Berven et al., 1994; Fasolato et al., 1994; Iwasawa et al., 1997; Macrez-Leprêtre et al, 1997; Parekh und Penner, 1997). Auch die Aktivierung von Kanälen durch Stimulation eines muskarinischen Rezeptors mittels Carbachol führt über einen G-Protein-gekoppelten Signalweg zur Öffnung von Ca²⁺-Kanälen (Singer-Lahat et al., 1996; Singer-Lahat et al., 1997).

• *intrazelluläres* Ca²⁺:

In einigen Zelltypen (z.B. humane Neutrophile oder Lebertumor-Zellen) wurden Hinweise auf Ca²⁺-aktivierte nicht selektive Kationenkanäle gefunden (von Tscharner et al, 1986; Loirand et al., 1991; Sieman, 1993; Braun und Schulman, 1995; Congar et al., 1997; Leech und Habener, 1997; Lidofsky et al., 1997).

• "Calcium Influx Factor" (CIF)

Randriamampita und Tsien berichteten erstmals 1993 von der Isolierung einer niedrigmolekularen Komponente aus Jurkat T-Lymphocyten, die in verschiedenen nicht erregbaren Zellen einen Ca^{2+} -Einstrom induzieren kann. Die Gruppe um Putney fand jedoch heraus, daß der erzielte Ca^{2+} -Einstrom unabhängig vom IP₃-Signalweg verläuft (Bird et al., 1995; Gilon et al., 1995).

• Cytochrom P-450

Der Einfluß von Cytochrome P-450 auf den speicherregulierten Ca²⁺-Einstrom wurde mittels Inhibitorstudien untersucht (Alvarez et al., 1991; Graier et al., 1995).

• Vesikel-Fusion

Somasundaram et al. (1995) schlugen vor, daß CRACs in Vesikeln gelagert sind und nach Entleerung der Speicher in die Plasmamembran insertiert werden. Diese Theorie beruht auf der Beobachtung, daß nach Inhibierung des Vesikeltransports mittels Primaquine ein reduzierter I_{CRAC} gemessen wurde.

• Tyrosinkinase

Vostal et al. (1991) berichteten zum ersten mal von der spezifischen Aktivierung einer Tyrosinkinase nach Ca^{2+} -Freisetzung, die ein 130 kDa Protein phosphoryliert. Inhibitorstudien ergaben eine Reduktion des Ca^{2+} -Einstroms nach Speicherentleerung, die selbst jedoch nicht beeinflußt wurde (Sargeant et al., 1993-a und -b).

• Ca²⁺/Calmodulin-abhängige Kinase

Braun und Schulman (1995) fanden heraus, daß ein Ca^{2+} -aktivierter Ca^{2+} -permeabler Kanal durch die Ca^{2+} /Calmodulin-Kinase reguliert wird.

• direkte Kopplung

Basierend auf der Analogie mit VOCCs postulierte Irvine (1990) eine direkte Kopplung des IP₃-Rezeptors im ER mit dem IP₄-Rezeptorkanal in der Plasmamembran für den Mechanismus des speicherregulierten Ca²⁺-Einstroms. Berridge (1995) modifizierte die Hypothese dahingehend, daß der IP₃-Rezeptor auch mit SOCs direkt interagieren könnte.

1.3 Kandidaten für speicherregulierte Calciumionenkanäle

Auf der Basis der offenbar großen Vielfalt an Phänotypen für die speicherregulierten Ca^{2+} -Kanäle ist es wahrscheinlich, daß verschiedene Kanaltypen existieren, die in diesen Signalweg involviert sind. In einigen Zellen verhalten sich die Kanäle ähnlich den IP₃-Rezeptoren (Putney, 1997) und die Expression des Typ 3 Rezeptors führt zu einem erhöhten Ca^{2+} -Einstrom über die Plasmamembran, ohne die Freisetzung aus den Speichern zu beeinflussen (DeLisle et al., 1996). IP₃-Rezeptoren Typ 3 könnten demzufolge die Funktion des kapazitativen Ca^{2+} -Einstromkanals übernehmen.

Das meiste Interesse in den letzten sieben Jahren fokussierte sich jedoch auf eine neue Proteinfamilie, den TRP-Proteinen (für *T*ransient *R*eceptor *P*otential).

1.3.1 Die TRP-Proteinfamilie

dtrp ist eine *Drosophila* Photorezeptor Mutante, die unfähig ist, ein anhaltendes Photorezeptorpotential als Reaktion auf eine Photostimulation aufrechtzuerhalten (Cosens und Manning, 1969). Da die Insekten-Photorezeptorzellen einen PLC-Signalweg verwenden, schlugen Hardie und Minke 1993 die Beteiligung der TRP-Proteine als Komponente für den Ca²⁺-Einstromkanal vor. Nachdem die Sequenz von dTRP bestimmt war (Montell und Rubin, 1989), wurden Homologien zu den Sequenzen von spannungsabhängigen Ca²⁺-Kanälen deutlich (Phillips et al, 1992). Seit den ersten Publikationen über Säuger-TRP-Homologe sind bisher 9 Isoformen (1-8 und 12) kloniert worden.

1.3.1.1 Die Kanaleigenschaften der TRP-Proteine

Das TRP-Proteine als kapazitative Ca²⁺-Kanäle agieren könnten, wurde erstmals von der Arbeitsgruppe Schilling untersucht (Hu et al., 1994; Vaca et al., 1994). Die Expression von dTRP aber nicht dem Homologen dTRP-like (dTRPL) führte zu einem erhöhten Einwärtsstrom nach Speicherentleerung, der ähnliche Eigenschaften wie der Strom aufweist, der über den PLC-Weg aktiviert wird. Chimäre Expression von dTRP und dTRPL ließen den intrazellulären Ca²⁺-Sensor von dTRP auf den C-Terminus lokalisieren (Sinkins et al., 1996) und die Co-Expression beider Proteine führt zur Bildung eines Kanals mit höherem Strom und größerer Sensitivität gegenüber der Ca²⁺-Speicherentleerung im Vergleich zur Expression der einzelnen TRP-Isoformen (Gillo et al., 1996; Xu et al., 1997). Die ersten Säuger-TRP-Gene wurden gleichzeitig in zwei verschiedenen Laboratorien kloniert und publiziert, woduch zwei verschiedene Nomenklaturen eingeführt wurden³ (Zhu et al., 1995; Wes et al., 1995). Es wurden hTRP1 sowie partielle Sequenzen von hTRP2 und hTRP3 publiziert, wobei hTRP2 ein Pseudogen zu sein scheint. Die Klonierung der vollständigen hTRP3-cDNA-Sequenz und dessen Expression (sowie die von hTRP1) und die Klonierung weiterer partieller Sequenzen von mTRP4, 5 und 6 wurden 1996 von Zhu et al. veröffentlicht. Die Expression der beiden hTRP-Isoformen in COS-M6-Zellen führte im Fall von hTRP1 zu einem moderaten Anstieg des Ca²⁺-Einstroms nach Stimulation mit Carbachol (Co-Expression des muskarinischen Acetylcholinrezeptors M5), wohingegen hTRP3 einen starken Anstieg herbeiführte. Auch die Speicherentleerung mittels Thapsigargin führte bei hTRP3 zu einem größerem Ca2+-Einstrom als in Kontrollzellen. Diese Ergebnisse stellen die ersten Beweise für eine biologische Funktion von Säuger-trp-Proteinen als Ca^{2+} -Kanäle dar. Die stabile Expression von sechs anti-*mtrp* Sequenzen in Ltk⁻-Zellen führte nach Stimulation des IP₃-Signalweges zu einer vollständigen Inhibierung des kapazitativen Ca²⁺-Einstroms (Zhu et al., 1996) und die Expression partieller anti-sense-htrp1 und 3-cDNAs in HEK293-Zellen resultiert ebenfalls in einer Reduktion des thapsigargininduzierten Ca²⁺-Einstroms (Wu et al., 2000), woraus in beiden Fällen die Beteiligung von TRP-Homologen am CCE geschlossen wurde und umgekehrt CCE wohl vollständig auf einem oder mehreren TRP-Proteinen beruht.

³ Im Rahmen dieser Arbeit wird xTRPn verwendet, wobei x für die Spezies und n für die Isoform steht.

Die ersten elektrophysiologischen Messungen einer Splice-Variante von hTRP1 (hTRP1A) an CHO- und Sf9-Zellen und *Xenopus* Oocyten nach Speicherentleerung durch IP₃ oder Thapsigargin ergaben eine ähnlich gute Permeabilität für Na⁺ und Ca²⁺, sowie eine Inhibierung des Stromes durch Gd³⁺, doch scheint der Strom keinem der früher beobachteten CCEs ähnlich zu sein (Zitt et al., 1996). In Sf9-Zellen wurde ein konstitutiv aktiver und nicht selektiver Kationenstrom beobachtet, der nicht durch Ca²⁺-Speicherentleerung erhöht wurde (Sinkins et al., 1998). Die Injektion von antisense RNA für TRP1 in *Xenopus* Oocyten führte zu einem partiell erniedrigten Ca²⁺-Einstrom nach Thapsigarginbehandlung (Tomita et al., 1998).

Von mTRP2 sind bisher vier Isoformen bekannt: mTRP2A und B führen zu einer Erhöhung des CCEs nach Agonistenstimulation und nach Speicherentleerung in COS-M6-Zellen (Vannier et al., 1999). Die beiden um knapp 190 bzw. 290 AS kürzeren mTRP2-Isoformen α und β , die mit rTRP2 fast identisch sind, konnten nicht in der Plasmamembran verschiedenener Zellinien lokalisiert werden und führten demzufolge auch nicht zu einer Erhöhung des CCEs (Hofmann et al., 2000).

TRP3 scheint ein konstitutiv aktiver und nicht selektiver Kationenkanal zu sein und ist sowohl durch Speicherentleerung mittels Thapsigargin als auch über den PLC-Signalweg stimulierbar. Durch Aktivierung über den PLC-Signalweg wird ein höherer Einstrom und nach Speicherentleerung ein zusätzlicher Kationeneinstrom gemessen (Birnbaumer et al., 1996; Zitt et al., 1997; Hurst et al., 1998; Zhu et al., 1998).

Die transiente Expression von bTRP4 in HEK293-Zellen führte nach Stimulation mit GTP γ -[S], IP₃ oder Thapsigargin zu einem hohen einwärts gerichteten Ca²⁺-Strom in der Größenordnung von 15 bis 118 pA/pF (Philipp et al., 1996). Die Kanaleigenschaften von bTRP4 ähneln dem I_{CRAC} damit in folgenden Punkten: (1) hohe Selektivität für zweiwertige gegenüber einwertigen Kationen (P_{Ca2+}:P_{Na+} 7:1), (2) keine detektierbaren Einzelkanäle und (3) erhöhte cytoplasmatische [Ca²⁺] inhibiert den Strom. Ein Hauptunterschied ist, daß bTRP4 gut für Ba²⁺ permeabel ist.

Die transienten Expressionen von TRP5 in HEK293-Zellen führten zu komplett verschiedenen Ergebnissen. Okada et al. (1998) fanden für mTRP5 eine Erhöhung des Stromes nach ATP-Stimulation aber nicht nach Thapsigarginbehandlung. Dies bedeutet, daß der Einstrom nicht kapazitativ bzw. speicherreguliert ist. Im Gegensatz dazu erhielten Philipp et al. (1998), die die Ratten-Isoform rTRP5 (97,5 % identisch zu dem Maus-Protein) ebenfalls in HEK293-Zellen exprimierten, einen starken Anstieg des Ca²⁺-Einstroms nach Thapsigarginbehandlung, einen Ca²⁺-selektiven einwärts gerichteten Strom, der dem von bTRP4 entspricht, bei einer Homologie auf Proteinebene von 70 % (Philipp et al., 1996).

MTRP6 besitzt eine 74proz. Aminosäuresequenzhomologie zu TRP3 (40% zu anderen TRP-Homologen), zeigt jedoch im Gegensatz zu diesem keinen speicherregulierten Ca^{2+} -Einstrom (Thapsigargin) dafür aber einen erhöhten Einstrom nach Oberflächenrezeptorstimulation (M5-Rezeptor). Elektrophysiologische Messungen an stabil transfizierten HEK293-Zellen ergaben einen agonistenaktivierten und nicht selektiven Kationenstrom, der durch einen ausreichenden Ca^{2+} -Einstrom für eine erhöhtes cytosolisches Signal begleitet wird (Zhu et al., 1996; Boulay et al., 1997).

MTRP7, das mit 81 % die bisher größte Homologie zu TRP3 aufweist, ist einerseits durch ATP-Rezeptorstimulation nach Thapsigarginbehandlung von HEK293-Zellen aktivierbar. Daraus ergibt sich eine Unabhängigkeit von der Speicherentleerung. Andererseits ist mTRP7, wie auch TRP3 und TRP6, durch DAG-Derivate aktivierbar, was für eine Aktivierung durch G-Proteingekoppelte Rezeptoren spricht (Okada et al., 1999).

MTRP12, benannt nach dem Genlokus im humanen Genom, ist, exprimiert in HEK293- und Ca²⁺-Kanal aktiver ein konstitutiv und wird nicht CHO-Zellen, durch den Signaltransduktionsweg nach Rezeptoraktivierung oder Speicherentleerung nach Thapsigarginbehandlung beeinflußt (Wissenbach et al., 2000).

Zusammenfassend läßt sich sagen, daß unterschiedlich verwendete Expressionssysteme zu zum Teil gegensätzlichen Ergebnissen bezüglich der physiologischen Eigenschaften führen. Es gibt bisher nur drei Beispiele für Expressionsstudien, bei denen das exprimierte TRP den kapazitativen Ca²⁺-Einstrom erhöhte, auch wenn nicht alle elektrophysiologischen Eigenschaften denen des CCE gleichen. Diese sind: TRP1 (Zitt et al., 1996), TRP4 (Philipp et al., 1996) und TRP5 (Philipp et al., 1998). Antisense Experimente von trp1, 2, 4 und 6 in Ltk⁻-Zellen (Zhu et al., 1996), von trp1 und trp4 in Säuger-L-Zellen und in *Xenopus* Oocyten (Birnbaumer et al., 1996) und von trp1 und trp3 in HEK293-Zellen (Wu et al., 2000) führen zu einer Erniedrigung oder zum vollständigen Erliegen des CCE.

1.3.1.2 Domänenstruktur der TRP-Proteine

Die *trp*-Gene codieren für eine Proteinfamilie. deren Isoformen sechs aus Transmembransegmenten bestehen (TM 1-6) mit einer potentiellen Porenregion zwischen dem fünften und sechsten Segment. Neben diesen homologen Regionen gibt es im N-terminalen cytosolischen Bereich eine Domäne mit drei Ankyrin-ähnlichen Wiederholungen, die ebenfalls über alle bisher bekannten TRP-Isoformen konserviert ist. Im C-terminalen cytosolischen Bereich ist die Homologie unter den einzelnen Vertretern der TRP-Familie nur sehr gering (Abb. **1.2**) (Wes et al., 1995; Minke und Selinger, 1996). Neun verschiedene Säuger-TRP-Homologe, TRP1-7 (Wes et al., 1995; Zhu et al., 1995; Philipp et al., 1996; Zitt et al., 1996; Zhu et al., 1996;

Boulay et al., 1997; Philipp et al., 1998; Okada et al., 1998; Wissenbach et al., 1998, Okada et al., 1999; Vannier et al., 1999; Hofmann et al., 2000) sowie TRP8 (noch nicht näher charakterisiert) und TRP12 (Wissenbach et al., 2000), sind bisher identifiziert worden, die eine Homologie zu *Drosophila* TRP und TRPL aufweisen und von denen angenommen wird, daß sie einen Einfluß auf den Ca²⁺-Einstrom haben. Verschiedene andere cDNA-Klone mit geringerer Homologie zu dTRP und dTRPL sind gefunden worden. Dazu gehören unter anderem zwei Vanilloid-Rezeptoren (Caterina et al., 1997; Caterina et al., 1999). Durch Sequenzierung des humanen Chromosoms 21q22.3 ist eine weitere homologe Sequenz gefunden worden, die als TRPC7 bezeichnet wurde (Nagamine et al., 1998), sich jedoch von dem oben erwähnten mTRP7 stark unterscheidet.

Strukturhomologien der einzelnen TRP-Vertreter führen zu dem in Abb. 1.3 gezeigten Phylogenetischen Stammbaum (Liman et al., 1999). Auf der Grundlage der AS-Homologie scheint es zur Zeit drei Klassen von TRP-Proteinen zu geben: TRP1, TRP3/6/7 und TRP4/5, wobei TRP1 eine höhere Identität (50 %) zu TRP4/5 aufweist als zu den anderen Isoformen. Dies ist in dem schon oben erwähnten Zusammenhang interessant, als daß nur TRP1, 4 und 5 einen möglichen Einfluß auf den CCE besitzen.⁴ TRP12 wurde bisher noch keiner dieser Gruppen zugeordnet.

⁴ Eine neue Einteilung der TRP-Kanäle auf der Basis der Homologie und der Kanalfunktionen schlugen Harteneck et al. (2000) vor: kurze (S), lange (L) und Osm-9-ähnliche (O), auf die hier jedoch nicht näher eingegangen werden soll.

Alle Proteine bestehen aus sechs Transmembransegmenten (TM) und einer potentiellen Porenregion (pp; pink) zwischen der 5. und 6. TM. Sie enthalten in der N-terminalen cytoplasmatischen Region drei Ankyrin-ähnliche Wiederholungen (ank). In der C-terminalen cytoplasmatischen Region enthält dTRP eine Calmodulin-Bindungsstelle (CaM), eine neunfache Wiederholung einer Konsensussequenz (8x9) sowie eine PEST-Sequenz (ein Proteindegradierungssignal für die Ca2+abhängige Protease Calpin (Rogers et al., 1986)) und eine prolinreiche Region (27fache Wiederholung des Dipeptids KP) und eine PSchleifensequenz, die für die Interation mit INAD verantwortlich ist (Shieh und Zhu, 1996). DTRPL enthält hingegen nur zwei CaM-Bindungsstellen. TRP1 enthält zwei Coiled-Coil Domänen (cc), eine davon in der C-terminalen Dystrophin-ähnlichen Domäne (dys). Eine über fast alle TRP-Proteine hochkonservierte Sequenz ist EWKFAR im cytosolischen C-Terminus.

Für mTRP1 existieren vier Splicevarianten (Sakura und Ashcroft, 1997). Für die Domänenstruktur der β -Form ergeben sich für das 776 AS-Protein folgende Merkmale: drei

Ankyrin-ähnliche Wiederholungen (AS 61-170), eine Coiled-Coil Region (AS 220-265), die Transmembransegmente (AS 331-627) mit potentiellen Porenschleife der sowie eine Dystrophin-ähnliche Domäne (AS 683-776), die eine zweite Coiled-Coil Region enthält (AS 724-760) (Abb. **1.2**). Die weiteren Vertreter der Säuger-TRP-Proteine sind homolog aufgebaut.

Aus dieser Domänenstruktur ergeben sich interessante Ansätze für potentielle Bindungspartner bezüglich der Regulation oder Verankerung. Von Cytoskelettproteinen wie Ankyrin wurde schon gezeigt, daß sie in

eingeordnet (1999). TRP12 ist bisher noch nicht in diesen Stammbaum eingeordnet worden. einer ganzen Reihe von zellulären Prozessen eine entscheidende Rolle spielen (Bourguignon et al., 1993). Von IP₃-rezeptorhaltigen Vesikeln ist bekannt, daß sie von Cytoskelettelementen wie Aktin an der Plasmamembran gehalten werden (Rossier et al., 1991). IP₃-Rezeptoren binden an Ankyrin, wodurch die Bindung von IP₃, entweder durch eine Konformationsänderung am Rezeptor oder durch überlappende Bindungsstellen, inhibiert wird (Bourguignon et al., 1993). Außerdem bindet Ankyrin an eine Reihe von plasmamembranassoziierten Proteinen und vermittelt die Verankerung mit dem Cytoskelett. Dazu gehören Anionenaustauscher (Drenckhahn et al., 1985; Schuster et al., 1986), die Na⁺/K⁺-ATPase (Nelson und Veshnock, 1987; Koob et al., 1988; Morrow et al., 1989), den Amilorid-sensitiven Na⁺-Kanal und den spannungsabhängigen Na⁺-Kanal (Smith et al., 1991) sowie CD44 (Bourguignon et al., 1993). Dystrophine sind ebenfalls bei der Verankerung von Rezeptorproteinen oder Kanälen entscheidend (Greenberg et al., 1996; Kameya et al., 1997; Howard et al., 1998) und vermitteln Bindungen zu Aktin (Ervasti et al., 1990). Für die Aktin-Bindungsstelle wurde ein das in zahlreichen Aktinsieben AS gefunden (LKXXES/T), Konsensusmotiv von Bindungsproteinen vorhanden ist (Vancompernolle et al., 1991; Vancompernolle et al., 1992; Prekeris et al., 1996). Dieses Motiv ist in mTRP1 jedoch nicht vertreten. Für verschiedene spannungsabhängige Kanäle (Na⁺, Ca²⁺) wurde schon eine Cytoskelettinteraktion festgestellt, z. T. über assoziierte Proteine, bzw. wird eine solche angenommen (Schwarz et al., 1997; Shcherbatko et al., 1999; Yang et al., 1999).

Die Ca²⁺-Messungen zweier C-terminaler Deletionsmutanten von hTRP1 α (Deletion ab AS 649 bzw. ab AS 664) führten interessanterweise zu einer 1,5- bis 2-fachen Erhöhung des Ca²⁺-Einstroms nach Thapsigargin- oder Carbacholstimulation in HSG-Zellen. Daraus wurde erstens auf einen Einfluß des C-Terminus auf die Modulation des SOC-Einstroms geschlossen und zweitens, daß die EWKFAR-Sequenz nicht signifikant zu der Erhöhung des TRP1-abhängigen Einstromes beiträgt (Singh et al., 2000).

In Analogie zu den Strukturen von spannungsabhängigen Ca²⁺-Kanälen könnten vier Untereinheiten von TRP-Proteinen einen funktionellen Kanal bilden (**Abb. 1.4**).
(A) Spannungsabhängiger Ca²⁺-Kanal

Abb. 1.4 Strukturanalogie zwischen spannungsabhängigen Ca²⁺-Kanälen und TRP1

Ca²⁺-Kanäle spannungsabhängigen Die bestehen aus einer Proteinkette, die vier transmembranübergreifende Domänen aufweisen. Diese bestehen je aus sechs Transmembransegmenten mit einer Porenregion zwischen dem fünften und sechsten Segment (A). Die TRP-Isoformen, von denen hier mTRP1 gezeigt ist, weisen nur eine Transmembrandomäne von sechs Segmenten auf. Auch hier liegt die potentielle Porenregion zwischen dem fünften und sechsten Segment (Wes et al., 1995; Minke und Selinger, 1996) (B).

Dazu könnte eine bestimmte Stöchiometrie von zwei oder mehr TRP-Isoformen nötig sein. Diese heterotetra- oder eventuell -oligomeren Komplexe werden wahrscheinlich ganz andere Eigenschaften besitzen als Homooligomere, die durch die Überexpression nur einer TRP-Isoform gebildet werden, wie es schon für dTRP und dTRPL festgestellt wurde (Gillo et al., 1996; Xu et al., 1997). Auch für hTRP1 und hTRP3 wurde ein Assoziation gezeigt, wenn beide zusammen überexprimiert werden (Xu et al., 1997). Dies führt ebenfalls zu neuen Kanaleigenschaften (Lintschinger et al., 2000).

Die endogen exprimierten TRP-Isoformen wurden in den meisten Fällen nur auf mRNA-Ebene durch RT-PCR oder Nothern Blots nachgewiesen. Ein Proteinnachweis ist bisher nur in wenigen Fällen gelungen (dTRP, dTRPL und hTRP1). Die Expression von Säuger-TRP-Proteinen ist in **Tab. 1.2** für einige Zellinien und Gewebe gezeigt und zeigt die ubiquitäre Verteiung von TRP1.

Tab. 1.2 Expression von Säuger-TRP-Proteinen in verschiedenen ausgewählten Zellinien und Geweben

Verschiedene Zellinien und Gewebe wurden mittels RT-PCR oder Northern Blot auf die Expression der einzelnen Säuger-TRP-Isoformen hin untersucht. Für das Expressionsmuster einiger Zellinien und Gewebe wurden unterschiedliche Daten veröffentlicht (hier mit (+) gekennzeichnet). Für TRP8 ist bisher kein Expressionsmuster publiziert.

+ positiv, - negativ, (+) nicht eindeutig, nd not determined (nicht untersucht).

(Wes et al., 1995; Zhu et al., 1995; Garcia und Schilling, 1997; Groschner et al., 1998; Mori et al, 1998; Mizuno et al., 1999; Okada et al., 1999; Vannier et al., 1999; Wissenbach et al., 2000; McKay et al., 2000; Hofmann et al., 2000 ; sowie unveröffentlichte Daten aus diesem Arbeitskreis)

Zellinie/Gewebe	TRP1	TRP2	TRP3	TRP4	TRP5	TRP6	TRP7	TRP12
HEK293	+	-	+	+	(+)	+	nd	nd
Jurkat	+	-	(+)	-	-	-	nd	nd
RBL	+	-	-	-	+	+	nd	nd
HUVEC	+	-	+	+	nd	nd	nd	nd
IIA1.6	+	+	+	-	-	-	nd	nd
Raji	+	-	-	-	-	+	nd	nd
Daudi	(+)	-	-	-	-	+	nd	nd
Ramos	+	-	-	-	-	(+)	nd	nd
Niere	+	-	+	(+)	-	+	-	+
Hoden	+	+	+	+	+	+	+	+
Gehirn	+	+	+	+	+	+	+	(+)
Herz	+	(+)	+	+	-	+	+	(+)
Lunge	+	(+)	+	-	-	+	+	-
Milz	+	(+)	nd	nd	nd	nd	+	-

1.3.1.3 Mögliche Signalwege und Adapterproteine der TRP-Proteine

Das Drosophila TRP-Protein liegt in einem Signalkomplex vor, dessen wichtigstes Protein das INAD ("inactivation no afterpotential D") ist. INAD ist ein multivalentes PDZ Protein (ein PSD-95, DLG ZO-1 Proteininteraktionsmotiv, zuerst in und gefunden), das die Photosignaltransduktionskaskade in den Photorezeptoren organisiert. Drosophila TRP ist direkt assoziiert mit Calmodulin sowie indirekt mit PLC-B und Rhodopsin über INAD. In diesem Komplex sind ebenfalls PKC, dTRPL und G-Protein-Untereinheiten ($G\alpha_q$, β und γ) lokalisiert (Shieh und Zhu, 1996; Chevisch et al., 1997; Montell, 1997; Tsunoda et al., 1997). Die Assoziation von dTRP und dTRPL wird dabei wahrscheinlich sowohl über die N-Termini als auch über die Transmembrandomänen ermöglicht (Xu et al., 1997).

Die meisten Informationen bezüglich des Signalkomplexes sind bisher über TRP1 bekannt. 1997 wurde erstmals gezeigt, daß hTRP1 und hTRP3 nach Überexpression in HEK293-Zellen in der Lage sind miteinander zu assoziieren, wobei die Interaktionsdomänen nicht lokalisiert worden sind (Xu et al., 1997) und die Kanaleigenschaften nach Co-Expression variieren von denen der Einzel-TRP-Isoformen. Die Zellen zeigten einen konstitutiv aktiven Strom, der OAG, einem membrangängigen DAG-Derivat, sensitiv ist. Es wurden andere Kationenselektivitäten und eine hohe Sensitivität bezüglich der Inhibierung durch intrazelluläres Ca²⁺ gefunden (Lintschinger et al., 2000).

Eine Homologiebetrachtung von PKD2 ("polycystic kidney disease") und TRP führte schließlich zu *in vivo*- als auch *in vitro*-Experimenten, aus denen eine direkte Assoziation von TRP1, mit PKD2 folgte, die sowohl über den C-Terminus von TRP1 und den N-Terminus von PKD2 als auch über die Transmembrandomänen vermittelt wird (Tsiokas e al., 1999). Eine Interaktion von PKD2 mit TRP3 wurde dabei nicht gefunden. Interessanterweise zeigt mTRP2 im N-terminalen Bereich eine Homologie zu PKD1, das wiederum mit PKD2 homologe Sequenzen aufweist. Dies könnte eine Heterooligomerisierung ermöglichen (Vannier et al., 1999).

Rosado und Sage (2000) konnten erstmals die Interaktion von endogenem TRP1 mit dem IP₃-Rezeptor des Typs 2 zeigen. Die in humanen Blutplättchen durchgeführten Experimente führten interessanterweise jedoch nur nach Speicherentleerung mittels Thapsigargin oder Ionomycin, d. h. nach Zellstimulation, zu einem positiven Ergebnis. Eine Interaktion mit den Rezeptoren des Typs 1 und 3 wurde dabei nicht entdeckt.

Ein sehr interessantes Modell für den TRP1-Signalkomplex wurde aus Untersuchungen an stabil transfizierten HSG-Zellen entwickelt. In diesen Zellen scheinen TRP1 und der IP3-Rezeptor des Typs 3 einen Teil eines multimeren Signalkomplexes zu bilden, der in Lipid-Raft-Domänen (LRD). die als Assoziationsregion fiir die Ausbildung von Multi-Komponenten-Signalkomplexen dienen (Simons und Ikonen, 1997), lokalisiert ist und auch Caveolin-1 und $G\alpha_{q/11}$ einschließt (Lockwich et al., 2000). Da PIP₂ ebenfalls in LRD vorliegt, ein Inhibitor für IP₃-Rezeptoren zu sein scheint und die agonistenstimulierte Hydrolyse die Aktivierung der IP₃-Rezeptoren induziert (Lupu et al., 1998), wird ebenfalls eine Assoziation des N-Terminus des IP₃-Rezeptors mit PIP₂ postuliert.

Abb. 1.5Modell für die Interaktion von TRP1 in einem Signalkomplex in HSG-Zellen (Lockwich et al.,
2000)

TRP1 ist in Lipid-Raft-Domänen lokalisiert und mit Caveolin-1 assoziiert. Eine Interaktion zum IP₃-Rezeptor im ER wird über den NTerminus vermutet. Hinweise auf eine Assoziation über den C Terminus wurden von Boulay et al. (1999) gefunden.

Eine Assoziation mit dem IP₃-Rezeptor des Typs 1 wurde für TRP3 in transient transfizierten HEK293-Zellen gezeigt. Die Assoziation wird dabei durch den N-Terminus des Rezeptors vermittelt (Kiselyov et al., 1998; Kiselyov et al., 1999) und ein IP₃-Rezeptorinhibitor bringt sowohl den rezeptorinduzierten TRP3-Strom als auch den SOC-Strom zum Erliegen (Ma et al., 2000). Eine Erhöhung des Expressionslevels der IP₃-Rezeptoren nach stabiler Expression von TRP3 in HEK293-Zellen konnte ebenso gezeigt werden wie die Entkopplung des Stroms nach Aktin-Reorganisation (Kiselyov et al., 2000). Alle drei Publikationen befürworten den Aktivierungsmechanismus der direkten Kopplung (ER-PM) für TRP3. Auch eine Assoziation von TRP3 (sowie von TRP6) mit IP₃-Rezeptor Typ 3 ist nachgewiesen worden (Boulay et al., 1999). Für TRP4 und TRP5 konnte im Gegensatz zu TRP3 kürzlich gezeigt werden, daß sie über NHERF (einem Regulationsfaktor für den Na⁺/H⁺-Austauscher) mit PLC- β 1 und 2 assoziiert vorliegen (Tang et al., 2000).

Zusammenfassend läßt sich feststellen, daß bestimmte TRP-Interaktionspartner schon bekannt sind, wie z. B. die IP₃-Rezeptoren, wobei der genaue Typ im verwendeten Zellsystem stark

differieren kann, genaue Verankerungsmechanismen ans Cytoskelett noch nicht geklärt sind und Homo- und Heterooligomerisierungen bisher nur ansatzweise untersucht worden sind. Zwar gibt es nähere Informationen zu dTRP und dTRPL, doch nicht für Säuger-TRP-Homologe. In Analogie zu den K⁺-Kanälen TWIK-1 und den Kir2.1 und 2.3 (Lesage et al., 1996; Lesage, 1997; Bannister et al., 1999; Cho et al., 2000) sowie den $\alpha_2\delta$ und α_1 Untereinheiten des spannungsabhängigen Ca²⁺-Kanals (Gurnett, et al., 1997) wäre es z. B. denkbar, daß extrazelluläre Cysteine über Disulfidbrücken miteinander verbrückt sind oder sogar extrazelluläre Regionen miteinander wechselwirken.

Für ein tieferes Verständnis der Kanalfunktion der TRP-Isoformen ist die Kenntnis der Untereinheitenstruktur des Kanals essentiell; Anzahl der Untereinheiten, Assoziationsregionen sowie Bindungspartner, zu denen die Aktivierungsmoleküle aber auch die Verankerungsmechanismen gehören, sind entscheidend. Ebenso ungeklärt sind die Funktionen der einzelnen postulierten Domänen. Welchen Einfluß diese auf die Kanaleigenschaften oder auf die Assoziation mit Interaktionspartnern besitzen ist bisher noch völlig ungeklärt.

2 Problemstellung

Die molekulare Struktur der Ca²⁺-Kanäle in Lymphozyten, die keine spannungsabhängigen Kanäle exprimieren, ist zur Zeit noch unbekannt. Da einige der TRP-Isoformen Ähnlichkeiten mit den Eigenschaften der Ca²⁺-Kanäle in Lymphozyten aufweisen, wie z. B. Aktivierung über den PLC-IP₃-Signalweg oder Ca²⁺-Speicherabhängigkeit (siehe Einleitung Kap. 1), könnten einige Homologe aus dieser Proteinfamilie den Ca2+-Kanal bilden. Antisense Experimente von trp1, 2, 4 und 6 in Maus-Ltk⁻-Zellen (Zhu et al., 1996) sowie trp1 und trp4 in Maus-L-Zellen (Birnbaumer et al., 1996) führen zu einem teilweisen oder vollständigen Erliegen des Ca2+-Einstroms über die Plasmamembran. In B-Zellinien sind bisher verschiedene TRP-Isoformen auf RT-PCR-Basis identifiziert worden, von denen TRP1 ubiquitär ist (Tab. 1.2). Die Untereinheitenstruktur eines funktionellen TRP-Kanals ist bisher jedoch noch ungeklärt. In spannungsabhängigen Ca²⁺-Kanälen wird zu hierfür eine Tetramerisierung Analogie angenommen. Die einzigen Hinweise auf eine Assoziation verschiedener TRP-Isoformen gibt es bisher nur für dTRP und dTRPL bzw. hTRP1 und hTRP3. Studien an dTRP und dTRPL haben gezeigt, daß diese Drosophila-Kanalproteine miteinander über den N-Terminus und über Transmembransegmente assoziieren und gemeinsam einen Kanal mit neuen Eigenschaften bilden können (Gillo et al., 1996; Xu et al., 1997). Ebenso wurde eine Interaktion zwischen TRP1 und TRP3 gezeigt, die überexprimiert ebenfalls veränderte Kanaleigenschaften zeigen (Xu et al., 1997). Für die Säuger-TRP-Proteine konnte noch keine Assoziationsdomäne lokalisiert werden und weitere TRP-TRP-Interaktionen sind nicht bekannt. Für ein tieferes Verständis der Ca2+-Kanäle, wie Funktionsweise, Aktivierungs- und Regulationsmechanismen, ist die Kenntnis über die genaue Untereinheitenstruktur und die Bedeutung der einzelnen Domänen essentiell.

Im Rahmen dieser Arbeit sollte daher untersucht werden, ob TRP1, 2 und 3 bisher unbekannte Homo- und oder Heterooligomere bilden können und welche Domänen dafür verantwortlich sind. Interessanterweise sind Proteine bekannt, in denen mehrere Ankyrin-Wiederholungen globuläre Strukturen bilden, bei denen die Untereinheiten aus je sechs Einzelregionen bestehen (Michaely und Bennett, 1993). Demnach könnte auch eine Assoziation der N-Termini der TRP-Proteine über die Ankyrin-ähnlichen Wiederholungen vermittelt werden, um so funktionelle Strukturen zu bilden. Ebenso sind für die Dystrophin-ähnliche Domäne essentielle Interaktionen postuliert worden. So soll eine Assoziationsregion mit den IP₃-Rezeptoren in diesem cytosolischen Bereich des C-Terminus lokalisiert sein (Boulay et al., 1999).

Für die Interaktionsstudien wurde folgende Strategie gewählt: durch Einsatz von *in vitro*-Mutagenese generierten Deletionsmutanten, bei denen die drei Ankyrin-ähnlichen Wiederholungen bzw. die Coiled-Coil Domäne im N-terminalen oder die Dystrophin-ähnliche Domäne im C-terminalen cytoplasmatischen Bereich deletiert sind, sollte sich die assoziierende Region lokalisieren lassen. Zwei weitere Mutanten sollten die potentielle Porenregion oder das hoch konservierte EWKFAR-Motiv, über dessen Bedeutung bisher keine Informationen vorliegen, ausschließen.

Da der Einfluß der einzelnen postulierten Domänen auf die Kanaleigenschaften bisher nicht untersucht wurde, sind die Deletionsmutanten der ideale Ausgangspunkt zur näheren Untersuchung dieser Fragestellung. Das am besten geeignete und am häufigsten verwendete Zellsystem für die Kanalstudien an TRP-Proteinen sind die HEK293-Zellen, deren Einzelzell-[Ca²⁺]-Messungen in diesem Arbeitskreis etabliert sind (Engelke, 1999). Diese Zellinie ist über exprimierten Acetylcholinrezeptor mit Carbachol den endogen stimulierbar, wodurch in den B-Zellen der PLC-Signaltransduktionsweg eingeleitet wird. Analogie zu Um die Veränderung der Ca²⁺-Kanalaktivität in Lymphozyten nach Überexpression von mTRP1 β zu untersuchen, sollte mTRP1ß stabil in einer B-Zellinie exprimiert und analog zu den HEK293-Zellen die Änderung der cytosolischen $[Ca^{2+}]$ nach Aktivierung des PLC-Signalweges über B-Zellrezeptor-Quervernetzung gemessen werden. Das am besten geeignete Zellsystem ist dafür die Maus-B-Zellinie IIA1.6, in denen die Isoformen TRP1, 2 und 3 endogen exprimiert werden und deren Ca²⁺-Flux-Untersuchungen am FACS in diesem Arbeitskreis gut etabliert sind (Budde et al., 1994).

3 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden drei Isoformen der Ca²⁺-Kanäle aus der Familie der Säuger-TRP-Proteine, mTRP1 β , mTRP2 und hTRPC3, auf die Fähigkeit zur Homo- und Heterooligomerisierung hin untersucht. Es konnte gezeigt werden, daß alle drei eingesetzten Säuger-TRP-Isoformen in der Lage sind, miteinander zu assoziieren und Homo- sowie Heterooligomere bilden. Eine für die Assoziation und die Ausbildung eines funktionellen TRP-Proteins wichtige Region ist der N-terminale cytoplasmatische Bereich. Durch Deletion funktioneller Domänen in mTRP1 β konnte erstmals gezeigt werden, daß hierfür die Coiled-Coil Region verantwortlich ist. Diese Domäne ist zwar ausreichend, aber nicht essentiell für die Bildung von oligomeren TRP-Komplexen. Die entscheidende Assoziationsregion liegt innerhalb der transmembranübergreifenden Region und durch nicht reduzierende Aufarbeitung von Immunpräzipitaten konnte erstmals gezeigt werden, daß Disulfidbrücken an der Assoziation beteiligt sind, wodurch ein hochmolekularer TRP-Komplex ausgebildet wird.

LAT (*L*inker for Activation of *T*-Cells), das ein entscheidendes plasmamembranlokalisiertes Protein bei der Aktivierung von T-Zellen ist, konnte als neues Adapterprotein für alle drei Säuger-TRP-Isoformen identifiziert werden. LAT ist ein essentielles Protein des T-Zell-Aktivierungskomplexes und ist mit so entscheidenden Molekülen wie PLC- γ und verschiedenen Tyrosinkinasen assoziiert (Zhang et al., 1998-a; Clements et al., 1999; Gross et al., 1999; Leeuwen und Samelson, 1999; Lin et al., 1999; Pasquet et al., 1999; Pivniouk und Geha, 2000). Somit konnte ein weiteres wichtiges Verbindungsglied zwischen der Oberflächenrezeptorstimulation von Zellen und der Öffnung von Ca²⁺-Plasmamembrankanälen identifiziert werden. Als weitere Assoziation ist in der vorliegenden Arbeit die bisher nur postulierte Interaktion von mTRP1 β mit dem Aktincytoskelett erstmals auf Proteinebene gezeigt worden.

Die Fähigkeit der Deletionsmutanten funktionelle Ca^{2+} -Kanäle zu bilden, wurde nach stabiler Transfektion in HEK293-Zellen untersucht. Es zeigte sich, daß durch die Deletion der für die Dimerisierung der N-Termini entscheidenden Coiled-Coil Domäne das Sekundärsignal im Gegensatz zu dem TRP1 β in voller Länge nicht erhöht wird, womit ein weiterer Beleg für die essentielle Bedeutung dieser Domäne erbracht werden konnte. Die Deletion der Ankyrin- oder Dystrophin-ähnlichen Domäne führte ebenfalls zu einem nicht funktionellen TRP-Protein. Wahrscheinlich wird hier die Assoziation mit den IP₃-Rezeptoren oder dem Cytoskelett unterbunden. Aus den $[Ca^{2+}]$ -Messungen für die mTRP1 β Δ dys-Mutante und den publizierten Daten für eine Deletionsmutante über einen größeren Bereich des cytoplasmatischen C-Terminus, wonach ein höherer Ca²⁺-Einstrom zu verzeichnen ist als bei dem kompletten TRP1 (Sing et al., 2000), kann eine neue Region postuliert werden, die eine negativ regulierende Funktion auf die Kanaleigenschaften ausübt. Es läßt sich eine Konsensussequenz für alle bekannten Säuger-TRP-Isoformen ableiten, die 35 Aminosäuren im cytosolischen C-Terminus umfaßt und deren Beginn das über alle bekannten TRP-Isoformen höchst konservierte EWKFAR-Motiv ist. Eventuell liegt hier eine Bindungsstelle für einen cytosolischen Ca²⁺-Sensor. Dadurch wäre die direkte Steuerung der TRP-Kanäle über die cytosolische [Ca²⁺] möglich. Es ergibt sich ein erweitertes Modell für die Assoziation und Aktivierung von TRP1 in Lipid-Raft-Domänen, das in Abb. 7.2 gezeigt ist und einen wichtigen Beitrag zum tieferen Verständis der Regulation und Assoziation der TRP-Ca²⁺-Kanäle liefern könnte.

4 Material

4.1 Zellinien und deren Kultivierung

Name	Beschreibung	Referenz
COS-M6	Adhärent wachsende Nierenepithelzellinie der	Aruffo und Seed, 1987
	Afrikanischen Grünaffen (Meerkatzen). Die	
	Expression des großen T-Antigens (mit einem	
	fehlerhaften SV40-Virus transfiziert) führt zur	
	autosomalen Replikation von Vektoren mit einem	
	SV40-Replikationsursprung.	
	Die Zellen werden in DMEM/10 % FCS/ Goodies F	
	kultiviert und maximal 1:5 geteilt	
	(Trypsinbehandlung).	
HEK293	Die Zellen werden in DMEM/10 % FCS/ Goodies F	ATCC-Nr. CRL-1573
	kultiviert und maximal 1:3 geteilt (Resuspendierung	
	bzw. EDTA-Behandlung).	
IIA1.6	In Suspension wachsende Maus B-Zellinie, von A20	Jones et al., 1986
	abstammendes Lymphom, das membranständiges	Van Den Herik-Oudijk et al.,
	IgG2a aber keine Fcy-Rezeptoren exprimiert.	1994
	Die Zellen werden in Click's/10 % FCS in einer	
	Zelldichte von $2x10^5$ bis $1x10^6$ kultiviert.	

4.2 E. coli-Bakterienstämme

Stamm	Genotyp	Referenz
BL21(DE3)	F- $ompT hsdS_b(r_b-m_b-) gal dcm (DE3)^*$	Grodberg und Dunn, 1988
MC1061	F ⁻ araD139 D(ara, leu)7696, DlacY74, galU ⁻ ,	Hanahan, 1985
	$galK^{-}$, $hsdR^{-}$, $hsdM^{+}$, $StrA^{r}$	Hoffmann-La Roche Ltd.
		ATCC-Nr. 53338
XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1	Stratagene, 2001-a
	lac [F'proAB lacl ^q ZÄM15 Tn10 (Tet ^r)]	

* DE3 ist ein Derivat des λ -Phagen, der lysogen in *E. coli* vorliegt und das T7 RNA Polymerasegen unter lacUV5 Kontrolle trägt.

4.3 Hefe-Stamm

Stamm	Genotyp	Reporter	Selektionsmarker	Referenz
Saccharomyces	MATα, ura3, his3, trp1,	LEU2	his3, trp1, ura3	Estojak et al., 1995
cerevisiae	LexAop _(x6) -LEU2			
EGY48				

4.4 Plasmide

Name	Eigenschaften	Referenz
Klonierungsvekto	oren	
pBluescript KS und	SK multiple Klonierungsstelle, Ampicillinresistenzgen,	Stratagene, 2001-b
	α -Peptid des lacZ-Gens (Blau-Weiß-Selektion)	
pUC 18 und 19	Polylinker, Ampicillinresistenzgen, α -Peptid des	Yanish-Perron et al.
	lacZ-Gens (Blau-Weiß-Selektion)	1984
Säugerzellenexpr	ressionsvektoren	
pBEHpAC18	SV40-Promotor, Poly-A-Signal, SV40-	Artelt et al. 1988
	Replikationsursprung, multiple Klonierungsstelle	
	von pUC18 (nur teilweise singulär), Pac- und	
	Amp-Resistenzgen	
pcDNA3	CMV-Promotor, Poly-A-Signal, SV40-	Invitrogen, 2001
	Replikationsursprung, Polylinker, Neo- und Amp-	
	Resistenzgen	
pIRES2-EGFP	bicistronischer Vektor, der die gleichzeitige	Clontech, 2001-a
	Expression von dem klonierten Gen und EGFP	
	ermöglicht, CMV-Promotor, Poly-A-Signal,	
	SV40-Replikationsursprung, multiple	
	Klonierungsstelle, Neo- und Kan-Resistenzgen	
E. coli-Expression	nsvektoren	
pet32 a (+) mu	ltiple Klonierungsstelle, Ampicillinresistenzgen, T7-Promoto	or, LaVallie et al., 1993
Try	k-, His ₆ - und S-Epitop codierende Sequenzen,	Novagen, 2001

Material

Name	Eigenschaften		Referenz
THS-	alle Vekoren tragen einen pUC-Replikations	ursprung, ein Amp-Re	sistenzgen sowie
Vektoren	einen Hefe-Replikationsursprung (2 μm ori)		
	(Brentlab, 2001-a)		
pEG202	LexA ₍₁₋₂₀₂₎ , HIS3, Polylinker	"bait"-Plasmid	Gyuris et al., 1993
		codiert N-terminal	
		für die DNA-BD	
pJG4-5	B42-Transkriptionsaktivator,	"prey"-Plasmid	Gyuris et al., 1993
	Kernlokalisierungssignal des SV40 Virus	codiert N-terminal	
	großen T-Antigens, TRP1, HA-Epitoptag,	für die AD	
	Polylinker		
pSH18-34	lacZ unter der Kontrolle des GAL1-	Reporterplasmid	Golemis et al., 1994
	Promotor (UASG gegen LexA _{op(x8)}		Estojak et al., 1995
	ausgetauscht), URA3		
pJK101	lacZ unter der Kontrolle des GAL1-	Reporterplasmid	Brent und Ptashne,
	Promotor (UASG gegen LexA _{op(x8)}	Kernlokalisierung	1984
	ausgetauscht), URA3		
pLR1 Δ 1	lacZ unter der Kontrolle des GAL1-	Reporterplasmid	West et al., 1984
	Promotors (ohne LexA _{op}), URA3	Negativkontrolle	
pSH17-4	LexA/GAL4-Fusionsgen, HIS3	"bait"-Positiv-	Golemis et al., 1994
		kontrolle	
pREFHM1	LexA/Bicoid- Fusionsgen (einem inerten	"bait"-Negativ-	Brentlab (2001-b)
	Fragment des Drosophila Bicoid	kontrolle	
	Produktes), HIS3		

Plasmide (Fortsetzung)

4.5 cDNAs

Die cDNA von mTRP1β wurde aus IIA1.6-Zellen anhand der Genbank Acc. No. U95167 kloniert, mTRP2 nach Genbank Acc. No. AF11107 (einige der Sequenzen wurden von T. Schäfer kloniert, 1998 und 2001). Die cDNA von hTRPC3 wurde freundlicherweise von Prof. Dr. Lückhoff (RWTH Aachen) (Zitt et al., 1997) und die von LAT-c-myc von Prof. Dr. Weiss (Howard Hughes Medical Institute, University of California at San Francisco, USA) zur Verfügung gestellt. Die cDNAs von

mTRP2 und hTRPC3 wurden von M. Engelke in pcDNA3 kloniert und mit einem c-myc- bzw. HA-Epitop versehen (Engelke, 2001).

Die im Rahmen dieser Arbeit erstellten Konstrukte mit den Klonierungsschemata sind in **Anhang 4** bis 7 dargestellt.

4.6 Oligonukleotide

Mit Ausnahme der Sequenzierprimer ("Sequencing" und "Reverse" für Sequenzierungen von Inserts in pBKS/SK und pUC18/19 von Amersham Pharmacia Biotech) wurden die verwendeten Oligonukleotide von der Firma MWG (Ebersberg) synthetisiert.

Name	Sequenz	Taget
Actin-3'	5'-gc cat ctc ctg ctc gaa gtc	β -Aktin 3', als PCR-Kontrolle
Actin-5'	5'-aac aac tgg gac gac atg ga	β -Aktin 5', als PCR-Kontrolle
MEmtrp1FLAG-3'	5'-cgt cgt cat cct tgt agt cg	für RT-PCR auf Expression von mTRP1 β -
		Mutanten (Engelke, 1999)
PBPcc1-5'	5'-acg ttc tga gtt acc ttc g	für RT-PCR auf Expression von mTRP1 β -
		Mutanten
mtrp1∆EWKFAR-3'	5'-atta gtc gac gct aag cca tag	Deletion der konservierten EWKFAR-
	ctt tgc ttt atc ctc atg att tgc	Sequenz in mTRP1 ^β
mtrp1∆EWKFAR-5'	5'-acg ttc tga gtt acc ttc g	Deletion der konservierten EWKFAR-
		Sequenz in mTRP1 ^β
mtrp1∆pp-3'	5'-taat ggg ccc tct aga tta att tct	Deletion der potentiellen Porenregion
	tgg at	inklusive der fünften und sechsten TM-
		Segmente von mtrp1, kloniert in die zweite
		Apa I-und die Xho I-Schnittstelle
mtrp1∆pp-5'	5'-taat ggg ccc caa gag ctt cca	Deletion der potentiellen Porenregion
	agc tga tag	inklusive der fünften und sechsten TM-
		Segmente von mtrp1, kloniert in die zweite
		Apa I-und die Xho I-Schnittstelle
Neo-3'	5'-ga tgc tct tcg tcc aga tca	Neomycin-Resistenzgen 3', zum
		Identifizieren transfizierter Klone
Neo-5'	5'-gct cga cgt tgt cac tga ag	Neomycin- Resistenzgen 5', zum
		Identifizieren transfizierter Klone

Oligonukleotide (Fortsetzung)

Name	Sequenz	Target
pBEH-3'	5'-ctt atc atg tct gga tcg aag	3' von der multiplen Klonierungsstelle des
		pBEHpAC18-Vektors, zum Identifizieren
		von transfizierten IIA1.6-Klonen
pBEH-5'	5'-cag gtc ccg gat cgg aat t	5' von der multiplen Klonierungsstelle des
		pBEHpAC18-Vektors, zum Identifizieren
		von transfizierten IIA1.6-Klonen
Puro-3'	5'-tcg tag aag ggg agg ttg	Puromycin-Phosphotransferase 3', zum
		Identifizieren transfizierter Klone
Puro-5'	5'-atg acc gag tac aag ccc	Puromycin-Phosphotransferase 5', zum
		Identifizieren transfizierter Klone
Sequenzierprimer		
"Sequencing"	5'-gt aaa acg acg gcc agt	pBlueskript KS/SK und pUC18/19 5'
"Reverse"	5'-gga aac agc tat gac cat g	pBlueskript KS/SK und pUC18/19 3'

4.7 Antikörper

Klon-Name	Spezies	Spezifität	Hersteller	IF	IP	WB
II1A5	Maus	α-FcRII	Weinrich et al., 1996	nd	-	+
10A5	Maus	α-Aktin	dieser Arbeitskreis	nd	nd	+
13/45/31-2	Maus	α -His ₆	Dianova	nd	nd	+
3F10	Ratte	α-HA	Roche	+	+	+
9E10	Maus	α-c-myc	Roche	+	+	+
AT10**	Maus	α -Fc γ RII	Greenman et al., 1991	nd	+	-
Caveolin	Kaninchen	α-Cav-1	Transduction Laboratories	+	+	+
M2	Maus	α-FLAG	Stratagene	(+)	+	+
OctA*	Ziege	α-FLAG	Santa Cruz	+	+	(+)
α -Octapeptid*	Kaninchen	α-FLAG	Zymed Laboratories, Inc.	+	(+)	+

* Diese Antikörper sind kommerziell nicht mehr erhältlich.

** Der AT10-mAk wurde freundlicherweise von Dr. M. J. Glennie zur Verfügung gestellt (Greenman et al., 1991).

Die Antikörper wurden, sofern nicht anders angegeben, nach Herstellerangaben eingesetzt.

Alle nicht aufgeführten Antikörper (konjugierte und unkonjugierte) wurden von Dianova bezogen. Das Kaninchenantiserum gegen mTRP1-CT wurde bei Eurogentec (Seraing, Belgien) durch Immunisierung eines Kaninchen mit dem rekombinant in *E. coli* BL21(DE3) exprimierten Fusionsprotein erhalten (siehe auch **Kap. 5.3.3**).

4.8 Enzyme

Die verwendeten Enzyme wurden, falls nicht anders angegeben, von den Firmen Roche, Gibco BRL, MBI Fermentas, Perkin Elmer, Takara oder Amersham Pharmacia Biotech bezogen und nach den Herstellerangaben eingesetzt.

4.9 Chemikalien

Alle nicht aufgeführten Chemikalien wurden von den Firmen Biozym, Fluka, Merck, Nova Biochem, Roche, Roth, Serva oder Sigma mit dem Reinheitsgrad p.A. bezogen. Medien für Bakterien und Hefen sowie Select Agar wurden von Difco bezogen.

Spezielle Chemikalien sind nachfolgend aufgelistet:

Agarose	Roth
Chloroquine	Sigma
DEAE-Dextran	Sigma
Fluo-3-AM	Molecular Probes, Inc.
Fura-2-AM	Molecular Probes, Inc.
G418	Calbiochem Novabiochem
Lachssperma-DNA	Stratagene
LMP-Agarose	FMC Bioproducts
LMW- und HMW-Marker	Amersham Pharmacia Biotech
Milchpulver, fettarm (Sucofin)	TSI-Trade Service International
MβCD	Fluka
Ni ²⁺ -NTA-Agarose	Qiagen
Pluronic F-127	Molecular Probes, Inc.
Proteaseinhibitor-Cocktail	Roche (EDTA-freie Tabletten)
SNARF-1-AM	Molecular Probes, Inc.
Tris-gepuffertes Phenol	Biomol
Trypsin/EDTA-Lösung	Gibco BRL

4.10 Sonstige Materialien

Plastikwaren wurden von TRP, Nunc, Waldeck, Deelux Labortechnik GmbH, Biochrom AG, Brandt

 $GmbH+Co,\,Sorensen\,\,BioScience,\,Inc.\,\,und\,\,Eppendorf-Netheler-Hinz-GmbH\,\,bezogen.$

Spezielle Materialien sind nachfolgend aufgelistet:

Deckgläser	Menzel-Glaser
Dialyseschläuche Spectra Por	Serva
Flexi-Strip	Roth
Glasperlen (425 - 600 µm)	Sigma
Multiwell-Objektträger	ICN Biomedicals, Inc.
Objektträger	Menzel-Glaser
PD-10 Säulen	Amersham Pharmacia Biotech

4.11 "Kits"

Maxi, Midi, Mini zur Aufreinigung von	Macherey-Nagel, Qiagen
Plasmid-DNA	
ECL	Roche
Lumi Light (plus) (alternativ zu ECL)	Amersham Pharmacia Biotech
Mini zur Aufreinigung von RNA	Roche, Qiagen
Superfect	Qiagen

4.12 Puffer, Medien und Lösungen

Alle Lösungen sind, soweit nicht anders angegeben, mit Elga-Reinstwasser angesetzt und falls angegeben für 30 min bei 121 °C autoklaviert.

20proz. TCA	Die Verdünnung wird unter Eiskühlung durchgeführt		
AA-Stammlösung	30 % (w/v) Acrylamid, 0,8 % (w/v) N,N'-Methylenbisacrylamid		
Äquilibrierungspuffer	20 mM Tris/NaOH pH 7,9, 0,5 mM NaCl		
Bindepuffer	5 mM Imidazol, 0,5 mM NaCl, 20 mM Tris/NaOH pH 7,9		
Bradford-Reagenz	100 mg Coomassie Brilliant Blau in 50 ml Ethanol lösen, 100 ml		
	85proz. o-Phosphorsäure zusetzen, mit H ₂ O auf 1000 ml auffüllen		
Click's Medium	450 ml RPMI-Basalmedium (Gibco BRL), 10 mM Glutamin, 10 mM		
	Na-Pyruvat, 50 ml FCS		

"Cracking" Puffer	8 M Harnstoff, 5 % (w/v) SDS, 40 mM Tris/HCl pH 6,8, 0,1 mM		
	EDTA, 0,04 % (w/v) Bromphenolblau, 1 % (v/v) β -Mercaptoethanol,		
	Proteaseinhibitor-Cocktail		
CTAB-Lösung	5 % (w/v) CTAB, 0,5 M NaCl, autoklavieren		
DMEM	420 ml DMEM-Basalmedium (Gibco BRL), 30 ml Goodies F, 50 ml		
	FCS		
ECS	140 mM NaCl, 5 mM KCl, 1 mM MgCh, 10 mM Glucose, 15 mM		
	HEPES pH 7,4, autoklavieren		
	Zusätze:		
	0,1 % (w/v) BSA		
	1,8 mM CaCl ₂ oder alternativ 0,5 µM EGTA, autoklavieren		
Elektrophoresepuffer	25 mM Tris, 192 mM Glycin, 0,1 % (w/v) SDS		
Elutionspuffer	1 M Imidazol, 0,5 mM NaCl, 20 mM Tris/NaOH pH 7,9		
Entfärber-Lösung	45 % (v/v) Methanol, 10 % (v/v) Essigsäure		
"Farmer's Reducer"	30 mM K ₃ [Fe(CN) ₆], 30 mM Na ₂ S ₂ O ₃		
FCS	30 min hitzeinaktiviert bei 56 °C (Gibco BRL)		
Fixiererlösung	45 % (v/v) MeOH, 10 % (v/v) HOAc		
G418-Stammlösung	50 mg Aktivität/ml in 100 mM HEPES pH 7,5		
Geltrocknungslösung	20 % (v/v) Ethanol, 1 % (v/v) Methanol, 1 % (v/v) Isopropanol, 1,5		
	% (v/v) Glycin		
Goodies F	40 mM L-Glutamin, 40 mM Na-Pyruvat, essentielle AS, nicht		
	essentielle AS, Vitaminlösung (alles Gibco BRL)		
Læmmli-Probenpuffer (2x)	100 mM Tris/HCl pH 6,8, 200 mM β -Mercaptoethanol, 20 % (v/v)		
	Glyzerin, 4 % (w/v) SDS, 0,02 % (w/v) Bromphenolblau		
LB-Agarplatten	LB-Medium, 1,5 % (w/v) Select-Agar		
	Antibiotikakonzentrationen: Ampicillin: 100 µg/ml		
	Kanamycin: 25 µg/ml		
LB-Medium	1 % (w/v) Peptone, 0,5 % (w/v) Hefeextrakt, 1 % (w/v) NaCl,		
	15 min autoklavieren		
LiOAc/TE	100 mM LiOAc, 10 mM Tris, 1 mM EDTA pH 7,5, autoklavieren		
Lysepuffer (RNA)	10 mM Tris, 150 mM NaCl, 1 mM MgCb, 0,5 % NP40, pH 7,4,		
	autoklaviert		

32	Material	
NU-Serum	30 min hitzeinaktiviert bei 56 °C (Collaborative Research, Inc.)	
PBS	4,3 mM Na ₂ HPO ₄ , 1,4 mM KH ₂ PO ₄ , 137 mM NaCl, 2,7 mM KCl	
PBS-T	PBS, 0,05 % (v/v) Tween 20	
PEG 4000/LiOAc/TE	40 % (v/v) PEG 4000, 100 mM LiOAc, 10 mM Tris, 1 mM EDTA	
	pH 7,5, autoklavieren	
Ponceau-S-Lösung	0,1 % (w/v) Ponceau-S, 5 % (v/v) Essigsäure	
RIPA-Puffer	158 mM NaCl, 10 mM Tris/HCl pH 7,2, 5 mM EDTA, 1 mM	
	Na ₃ VO ₄ , 10 mM Na ₄ P ₂ O ₇ , 10 mM NaF	
SDS/Glycerin-Stammlösung	7,3 % (w/v) SDS, 29,1 % (v/v) Glycerin, 83,3 mM Tris, 0,02 %	
	(w/v) Bromphenolblau	
STET-Puffer	8 % (w/v) Saccharose, 50 mM EDTA, 0,1 % (w/v) Triton X-100,	
	50 mM Tris-HCl pH 8,0, autoklavieren	
Stripping-Puffer	62,5 mM Tris-HCl pH 6,8, 2 % (w/v) SDS, 100 mM β -	
	Mercaptoethanol	
Strippuffer	20 mM Tris/NaOH pH 7,9, 0,5 mM NaCl, 50 mM EDTA	
TAE-Puffer	40 mM Tris/HOAc pH 7,8, 10 mM NaOAc, 1 mM EDTA	
TBS	137 mM NaCl, 2,7 mM KCl, 25 mM Tris/HCl pH 7,0	
TBS-T	TBS, 0,1 % (v/v) Tween 20	
TCA-Laemmli-Puffer	pro ml Puffer:	
	480 µl SDS/Glycerin-Stammlösung	
	400 µl Tris/EDTA-Stammlösung	
	50μ l/ml β -Mercaptoethanol	
	Proteaseinhibitor-Cocktail	
TCA-Puffer	20 mM Tris/HCl pH 8,0, 50 mM NH4OAc, 2 mM EDTA	
TE (für DNA)	10 mM Tris/HCl pH 7,4, 1 mM EDTA, autoklavieren	
TE-Puffer (THS)	10 mM Tris/HCl pH 8,0, 1 mM EDTA, autoklavieren	
Tfbm1	30 mM KOAc, 50 mM MnCl ₂ , 100 mM KCl, 10 mM CaCl ₂ , 15 %	
	(v/v) Glycerin, steril filtrieren und bei 4 °C lagern	
Tfbm2	10 mM Na-Mops, 75 mM CaCl ₂ , 10 mM KCl, 15 % (v/v) Glycerin,	
	pH 7,0, steril filtrieren und bei 4 °C lagern	
Tfbx1	100 mM RbCl, 50 mM MnCl ₂ , 30 mM KOAc, 5 mM CaCl ₂ , 15 %	
	(v/v) Glycerin, pH 5,8, steril filtrieren und bei 4 °C lagern	

Tfbx2	20 mM Na-Mops, 10 mM RbCl, 37,5 mM CaCh, 15 % (v/v)		
	Glycerin, pH 6,8, steril filtrieren und bei 4 °C lagern		
Transferpuffer	20 % Methanol, 2,9 g Glycin/l, 5,8 g Tris/l, 0,37 g SDS/l		
Tris/EDTA-Stammlösung	200 mM Tris, 20 mM EDTA, autoklavieren		
TSS-Puffer	1 g Tryptone oder Peptone, 0,5 Hefeextrakt, 0,5 g NaCl, 0,8 g PEG		
	3350, 5 ml DMSO, 5 ml 1 M MgCl ₂ auf 100 ml mit H ₂ O pH 6,5,		
	steril filtrieren und bei 4 °C lagern (bis zu sechs Monate)		
TYM-Medium	2 % Tryptone, 0,5 % Hefeextrakt, 0,1 M NaCl, 0,01 M MgCh, steril		
	filtrieren		
Waschpuffer	60 mM Imidazol, 0,5 mM NaCl, 20 mM Tris/NaOH pH 7,9		

4.12.1 Medien zur Kultivierung und Selektion von Hefezellen

Soweit nicht anders angegeben werden alle Lösungen mit sterilem ELGA-Reinstwasser angesetzt, für 15 min bei 121 °C autoklaviert und bei 4 °C gelagert.

10x BU-Puffer	Na ₂ HPO ₄	70 g/l
	NaH ₂ PO ₄	30 g/l
	pH 7,4	
10x Drop-out-Lösung	Adenin	0,4 mg/ml
	L-Arginin-Hydrochlorid	0,2 mg/ml
	L-Aspartat	1,0 mg/ml
	L-Glutamat (Natriumsalz)	1,0 mg/ml
	L-Histidin	0,2 mg/ml
	L-Isoleucin	0,3 mg/ml
	L-Leucin	0,6 mg/ml
	L-Lysin	0,3 mg/ml
	L-Methionin	0,2 mg/ml
	L-Phenylalanin	0,5 mg/ml
	L-Serin	3,75 mg/ml
	L-Threonin	2,0 mg/ml
	L-Tryptophan	0,4 mg/ml
	L-Tyrosin	0,4 mg/ml
	L-Valin	1,5 mg/ml

		Uracil		0,2 mg/ml
Drop-out-Medium (Glu) (SD))	Hefe Stickstoffbasis		0,67 % (w/v)
		NaOH		0,01 % (w/v)
		10x Drop-out-Medium		10 % (v/v)
		40proz. Glucose-Lösung	5	5 % (v/v)
		Agar (nur Platten)		2 % (w/v)
Drop-out-Medium(Gal/Raf)	(SD)	Hefe Stickstoffbasis		0,67 % (w/v)
		NaOH		0,01 % (w/v)
		10x Drop-out-Medium		10 % (v/v)
		40proz. Galactose-Lösur	ng	5 % (v/v)
		20proz. Raffinose-Lösun	ıg	5 % (v/v)
		Agar (nur Platten)		2 % (w/v)
X-Gal-Lösung		20 mg/ml DMF, bei -20	°C lager	n
X-Gal-Drop-out-Platten (SD))	Hefe Stickstoffbasis		0,67 % (w/v)
		NaOH		0,01 % (w/v)
		Agar (nur Platten)		2 % (w/v)
		10x Drop-out-Medium		10 % (v/v)
		10x BU-Puffer		10 % (v/v)
		a) 40proz. Galactose-L	ösung	5 % (v/v)
		20proz. Raffinose-Lö	ösung	5 % (v/v)
		b) 40proz. Glucose-Lös	sung	5 % (v/v)
		nach dem Autoklavieren	0,4 % (\	//v) X-Gal-Lösung zusetzen
YPD-Medium		Peptone		2 % (w/v)
		Hefeextrakt		1 % (w/v)
		40proz. Glucose-Lösung	5	2 % (v/v)
		Select Agar (nur Platten)		2 % (w/v)
4 12 Corrito				
4.13 Gerale				
Autoklav			Tecnon	nara
Begasungsbrutschränke	Steri-O	Cult 2000	Forma S	Scientific
	BBD	6220	Haereus	S

Brutschrank		
Hefen/Bakterien	B5050	Haereus
Calcium-Imaging-System		
CCD-Kamera	IMAGIO	T.I.L.L. Photonics GmbH
Monochromator	Polychrome II System	T.I.L.L. Photonics GmbH
Fluoreszenzmikroskop	IX70	Olympus Optical Co., Inc
DNA-	Alfexpress	Amersham Pharmacia Biotech
Sequenzierungseinrichtung		
Durchflußzytometer	FACSort	Becton-Dickenson
Elektrophoresekammer	DNA/SDS-PAGE	Werkstatt Universität Göttingen und
		Bielefeld
Elektroporator	Gene Pulser System	Biorad
Fluoreszenzmikroskop	BX50/RFLT3	Olympus Optical Co., Inc.
-kamera	Proprescive 3CCD	Sony
FPLC	Gradi Frac	Amersham Pharmacia Biotech
	Optical Unit UV-1	
	Control Unit UV-1	
	Mixer 5 MPa	
	Valve PSV-50	
	Pump P-1	
	Rec 102	
Geldokumentationssytem	BioDoc II	Biometra
Membranvakuumpumpe		Vacuubrand GmbH + Co.
PCR-Prozessor	DNA Thermo-Cycler 480	Perkin Elmer
	Gene Amp 2700	
	Gene Amp 9200	
pH-Meter	pH 540 GLP	WTW
Photometer	Ultrospec 3000	Amersham Pharmacia Biotech
Reinstwasseranlage	ELGA STAT	Elga
Schüttelinkubatoren	Series 25	New Brunswick Scientific Co., Inc.
	LabShaker/LabTherm	Adolf Kühner AG

36	Material	
Sicherheitswerkbank	Lamin-Air HBB 2472	Haereus
	Clean Air Type DLF BSS4	Woreden Intermed M.D.H. GmbH
Spannungsquellen	Power-Supply EPS 200	Amersham Pharmacia Biotech
Thermostat	Thermostat 5320	Eppendorf-Netheler-Hinz-GmbH
Vakuumtrocknungs-	Speedvac Concentrator und	Savant
zentrifuge	Refrigerated Condensation	
	Trap	
Vortex	Vortex Genie 2	Bender & Hobein AG
Waagen	A 120-S, L 610 D	Sartorius
Western-Blot-Apparatur		Werkstatt Universität Göttingen
Zentrifugen	Kühlzentrifuge J2-21 (Rotoren:	Beckmann
	JA-10, -14, -20)	
	Ultrazentrifuge L7-55	
	(Rotoren: SW-40, -50)	
	GS-15R	
	(Rotoren F2402, S4180)	
114 Commutancetter		

4.14 Computersoftware

analySIS	Soft Imaging System GmbH
CELL Quest 3.3	Becton Dickinson Immunocytometry Systems
COREL DRAW 9	COREL CORPORATION LIMITED, Rüsselsheim
FlowJo alias 2.7.8	Stanford Universitiy, Tree Star, Inc.
MAC APP 3.1.3	Apple Computer, Inc.
Mac OS 8.6	Apple Computer, Inc.
MS Office 2000	Mircosoft GmbH, Verl
Till VisIon v3.3	T.I.L.L. Photonics Imaging System Software, T.I.L.L. Photonics GmbH,
	Impuls GmbH
Windows 95/98/NT 5.0	Mircosoft GmbH
Genpro 5.00	Riverside Scientific

Students t-Test wurde für die Berechnung der Signifikanz der [Ca²⁺]-Messungen verwendet.

5 Methoden

5.1 Molekularbiologische Methoden

Soweit nicht anders angegeben, wurden die Methoden, gegebenenfalls modifiziert, dem Handbuch "Molecular Cloning", J. Sambrook, E.F. Fritsch und T. Maniatis, Cold Spring Harbour Laboratory Press, 1989, entnommen.

5.1.1 Kultivierung und Lagerung von Bakterien

Die *E. coli*-Stämme werden in LB-Medium bei 37 °C und 250 rpm angezogen oder auf LB-Agarplatten bei 37 °C kultiviert.

Zur Dauerlagerung von Bakterienklonen werden 850 µl einer o/n-Kultur mit 150 µl Glycerin versetzt und in flüssigem Stickstoff schockgefroren. Die anschließende Lagerung erfolgt bei -70 °C. Für die Weiterkultivierung wird die Glycerinkultur auf LB-Agarplatten (mit entsprechendem Antibiotikum) ausgestrichen.

5.1.2 CTAB-Lyse zur Plasmidisolierung in kleinem Maßstab (Del Sal et al., 1988)

3 ml Bakterienkultur werden bei 7000 rpm für 2 min pelletiert und in 400 µl STET-Puffer und 8µl frisch angesetzter Lysozymlösung (50 mg/ml) resuspendiert. Nach 10 min Inkubation bei RT wird das Lysat 45 sec auf 95 °C erhitzt und nach dem Abkühlen die Zelltrümmer sowie die denaturierten Proteine und chromosomale DNA 10 min bei 13000 rpm abzentrifugiert. Der Überstand wird mit 16 µl CTAB-Lösung versetzt und erneut 5 min bei 13000 rpm zentrifugiert. Das Pellet wird in 150 µl 1,2 M NaCl-Lösung resuspendiert und unlösliche Anteile 2 min bei 13000 rpm abzentrifugiert. Der Plasmid-DNA enthaltende Überstand wird zum Fällen der DNA mit 750 µl abs. Ethanol (-20 °C) versetzt und 30 min bei 4 °C zentrifugiert. Das Pellet wird mit 500 µl kaltem 70proz. Ethanol gewaschen und unter Vakuum getrocknet. Die DNA wird in 20 µl TE-Puffer bei 65 °C gelöst (10 min).

5.1.3 Plasmidpräparation über Ionenaustauscher-Säulen

Zur Isolierung reiner Plasmid-DNA für Sequenzierungen oder Transfektionen wurden käuflich erwerbbare Maxi-, Midi- und Mini-,,Kits" der Firmen Macherey-Nagel und Qiagen bezogen und nach Herstellerangaben verwendet.

5.1.4 Hydrolyse von DNA durch Restriktionsendonukleasen (Fuchs und Blakesley, 1983)

Es werden 250 ng bis 1 µg DNA mit 1 bis 2 U der entprechenden Restriktionsendonuklease und dem mitgelieferten Puffer versetzt und nach Angaben des Herstellers behandelt.

5.1.5 Klenow-Behandlung restringierter DNA

Zum Auffüllen von 5'- oder Abbau von 3'-Überhängen zur glatten-Enden-("blund-end")-Ligation wird die restringierte DNA nach Herstellerangaben mit Klenow-Enzym behandelt.

5.1.6 Dephosphorylierung von Vektor-DNA

Um eine Religation der restringierten Vektor-DNA zu vermeiden, wird das 5'-Ende der linearisierten DNA nach Herstellerangaben enzymatisch mit Alkalischer Phosphatase dephosphoryliert.

5.1.7 Agarosegelelektrophorese (McDonell et al., 1977)

Die elektrophoretische Auftrennung von DNA-Fragmenten wird in 0,8 bis 2 % Agarosegelen (w/v Agarose in TAE-Puffer) mit 0,05 % (w/v) Ethidiumbromid durchgeführt. Zur direkten Ligation von DNA-Fragmenten wird "Low Melting Point" (LMP) Agarose verwendet. Die elektrophoretische Auftrennung erfolgt bei 5 V/cm Elektrodenabstand.

5.1.8 Ligation von DNA-Fragmenten

Zur Klonierung von DNA-Fragmenten werden in LMP-Agarosegelen aufgetrennte Insert-DNA und dephosphorylierte Vektor-DNA auf einem UV-Transilluminator aus dem Gel ausgeschnitten, bei 65 °C geschmolzen und in mindestens dem doppeltem Volumen Wasser aufgenommen. Die isolierten DNA-Mengen werden anhand des verwendeten DNA-Markers abgeschätzt.

Zur Ligation werden 10 ng Vektor-DNA mit der Insert-DNA in einem Mol-Verhältnis von 1:3 (bei kohäsiven Enden) bzw. 1:5 (bei glatten Enden) versetzt und nach Herstellerangaben mit T4-Ligase behandelt.

5.1.9 Phenolextraktion und Dialyse von DNA

Die DNA-Lösung wird auf 200 μ l mit TE-Puffer aufgefüllt und je einmal mit 200 μ l gepuffertem Phenol, Phenol/Chloroform/Isoamylalkohol (24:23:1) und Chloroform/ Isoamylalkohol (23:1) extrahiert. Die DNA wird bei -70 °C mit 800 μ l abs. Ethanol für 30 min gefällt und die pelletierte DNA einmal mit 500 μ l 70proz. Ethanol gewaschen. Die unter Vakuum getrocknete DNA wird in einem geeigneten Puffer aufgenommen und in einem Dialyseschlauch mit geeigneter Porengröße bei 4 °C dialysiert (mind. dreimal Pufferwechsel mit einer Dialysezeit von je 8 bis 16 h).

5.1.10 Herstellung chemisch kompetenter *E. coli* und deren Transformation (modifiziert nach Hanahan, 1985 und Sambrook et al., 1989)

5.1.10.1 BL21(DE3)

Mehrere Kolonien werden in 5 ml LB-Medium resuspendiert und in 50 ml LB überführt. Die Kultur wird bei 250 rpm und 37 °C bis zu einer $OD_{600} = 0,4$ angezogen und für 15 min bei 2500x g und 4 °C zentrifugiert. Das Pellet wird in 5 ml TSS-Puffer resuspendiert. Die kompetenten Zellen müssen innerhalb von 2 bis 3 h transformiert werden. Eine längerfristige Lagerung ist nicht möglich.

Zur Transformation werden 200 µl der kompetenten Zellsuspension mit 3 bis 5 µg isolierter Plasmid-DNA versetzt und für 45 min auf Eis inkubiert. Nach einem Hitzeschock für 2 min bei 42 °C und anschließender kurzer Inkubation auf Eis erfolgt nach Zugabe von 800 µl LBG-Medium (LB, 20 mM Glucose) die Regeneration bei 37 °C und 250 rpm für 60 min. Die Selektion der Bakterien erfolgt nach Ausstreichen eines geeigneten Aliquots des Transformationsansatzes auf LB-Agarplatten, die ein geeignetes Antibiotikum enthalten.

5.1.10.2 MC1061

Der *E. coli*-stamm MC1061 wird auf einer LB/Strep-Platte (600 µg/ml) ausgestrichen und eine Kolonie in 5 ml TYM/Strep (600 µg/ml) o/n bei 37 °C und 250 rpm angezogen. 2,5 ml der frischen Kultur werden in 250 ml TYM verdünnt und bis zu einer $OD_{600} = 0,5$ kultiviert. Die Kultur wird bei 4 °C und 4000 rpm für 15 min zentrifugiert. Das Bakterienpellet wird in 20 ml Tfbm1 resuspendiert und nach einer 5 min Inkubation auf Eis für 15 min bei 4 °C und 4000 rpm zentrifugiert. Das Pellet wird in 10 ml Tfbm2 resuspendiert und die Bakteriensuspension in 500 µl Aliquots in flüssigem Stickstoff schockgefroren und bei -70 °C gelagert.

Zur Transformation werden 100 µl der auf Eis aufgetauten Zellen mit 5 µl des vorgekühlten Ligationsansatzes 30 min auf Eis inkubiert und 5 min bei 37 °C inkubiert. Nach Zugabe von 1 ml LB-Medium erfolgt die Regneration für 45 min bei 37 °C. Die Selektion der Bakterien erfolgt nach Ausstreichen eines geeigneten Aliquots des Transformationsansatzes auf LB-Agarplatten, die ein geeignetes Antibiotikum enthalten.

5.1.10.3 XL1-Blue

Der *E. coli*-stamm XL1-Blue wird auf einer LB/Tet-Platte (12,5 μ g/ml) ausgestrichen und eine Kolonie, resuspendiert in 5 ml LB/Tet (12,5 μ g/ml), o/n bei 37 °C und 250 rpm angezogen. 4 ml der frischen Kultur werden in 400 ml LB/Tet (12,5 μ g/ml) verdünnt und bis zu einer OD₆₀₀ = 0,4 kultiviert. Nach einer 10 min Inkubation auf Eis wird die Kultur bei 4 °C und 4000 rpm für 15 min zentrifugiert und das Bakterienpellet in 50 ml Tfbx1 resuspendiert. Nach einer 5 min Inkubation auf Eis wird für 15 min bei 4 °C und 4000 rpm zentrifugiert. Das Pellet wird in 10 ml Tfbx2 resuspendiert und die Bakteriensuspension in 500 μ l Aliquots in flüssigem Stickstoff schockgefroren und bei -70 °C gelagert. Zur Transformation werden 200 μ l der kompetenten Zellsuspension mit 5 μ l des vorgekühlten Ligationsansatzes versetzt und für 30 min auf Eis inkubiert. Nach einem Hitzeschock für 2 min bei 42 °C und anschließender kurzer Inkubation auf Eis erfolgt nach Zugabe von 1 ml LB-Medium die Regeneration bei 37 °C für 60 min. Die Selektion der Bakterien erfolgt nach Ausstreichen eines geeigneten Aliquots des Transformationsansatzes auf LB-Agarplatten, die ein geeignetes Antibiotikum enthalten.

5.1.11 Isolierung von Gesamt-RNA aus Kulturzelllen (modifiziert nach Sambrook et al., 1989)

5 bis 15 ml Kultur werden bei 200x g 5 min bei 4 °C pelletiert und mit 1 ml kaltem PBS gewaschen. Das Zellpellet wird vorsichtig in 400 µl kaltem Lysepuffer resuspendiert und 1 min auf Eis gestellt. Nach Abzentrifugieren des Zellkerns und der Zelltrümmer bei 4 °C und 14000 rpm für 2 min wird der Überstand mit 50 µl 10proz. (w/v) SDS-Lösung versetzt. Nach zweimaliger Extraktion mit je 200 µl gepuffertem Phenol (Zentrifugation bei 14000 rpm und 10 min) wird die wäßrige Phase mit 40 µl 3 M KOAc pH 5,5 und 1 ml kaltem abs. Ethanol versetzt. Nach 30 min Lagerung bei -70 °C wird bei 14000x g für 30 min zentrifugiert und einmal mit 500 µl kaltem 70proz. (v/v) Ethanol gewaschen. Anschließend wird das RNA-Pellet unter Vakuum getrocknet und in 50 µl RNase-freiem Wasser aufgenommen.

Alternativ wurde reine Gesamt-RNA aus Kulturzellen mittels käuflich erwerbbarer Kits der Firmen Roche, Macherey-Nagel oder Qiagen isoliert. Die Aufreinigung wurde nach Herstellerangaben durchgeführt.

5.1.12 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentration wird photometrisch durch die Messung der Absorption bei 260 nm bestimmt. Um Verunreinigungen an Protein mit einzukalkulieren wird dabei zur Berechnung der Konzentration der Quotient der Absorption bei 260 nm und 280 nm gebildet. Als Referenz dient der Puffer, in dem die Nukleinsäuren vorliegen. Der Quotient OD_{260}/OD_{280} sollte im Bereich von 1,7 bis 2,1 liegen und richtet sich unter anderem nach dem verwendeten Puffer.

Eine $OD_{260} = 1$ bei einer gemessenen Schichtdicke von d = 10 mm entspricht einer Konzentration von 50 µg DNA/ml oder 40 µg RNA/ml.

5.1.13 Reverse Transkription (Foley, 1993)

0,5 bis 5 µg Gesamt-RNA wird mit RNase-freiem Wasser auf 10 µl verdünnt und mit 1 µl OdT versetzt. Zur Denaturierung wird für 10 min auf 70 °C erhitzt und sofort in einem Eis-Wasser-Bad abgekühlt. Nach Zusatz von 9 µl Mastermix wird für 1 h bei 37 °C inkubiert und zur Inaktivierung 20 min auf 65 °C erhitzt.

1x RT-Mastermix: 5 μl RT-Puffer
2 μl 0.1 mM DTT
2 μl 10 mM dNTP-Mix
1 μl M-MLV-Reverse-Transkriptase

5.1.14 Polymerase-Kettenreaktion (Mullis et al., 1986; Bell, 1989; White et al., 1989)

Über mutagene Oligonukleotide, die als Primer in der PCR eingesetzt wurden, konnten die gewünschten Mutationen in das zu amplifizierende Produkt eingefügt werden (mit *Pfu*-Polymerase oder Elongase). Die Klonierungsschemata der Deletionsmutanten sind in **Anhang 7** dargestellt. Selektionierte Einzelzellklone können durch RT-PCR auf Expression der transfizierten cDNAs untersucht werden (Taq-Polymerase). Als Kontrolle dient hier Aktin.

Tab 51	PCR-Redingungen	für die verwendeten	Oligonukleotide
1 av. 3.1	I CK-Deunigungen	ful ule vel wenuelen	Ongonukieouue

Amplifikat	Temperatur-Zeit-Profil
Aktin-RT-PCR	94 °C (4 min) - {[94 °C (30 sec) - 60 °C (30 sec) - 72 °C (30 sec)] 20 Zyklen} - 72 °C (5 min) - 10
	°C()
mtrp1ÄEWKFAR	94 °C (3 min) - {[94 °C (30 sec) - 50 °C (30 sec) - 68 °C (60 sec)] 10 Zyklen} - {[94 °C (30 sec) -
	+0,3 °C (30 sec) - 68 °C (60 sec)] 25 Zyklen} - {[94 °C (30 sec) - 58 °C (30 sec) - 68 °C (60 sec)]
	10 Zyklen} - 68 °C (5 min) - 12 °C (), Elongase-Polymerase
mtrp1Äpp	94 °C (5 min) - {[94 °C (30 sec) - 57 °C (30 sec) - 72 °C (45 sec)] 40 Zyklen} - 72 °C (7 min) - 10
	°C (), Pfu-Polymerase
mtrp1-RT-PCR	94 °C (5 min) - {[94 °C (30 sec) - 56 °C (30 sec) - 72 °C (45 sec)] 33 Zyklen} - 72 °C (7 min) - 10
	°C()
Neomycin-RT-PCR	94 °C (5 min) - {[94 °C (45 sec) - 59 °C (45 sec) - 72 °C (60 sec)] 33 Zyklen} - 72 °C (7 min) - 10
	°C()
pBEHpAC18-MCS-	94 °C (5 min) - {[94 °C (45 sec) - 55 °C (45 sec) - 72 °C (60 sec)] 33 Zyklen} - 72 °C (7 min) - 10
RT-PCR	°C()
Puromycin-RT-PCR	95 °C (5 min) -
	{[94 °C (60 sec) - 53 °C (45 sec) - 72 °C (60 sec)] 5 Zyklen} -
	{[94 °C (60 sec) - +0,2 °C °C/Zyklus (45 sec) - 72 °C (60 sec)] 15 Zyklen} -
	{[94 °C (60 sec) - 56 °C (45 sec) - 72 °C (60 sec)] 5 Zyklen} -
	72 °C (10 min) - 12 °C ()

5.1.15 LexA Hefe-Two-Hybrid-System (Clontech-b; Gyuris et al., 1993; Mendolsohn und Brent, 1994; Golemis et al., 1996)

Das Hefe-,,Two-Hybrid"-System dient zur *in vivo*-Analyse von Protein-Protein-Interaktionen. Die zu untersuchenden Proteine werden als Fusionsproteine in Hefezellen zur Expression gebracht. Das eine Protein ist an LexA (Bindungsdomäne, BD, "bait") fusioniert, einem bakteriellen Repressor, das an LexA-Operatoren binden kann. Das zweite Protein ist an B42, einer bakteriellen Aktivierungsdomäne (AD, "prey"), fusioniert und wird konditionell unter der Kontrolle des GAL1-Promotors exprimiert. Durch diese konditionelle Expression auf galactosehaltigem Nährmedium ist es möglich, die Aktivierung des Reportergens (LEU2 oder lacZ) schnell und direkt auf die Expression des AD-Fusionsproteins nach dessen Interaktion mit dem BD-Fusionsprotein zurückzuführen.

5.1.15.1 Kultivierung und Lagerung von Hefen

Für Flüssigkulturen werden 1 bis 5 Kolonien in 1 ml geeignetem Medium gut resuspendiert, anschließend in 30 bis 40 ml überführt und über Nacht bei 30 °C und 150 bis 250 rpm kultiviert. Die Kultivierung auf Agarplatten dauert bei 30 °C etwa 3 bis 5 Tage.

Für eine Glycerinkultur wird einer o/n-Kultur 25 % (v/v) Glycerin zugesetzt und diese bei -70 °C gelagert.

5.1.15.2 Herstellung chemisch kompetenter Hefen und deren Transformation nach der LiOAc-Methode

Es wird eine Hefe-o/n-Kultur in 40 ml Medium (YPD oder SD-Minimalmedium) angesetzt. Am nächsten Tag wird diese mit ca. 400 ml Medium auf eine $OD_{600} = 0,2$ eingestellt und bis zu einer $OD_{600} = 0,5$ bis 1,0 kultiviert. Die Kultur wird bei 2000x g für 5 min zentrifugiert und das Pellet je einmal mit 20 ml sterilem Wasser und mit 5 ml LiOAc/TE gewaschen. Die Zellen werden abschließend in 2 ml LiOAc/TE resuspendiert.

Für die Transformation werden je 100 ng DNA und 100 µg Lachssperma-DNA ("Carrier-DNA") vorgelegt und mit 100 µl einer kompetenten Hefezellsuspension versetzt. Es werden 70 µl DMSO und 600 µl PEG 4000/LiOAc/TE zugesetzt und das Reaktionsgefäß invertiert. Es erfolgt eine Inkubation bei 30 °C für 30 min (Schütteln nicht notwendig) und ein Hitzeschock bei 42 °C für 15 min. Nach einer kurzen Inkubation auf Eis werden die Zellen pelletiert, in 200 bis 500 µl sterilem Wasser resuspendiert und zur Selektion ein geeignetes Aliquot auf entsprechende SD-Minimalmedienplatten ausgestrichen.

5.1.15.3 Vortests

Vor dem Interaktionstest wird das BD-Fusionsprotein auf Autoaktivierung des LEU2- und lacZ-Gens, sowie auf Kernlokalisierung und die Bindung an die LexA-Operatoren getestet.

5.1.15.3.1 Autoaktivierungstest

 \Rightarrow drei HIS3-Kontrollplasmide werden verwendet:

pSH17-4; pREFHM1; pEG202

a) Aktivierung des LEU2-Gens

Der Hefestamm EGY48 wird mit pSH18-34 transformiert, selektioniert (SD Ura⁻) und anschließend mit dem HIS3-BD-Plasmid oder den Kontrollplasmiden transformiert und selektioniert (SD Ura⁻ His⁻). Je vier individuelle Klone werden in Flüssigmedium bis zu einer $OD_{600} = 0,5$ kultiviert (aus einer o/n-Kultur frisch angezogen).

Es werden je 10 μ l einer 1:10-, 1:100- und 1:1000-Verdünnung auf folgende Platten aufgetragen (Test- und Kontrollplasmide zum direkten Vergleich auf einer Platte):

Gal/Raf Ura His

Gal/Raf Ura His Leu

Das Zellwachstum wird für mehrere Tage beobachtet.

Das Ergebnis muß wie folgt aussehen, um einen erfolgreichen Einsatz des BD-Proteins zu gewährleisten:

- kein Wachstum auf Gal/Raf Ura His Leu
- auf Gal/Raf Ura⁻ His⁻ Wachstum entsprechend der Positivkontrolle

b) Aktivierung des lacZ-Gens

Die vier Klone aus a) werden zur Untersuchung der lacZ-Expression auf Glu Ura⁻ His⁻ X-Gal-Platten ausgestrichen und bei 30 °C inkubiert.

Folgendes Ergebnis ist zu erwarten:

- die Positiv-Kontrolle wird o/n blau
- die Negativ-Kontrolle und die zu testenden Hefeklone bleiben mehrere Tage farblos

Falls eine LEU2-, jedoch keine lacZ-Genaktivierung erfolgt (wurde verschiedentlich beobachtet), so kann auf den Interaktionstest durch Selektion verzichtet werden.

5.1.15.3.2 LexA-Bindungs- und Kernlokalisierungstest

BD-Proteine, die nicht das LEU2-Gen aktivieren, müssen auf Kernlokalisierung und Bindung an die LexA-Operatoren getestet werden.

 \Rightarrow als Reporterplasmid dient pJK101

 \Rightarrow drei HIS3-Kontrollplasmide werden verwendet:

pSH17-4; pREFHM1; pEG202

Der Hefestamm EGY48 wird mit pJK101 transformiert, selektioniert (SD Ura⁻) und anschließend mit dem HIS3-BD-Plasmid oder den Kontrollplasmiden transformiert und selektioniert (SD Ura⁻ His⁻). Je vier individuelle Klone werden auf folgende Platten ausgestrichen:

Glu Ura⁻ His⁻ X-Gal

Gal/Raf Ura⁻ His⁻ X-Gal

Die Platten werden nach 1, 2 und 3 Tagen examiniert. Folgendes Ergebnis ist zu erwarten:

- Klone ohne LexA-Operatorbindung und ohne Kernlokalisierung (bzw. ohne LexA-Proteine) werden auf den Gal/Raf-Platten o/n blau, und nach zwei bis drei Tagen leicht bläulich auf den Glu-Platten
- Klone mit Kernlokalisierung und LexA-Bindung werden langsamer blau als Hefen ohne LexA-Proteine

5.1.15.3.3 Nachweis der Proteinexpression

Die Identifizierung der exprimierten Fusionsproteine erfolgt durch SDS-PAGE und Western Blot-Analyse (Immunblot).

Es wird eine 55 ml Hefe-Kultur bis zu einer $OD_{600} = 0,4$ bis 0,6 angezogen und in ein zur Hälfte mit Eis gefülltes Zentrifugenröhrchen gegeben. Die pelletierten Zellen werden einmal mit 4 °C kaltem Wasser gewaschen, in flüssigem Stickstoff schockgefroren und bei -70 °C gelagert.

Zur Bestimmung der Gesamt-OD₆₀₀-Unit wird die OD₆₀₀/ml (d = 10 mm) mit dem Gesamtvolumen der Kultur multipliziert.

5.1.15.3.3.1 Harnstoff/SDS-Methode (Printen und Sprague, 1994)

Das Zellpellet wird in 100 μ l auf 60 °C vorgewärmten "Cracking" Puffer (mit Proteaseinhibitor-Cocktail) pro 7,5 Unit Gesamt-OD₆₀₀ resuspendiert und für 2 min bei 60 °C inkubiert. Die Suspension wird mit 80 μ l Glasperlen pro 7,5 Unit Gesamt-OD₆₀₀ versetzt und für 10 min auf 70 °C erhitzt. Es wird für 1 min stark gevortext und für 5 min bei 14000 rpm und 4 °C zentrifugiert. Der Überstand wird in ein neues Gefäß überführt und das Pellet für 3 bis 5 min auf 100 °C erhitzt, gevortext und zentrifugiert. Der erhaltene Überstand wird mit dem ersten vereinigt, für 5 min auf 95 °C erhitzt und 15 μ l pro Spur aufgetragen

5.1.15.3.3.2 TCA-Methode

Das Zellpellet wird bei 4 °C aufgetaut und in 100 μ l 4 °C-kaltem TCA-Puffer (mit Proteaseinhibitor-Cocktail) pro 7,5 Unit Gesamt-OD₆₀₀ resuspendiert. Es werden 100 μ l Glasperlen und 100 μ l 4 °Ckaltes 20 % TCA pro 7,5 Unit Gesamt-OD₆₀₀ zugesetzt. Die Suspension wird viermal für je 1 min stark gevortext (zwischenzeitliches Kühlen für mind. 30 sec auf Eis) und nach dem Absetzen der Glasperlen wird der Überstand in ein neues Gefäß überführt. Das Pellet wird mit 500 μ l einer 1:1-Mischung von 20proz. TCA und TCA-Puffer versetzt und zweimal für je 1 min gevortext (Kühlung). Der erhaltene Überstand nach Absetzen der Glasperlen wird mit dem ersten vereinigt. Die Proteine werden aus dem Überstand durch Zentrifugation bei 14000 rpm und 4 °C pelletiert und in 10 µl TCA-Laemmli-Puffer pro 1,0 Unit Gesamt-OD₆₀₀ resuspendiert. Nach 10 min Erhitzen auf 95 °C und 10 min Zentrifugation bei 14000 rpm werden 15 µl des Überstandes pro Spur aufgetragen.

5.1.15.3.3.3 Laemmli-Methode

Das Zellpellet einer 1 ml Hefekultur der $OD_{600} = 0,5$ wird in 50 µl 2x Laemmli resuspendiert und die Zellen durch Einfrieren auf Trockeneis oder bei -70 °C sowie Erhitzen für 5 min auf 95 °C aufgebrochen. Es werden 15 µl des löslichen Extraktes pro Spur aufgetragen.

5.1.15.4 Interaktionstests

Der Hefestamm EGY48 (mit pSH18-34 transfiziert) wird simultan mit den BD- und AD-Plasmiden nach der LiOAc-Methode transfiziert und auf Ura⁻ His⁻ Trp⁻ Glucose-SD-Agarplatten selektioniert. Nach drei Tagen Kultivierung bei 30 °C werden die Zellkolonien zur Induktion der Expression des AD-Proteins mit Hilfe eines sterilen Filterpapiers durch Abdruck auf Galactose/Raffinose-haltige Ura⁻ His⁻ Trp⁻ SD-Agarplatten übertragen. Die Platten werden für ein bis zwei Tage inkubiert und anschließend mit Hilfe von Filterpapier auf folgende Platten für den Interaktionstest übertragen:

- Gal/Raf Ura⁻ His⁻ Trp⁻ Leu⁻
- Gal/Raf Ura⁻ His⁻ Trp⁻ X-Gal
- Glu Ura⁻ His⁻ Trp⁻ Leu⁻
- Glu Ura⁻ His⁻ Trp⁻ X-Gal

Das Wachstum, bzw. die Blaufärbung der Zellkolonien wird über einen Zeitraum von bis zu fünf Tagen täglich beobachtet.

5.2 Zellbiologische Methoden

5.2.1 Bestimmung der Zellzahl

Zur Bestimmung der Zellzahl wird eine Neubauer-Zählkammer verwendet. Auf die Zählkammer wird ein angefeuchtetes Deckgläschen gelegt und leicht angepreßt. Anschließend wird die Zellsuspension unter das Deckgläschen pipettiert und die vier Großquadrate ausgezählt. Aus dem Mittelwert der Großquadrate ergibt sich wie folgt die Zellzahl: Zellzahl/ml = Mittelwert x 10^4

5.2.2 Einfrieren und Auftauen von Zellen

Die pelletierten, einzufrierenden Zellen werden in 4 °C kaltem 10 % DMSO enthaltendem

Kulturmedium ohne Antibiotika resuspendiert und in Einfrierröhrchen aliquotiert. Diese werden o/n in einer geschlossenen Styroporbox für 24 h bei -70 °C eingefroren, bevor sie zur Dauerlagerung in flüssigen Stickstoff überführt werden.

Zum Auftauen von Zellen wird die Probe im Wasserbad bei 37 °C zügig aufgetaut und sofort in 10 ml des entsprechenden Kulturmediums überführt. Nach Pelletieren der Zellen werden diese in frischem Kulturmedium resuspendiert und kultiviert.

5.2.3 Stabile Transfektion von IIA1.6-Zellen mittels Elektroporation

Die Transfektion durch Elektroporation (-permeabilisierung oder -transformation) ist ein Verfahren zum Einschleusen von DNA in eine Empfängerzelle und beruht auf dem von Zimmermann et al. (1973) beobachteten Phänomen, daß elektrische Stromstöße kurzer Dauer und hoher Intensität zu vorrübergehender Membranveränderung mit Ausbildung von Mikroporen führen. Die Methode wurde erstmals von Neumann et al. (1982) zur Transformation von Säugerzellen benutzt, ist aber auch bei anderen eukaryotischen Systemen und Bakterien anwendbar. Üblicherweise werden dabei intakte Zellen in Gegenwart von DNA einem oder wenigen kurzen elektrischen Impulsen von Feldstärken zwischen 1 bis 30 kV/cm unterworfen.

Die für die Transfektion verwendete DNA wurde linearisiert (pcDNA3 und pBEHpAC18 mit *Sca* I) und nach einer Phenolextraktion gegen TE dialysiert.

Zur Transfektion werden 1×10^7 Zellen in logarithmischer Wachstumsphase zweimal mit serumfreiem Medium (4 °C) gewaschen, in einer Zelldichte von 1×10^7 Zellen/ml aufgenommen und 0,5 ml der Zellsuspension mit 25 µg DNA versetzt. Nach einer Vorkühlphase von 5 min auf Eis wird in einer Küvette mit 0,4 cm Elektrodenabstand bei 260 V und 960 µF elektroporiert. Die Zellen werden für 2 d in 40 ml Click's/10 % FCS/50 µg Gms/ml kultiviert und anschließend selektioniert.

Selektion von IIA1.6-Zellen: Puromycin: 5µg/ml

5.2.4 Stabile und transiente Transfektion von HEK293-Zellen mittels aktivierten Dendrimeren (Albritton, 1997)

Dendrimere sind hochverzweigte sphärische Makromoleküle, deren Verzweigungen von einem Kernmolekül ausgehend mit positiv geladenen Aminogruppen enden. Eine Adsorption der zu transfizierenden DNA an die Dendrimere erfolgt durch die negativ geladenen Phosphatgruppen des DNA-Molekül, die an die positiv geladenen Aminogruppen der Dendrimere binden. Die so gebildeten insgesamt positiv geladenen Komplexe lagern sich an die negativ geladene Zellmembran an und werden durch unspezifische Endocytose in die Zelle aufgenommen. In der Zelle wirken die basischen Gruppen

der Dendrimere als Puffer, um nach Fusion der Endosomen mit Lysosomen den pH der Lysosome zu erhöhen, so daß Nukleaseaktivität inhibiert und somit der Degradierung der DNA vorgebeugt wird.

Das im Rahmen dieser Arbeit verwendete Dendrimer-Reagens "Superfect" wurde von Qiagen bezogen und nach den Herstellerangaben verwendet.

Selektion von HEK293-Zellen: 400 µg G418/ml, 2 d nach Transfektion mit pIRES2-EGFP-Konstrukten

5.2.5 Transfektion von COS-M6-Zellen mittels DEAE-Dextran (persönliche Mitteilung von Brian Seed)

 \Rightarrow die Zellen werden einen Tag vor der Transfektion so geteilt, daß sie am Tag der Transfektion zu etwa 60 bis 80 % konfluent sind

Die Zellen einer 140 mm Schale werden mit 10 ml Transfektionsmedium (DMEM, 10 % NU-Serum, 400µg/ml DEAE-Dextran, 100µM Chloroquin, 10 bis 20 µg Gesamt-DNA) versetzt und für 3 h bei 37 °C inkubiert. Anschließend erfolgt für 2 min ein DMSO-Schock (10 ml PBS, 10 % DMSO). Die Zellen werden in Kulturmedium (50 µg Gms/ml) weiterkultiviert. Nach 1 d wird das Medium gewechselt und nach oder Tagen die Immunpräzipitation die zwei drei oder Immunfluoreszenzmikroskopie durchgeführt.

5.2.6 Immunfluoreszenzenmikroskopie an IIA1.6-Zellen (Budde et al., 1994)

⇒ die Objektträger werden mit Poly-D-Lysin vorbehandelt

⇒ die Zellen werden 1 d vor der Inkubation mit den Antikörpern ausgesät

 \Rightarrow alle Puffer sind mit PBS/0,5 mM CaCl₂ angesetzt

 \Rightarrow alle Schritte werden bei RT durchgeführt

Die Zellen werden einmal gewaschen und für 20 min mit 4 % Formaldehyd und 4 % Saccharose fixiert. Nach dreimaligem Waschen wird für 30 min mit 2 % BSA geblockt und nach erneutem dreimaligem Waschen für 2 min mit 0,2 % Triton X-100 permeabilisiert. Die Inkubationen mit dem ersten und zweiten Antikörper (**Tab. 5.2**) erfolgt jeweils nach dreimaligem Waschen für 1 h. Nach den abschließenden drei Waschschritten werden die Zellen in Mowiol 4-88-Lösung eingebettet. Die immunfluoreszenzmikroskopischen Aufnahmen werden nach dem Trocknen der eingebetteten Zellen gemacht (ein bis zwei Tage), wobei alle Bilder, die verglichen werden sollen, mit den gleichen Einstellungen aufgenommen werden.

- 5.2.7 Immunfluoreszenzenmikroskopie an HEK293- und COS-M6-Zellen (Engelke, 1999)
- ⇒ die Objektträger werden für HEK293-Zellen mit Poly-D-Lysin vorbehandelt
- ⇒ die Zellen werden 1 bis 2 d vor der Inkubation mit den Antikörpern ausgesät
- \Rightarrow alle Puffer sind mit PBS/0,5 mM CaCl₂ angesetzt
- \Rightarrow alle Schritte werden bei RT durchgeführt

Die Zellen werden einmal gewaschen und für 20 min mit 2,5 % PFA (frisch angesetzt und pH-neutral) fixiert. Nach einmaligem Waschen wird für 30 min mit 100 mM Glycin geblockt und einmal mit 1,5 % BSA gewaschen. Anschließend werden die Zellen 30 min mit 1,5 % BSA/0,2 % Saponin permeabilisiert. Die Inkubationen mit dem ersten und zweiten Antikörper (**Tab. 5.2**) erfolgt für je 45 min in selbigem Puffer. Zwischen- und Abschlußwaschschritte erfolgen je dreimal für 5 min mit Permeabilisierungspuffer. Nach einmaligem Waschen mit PBS werden die Zellen in Mowiol 488-Lösung eingebettet.

Die immunfluoreszenzmikroskopischen Aufnahmen werden nach dem Trocknen der eingebetteten Zellen gemacht (ein bis zwei Tage), wobei alle Bilder, die verglichen werden sollen, mit den gleichen Einstellungen aufgenommen werden.

Primärantikörper	Spezifität	Spezies	Konzentration	Endverdünnung
Oct-A	FLAG	Ziege	200 µg/ml	1:300
9E10	c-myc	Maus	0,4 mg/ml	1:400
3F10	HA	Ratte	0,4 mg/ml	1:400
Sekundärantikörper	Markierung	Konzentation	Endverdünnung	-
Esel-anti-Ziege	Cy3	1,2 mg/ml	1:800	-
Ziege-anti-Maus	Cy2	1,5 mg/ml	1:600	
Ziege-anti-Ratte	TRITC	1,5 mg/ml	1:600	

Tab. 5.2 Konzentrationen von Antikörpern für die Immunfluoreszenzmikroskopie

5.2.8 Calciumfluß-Analyse an IIA1.6-Zellen im Durchflußzytometer (Budde et al., 1994)

5.2.8.1 Beladung der Zellen mit Fluo-3

 1×10^{6} Zellen werden zweimal mit Click's Medium/5 % FCS gewaschen und in 1 ml desselben Mediums aufgenommen. Anschließend werden die Zellen mit 1 μ M Fluo-3-AM, 0,2 μ M SNARF-1-

AM und 0,02 % Pluronic F-127 bei 30 °C für 30 min im Dunkeln inkubiert. Es wird 1 ml Medium zugesetzt und für 10 min bei 37 °C zum Aktivieren der Esterasen inkubiert. Abschließend werden die Zellen zweimal mit Krebs-Ringer-Lösung mit 1,5 mM CaCl₂ gewaschen und in einer Zelldichte von 1×10^7 Zellen/ml in Krebs-Ringer-Lösung mit 1,5 mM CaCl₂ aufgenommen.

5.2.8.2 Stimulation der B-Zellen

Der BCR der IIA1.6-Zellen wird mittels 20 μ g/ml des F(ab')₂-Fragmentes von Kaninchen-anti-Maus-IgG quervernetzt und so der PLC- γ - und IP₃-Signalweg initiiert.

Um das biphasische Ca^{2+} -Signal in ein intrazelluläres Entleeren der Speicher und den Einstrom über die Plasmamembran aufzulösen werden die Zellen in Ca^{2+} -freier Krebs-Ringer-Lösung (mit 0,5 μ M EGTA) stimuliert und nach dem Erreichen des Basalwertes wird die extrazelluläre [Ca^{2+}] auf 1,8 mM eingestellt.

5.2.9 Calciumfluß-Analyse an HEK293-Zellen am "Calcium-Imaging"-System (Engelke, 1999)

- 5.2.9.1 Beladung der Zellen mit Fura-2
- ⇒ Die Zellen werden zwei Tage vor der Messung auf mit Poly-D-Lysin-vorbehandelten Deckgläsern ausgesäht.

Zum Beladen der Zellen werden diese in Kultivierungsmedium mit 5 µM Fura-2-AM und 0,05 % Pluronic F-127 für 30 min bei 37 °C im Dunkeln inkubiert. Es wird mit dem doppeltem Volumen Medium verdünnt und für weitere 15 min bei 37 °C inkubiert. Abschließend werden die Zellen zweimal mit ECS mit 1,8 mM CaC₂ gewaschen und in demselben Puffer im Dunkeln bis zur Messung verwahrt.

5.2.9.2 Stimulation der HEK293-Zellen

Direkt vor der Messung werden die Zellen einmal mit ECS mit 0,5 mM EGTA gewaschen. Bei einer 40x Vergrößerung werden die Zellen am "Single Cell Calcium Imaging"-System mit 200 μ M Carbachol stimuliert und nach dem Abklingen des Primärsignals (4 min) die extrazelluläre [Ca²⁺] auf 1,8 mM eingestellt.

5.2.9.3 Messung und Berechnung der intrazellulären [Ca²⁺] von HEK293-Zellen

Die Änderungen der intrazellulären Fura-2-Fluoreszenzintensiät an GFP-positiven Zellen wurde mit dem "Single Cell Calcium Imaging" System (T.I.L.L. Photonics) aufgenommen. Detektiert wurde die Emission bei 510 nm in Zeitintervallen von 3 bis 4 sec bei alternierenden Extinktionen von 340 nm und
380 nm. Über die Verhältnisse 340/380 wurde die $[Ca^{2+}]$ per Software nach Grynkiewicz et al. (1985) berechnet. Die Signifikanz wurde mit dem Students t-Test berechnet.

5.3 Proteinbiochemische Methoden

5.3.1 Affinitätsreinigung von His₆-Fusionsproteinen an Nickel-NTA-Agarose (Novagen, 2001)

5.3.1.1 Testexpression in kleinem Maßstab

Eine Übernachtkultur des Expressionsklons BL21(DE3)-pet32a(+)-mtrp1CT wird 1:20 in 10 ml LB/Amp (100 µg/ml) verdünnt und bei 37 °C und 250 rpm bis zu einer OD₆₀₀ = 0,6 kultiviert. Es wird eine 1 ml Probe entnommen und das Zellpellet bei -20 °C eingefroren. Die Kultur wird mit 1 mM IPTG zur Inkuktion der Proteinexpression versetzt. Zur Erstellung einer Zeitkurve wird jede Stunde eine 1 ml Probe entnommen.

Zur Proteinaufreinigung werden die Zellpellets in 1 ml Lysepuffer (Bindepuffer, 1 % TX-100, 1 µg RNase, 2µg DNase, Proteaseinhibitor-Cocktail) resuspendiert. Die Suspension wird zehnmal mit einer 20 G Kanüle gescheert und für 30 min bei 4 °C inkubiert. Die Zelltrümmer werden für 15 min bei 4 °C und 14000 rpm abzentrifugiert und der Überstand mit 50 µl 50proz. Ni²⁺-NTA-Agarose versetzt. Nach einstündiger Inkubation bei 4 °C wird die Agarose viermal mit Waschpuffer gewaschen und das Protein mit 30 µl Elutionspuffer für 5 min von der Matrix gelöst. Das Eluat wird mit 2x Laemmli-Puffer versetzt und in einem SDS-PAA-Gel elektrophoretisch aufgetrennt. Die Proteine werden mit einer Silberfärbung des Gels sichtbar gemacht.

5.3.1.2 Expression von His₆-Fusionsproteinen in großem Maßstab

Eine Übernachtkultur des Expressionsstammes wird 1:20 in 500 ml LB/Amp (100 μ g/ml) verdünnt und bei 250 rpm und 37 °C bis zu einer OD₆₀₀ = 0,5 bis 0,6 kultiviert. Nach Induktion der Expression mit 1 mM IPTG wird die Kultur für 3 h kultiviert. Die Bakterien werden bei 2800x g und 4 °C für 25 min geerntet und das Pellet in 20 ml eiskaltem Lysepuffer (Bindepuffer, 1 % TX-100, 1 μ g RNase, 2 μ g DNase, Proteaseinhibitorcocktail) inkubiert. In dieser Zeit wird die Suspension solange mit einer 20 G Kanüle geschert, bis das Lysat nicht mehr viskos ist. Die Suspension wird bei 2800x g und 4 °C für 20 min zentrifugiert und der Überstand durch eine 0,45 μ m Membran filtriert. Nach Zusatz von 3 ml einer 50proz. Nr²⁺-NTA-Suspension wird für 30 min bei RT inkubiert. Nach 20 min Zentrifugation bei 500x g bei 4 °C wird der Überstand abgenommen (ungebundene Proteinlösung) und die feste Matrix in eine PD-10 Säule mit Bindepuffer gepackt. Es wird mit je 20 ml Waschpuffer und Äquilibrierungspuffer gewaschen, bis der Durchlauf eine konstante OD_{280} aufweist. Das affinitätsgebundene His₆-Protein wird mit Strippuffer von der Matrix gelöst und die Konzentration bei OD_{280} ($OD_{280} = 1$ entspricht 0,7 mg/ml bei d = 10 mm) oder nach der Bradford-Methode bestimmt. Für eine analytische SDS-PAGE werden ca. 500 ng Protein aufgetragen und die Proteine mit einer Silberfärbung sichtbar gemacht oder in einer Western Blot-Analyse mit spezifischen Antikörpern detektiert.

5.3.2 Proteinkonzentrationsbestimmung nach Bradford (Bradford, 1976)

Die Bestimmung der Proteinkonzentration nach Bradford ist ein chemisch-photometrisches Verfahren für Proteinlösungen mit einem Gesamtproteingehalt von 1 bis 10 μ g/ml. Als Standard dient eine Konzentrationsreihe von BSA-Lösungen, wobei wegen der Empfindlichkeit der Methode auf Störungen stets der Puffer der zu bestimmenden Proteinlösung verwendet wird. Zu bestimmende Proben und Standardlösungen werden gleichzeitig bearbeitet.

Die vorliegenden Probenlösungen werden mit 150 mM NaCl-Lösung auf 150 µl aufgefüllt und mit 850 µl Bradford-Reagenz versetzt. Nach 2 min Inkubation bei RT wird die Absorption bei 585 nm gemessen und die Konzentration über eine Eichgerade bestimmt.

5.3.3 Immunisierung eines Kaninchens bei Eurogentec zur Gewinnung polyklonaler Antikörper

Zur Immunisierung wurden zweimal 500 μ g gereinigtes Fusionsprotein mTRP1-CT an Eurogentec (Seraing, Belgien) für die Immunisierung eines Kaninchen nach dem Firmenstandardprotokoll (mit je 100 μ g pro Immunisierung) gesandt. Der Code für die Immunisierung ist **DE99259**. Die erste Immunisierung erfolgte nach der Abnahme des Präimmunserums am 14.06.1999. Alle folgenden Immunisierungen erfolgten nach dem Standardprotokoll.

Es wurden folgende Seren erhalten:

- a) ca. 2,5 ml Präimmunserum (14.06.1999)
- b) ca. 2,5 ml "small taking of blood" (22.07.1999)
- c) ca. 25 ml "large taking of blood" (19.08.1999)
- d) ca. 25 ml "large taking of blood" (28.10.1999)
- e) ca. 65 ml "final bleeding" (11.11.1999)

5.3.4 Aufreinigung von IgG-Fraktionen aus Antiseren

200 mg Protein-A-Sepharose werden in 8 ml 140 mM Na₂HPO₄ pH 8,0 aufgequollen (entspricht ca. 1 ml Gelvolumen), dreimal mit demselben Puffer gewaschen und für 2h mit 1 ml Serum in 8ml des Phosphatpuffers bei 4 °C inkubiert. Das Gel wird in eine PD-10 Säule gepackt und mit 30 bis 40 ml

Puffer gewaschen, bis der Durchlauf eine $OD_{280} \le 0,020$ /cm aufweist. Die Elution der IgG-Fraktion erfolgt achtmal mit je 650 µl 200 mM Glycin pH 3,0, die direkt in 350 µl 1 M K₂HPO₄ zwecks Neutralisation gegeben werden.

Die Konzentrationsbestimmung erfolgt durch Messung der OD_{280} ($OD_{280} = 1$ entspricht 70 mg/ml bei d = 10 mm). Die Reinheitskontrolle erfolgt durch SDS-PAGE und Silberfärbung der Gele. Es werden je 500 ng Protein pro Spur aufgetragen.

5.3.5 Immunpräzipitation an stabil transfizierten HEK293-Zellen

 \Rightarrow alle Schritte werden, soweit nicht anders angegeben, bei 4 °C durchgeführt

Die Zellen einer konfluent bewachsenen 10 cm Schale werden einmal mit PBS gewaschen und in 1 ml RIPA/1 % TX-100/0,5 % NP-40-Ersatz/0,5 % Deoxycholat/0,1 % SDS/Proteaseinhibitor-Cocktail für 30 min lysiert und anschließend der Zelldebris bei 14000 rpm abgetrennt. Dem Überstand werden 2 µg Ziege-anti-FLAG-Ak (OctA) zugesetzt und nach 1 h 30 µl 50proz. Protein-G-Sepharose. Nach zweistündiger Inkubation wird die Sepharose fünfmal mit Lysepuffer ohne Proteaseinhibitoren gewaschen. Die Proteine werden mit 15 µl 2x Laemmli für 5 min bei 95 °C von der Sepharose gelöst und auf ein SDS-PAA-Gel aufgetragen, elektrophoretisch aufgetrennt und im Immunblot die Proteine mit einer aufgereinigten IgG-Fraktion des Antiserums gegen den CT von mTRP1 nachgewiesen (Reinkubation mit dem mAk M2 anti-FLAG).

5.3.6 Immunpräzipitationen an transient transfizierten COS-M6-Zellen

 \Rightarrow alle Schritte werden bei 4°C durchgeführt

Die Zellen werden zur Zerstörung der LRD für 45 bis 60 min mit 10 mM MβCD in PBS bei 37 °C inkubiert und anschließend von der Schale gelöst. Nach einmaligem Waschen mit PBS werden die Zellen in 1 ml RIPA/1 % NP-40-Ersatz/Proteaseinhibitor-Cocktail für 1 h lysiert und anschließend der Zelldebris bei 14000 rpm abgetrennt. Dem Überstand wird der Primär-Ak zugesetzt, nach 1 h der Sekundär-Ak und nach einer weiteren Stunde 30 µl 50proz. Protein-A oder G-Sepharose (siehe **Tab. 5.3**). Nach o/n-Inkubation wird die Sepharose fünfmal mit Lysepuffer ohne Protease-Inhibitoren gewaschen. Die Proteine werden mit 15 µl 2x Laemmli für 5 min bei 95 °C von der Sepharose gelöst, auf ein SDS-PAA-Gel aufgetragen und im Immunblot nachgewiesen.

Spezifität	Primär-Ak	Spezies	Konzentration	Sekundär-Ak	Konzentration	Sepharose
				(Fcgspez.)		
Caveolin	α-Cav	Maus	2μg/ml	kam-IgG	1 μg/ml	Protein-A
c-myc	9E10	Maus	1 μg/ml	kæm-IgG	1 μg/ml	Protein-A
FLAG®	Oct-A	Ziege	1 μg/ml	-	-	Protein-G
FLAG®	M2	Maus	1 µg/ml	kαm-IgG	1 µg/ml	Protein-A
HA	3F10	Ratte	0,5 µg/ml	zorat-IgG	0,5 µg/ml	Protein-G
PL17	AT10	Maus	1:200	kαm-IgG	5 µl/ml	Protein-A

 Tab. 5.3
 Antikörperkonzentrationen für Immunpräzipitationen

5.3.7 SDS-Polyacrylamid-Gelelektrophorese (Laemmli, 1970)

Zur analytischen Auftrennung von Proteinen werden SDS-Polyacrylamidgele mit diskontinuierlichem Puffersystem verwendet. Trenn- und Sammelgele werden nach den in der **Tab. 5.4** angegebenen Rezepturen hergestellt. Die Trenngellösung wird zwischen zwei Glasplatten, die zunächst durch eine Gummidichtung abgedichtet sind, gegossen und mit etwas Isopropanol zur Verhinderung der Ausbildung eines Meniskus überschichtet. Nach Polymerisierung des Gels wird das Isopropanol abgegossen und mit Wasser gespült, bevor das Sammelgel gegossen wird, in das die Probentaschen durch Einführen eines Teflonkamms einpolymerisiert werden. Die Proteinproben werden vor dem Gellauf in 2x Laemmli-Probenpuffer für 5 min auf 95 °C erhitzt. Als Proteingrößenstandard (Marker) wird LMW bzw. HMW verwendet. Die Elektrophorese erfolgt bei 10 mA im Sammelgel und 20 mA im Trenngel unter Verwendung von SDS-PAGE-Laufpuffer.

Bei den Harnstoffgelen wird eine Endkonzentration von 8 M Harnstoff in den Gelen eingestellt und die Proben werden für 3 h in Probenpuffer (mit 8 M Harnstoff) bei 40 °C inkubiert.

Tab. 5.4Rezepturen für SDS-PAA-Gele

	Samn	nelgel	Trenngel					
	3 %	5 %	5 %	6 %	7,5 %	10 %	12,5 %	
AA-Stammlösung/ml	0,25	0,42	1,25	1,5	1,88	2,5	3,13	
H ₂ O/ml	0,92	0,75	3,23	2,98	2,6	1,98	1,35	
1 M Tris/HCl pH 8,8/ml			2,81					
0,25 M Tris/HCl pH 6,8/ml	1,25							
10 % (w/v) SDS/µl	50		150					
10 % (w/v) AMPS/µ1	30		60					
TEMED/µl	3		4					
Gesamtvol./ml	2,5		7,5					

5.3.8 Silberfärbung von Proteingelen (modifiziert nach Damerval et al., 1987)

Nach der Gelelektrophorese wird das Gel für 15 min in Fixiererlösung inkubiert und 2 min mit "Farmer's Reducer" behandelt. Anschließend wird das Gel durch Waschen mit Wasser vollständig entfärbt, 30 min in 0,1 % (w/v) Silbernitratlösung und schließlich nacheinander je zweimal 30 sec mit Wasser und 2,5proz. (w/v) Na₂CO₃-Lösung inkubiert. Die Entwicklung des Gels erfolgt in 2,5proz. (w/v) Na₂CO₃, 0,1proz. (v/v) Formaldehyd-Lösung. Die Farbentwicklung wird durch Waschen mit 10proz. (v/v) Essigsäure abgestoppt. Zur Lagerung und Dokumentation werden die gefärbten Gele zum Entfernen der Essigsäure dreimal für 5 min mit Wasser gewaschen und anschließend 15 min in Geltrocknunglösung inkubiert. Die so behandelten Gele werden in einen Rahmen zwischen zwei Cellophanfolien gespannt und o/n getrocknet.

5.3.9 Elektroelution von Gelbanden aus einem SDS-PAA-Gel

Die Gelbanden werden aus dem elektrophorierten Gel ausgeschnitten und in einen Dialyseschlauch (Ausschlußporengröße 3 bis 8 kDa) gelegt und mit möglichst wenig Puffervolumen bedeckt (100 bis 200 μ l). Die Schläuche werden in eine normale Kammer für DNA-Elektrophoresen gelegt und für 3 h bei 100 mA elektrophoriert. Anschließend wird der Puffer aus dem Dialyseschlauch entnommen und die eluierten Proteine unter Vakuum getrocknet. Der Rückstand wird in 20 μ l 2x Laemmli (β -Mercaptoethanol und 200 mM DTT) aufgenommen und für 10 min auf 95 °C erhitzt und wiederum auf ein SDS-PAA-Gel aufgetragen.

Folgende Elektroelutionspuffer wurden verwendet:

- 1. normaler 1x SDS-PAGE-Laufpuffer und 125 mM Tris/HCl pH 6,8 als Dialysepuffer,
- Elektroelutionspuffer nach Sa-Pereira et al. (2000) (15 g/l Tris, 72 g/l Glycin pH 8,3) und PBS als Dialysepuffer.

5.3.10 Trocknung von Gelbanden

Die ausgeschnittene Gelbande wird zwischen zwei Cellophanfolien gelegt und unter Vakuum getrocknet. Nach kurzem Aufquellen und Äquilibrieren in 125 mM Tris/HCl pH 6,8 wird das Gelstück für 30 min in 2x Laemmli (β -Mercaptoethanol und 200 mM DTT) inkubiert. Anschließend werden die Gelbanden in die Taschen des Sammelgels geschoben und die Elektrophorese gestartet.

5.3.11 Reduktion von Proteinen im Gel

Die Oberkante des Trenngels wird auf einer Länge von 5 mm über die gesamte Breite abgeschnitten und kurze Zeit in 125 mM Tris/HCI-Puffer pH 6,8 äquilibriert. Anschließend wird das Gel für verschiedene Zeiten in Reduktionspuffer unter leichtem Schwenken inkubiert und dreimal mit 125 mM Tris/HCI-Puffer pH 6,8 gewaschen, um das Reduktionsmittel best möglich zu entfernen. Das Gel wird an die Oberkante der Glasplatten gelegt und mit einem Trenngel sowie einem Sammelgel unterschichtet und normal elektrophoriert.

Folgende Reduktionsbedingungen wurden verwendet:

- 1. 2x Laemmli (mit 30 % (v/v) Glycerin gegen die Diffusion) bei RT für 2 h
- 2. 2x Laemmli (mit Glycerin) bei 37 für o/n
- 8 M Harnstoff mit 200 mM DTT und 2 % (w/v) SDS in 125 mM Tris/HCI-Puffer pH 6,8 bei RT f
 ür 20 min oder 90 min (modifiziert nach einer persönlichen Mitteilung von M. Schlee, GSF M
 ünchen)

5.3.12 Western Blot

Fünf Lagen 3MM-Whatmanpapier in Größe des zu blottenden Gels werden in Transferpuffer getränkt und auf die Anode der Graphitblotkammer gelegt. Darüber wird die mit Methanol vorbehandelte und in Transferpuffer äquilibrierte PVDF-Membran blasenfrei aufgelegt. Das ebenfalls in Transferpuffer äquilibrierte SDS-PAA-Gel und fünf weitere Lagen getränktes Whatmanpapier werden auf die Membran gelegt und mit der Graphitkathode abgeschlossen. Der Transfer erfolgt bei 175 mA/pro Gel (55 cm²) für 1,5 h unter Eiskühlung. Die Membran wird 2 min in Ponceau-S-Lösung inkubiert und anschließend mit Wasser gewaschen bis klare Proteinbanden sichtbar werden. Nach digitalisieren der gefärbten Membran zur Dokumentation wird diese in 0,1 M NaOH-Lösung entfärbt, mit PBS und Wasser gewaschen und zum Schließen der Poren nach 30 sec Methanolbehandlung für 20 min bei RT getrocknet. Die Membran kann in trockenem Zustand und in Cellophanfolie eingeschweißt bei -20 °C gelagert werden.

5.3.13 Western-Blot-Analyse (immunologischer Nachweis, Immunblot)

Zur weiteren Absättigung freier Bindungsstellen der PVDF-Membran wird diese 1 h bei RT oder o/n bei 4 °C mit entsprechendem Blockpuffer inkubiert. Anschließend erfolgt der immunologische Nachweis durch Inkubation mit dem spezifisch bindenden Primärantikörper (**Tab. 5.5**) in Blockpuffer für 1,5 h bei RT, dreimaliges Waschen für 5 min und Inkubation für 1 h bei RT mit dem zweiten peroxidasemarkierten Antikörper (**Tab. 5.5**). Nach neunmaligem Waschen für je 5 min mit PBS-T bzw. TBS-T erfolgt die Detektion mittels der ECL- bzw. Lumi-Light- (ggf. plus) Reaktion.

Spezifität	Primär-Ak	Spezies	Konzentration	Konzentration Endkonzentration/E	
				ndverdünnung	Inkubationspuffer
Aktin	10A5	Maus	Ascites	1:1000	PBS-T
HA	3F10	Ratte	0,4 mg/ml	50 ng/ml	TBS/1 % BSA
c-myc	9E10	Maus	0,4 mg/ml	2 µg/ml	PBS/10 % MP
PL17	II1A5	Maus	Hybridom-	1:5	PBS-T
			überstand		
FLAG®	α-Octapeptid	Kaninchen	0,5 mg/ml	2,5 µg/ml	PBS/10 % MP
FLAG®	M2	Maus	4,4 mg/ml	4 μg/ml	PBS/10 % MP
Caveolin	α-Cav-1	Kaninchen	250 µg/ml	50 ng/ml	PBS/10 % MP
mTRP1-CT	α-mTRP1-CT-FP	Kaninchen	ger. IgG-	5 µg/ml	PBS/10 % MP
			Fraktion		
His ₆	13/45/31-2	Maus	200 µg/ml	2 µg/ml	PBS/10 % MP
peroxidasemarkierte Sekundärantikörper			Konzentration	Endverdünnung	Inkubationspuffer
Ziege-anti-Kaninchen			0,8 mg/ml	1:50000	PBS-T
Ziege-anti-Maus			0,8 mg/ml	1:50000	PBS-T
Ziege-anti-Ratte			0,8 mg/ml	1:50000	TBS-T

 Tab. 5.5
 Konzentrationen und Pufferbedingungen f
 ür den Einsatz von Antik
 örpern in der Immundetektion

5.3.14 Stripping von Western Blot-Membranen

Zur Entfernung von auf Membranen gebundenen Antikörpern, wird der Blot 30 min mit Stripping-Puffer bei 70 °C unter leichtem Schütteln inkubiert. Nach intensivem Waschen mit PBS-T oder TBS-T (mind. sechsmal 15 min) kann eine erneute immunologische Detektion durchgeführt werden.

6 Ergebnisse

6.1 Klonierung von mTRP1**b**-FLAG und Mutanten

Die cDNA von mTRP1 β wurde anhand der Genbank-Accession-Nummer U95167 aus IIA1.6-Zellen, einer Maus-B-Zellinie, mit Hilfe der RT-PCR kloniert. Um das exprimierte TRP-Protein von endogenem TRP zu unterscheiden, wurde ein FLAG- oder c-myc-Epitop ebenfalls über PCR an das C-terminale Ende angehängt.

Zu Interaktions- und Funktionsstudien wurde eine *in vitro*-Mutagenese durchgeführt, um bestimmte Regionen aus mTRP1 β zu deletieren (**Abb. 6.1**). Dabei wurden die vorhergesagten cytosolischen Domänen von mTRP1 β , die drei Ankyrin-ähnlichen Wiederholungen und die Coiled-Coil Region im Nterminalen Bereich sowie die Dystrophin-ähnliche Domäne am C-Terminus deletiert (Engelke, 1999). Desweiteren wurden die über fast alle bekannten TRP-Isoformen hoch konservierte Sequenz EWKFAR (AS von 641 bis 646 für mTRP1 β) sowie die potentielle Porenregion, die fünfte und sechste Transmembranregion sowie die Porenschleife, deletiert.

Abb. 6.1 *in vitro* -Mutagenese von mTRP1**b**

Die cDNA von mTRP1β wurde per RT-PCR aus der Maus-B-Zellinie IIA1.6 kloniert und mit einem Epitop versehen (FLAG oder c-myc). Durch eine *in vitro*-PCR-Mutagenese wurden die Deletionsmutanten von mTRP1β generiert. ank: drei Ankyrin-ähnliche Wiederholungen, cc: Coiled-Coil Region, pp: potentielle Porenregion einschließlich der 5. und 6. Transmembranregion, EWKFAR: hoch konservierte Sequenz, dys: Dystrophin-ähnliche Domäne.

6.2 Generierung und Charakterisierung eines mTRP1-spezifischen Antiserums

Im Rahmen der vorliegenden Arbeit wurde ein mTRP1-spezifisches Kaninchen-Antiserum erzeugt. Dazu wurde der cytosolische C-Terminus in den prokaryotischen Expressionsvektor pET32a(+) kloniert (siehe Klonierungsschema **Anhang 4 (B)**), der neben einem N-terminalen His₆-Epitop noch ein N-terminales TRX-Epitop enthält. Da TRX ein *E. coli* eigenes, in hohen Leveln exprimiertes, lösliches Protein ist, werden die meisten Fusionsproteine ebenfalls löslich in *E. coli* exprimiert und können nativ aufgereinigt werden (Novagen, 2001).

6.2.1 Rekombinante Expression von mTRP1-CT

Zur Generierung eines Antiserums gegen mTRP1 wurde der C-terminale Bereich, AS 646 bis 776, als His_6 -Epitop-Fusionsprotein in *E. coli* BL21(DE3) exprimiert und über $N_1^{2^+}$ -NTA-Agarose affinitätschromatographisch nativ aufgereinigt. Die höchste Expressionsrate wurde dabei nach 3 h erreicht, wobei jedoch nur ein geringer Anteil des exprimierten Fusionsproteins nativ aufgereinigt werden konnte. Das 33 kDa große Fusionsprotein, das sich aus dem 15,5 kDa C-Terminus und dem 17,5 kDa Epitop zusammensetzt, konnte in der Silberfärbung (Abb. 6.2 (A)) sowie im Immunblot durch Immunreaktion mit einem anti-His₆-Ak (Abb. 6.2 (B)) nachgewiesen werden.

6.2.2 Charakterisierung des anti-mTRP1-CT Kaninchenantiserums

Um die Eignung des Antiserums zur Western Blot Analyse zu untersuchen, wurden verschiedene Mengen an rekombinantem Fusionsprotein auf eine PVDF-Membran transferiert. Die Nachweisgrenze der gereinigten IgG-Fraktionen des Antiserums für die Detektion des 33 kDa Proteins im Immunblot liegt bei unter 1 ng (**Abb. 6.3 (A**)).

Das Fusionsprotein läßt sich sowohl im Western Blot detektieren als auch mit den gereinigten IgGs präzipitieren (**Abb. 6.3 (B**)). Im Gegensatz dazu läßt sich mTRP1β-FLAG aus transient transfizierten COS-M6-Zellen nur detektieren aber nicht präzipitieren (Daten nicht gezeigt). Als Kontrolle diente eine Immunpräzipitation mit dem monoklonalen Antikörper M2, der gegen das FLAG-Epitop gerichtet ist.

Abb. 6.2 Silberfärbung einer Expression des mTRP1-CT-Fusionsproteins und anti-His₆-Blot

(A) Das Fusionsprotein wurde in BL21(DE3) exprimiert und affinitätschromatographisch über Ni²⁺-NTA-Agarose nativ aufgereinigt. Die analytische Auftrennung erfolgte in einem 12,5proz. SDS-PAA-Gel. Die Silberfärbung des Gels zeigt die Aufreinigung einer Kulturprobe vor (0 h) und drei Stunden nach (3 h) der Induktion der Expression. GL: Gesamtlysat, unlösl.: unlöslicher Rückstand, lösl.: löslicher Anteil des Gesamtlysates, ÜS: ungebundener Überstand nach der Inkubation mit der Ni²⁺-NTA-Agarose, Eluat: von der Agarose eluiertes Protein. (**B**) Die Eluate der Expression wurden von einem 12,5 % SDS-PAA-Gel auf eine PVDF-Membran transferiert und diese mit einem anti-His₆-Ak inkubiert. Die detektierten Proteinbanden wurden mit einem peroxidasemarkierten Sekundär-Ak und ECL sichtbar gemacht.

Abb. 6.3 Charakterisierung des anti-mTRP1-CT-Antiserums

(A) Western Blot Analyse von mTRP1-CT zur Bestimmung der Nachweisgrenze des Antiserums. Es wurden die angegebenen Mengen Fusionsprotein im SDS-PAGE aufgetrennt und im Immunblot mit dem Antiserum und einem peroxidasemarkierten Sekundär-Ak in der ECL detektiert. (B) Immunpräzipitation des mTRP1-CT-Fusionsproteins mit dem Antiserum und Detektion im Immunblot mit dem Antiserum und einem peroxidasemarkierten Sekundär-Ak in der ECL.

6.3 Interaktionsstudien

Die Untereinheitenstruktur der potentiellen Ca²⁺-Kanäle der TRP-Proteine ist bis dato ungeklärt. In Analogie zu den spannungsabhängigen Ca²⁺-Kanälen, die aus viermal sechs Transmembrandomänen zuzüglich der Porenregion innerhalb einer Proteinkette aufgebaut sind, wird eine Tetramerisierung zur Ausbildung eines funktionellen Kanals postuliert (siehe Einleitung **Kap. 1**). Bisher wurde eine Interaktion von endogen in Drosophila exprimiertem dTRP und dTRPL in den verschiedenen Kombinationen sowie für hTRP1 und hTRP3 durch transiente Überexpression in HEK293-Zellen durch Co-Immunpräzipitation nachgewiesen (Xu et al., 1997; siehe auch Einleitung **Kap. 1**).

Im Rahmen dieser Arbeit wurden sowohl die cytosolischen Domänen von mTRP1 β , mTRP2¹ und hTRPC3² im LexA-Hefe-Two-Hybrid-System (Gyuris et al., 1993; Mendolsohn und Brent, 1994; Golemis et al., 1996; Brentlab, 2001-a Clontech, 2001-b) eingesetzt (**Kap. 6.3.1**) als auch die TRP-Proteine durch transiente Überexpression in COS-M6-Zellen auf die Fähigkeit der Co-Immunpräzipitation hin untersucht (**Kap. 6.3.2**).

6.3.1 Hefe-Two-Hybrid-System

Um cytosolische TRP1, 2 und 3-Domänen zu identifizieren, die für eine Interaktion, Homo- und Heterodi- bzw. -oligomerisierung, verantwortlich sein könnten, wurden zunächst Studien mit den cytosolischen N- und C-terminalen Regionen der verschiedenen TRP-Proteine sowie den N-terminalen Mutanten von mTRP1 β im LexA-Hefe-Two-Hybrid-System durchgeführt. Die LexA-BD- und GAL4-AD-Fusionsproteine (Klonierungsschemata siehe **Anhang 5** und **6**) wurden zunächst in Vortests auf Autoaktivierung der Selektionsmarkergene LEU2 und lacZ sowie im Fall der BD-Proteine aufgrund des fehlenden Signals auf Kernlokalierung und Bindung an die LexA-Operator-Sequenzen vor dem lacZ-Gen getestet (**Tab. 6.1**). Alle getesteten Proteine reprimierten im Kernlokalisierungstest die β -Galaktosidase-Aktivität, was auf das Vorhandensein von LexA-Proteinen im Kern und dessen Bindung an die entsprechenden Operatoren hinweist. Bei den Autoaktivierungstest stellte sich heraus, daß lediglich der NT von mTRP1 β als BD-Fusionsprotein auf das LEU2-Gen aktivierend wirkt. Dadurch entfällt dieses Gen als Selektionsmarker. Interaktionsstudien sind jedoch aufgrund der negativen lacZ-Aktivierung durchführbar und aussagekräftig. Bei allen anderen eingesetzten BD-

¹ Bisher wurden vier Isoformen von mTRP2 publiziert. Die im Rahmen dieser Arbeit verwendete Sequenz entspricht der Genbank Acc. No. AF11107 (Vannier et al., 1999) und wurde aus der Maus-B-Zellinie IIA1.6 per RT-PCR kloniert.

² Die cDNA von hTRPC3 wurde freundlicherweise von Prof. Dr. A. Lückhoff (Institut für Physiologie, UK RWTH Aachen) zur Verfügung gestellt (Zitt et al., 1997).

Fusionsproteinen konnten beide Selektionsmarker verwendet werden. Die AD-Fusionsproteine wirken weder auf das LEU2- noch auf das lacZ-Gen aktivierend. Somit muß lediglich bei Einsatz des BDmTRP1β-NT-Fusionsproteins auf das LEU2-Markergen verzichtet werden.

Tab. 6.1Kernlokalisierungs- und Autoaktivierungsvortests der verwendeten Fusionsproteine für das Hefe-
Two-Hybrid-System

Da die BD-LexA-Fusionsproteine im Gegensatz zu den Gal4-AD-Fusionsproteinen kein Kernlokalisierungssignal besitzen, wurden diese auf Kernlokalisierung mittels des Repressionsassays auf Reprimierung der lacZ-Genexpression getestet. Sowohl der Repressionsassay als auch die Autoaktivierungstests wurden stets im Vergleich zu Positiv- und Negativkontrollen durchgeführt (Ergebnisse nicht dargestellt). + positiv, - negativ, nd not determined (nicht untersucht), in Klammern ist der jeweilige AS-Rest angegeben.

Fusion	Kern-	LEU2-	lacZ-	
	lokalisierung	Autoaktivierung	Autoaktivierung	
BD-mTRP1β-NT (1-331)	+	+	-	
BD-mTRP1-CT (646-775)	+	-	-	
BD-mTRP2-NT (1-492)	+	-	-	
BD-mTRP2-CT (820-1072)	+	-	-	
BD-hTRPC3-NT (1-340)	+	-	-	
BD-hTRPC3-CT (669-848)	+	-	-	
AD-mTRP1β-NT (1-331)	nd	-	-	
AD-mTRP1β-NTΔank (1-60/177-331)	nd	-	-	
AD-mTRP1β-NTΔcc (1-212/267-331)	nd	-	-	
BD-mTRP2-NT (1-492)	nd	-	-	
AD-mTRP1-CT (646-775)	nd	-	-	
AD-mTRP2-CT (820-1072)	nd	-	-	
AD-hTRPC3-NT (1-340)	nd	-	-	
AD-hTRPC3-CT (669-848)	nd	-	-	

Die Expression des C-Terminus von mTRP1 β als BD-Fusionsprotein wurde mit Hilfe des anti-CT-FP-Antiserums im Western Blot nachgewiesen (**Abb. 6.4**). Dazu wurden die Hefezellkulturproben (vektortransfiziert als Negativkontrolle) auf drei verschiedene Arten lysiert: Laemmli-, TCA- und Harnstoff/SDS (urea)-Methode. In allen drei Proben konnte, im Gegensatz zu den Negativkontrollproben, eine spezifische Bande des entsprechenden Molekulargewichts von 43 kDa im Western Blot detektiert werden, womit nachgewiesen wurde, daß das Protein in voller Länge exprimiert worden ist.

Abb. 6.4 Nachweis der Expression des LexA-BD-mTRP1-CT-Fusionsproteins im Western Blot

Hefe-Zellysate wurden nach drei Methoden hergestellt: Laemmli- (Lä), TCA- und Harnstoff/SDS (urea)-Methode. Die Lysate wurden in einem 12,5proz. SDS-PAA-Gel elektrophoretisch aufgetrennt, auf eine PVDF-Membran transferiert und mit anti-CT-FP-IgG und einem Ziege-anti-Kaninchen peroxidasemarkierten Sekundär-Ak in der ECL detektiert.

Für die Interaktionsstudien wurden die Konstrukte in verschiedenen Kombinationen simultan in den Hefestamm EGY48(pSH18-34) transformiert und die Transformanden auf His⁻, Ura⁻, Trp⁻-SD-Platten selektioniert. Die konditionelle Expression der AD-Fusionsproteine wurde durch Übertragung der Klone mit Hilfe eines Filterpapiers auf Galactose/Raffinose-Platten induziert und anschließend auf β -Galactosidaseaktivität und Wachstum auf zusätzlich Leu⁻-Platten gescreent. Kontrollexperimente wurden durch Einsatz von Negativ-Kontrollvektoren durchgeführt, die weder eine LEU2- noch eine lacZ-Genaktivierung aufweisen (**Tab. 6.2**).

Positive Interaktionen konnten bei Einsatz der N-terminalen Domänen der verschiedenen TRP-Proteine festgestellt werden. Es ließen sich sowohl Homodimerisierungen als auch Heterodimerisierungen in verschiedenen Kombinationen nachweisen. Durch Verwendung der N-terminalen Mutanten von mTRP1 β konnte die für die Homo- als auch die für die Heterodimerisierung verantwortliche Coiled-Coil Domäne identifiziert werden (**Tab. 6.2**). Beispielhaft ist in **Abb. 6.5** die β -Galactosidaseaktivität bei der Co-Expression von mTRP1 β -NT mit sich selbst und den Mutanten gezeigt.

Eine Interaktion zwischen den C-terminalen Regionen konnte weder in homo- noch in heteromerer Form detektiert werden. Auch eine Interaktion zwischen N- und C-terminalen Regionen in verschiedenen Kombinationen war nicht zu beobachten (**Tab. 6.2**).

Tab. 6.2Identifizierung der N-terminalen Interaktionsdomäne in mTRP1b

Die BD- und AD-Fusionsproteine der N- und C-terminalen cytoplasmatischen Regionen von mTRP1β, mTRP2 und hTRPC3 sowie die mTRP1-Mutanten wurden auf Interaktion im Hefe-Two-Hybrid-System getestet. Positive Interaktion wurde durch Wachstumsselektion auf Leucin-defizienten Platten und LacZ-Genexpression identifiziert. + positiv, - negativ

BD-Fusionsprotein	AD-	rusions -	Kontrollvektor	AD-mTRP1β-NT	AD- mTRPlβ-NTΔank	AD-m TRPIβ-NTΔcc	AD-m TRP1β-CT	AD-mTRP2-NT	AD-mTRP2-CT	AD-hTRPC3-NT	AD-hTRPC3-CT
Kontrollvektor			-	-	-	-	-	-	-	-	-
BD-mTRP1β-NT			-	+	+	-	-	+	-	+	-
BD-mTRP1β-CT			-	-	-	-	-	-	-	-	-
BD-mTRP2-NT			-	+	+	-	-	+	-	+	-
BD-mTRP2-CT			-	-	-	-	-	-	-	-	-
BD-hTRPC3-NT			-	+	+	-	-	+	-	+	-
BD-hTRPC3-CT			-	-	-	-	-	-	-	-	-

Abb. 6.5 **b**-Galactosidaseaktivität bei der Dimerisierung von mTRP1**b**-NT und den N-terminalen Deletionsmutanten (links)

Die Hefezellen wurden simultan mit den BD- und AD-Konstrukten transfiziert und selektioniert. Doppelt positive Klone wurden anhand des Wachstums identifiziert und anschließend auf X-Galhaltiges Nährmedium übertragen, um auf eine mögliche Interaktion, d. h. lacZ-Expression, zu testen.

- (A) $BD-mTRP1\beta-NT + AD-mTRP1\beta-NT$
- $\textbf{(B)} \qquad BD\text{-}mTRP1\beta\text{-}NT + AD\text{-}mTRP1\beta\text{-}NT\Delta ank$
- (C) BD-mTRP1 β -NT + AD-mTRP1 β -NT Δ cc

6.3.2 Co-Immunpräzipitationen

Um die Untereinheitenstruktur des potentiellen TRP-Ca²⁺-Kanals näher zu charakterisieren, wurden zusätzlich zu dem Hefe-Two-Hybrid-System Co-Immunpräzipitationsstudien an transient transfizierten COS-M6-Zellen durchgeführt. Die einzelnen cDNAs, die C-terminal für ein FLAG-, c-myc- oder HA-Epitop codieren, wurden in den Expressionsvektor pcDNA3 kloniert und in verschiedenen Kombinationen in die Zellen transfiziert. Die exprimierten Proteine konnten so mit Hilfe epitopspezifischer Antikörper immunpräzipitiert und im Immunblot detektiert werden.

6.3.2.1 Plasmamembranlokalisierung von mTRP1β und Mutanten, mTRP2 und hTRPC3 in COS-M6-Zellen

Vor den Co-Immunpräzipitationsstudien wurden alle eingesetzten TRP-Proteine auf Plasmamembranlokaliserung mittels Immunfluoreszenzmikroskopie hin untersucht. Aufgrund der Einsatzfähigkeit der Antikörper wurden dazu die Proteine mit einem c-myc- und HA-Epitop fusioniert. Der mAk M2 anti-FLAG zeigt leider in der Immunfluoreszenzmikroskopie einen zu hohen Hintergrund und ist daher für diese Methode denkbar ungeeignet.

Als Plasmamembrankontrollprotein wurde LAT-c-myc (*L*inker for *A*ktivation of *T*-Cells) verwendet. LAT ist ein transmembranes Adapterprotein, das aus einer kurzen extrazellulären Region, einer Transmembrandomäne und einer tyrosinreichen cytosolischen Region besteht. LAT ist für die T-Zellaktivierung essentiel und liegt hauptsächlich in der Plasmamembran vor (Gilliand et al., 1992; Buday et al., 1994; Sieh et al., 1994; Trüb et al., 1997; Weber et al., 1998; Zhang et al., 1998-a) und zwar vorwiegend in den Lipid-Raft-Domänen (LRD) (Zhang et al., 1998-b). LAT ist bisher in T-Zellen, NK-Zellen und Mastzellen identifiziert worden, wurde aber auch schon in anderen Zellen, z. B. B-Zellen, nachgewiesen (Engelke, 2001).

Wie in **Abb. 6.6** erkennbar, ist hTRPC3-HA mit LAT-c-myc in der Plasmamembran co-lokalisiert. Dies weist auf ein mögliches Adapterprotein für TRP hin, was auch durch Co-Immunpräzipitationsstudien bestätigt werden konnte (**Kap. 6.3.2.3**). Eine Immunfluoreszenzmikroskopie zur Co-Lokalisierung von LAT mit mTRP1β oder mTRP2 konnte aufgrund der verwendbaren Antikörper nicht durchgeführt werden. Einzelbildaufnahmen von mTRP1β-c-myc und Mutanten, mTRP2-c-myc, hTRPC3-HA und -c-myc und LAT-c-myc sind in **Anhang 1** gezeigt.

Abb. 6.6 Co-Lokalisierung von LAT und hTRPC3 in der Plasmamembran von COS-M6-Zellen

Die COS-M6-Zellen wurden mittels DEAE-Dextran transient transfiziert und die Immunfluoreszenzmikroskopie nach 2 d durchgeführt. LAT-c-myc wurde mit dem mAk 9E10 und einem Cy2-markierten Ziege-anti-Maus-Sekundär-Ak (**a** und **g**), hTRPC3-HA mit dem mAk 3F10 und einem Cy3-markierten Ziege-anti-Ratte-Sekundär-Ak (**e** und **h**) sichtbar gemacht. Die deckungsgleich übereinander gelegten Fluoreszenzbilder sind in **c**, **f** und **i** gezeigt. In Bild **i** ist durch die gelbe Färbung deutlich die Co-Lokalisation von LAT und hTRPC3 in der Plasmamembran zu sehen. In **b** und **d** sind die Negativkontrollen der Einzeltransfektanden bezüglich der zweiten Fluoreszenz gezeigt.

Duch Co-Transfektion von COS-M6- und HEK293-Zellen mit den mTRP1 β -c-myc-Mutanten bzw. von mTRP2-c-myc und hTRPC3-HA konnte gezeigt werden, daß mTRP1 β und mTRP2 mit hTRPC3 in der Plasmamembran co-lokalisiert vorliegen. Die immunfluoreszenzmikroskopischen Aufnahmen in **Abb. 6.7** belegen eindeutig die Plasmamembranständigkeit und Co-Lokalisation von mTRP1 β -c-myc (a), mTRP2-c-myc (g) und hTRPC3-c-myc (h) mit hTRPC3-HA in mit Saponin permeabilisierten COS-M6- (A) und HEK293-Zellen (B). Diese Lokalisierung bleibt durch Deletion einzelner Domänen in mTRP1 β unbeeinflusst (b) bis (f). Die Einzelbildaufnahmen der Immunfluoreszenzenmikroskopie sind in **Anhang 2** und **3** gezeigt. Um eine eventuelle extrazelluläre Lokalisierung des C-Terminus auszuschließen, wie sie etwa durch Deletion der 5. bis 6. Transmembrandomänen zustande gekommen sein könnte, wurden entsprechende immunfluoreszenzmikroskopische Aufnahmen an nicht

permeabilisierten und nicht fixierten Zellen durchgeführt. Hierbei konnte keine Fluoreszenz der transfizierten Zellen beobachtet werden.

(A)

Abb. 6.7 Immunfluoreszenzenmikroskopische Aufnahmen von mTRP1b und Mutanten, mTRP2 sowie hTRPC3 in COS-M6- (A) und HEK293-Zellen (B) zur Plasmamembran- und Co-Lokalisierung

Die COS-M6-Zellen (A) wurden mittels DEAE-Dextran, HEK293-Zellen (B) mit "Superfect" (aktivierte Dendrimere) transient transfiziert und die Immunfluoreszenzmikroskopie nach 2 d durchgeführt. MTRP1β und Mutanten sowie mTRP2 sind mit einem c-myc-Epitop und hTRPC3 auch mit einem HA-Epitop versehen. Die Fusionsproteine wurden mittels der monoklonalen Antikörper 9E10 Maus-anti-c-myc bzw. 3F10 Ratte-anti-HA und der Sekundärantikörper Ziege-anti-Maus-Cy2 bzw. Ziege-anti-Ratte-Cy3 sichtbar gemacht. (a) mTRP1β-c-myc + hTRPC3-HA; (b) mTRP1βΔank-c-myc + hTRPC3-HA; (c) mTRP1βΔcc-c-myc + hTRPC3-HA; (d) mTRP1βΔpp-c-myc + hTRPC3-HA; (e) mTRP1βΔEWKFAR-c-myc + hTRPC3-HA; (f) mTRP1βΔdys-c-myc + hTRPC3-HA; (g) mTRP2-c-myc + hTRPC3-HA; (h) hTRPC3-c-myc + hTRPC3-H

Die Plasmamembranlokalisierung und die richtige Orientierung der C-terminalen cytosolischen Regionen aller eingesetzten TRP-Proteine und Mutanten konnte somit für COS-M6 und HEK293-Zellen gezeigt werden, was die Vorraussetzung für den Einsatz weiterer Interaktions- und Funktionsstudien in diesen Zellsystemen darstellt.

6.3.2.2 Interaktionen von mTRP1 β , mTRP2 und hTRPC3

Die Lokalisierung von TRP1 in Lipid-Raft-Domänen (Lockwich et al., 2000, siehe auch Einleitung **Kap.** 1) macht es für Immunpräzipitationen erforderlich, diese zu zerstören und so die verankerten Proteine freizusetzen.

Im Rahmen dieser Arbeit wurde erfolgreich Methyl- β -cyclodextrin (M β CD) verwendet, um das Cholesterol aus den Rafts zu entfernen (Klein et al., 1995; Hooper, 1999; Lockwich et al., 2000). Dadurch werden die Rafts zerstört und die Proteine zugänglich für die Immunpräzipitation. Ohne die Behandlung der Zellen mit M β CD war es nicht möglich, mTRP1 β -FLAG oder die Mutanten reproduzierbar zu präzipitieren.

Um eine unspezifische Co-Immunpräzipitation durch transiente Überexpression auszuschließen wurde das membranständige Protein FcyRIIb (CD32, cDNA-Klon PL17 (Engelhardt et al., 1990)) als Negativkontrolle eingesetzt.

Die Immunpräzipitation nach Co-Transfektion von Fc γ RIIb (PL17) und mTRP1 β -FLAG bzw. hTRPC3-HA weist auf keine Interaktion oder unspezifische Co-Präzipitation hin (**Abb. 6.8**). Nach der Präzipitation des Fc-Rezeptors mit dem mAk AT10 (Greenman et al., 1991) sind mit den mAk M2 anti-FLAG oder 3F10 anti-HA weder mTRP1 β noch hTRPC3 im Immunblot detektierbar (**Abb. 6.8** (**A**)). Auch bei der Kreuzprobe, Präzipitation der TRP-Proteine durch Epitop-spezifische mAk und Detektion im Immunblot mit dem mAk II1A5 (pan Fc γ RII, Weinrich et al., 1996), ist keine Co-Präzipitation nachweisbar (**Abb. 6.8** (**B**)). Zum Nachweis der erfolgreichen Präzipitation wurden die Blots mit dem zur Präzipitation verwendeten Ak ein zweites Mal inkubiert (**Abb. 6.8** (**C**)). Die apparente Molmasse von mTRP1 β nach Auftrennung in einer SDS-PAGE ist jedoch ca. 10 % bis 15 % geringer als das berechnete, was von hTRP1 und anderen TRPs bereits bekannt ist (Sinkins et al., 1998; Bobanoviæ et al., 1999) und ist wahrscheinlich auf die vielen stark hydrophoben Transmembranregionen zurückzuführen.

Die Immunpräzipitationen nach Co-Expression von mTRP1 β , mTRP2 und hTRPC3, versehen mit verschiedenen Epitopen, belegt eindeutig die Fähigkeit zur Homo- als auch zur Heteromerisierung (**Abb**.

6.9). Durch Präzipitation von mTRP1 β -FLAG lässt sich im Immunblot nicht nur mTRP1 β -c-myc sondern ebenfalls hTRPC3-HA nachweisen (**Abb. 6.9** (**A**), (**B**) und (**C**)). Ebenso eindeutig ist die Co-Präzipitation von mTRP2-c-myc sowie von hTRPC3-HA durch mTRP2-FLAG (**Abb. 6.9** (**D**) und (**E**)) und die Homomerisierung von hTRPC3 (über HA- und c-myc-Epitope) (**Abb. 6.9** (**F**)). Die Negativkontrollen für die Co-Präzipitation, vektortransfizierte Zellen bzw. Einzeltransfektanden, zeigen im Immunblot keine Banden entsprechender Molmasse. Die Heterodimerisierung von mTRP1 β und mTRP2 wurde bereits von C. Schäfer (2001) nachgewiesen.

Abb. 6.8 Immunpräzipitation von mTRP1b-FLAG und hTRPC3-HA und FcgRIIb (PL17) als Negativ-Kontrolle

Um eine unspezifische Co-Immunpräzipitation auszuschließen, wurde als Kontrollprotein der membranständige Fc-Rezeptor FcγRIIb (cDNA-Klon PL17) verwendet, der mit dem mAk AT10 präzipitiert und dem mAk II1A5 im Immunblot detektiert werden kann. (A) Aus den Zellysaten wurde PL17 mittels des AT10-Ak präzipitiert und auf Co-Präzipitation von mTRP1β-FLAG und hTRPC3-HA im Immunblot detektiert, (B) präzipitiert wurden die TRP-Proteine, detektiert auf Co-Präzipitation von PL17 mit II1A5, (C) Detektion im Immunblot auf Präzipitation.

Um den Einfluß der einzelnen Domänen von mTRP1 β auf die Interaktion näher zu untersuchen, wurden mTRP1 β -FLAG und Mutanten (Δ ank, Δ cc, Δ pp, Δ EWKFAR, Δ dys) mit mTRP1 β -c-myc oder hTRPC3-HA in COS-M6-Zellen co-exprimiert und die FLAG-Proteine mit dem mAk M2 anti-FLAG immunpräzipitiert. Nach dem Western Blot wurde auf der PVDF-Membran mit den mAk 9E10 anti-c-myc bzw. 3F10 anti-HA auf die entsprechenden co-präzipitierten Proteine detektiert (**Abb. 6.10**). Sowohl mTRP1 β -c-myc (**Abb. 6.10** (**A**)) als auch hTRPC3-HA (**Abb. 6.10** (**B**)) konnten als Co-

Ergebnisse

Immunpräzipitate bei allen mTRP1β-Mutanten nachgewiesen werden (Reinkubation der Membranen mit dem mAk M2 anti-FLAG wies alle Mutanten in äquivalenten Mengen nach). Für eine Interaktion scheint eine einzelne dieser deletierten Domänen demnach nicht alleine verantwortlich zu sein.

Abb. 6.9 Homo- und Hetero-Co-Immunpräzipitationen von mTRP1b, mTRP2 und hTRPC3

Die Proteine wurden, verschen mit verschiedenen Epitopen, transient in COS-M6-Zellen exprimiert und nach 2 d die Immunpräzipitation (IP) mit den angegebenen mAk M2 anti-FLAG, 9E10 anti-c-myc und 3F10 anti-HA durchgeführt. Nach einer 10proz. SDS-PAGE wurde im Immunblot auf Co-Präzipitation mit den angegebenen mAk (WB) und einem peroxidasemarkierten Sekundär-Ak in der ECL detektiert. Co-Immunpräzipitationen von (**A**) und (**B**) mTRP1β-FLAG und mTRP1β-c-myc, (**C**) mTRP1β-FLAG und hTRPC3-HA, (**D**) mTRP2-FLAG und mTRP2-c-myc, (**E**) hTRPC3-HA und mTRP2-FLAG, (**F**) hTRPC3-HA und hTRPC3-c-myc. Die Pfeile zeigen die spezifisch erkannten TRP-Proteinbanden.

Abb. 6.10 Homo- und Hetero-Co-Immunpräzipitationen von mTRP1**b**-FLAG und Mutanten mit mTRP1**b**-c-myc und hTRPC3-HA

In COS-M6-Zellen wurden mTRP1β-FLAG und Mutanten und mTRP1β-c-myc oder hTRPC3-HA coexprimiert. Die FLAG-Proteine wurden mittels des mAk M2-anti-FLAG präzipitiert (IP) und im Immunblot (WB) auf Co-Präzipitation von mTRP1β-c-myc mit dem mAk 9E10 (**A**) bzw. auf hTRPC3-HA mit 3F10 (**B**) und einem peroxidasemarkierten Sekundär-Ak in der ECL detektiert.

Um den Einfluß von Disulfidbrücken auf die Assoziation der homomeren TRP-Kanäle zu untersuchen, wurden die Immunpräzipitate nicht reduzierend in einer SDS-PAGE aufgetrennt und nach Western Blot auf eine PVDF-Membran mit den Epitop-spezifischen mAk detektiert (**Abb. 6.11**). Dabei zeigte sich bei allen spezifischen Immunpräzipitationen, daß im Immunblot neben den Antikörpern bei ca. 160 bis 180 kDa nur ein hochmolekularer Komplex nicht zuzuordnenden Molekulargewichts detektiert wird. Sowohl nach der Immunpräzipitation von mTRP1 β als auch mTRP2 sowie hTRPC3 sind, unabhängig ob mit FLAG-, c-myc- oder HA-Epitop versehen, nur diese Komplexe nachweisbar. Entsprechende Vektorkontrollen zeigen diese Bande nicht. Nach der Präzipitation der mTRP1 β -Mutanten über das FLAG-Epitop ist in allen Fällen ebenfalls nur diese Bande detektierbar. Einzige Ausnahme bildet die Δ pp-Mutante, bei der zusätzlich noch das Monomer bei ca. 76 kDa nachweisbar ist (**Abb. 6.11 (A**)).

Abb. 6.11 Immunblot nach einer nicht reduzierenden SDS-PAGE der Immunpräzipitationen von mTRP1**b**-FLAG und Mutanten, mTRP2-FLAG sowie hTRPC3-HA

COS-M6-Zellen wurden transient mit den cDNAs transfiziert (DEAE-Dextran) und die Proteine nach 2 d mit den angegebenen mAk immunpräzipitiert. Die Proben wurden nicht reduziert in einem 5proz. (A) bzw. einem 7,5proz. (B und C) SDS-PAA-Gel aufgetrennt. Im Immunblot wurde mit den gleichen Ak und einem geeigneten Sekundär-Ak in der ECL detektiert. Die Pfeile zeigen die spezifisch detektierten Banden (M Monomer der Δ pp-Mutante, K hochmolekularer Komplex).

Nach nicht reduzierender Aufarbeitung homomerer mTRP1 β - oder hTRPC3-Co-Immunpräzipitate bzw. heteromerer mTRP1 β - und hTRPC3-Co-Immunpräzipitate ist im Immunblot eine Co-Immunpräzipitation in allen Fällen eindeutig nachweisbar. Mit den verschiedenen epitopspezifischen mAk lassen sich die hochmolekularen Komplexe aus beiden Prazipitationsrichtungen detektieren (**Abb. 6.12**).

Abb. 6.12 Nicht reduzierende SDS-PAGE der Co-Immunpräzipitationen von mTRP1b-c-myc mit mTRP1b-FLAG oder hTRPC3-HA (nächste Seite)

COS-M6-Zellen wurden mit den cDNAs in den angegebenen Kombinationen transient transfiziert (DEAE-Dextran) und die Proteine nach 2 d mit den angegebenen mAk immunpräzipitiert (IP) und nach Auftrennung in einem 7,5proz. SDS-PAGE im Immunblot mit den angegebenen Ak (WB) und einem geeigneten Sekundär-Ak in der ECL detektiert. (A) und (B) Co-Immunpräzipitation von mTRP1β-FLAG und mTRP1β-c-myc, (C) und (D) Co-Immunpräzipitation von hTRPC3-HA und hTRPC3-c-myc, (E) Co-Immunpräzipitation von hTRPC3-HA und mTRP1β-c-myc. Die Pfeile zeigen die neben den Ak spezifisch detektierten Banden.

Dieses Ergebnis des hochmolekularen Komplexes lässt zwei Schlüsse zu:

- Die präzipitierten Proteine sind über Disulfidbrücken miteinander verbrückt, unabhängig davon, ob es sich um Homooligomere handelt oder unbekannte Proteine mit den TRP-Isoformen verbunden sind. Die Δpp-Mutante nimmt dabei eine Sonderstellung ein, da die einzigen drei extrazellulären Cysteine, die zwischen der 5. Transmembrandomäne und der Porenschleife liegen, hier deletiert sind.
- Bei dem Lösen der Immunkomplexe von der festen Sepharose-Matrix durch Erhitzen auf 95 °C aggregieren die vielen Transmembranregionen so schnell miteinander, dass eine SDS-Denaturierung diese Aggregate nicht wieder aufzulösen vermag.

Um die zweite Möglichkeit, die der hitzeaggregierten Transmembranregionen, auszuschließen, wurden die Immunpräzipitate von mTRP1β-FLAG und Mutanten mit 8 M Harnstoff für 3 h bei 40 °C von der Sepharose gelöst und auf ein ebenfalls 8 M Harnstoff enthaltendes SDS-PAA-Gel aufgetragen (**Abb. 6.13**). Die Verwendung von 8 M Harnstoff führt hierbei zu so stark denaturierenden Bedingungen, dass eine Aggregation auszuschließen ist (Creighton, 1979; Gentile et al., 1997).

Der Vergleich von reduzierten zu nicht reduzierten Proben bestätigt die obigen Ergebnisse, die durch normale Laemmli-Aufarbeitung der Immunpräzipitate erhalten wurden. Unter nicht reduzierenden aber extrem stark denaturierenden Bedingungen jedoch ohne Aufkochen der Proben wird bei allen Präzipitaten der hochmolekulare Komplex im Immunblot mit den mAk detektiert (**Abb. 6.13 (B**)). Im reduzierten Zustand werden die Monomere der TRP-Proteine erhalten, wobei sich eine andere Molmasse von mTRP1β und dessen Mutanten als im normalen SDS-PAA-Gel ergibt: für mTRP1β-FLAG ~90 kDa, für mTRP1βΔank-FLAG ~70 kDa, für mTRP1βΔcc-FLAG ~76 kDa für mTRP1βΔEWKFAR-FLAG ~80 kDa, für mTRP1βΔdys-FLAG ~73 kDa; für mTRP1βΔpp-FLAG bleibt die Molmasse bei ~76 kDa (**Abb. 6.13 (A**)). Eine normale Laemmli-Aufarbeitung ohne Harnstoff scheint demnach eine Aggregation der 5. bis 6. Transmembrandomäne nicht aufzulösen, wodurch das Laufverhalten beeinflußt und eine geringere Molmasse vorgetäuscht wird.

Die Frage der Zusammensetzung des hochmolekularen Komplexes von mTRP1ß ist entscheidend für die Aufklärung der Kanalstruktur. Zur Lösung wurden verschiedene Experimente durchgeführt, um den Komplex nach der Auftrennung im SDS-PAGE nachträglich zu reduzieren. Nach der Isolierung des hochmolekularen Komplexes aus dem Gel, konnte jedoch mit keiner der folgenden Methoden dieser Komplex erfolgreich reduziert werden:

- Reduktion im Gel (mit Glycerin gegen die Diffusion) in:
 - a) 2x Laemmli bei RT für 2 h
 - b) 2x Laemmli bei 37 °C o/n
 - c) Harnstoff mit DTT bei RT für 20 min.
- Elektroelution in zwei verschiedenen Puffersystemen mit anschließender Trocknung und Aufnahme in 2x Laemmli (β-Mercaptoethanol und DTT)
- Ausschneiden der Gelbanden und Trocknen unter Vakuum, kurzes Äquilibrieren des Puffers und Reduktion in 2x Laemmli

COS-M6-Zellen wurden mit den cDNAs für mTRP1β-FLAG und Mutanten transient transfiziert und die Proteine mit dem mAk M2 präzipitiert. Die Präzipitate wurden reduzierend (**A**) und nicht reduzierend (**B**) mit 8 M Harnstoff bei 40 °C für 3 h von der Präzipitationsmatrix gelöst und in einem 8 M Harnstoff enthaltenden 7,5proz. SDS-PAA-Gel elektrophoretisch aufgetrennt. Nach dem Western Blot wurde mit dem mAk M2 anti-FLAG und einem Ziege-anti-Maus peroxidasemarkierten Ak in der ECL detektiert. Das anschließende Auftragen der Proben auf ein SDS-PAA-Gel und Western Blot-Analyse, Detektion mit dem mAk M2 anti-FLAG, führte nur zum Nachweis des Monomers der Δpp -Mutante sowie zur erneuten Detektion der hochmolekularen Komplexe, inklusive der Δpp -Mutante (beispielhaft ist das Ergebnis einer Elektroelution mit normalem Elektrophoresepuffer in **Abb. 6.14** gezeigt).

Daß dieser Komplex TRP-Proteine enthält ist somit zumindest für die ∆pp-Mutante nachgewiesen und sollte auf die anderen Proteine übertragbar sein. Eine nachträgliche Reduktion im Gel oder nach Extraktion ist aber nicht möglich.

Abb. 6.14 Immunblot nach einer SDS-PAGE unter (A) nicht reduzierenden und (B) reduzierenden Bedingungen

Die hochmolekularen Komplexe von mTRP1 β -FLAG und den Deletionsmutanten wurden aus dem Gel (A) ausgeschnitten, die Proteine elektroeluiert, mit Laemmli (mit β -Mercaptoehtanol und DTT) in Lösung reduziert und erneut einer SDS-PAGE unterworfen. Nach dem Western Blot wurde mit M2 und einem peroxidasemarkierten Ziege-anti-Maus Ak in der ECL detektiert (**B**).

Die Reduktion von Immunpräzipitaten von mTRP1β-FLAG und Mutanten unter suboptimalen Bedingungen zeigte im Immunblot mehrere Banden, die mit zwei verschiedenen Antikörpern detektierbar waren (**Abb. 6.15**). Im Gegensatz zu der leeren Spur der Vektorkontrolle wurden bei mTRP1β-FLAG und Mutanten Dimere, Tetramere und wohl auch Hexamere erkannt. Einzige Ausnahme stellt die Äpp-Mutante dar, bei der nur das Dimer detektierbar war. Das ist in der Hinsicht interessant, da bei dieser Mutante die einzigen drei extrazellulären Cysteine deletiert sind. Eine Vernetzung über Disulfidbrücken in einer extrazellulären Region ist somit nicht mehr möglich.

Abb. 6.15 Immunblot nach einer SDS-PAGE unter suboptimalen Reduktionsbedingungen der Immunpräzipitationen von mTRP1**b**-FLAG und Mutanten

COS-M6-Zellen wurden mit den cDNAs für mTRP1β-FLAG und Mutanten transient transfiziert und die Proteine mit dem mAk M2 präzipitiert. Die Immunpräzipitate von mTRP1β-FLAG und Mutanten wurden mit 100 mM DTT versetzt und für 10 min auf 95 °C erhitzt. Nach elektrophoretischer Auftrennung in einem 5proz. SDS-PAA-Gel wurde im Immunblot mit dem pAk Zymed-anti-Octa-Peptid (anti-FLAG) und einem peroxidasemarkierten Ziege-anti-Kaninchen Ak in der ECL detektiert (eine zweite Inkubation mit dem mAk M2 anti-FLAG zeigt ein identisches Ergebnis).

6.3.2.3 Interaktionen von mTRP1 β , mTRP2 und hTRPC 3 mit LAT

Wie in **Kap. 6.3.2.1** beschrieben, wurde LAT als Kontrollprotein in der Immunfluoreszenzmikroskopie eingesetzt, wobei eine Co-Lokalisierung mit hTRPC3 in der Plasmamembran beobachtet wurde. Die Frage der *in vivo*-Interaktion sollte nun duch Co-Immunpräzipitationen geklärt werden. Dazu wurden mTRP1 β und mTRP2 als FLAG- und hTRPC3 als HA-Epitop-Proteine eingesetzt, LAT war Cterminal mit einem c-myc-Epitop fusioniert. Wie in **Abb. 6.16** gezeigt, co-präzipitiert LAT mit allen drei TRP-Isoformen (**Abb. 6.16** (**A**)) und aufgrund des hohen Expressionslevels in den COS-M6-Zellen (**Abb. 6.6**) und der extrem guten Präzipitierbarkeit von LAT lassen sich umgekehrt auch alle drei TRP-Proteine co-präzipitieren (**Abb. 6.16** (**B**)).

Abb. 6.16 Co-Präzipitation von LAT-c-myc mit mTRP1b- und mTRP2-FLAG sowie mit hTRPC3-HA

LAT-c-myc und die TRP-Isoformen wurden in verschiedenen Kombinationen mit entsprechenden Kontrollen transient in COS-M6-Zellen exprimiert, mittels der angegebenen mAk (IP) präzipitiert und den entsprechenden Ak im Immunblot (WB) mit Hilfe der peroxidasemarkierten Sekundär-Ak Ziegeanti-Maus bzw. Ziege-anti-Ratte detektiert. (A) Co-Präzipitation von LAT über TRP1-3, (B) Co-Präzipitation von TRP1-3 über LAT, (C) Immunpräzipitaion von LAT zur Expressionskontrolle, (D) Immunpräzipitaion der TRP-Proteine zur Expressionskontrolle.

Die Kontrollreinkubation zeigt die Detektion der präzipitierten Proteine nach Hybridisierung mit den Präzipitations-Ak (Abb. 6.16 (C) und (D)). Damit ist ein mögliches Adapterprotein, LAT, das ursprünglich als T-Zell-spezifisch galt, jedoch inzwischen in einer Anzahl anderer Zellen nachgewiesen wurde, identifiziert.

6.3.2.4 Interaktionen von TRP1 mit Caveolin

Die publizierte Assoziation mit Caveolin-1 in HSG-Zellen und die mögliche vorhergesagte Interaktionssequenz EWKFAR (Lockwich et al., 2000, siehe auch Einleitung **Kap. 1**) konnte im Rahmen dieser Arbeit für HEK293-Zellen nicht bestätigt werden. Es konnte zwar endogen exprimiertes Caveolin immunpräzipitiert und auch im Immunblot detektiert werden, eine Co-Präzipitation mit mTRP1 β war jedoch aus keiner Richtung nachweisbar (**Abb. 6.17**).

Abb. 6.17 Versuch der Co-Präzipitation von in HEK293 endogen exprimiertem Caveolin mit mTRP1b-FLAG

MTRP1β-FLAG wurden transient in HEK293-Zellen exprimiert. Caveolin (Cav) wurde mit dem pAk Kaninchen anti-Cav präzipitiert und im Immunblot mit einem peroxidasemarkierten Sekundär-Ak in der ECL detektiert, mTRP1β-FLAG mit dem mAk M2 Maus-anti-FLAG, in der jeweils fünften Spur wurde als Positivkontrolle Caveolin aufgetragen. (**A**) Detektion auf Caveolin, (**B**) Detektion auf mTRP1β-FLAG.

6.3.2.5 Interaktion von mTRP1 β mit Aktin

Sowohl Ankyrin-ähnliche als auch Dystrophin-ähnliche Domänen sind dafür bekannt, Proteine ans Cytoskelett zu verankern (siehe auch Einleitung **Kap. 1**). Durch Co-Präzipitation von Aktin mit mTRP1 β -FLAG und Mutanten konnte im Rahmen dieser Arbeit erstmals gezeigt werden, daß erstens mTRP1 β mit dem Aktincytoskelett direkt oder indirekt assoziiert ist und zweitens nicht eine einzelne Domäne für die direkte Interaktion verantwortlich ist (**Abb. 6.18**). Es läßt sich jedoch nicht ausschließen, daß assoziiertes endogen exprimiertes TRP oder andere TRP-assoziierte Proteine mit den Deletionsmutanten, die eventuell keine direkte Cytoskelett-Assoziation mehr ausbilden können, wechselwirken und so eine Verbrückung zu Aktin herstellen.

Abb. 6.18 Co-Präzipitation von Aktin mit mTRP1b-FLAG und Mutanten aus COS-M6-Zellen

MTRP1β-FLAG und Mutanten wurden transient in COS-M6-Zellen exprimiert und mittels des mAk M2 anti-FLAG präzipitiert. Aktin wurde im nicht reduzierten Immunblot mit dem mAk 10A5 detektiert und in der ECL mittels eines peroxidasemarkierten Sekundär-Ak sichtbar gemacht.

6.4 Calciumioneneinstrom in stabil mTRP1b und -Mutanten exprimierenden HEK293-Zellen

Zur Untersuchung des Einflusses der einzelnen Domänen von mTRP1 β auf den Ca²⁺-Einstrom über die Plasmamembran wurden die entsprechenden cDNAs in pIRES2-EGFP kloniert und stabil in HEK293-Zellen transfiziert. Durch die Verwendung des bicistronisch für EGFP codierenden Vektors konnten positive Klone schnell anhand der Expression des EGF-Proteins erkannt und für die Auswertung der [Ca²⁺]-Messungen herangezogen werden. Das Zellsystem wurde gewählt, da sich HEK293-Zellen gut über den endogenen muscarinischen Acetylcholinrezeptor stimulieren lassen, wodurch ein PLC-Signalweg im Cytosol angeschaltet wird, der zur Entleerung intrazellulärer Ca²⁺-Speicher und Öffnung von Ca²⁺-Kanälen in der Plasmamembran führt.

6.4.1 Proteinexpression in HEK293-Zellen

In den stabil mTRP1 β oder Deletionsmutanten exprimierenden HEK293-Klonen konnten sowohl durch Immunpräzipitationen als auch in der Immunfluoreszenzmikroskopie die Proteine nachgewiesen werden. Letzteres bestätigte bei allen Klonen die Plasmamembranlokalisierung sowie den Erhalt der cytoplasmatischen Lokalisierung des C-Terminus der entsprechenden Mutante (**Abb. 6.19**), wie dies auch in **Kap. 6.3.2.1** bei transienter Expression in COS-M6- und HEK293-Zellen gezeigt wurde.

Die stabil in HEK293-Zellen exprimierten TRP-Proteine konnten mit Hilfe des polyklonalen anti-FLAG-Antikörpers OctA immunpräzipitiert und mit dem anti-TRP1-CT-FP-Antiserum bzw. dem mAk M2 anti-FLAG im Immunblot detektiert werden. Auch hier zeigte sich, wie bei COS-M6-Zellen, eine scheinbar geringere Molmasse als berechnet.

Abb. 6.19 Immunfluoreszenzmikroskopische Aufnahmen zur Plasmamembranlokalisierung von mTRP1**b** und Mutanten in stabil transfizierten HEK293-Zellen

Die stabilen HEK293-Klone wurden nach PFA-Fixierung mit Saponin permeabilisiert und mit dem pAk Ziegen-Ak OctA anti-FLAG inkubiert, der mit einem Cy3-markierten Esel-anti-Ziege Sekundär-Ak sichtbar gemacht wurde.

(A) Vektor-, (B) mTRP1 β -, (C) mTRP1 β Δ ank-, (D) mTRP1 β Δ cc-, (E) mTRP1 β Δ pp-, (F) mTRP1 β \DeltaEWKFAR-, (G) mTRP1 β Δ dys-exprimierende Zellen.

Abb. 6.20 Immunpräzipitationen von mTRP1b und Mutanten aus stabil transfizierten HEK293-Zellen

Nach Immunpräzipitation mit dem polyklonalen Ziegenantikörper OctA anti-FLAG und 10proz. SDS-PAGE wurden die Proteine auf eine PVDF-Membran transferiert und einer gereinigten IgG-Fraktion des anti-CT-FP-Antiserums sowie eines peroxidasemarkierten Sekundär-Ak in der ECL detektiert.

6.4.2 $[Ca^{2+}]$ -Messungen an stabil mTRP1 β - oder Mutanten exprimierenden HEK293-Zellen

Um den Einfuß der einzelnen Domänen von mTRP1 β auf den Ca²⁺-Einstrom zu untersuchen, wurden wt-mTRP1 β sowie die Deletionsmutanten stabil in HEK293-Zellen exprimiert. Über den endogen exprimierten muscarinischen Acetylcholinrezeptor lassen sich diese Zellen mit Carbachol (CCh) stimulieren, was zu einer erhöhten cytosolischen [Ca²⁺] führt. Dieses Ca²⁺-Signal setzt sich aus der Entleerung intrazellulärer Speicher, wie dem ER, und dem Einstrom von extrazellulärem Ca²⁺ über die Plasmamembran zusammen. Um dieses biphasische Ca²⁺-Signal aufzutrennen und beide Komponenten getrennt voneinander zu beobachten, werden die Zellen zunächst in Abwesenheit von extrazellulärem Ca²⁺ stimuliert. Nach dem Abklingen des Primärsignals auf den Basalwert, wird die EGTA-haltige extrazelluläre Lösung (ECS) auf 1,8 mM CaCl₂ eingestellt.

Die am "Calcium-Imaging"-System durchgeführten Einzelzell-[Ca²⁺]-Messungen³ an Fura-2-beladenen HEK293-Klonen zeigen deutlich das aufgetrennte biphasische Ca²⁺-Signal (**Abb. 6.22**). Das erhaltene Primärsignal, die Entleerung intrazellulärer Speicher, liegt bei allen Messungen in einem Bereich von 500 bis 800 nM. Die Expression von mTRP1 β und Mutanten führt demnach zu keiner signifikanten Änderung dieses Signals.

Das Sekundärsignal, Einstrom von Ca²⁺ über die Plasmamembran, bei mTRP1β-exprimierenden Zellen steigt auf 399 nM (**Abb. 6.22 B** und **Abb. 6.21**), signifikant über dem Kontrollwert von 300 nM (**Abb. 6.22 A** und **Abb. 6.21**). Die Mutantenklone zeigen keine signifikante Erhöhung des Einstromsignals

³ Die [Ca²⁺]-Messungen wurden in enger Zusammenarbeit gemeinsam mit M. Engelke und Dr. P. Budde durchgeführt.

gegenüber den Kontrollzellen (Abb. 6.22 C bis G und Abb. 6.21) aber eine signifikante Erniedrigung gegenüber mTRP1 β -Zellen. Ein Problemfall stellen die Meßdaten von mTRP1 β - Δ EWKFAR dar, die weder signifikant über den Kontroll- noch signifikant unter den mTRP1 β -Meßdaten liegen (Abb. 6.22 F und Abb. 6.21).

(A)

(B)

Klon	$[Ca^{2+}]_{max}$	± S.E.
Vektor	300,0	40,0
mTRP1β	398,8*	26,3
mTRP1β∆ank	290,0	37,1
mTRP1βΔcc	287,1	53,9
mTRP1βΔpp	282,2	30,9
mTRP1βΔEWKFAR	326,0	48,0
mTRP1β∆dys	311,3	31,3

Abb. 6.21 Modulation des Ca²⁺-Einstroms über die Plasmamembran

Vektor, mTRP1 β -FLAG und Mutanten exprimierende HEK293 Zellen wurden mit 200 μ M CCh in Ca²⁺freier ECS stimuliert. Durch Erhöhung der extrazellulären [Ca²⁺] auf 1,8 mM wurde der Ca²⁺-Einstrom ermöglicht. Die maximale cytosolische [Ca²⁺]_{max} (± S.E.) des Sekundärsignals ist über eine Zeitspanne von 60 sec gemittelt. (A) graphische (B) tabellarische Darstellung. n = Anzahl der Experimente mit je mindestens 15 bis 20 Zellen pro Experiment, * signifikant verschieden zur Vektorkontrolle (p < 0,05).

Abb. 6.22 Einzelzell-[Ca²⁺]-Messungen an stabil mTRP1**b** oder Mutanten exprimierenden HEK293-Zellen (folgende Seite)

Die Änderungen der cytosolischen $[Ca^{2+}]_i$ wurde an Fura-2 beladenen HEK293-Zellen gemessen, die mTRP1 β (**B**), mTRP1 $\beta\Delta$ ank (**C**), mTRP1 $\beta\Delta$ cc (**D**), mTRP1 $\beta\Delta$ pp (**E**), mTRP1 $\beta\Delta$ EWKFAR (**F**), mTRP1 $\beta\Delta$ dys (**G**) als FLAG-Proteine stabil exprimieren. Als Kontrolle dienten vektortransfizierte Zellen (**A**). Jede Kurve stellt einen repräsentativen Mittelwert aus mindestens sieben unabhängigen Messungen mit mindestens je 15 gemessenen Zellen dar (siehe auch **Abb. 6.21**). Die Zellen wurden in Ca²⁺-freier Lösung, 0,5 mM EGTA-enthaltend (schwarzer Balken), gemessen und nach 30 sec mit 200 µM CCh stimuliert (grauer Balken). Der Ca²⁺-Einstrom wurde durch Zugabe von extrazellulärem Ca²⁺ zu einer Endkonzentration von 1,8 mM ermöglicht (weißer Balken). n = Anzahl der Experimente.

Um auszuschließen, daß die mTRP1 β -enthaltenden Kanäle über das Plasmamembranpotential gesteuert werden, wurden Messungen in einer ECS (150 mM KCl und 5 mM NaCl) durchgeführt, bei denen das Membranpotential depolarisiert war. In Abb. 6.23 (A) und (B) sind Einzelzellmessungen von vektor- und mtrp1 β -transfizierten Zellen gezeigt. In (C) sind die $[Ca^{2+}]_{max}$ (\pm S.E.) des Sekundärsignals dargestellt. Auch hier ist ein deutlicher Anstieg des Ca²⁺-Einstrom bei Expression von mTRP1 β zu verzeichnen. Der Mittelwert steigt in stabil mTRP1 β -exprimierenden Zellen von 160 nM auf 340 nM. Diese Werte liegen vor allem für die Kontrollzellen deutlich unter den oben beschriebenen Messungen. Endogene Ca²⁺-Kanäle scheinen in HEK293-Zellen zumindest zum Teil vom Membranpotenial beeinflußt zu werden. Eine Abhängigkeit des mTRP1 β -enthaltenden Kanals vom Potential liegt jedoch nicht vor.

Abb. 6.23Einzelzell-[Ca2+]-Messungen und Modulation des Ca2+-Einstroms über die Plasmamembrannach Depolarisierung des Membranpotentials

Vektor- und mtrp1 β -transfizierte HEK293-Zellen wurden mit 200 μ M CCh in Ca²⁺-freier ECS-Lösung (150 mM KCl und 5 mM NaCl zum Depolarisieren des Plasmamembranpotentials) stimuliert. Durch Erhöhung der extrazellulären [Ca²⁺] auf 1,8 mM wurde der Ca²⁺-Einstrom ermöglicht. Die maximale cytosolische [Ca²⁺]_{max} (± S.E.) des Sekundärsignals ist über eine Zeitspanne von 60 sec gemittelt. (A) Vektortransfizierte Zellen, **B**) mTRP1 β -FLAG-exprimierende Zellen, **C**) graphische Darstellung der Mittelwerte des Ca²⁺-Einstroms, (**D**) tabellarische Darstellung. n = Anzahl der Experimente mit je mindestens 15 bis 20 Zellen pro Experiment, * signifikant verschieden zur Vektorkontrolle (p < 0,05)

6.5 Expression von mTRP1b in IIA1.6-Zellen

Mögliche Kandidaten für die auf molekularer Ebene bisher nicht charakterisierten Ca²⁺-Kanäle in B-Zellen könnten die TRP-Proteine sein. Bisher konnten in verschiedenen Zellinien diverse TRP-Isoformen identifiziert werden, so z. B. für IIA1.6 mTRP1, 2 und 3 (Engelke, 2001; siehe auch Einleitung **Kap. 1**). Um eine mögliche Beteiligung von mTRP1 β an dem BCR-gesteuerten Ca²⁺-Einstrom zu untersuchen wurde dieses Protein, sowie die Äpp-Mutante als Kontrolle, in IIA1.6-Zellen exprimiert. Dabei erwies sich die stabile Überexpression von mTRP1 β in dieser Zellinie als problematisch. Die Selektion nach Elektroporation der Zellen mit linearisierter DNA führte im Fall von mTRP1 β -FLAG, kloniert in den Expressionsvektor pBEHpAC18, erst beim dritten Versuch zu drei Klonen, die nicht nur in der RT-PCR sondern auch in der Immunfluoreszenzmikroskopie positiv waren (**Abb. 6.24 (B)** bis (**D**)).

Die Ca²⁺-Flux-Analyse am Durchflußzytometer nach Stimulation der Zellen durch Quervernetzung der B-Zell-Rezeptoren mittels F(ab')₂-Fragmenten von Kaninchen-anti-Maus IgG (Budde et al., 1994) zeigt bei den mTRP1 β -exprimierenden Zellen eine über einen längeren Zeitraum höhere cytosolische [Ca²⁺] im Vergleich zu den den Vektorkontrollzellen. Bei Zellen, die die Äpp-Mutante stabil exprimieren, ist diese höhere cytosolische [Ca²⁺] nicht zu beobachten (**Abb. 6.24** (**A**)). Die Expression des mTRP1 β in voller Länge war im Gegensatz zu der der Δ pp-Mutante jedoch nicht stabil. Nach mehreren Passagen der Klone konnte das Protein weder in der Immunfluoreszenzmikroskopie noch im Immunblot nachgewiesen werden. Auch der längeranhaltende höhere Ca²⁺-Einstrom war nicht mehr meßbar. Im Gegensatz zu den Δ pp-Klonen scheint eine stabile Expression von mTRP1 β in den IIA1.6-Zellen nicht möglich zu sein.

Abb. 6.24 [Ca²⁺]_{rel}-Messungen und immunfluoreszenzmikroskopische Aufnahmen an mTRP1**b**- und Äppexprimierenden IIA1.6-Zellen

(A) Die Änderung der cytosolischen $[Ca^{2+}]_{rel}$ wurde an Fluo-3/Snarf-1-beladenen Zellen am FACS gemessen. Die Zellen wurden in 0,5 mM EGTA-haltiger Lösung mit dem F(ab')₂-Fragment von Kaninchen-anti-Maus IgG stimuliert und nach dem Abklingen des Primärsignals die extrazelluläre $[Ca^{2+}]$ auf 1,8 mM eingestellt. Es wurden vektortransfizierte, mTRP1β-FLAG und mTRP1βΔpp-FLAG exprimierende Zellen gemessen und entsprechende immunfluoreszenzmikroskopische Aufnahmen mit dem pAk OctA anti-FLAG durchgeführt ((**B**) Vektor, (**C**) mTRP1β, (**D**) mTRP1βΔpp).

7 Diskussion

B-Zellen erzeugen nach Rezeptorstimulation ein biphasisches cytosolisches Ca²⁺-Signal. Nach Aktivierung der Tyrosinkinase-gekoppelten B-Zellrezeptoren (BCR) wird u.a. ein PLC-yabhängiger Signalweg eingeleitet, woraufhin auch IP3 generiert wird. Dieses bindet an IP3-Rezeptoren im ER und löst so die Freisetzung von Ca^{2+} aus den intrazellulären Speichern aus. Nach diesem Primärsignal werden die auf molekularer Ebene bisher noch unbekannten Ca²⁺-Kanäle in der Plasmamembran geöffnet, durch die Ca²⁺ aus dem Extrazellularraum in die Zelle einströmt. Dieses führt zu einem länger anhaltenden erhöhten Ca²⁺-Spiegel im Cytosol der Zelle, der als ein Signal zur Einleitung der spezifischen Gentranskription dient (Berridge, 1993). Die Entleerung der intrazellulären Speicher mit Thapsigargin führt ebenso wie die BCR-Quervernetzung mit Antikörpern zu der Aktivierung dieser Kanäle. Mögliche Kandidaten für diese speicherregulierten Kanäle könnten deshalb aus der neuen Proteinfamilie der TRP-Isoformen stammen. Bisher sind verschiedene Isoformen bekannt, die je nach molekularer Struktur unterschiedliche Ca²⁺-Sensitivitäten und Steuerungsmechanismen aufweisen. Für einige TRP-Isoformen, wie TRP1, 4 und 5, gibt es Hinweise auf eine Speicherregulierung, andere scheinen von der cytosolischen $[Ca^{2+}]$ oder dem Ca^{2+} -Spiegel im ER unabhängig zu sein (siehe Einleitung Kap. 1). In B-Zellinien werden verschiedene dieser TRP-Isoformen exprimiert, von denen das TRP1 ubiquitär ist (Engelke, 2001). Die bisherigen Daten weisen darauf hin, daß TRP1 ein speichergesteuerter nicht selektiver Kationenkanal ist (Zitt et al., 1996; Tomita et al., 1998; Wu et al., 2000). Die dafür verantwortlichen proteinbiochemischen Eigenschaften sind jedoch unklar. In Analogie zu den spannungsabhängigen Kanälen wird eine Homo- oder Heterotetramerisierung von **TRP-Proteinen** funktionellen zur Bildung eines Kanals angenommen. Die einzigen Hinweise dafür liefern Studien über dTRP und dTRPL, von denen gezeigt wurde, daß sie sowohl über den cytosolischen N-Terminus als auch über die Transmembrandomänen miteinander wechselwirken. Eine Co-Expression dieser beiden TRP-Isoformen führt zu veränderten Kanaleigenschaften gegenüber der Expression der Einzel-TRP-Proteine (Gillo et al., 1996; Xu et al., 1997). Ebenso wurde für hTRP1 und hTRP3 eine Interaktion festgestellt (Xu et al., 1997) und auch deren Co-Expression änderte die meßbaren Kanaleigenschaften deutlich (Lintschinger et al., 2000). Durch Deletion des cytosolischen C-Terminus von hTRP1 konnte ein höherer Ca²⁺-Einstrom gemessen werden als beim kompletten hTRP1; dies weist auf einen regulatorischen Einfluß des C-Terminus auf die Kanalaktivität hin (Singh et al., 2000).

Aus der Aminosäuresequenz von TRP1 werden für die Domänenstruktur sechs Transmembransegmente abgeleitet, wobei zwischen dem fünften und sechsten Segment die potentielle Porenschleife liegt. Im cytosolischen N-Terminus existieren drei Ankyrin-ähnliche Wiederholungen sowie eine Coiled-Coil Struktur. Am Ende des cytosolischen C-Terminus liegt eine Dystrophin-ähnliche Domäne (Wes et al., 1995). Die Eigenschaften dieser Domänen von mTRP1 oder anderer TRP-Isoformen sind bisher noch nicht näher charakterisiert worden.

Im Rahmen dieser Arbeit wurde die Untereinheitenstruktur des Kanalproteins mTRP1 β näher charakterisiert. Die Frage nach der Bildung von Homo- oder Heterooligomeren wurde geklärt und der Einfluß der einzelnen Domänen auf die Assoziation ist untersucht worden. Es wurden erstmals Deletionsmutanten von mTRP1 β eingesetzt, um die Interaktionsdomänen näher zu lokalisieren und deren Einfluß auf die Kanaleigenschaften experimentell zu untersuchen. Die postulierten Domänen (Wes et al., 1995), die drei Ankyrin-ähnlichen Wiederholungen, die Coiled-Coil Domäne im cytosolischen N-Terminus, die hoch konservierte EWKFAR-Sequenz und die Dystrophin-ähnliche Domäne im cytosolischen C-Terminus, wurden mit Hilfe der PCR deletiert¹. Zusätzlich wurde die postulierte Porenregion, einschließlich der fünften und sechsten Transmembransegmente, deletiert (**Abb. 6.1**).

7.1 Expression und Plasmamembranlokalisierung von mTRP1**b** und Mutanten, mTRP2 sowie hTRPC3 in COS-M6- und HEK293-Zellen

Die wichtigste Vorraussetzung für die Aussagekraft der Interaktions- und Funktionsstudien ist die Lokalisierung der Deletionsmutanten von mTRP1ß in der Plasmamembran und die richtige Orientierung der terminalen Regionen in den verwendeten Zellsystemen. Für die für die Funktionsuntersuchungen HEK293-Zellen Interaktionsstudien wurden COS-M6-, verwendet. Die immunfluoreszenzmikroskopischen Aufnahmen in den Abb. 6.6, Abb. 6.7 und im Anhang 1 bis 3 zeigen, daß sowohl mTRP1 β und die Mutanten sowie mTRP2 und hTRPC3, die mit einem e-myc- oder HA-Epitop am C-Terminus versehen waren, in beiden Zellinien in der vollen Länge transient exprimiert werden und in der Plasmamembran lokalisiert sind. Die Co-Lokalisation (Linker mit LAT for Activation of T-Cells) oder hTRPC3 als Plasmamembranprotein sind ein weiterer Beleg für die Plasmamembranlokalisierung. Eine Co-Lokalisation mit dem cytosolischen EGF-Protein liegt nicht Die vor. Immunfluoreszenzbilder an nicht permeabilisierten und nicht fixierten Zellen zeigen die richtige cytosolische Lokalisierung des C-Terminus aller mTRP1β-Mutanten, einschließlich der Δpp-Mutante, in der zwei Transmembransegmente sowie die Porenschleife deletiert sind. Auch in stabil mTRP1ß und Mutanten exprimierenden HEK293-Zellen, die für die Untersuchung der

¹ Einige der Deletionsmutanten wurden von M. Engelke im Rahmen seiner Diplomarbeit kloniert: Äank, Äcc, Ädys (Engelke, 1999).

Ca²⁺-Kanaleigenschaften verwendet wurden, werden die mit einem FLAG-Epitop versehenen Proteine in der Plasmamembran lokalisiert. EGFP, das von dem pIRES2-EGFP-Vektor bicistronisch co-exprimiert wird, diente hier als cytosolisches Markerprotein (Abb. 6.19). Eine mit EGFP konnte kürzlich durch konfokal aufgenommene Co-Lokalisierung Immunfluoreszenzbilder ausgeschlossen werden. Die stabilen Klone exprimieren demzufolge die mTRP1_β-Mutanten entsprechend den transient transfizierten Zellen und transportieren diese in die Plasmamembran. MTRP1ß und die Mutanten sind folglich unabhängig davon, ob in COS-M6- oder in HEK293-Zellen transient oder stabil exprimiert, in der Plasmamembran lokalisiert und weisen die richtige cytoplasmatische Orientierung der C-terminalen Region auf. Dies ist eine entscheidende Voraussetzung für die weiteren Interaktions- und Funktionsstudien dieser Proteine.

Durch die Lokalisierung von TRP1 in Lipid-Raft-Domänen (LRD) (Lockwich et al., 2000), ist es nicht möglich mTRP1ß oder dessen Mutanten reproduzierbar ohne Zerstörung dieser Domänen zu immunpräzipitieren. Diese LRD stellen entscheidende Membranmikrostrukturen, z. B. in T-Zellen, für die zellaktivierenden Signalkomplexe dar. Nach Stimulation der Zellen werden die T-Zellrezeptoren in den LRD lokalisiert und mit den entscheidenden cytosolischen oder plasmamembranlokalisierten Signal- und Adaptermolekülen, wie z. B. Tyrosinkinasen der Src-Familie und LAT, komplexiert und im aktiven Zustand gehalten. Dadurch wird das für die vollständige Zellaktivierung nötige längeranhaltende Signal erst möglich (Zhang et al., 1998-a; Clements et al., 1999; Gross et al., 1999; Leeuwen und Samelson, 1999; Lin et al., 1999; Pasquet et al., 1999; Pivniouk und Geha, 2000). LAT ist an zwei cytosolischen Cysteinen (AS 26 und 29) palmityliert, wodurch es in den LRD lokalisiert wird (Zhang et al., 1998-b). Durch Behandlung der Zellen mit z. B. Methyl-β-cyclodextrin (MβCD), das das Cholesterol aus den Rafts löst, werden diese zerstört und die darin lokalisierten Proteine freigesetzt (Klein et al., 1995; Hooper, 1999). Die nach MBCD-Behandlung immunpräzipitierten C-terminal mit einem FLAG-Epitop fusionierten mTRP1^β-Mutanten zeigen im Immunblot ein nicht der berechneten Molmasse entsprechendes Laufverhalten. Die einzige Ausnahme bildet die App-Mutante, die mit ca. 76 kDa die erwartete Molmasse aufweist. Alle anderen Mutanten und das Protein in voller Länge weisen eine deutlich reduzierte apparente Molmasse auf (um 10 bis 15 %). Eine entsprechende Beobachtung wurde auch bei hTRP1 und xTRP gemacht (Sinkins et al., 1998; Bobanoviæ et al., 1999). Da die App-Mutante ein der berechneten Molmasse entsprechendes Laufverhalten aufweist, können die Transmembransegmente für diese Beobachtung verantwortlich gemacht werden, die in dieser Mutante fehlen. Daß dieses Laufverhalten an einer unvollständigen Denaturierung der Transmembransegmente liegt, zeigt der Immunblot von mTRP1B-Proteinen,

die in einem 8 M Harnstoff-SDS-PAA-Gel elektrophoretisch aufgetrennt wurden. Hier wird eine deutlich bessere Auftrennung aller Mutanten erreicht (Abb. 6.13). Das Laufverhalten von mTRP2 und hTRPC3 zeigt nach normaler Laemmli-Aufarbeitung die berechnete Molmasse. Die Transmembransegmente von mTRP1 β sind demnach besonders stark miteinander assoziiert und nur durch extreme Bedingungen vollständig zu denaturieren. Diese Vermutung wird durch die Tatsache bestätigt, daß der prozentuale hydrophobe Aminosäureanteil nur um ca. 2 % niedriger liegt als bei allen anderen mTRP1 β -Mutanten oder dem mTRP1 β in voller Länge (ca. 30 %; bei einem Vergleich der Transmembransegmente nur 1,6 % niedriger). Die Veränderung der Hydrophobizität kann demnach nur einen geringen Einfluß auf das veränderte Laufverhalten ausüben.

7.2 Homo- und Heterooligomerisierung von TRP1, 2 und 3

Die ersten Untersuchungen zur Homo- und Heterooligomerisierung wurden im Rahmen dieser Arbeit mit Hilfe des LexA-Hefe-Two-Hybrid-Systems durchgeführt. Die cytosolischen Domänen von mTRP1^β, mTRP2 und hTRPC3 wurden dazu als DNA-Bindungsdomänen- (BD) oder Aktivierungsdomänen- (AD) Fusionsproteine eingesetzt. Die Vortests zeigen, daß alle BD-Fusionsproteine in den Kern transportiert werden, dort an die LexA-Operatoren binden und die lacZ-Genexpression induzieren. Dies ist die wichtigste Voraussetzung für den Two-Hybrid-Interaktionstest. Der N-Terminus von mTRP1ß erwies sich als autoaktivierend in Bezug auf das LEU2-Gen. Ein Interaktionstest ist aufgrund des zweiten, nicht autoaktivierten Markers, lacZ, dennoch möglich und aussagekräftig. Die Ergebnisse des Assoziationstests zeigen erstmals, daß die N-Termini der eingesetzten Säuger-TRP-Isoformen, TRP1, 2 und 3. sowohl homodimerisieren als auch heterodimerisieren können. Eine Interaktion über die C-Termini konnte in keiner Kombination nachgewiesen werden. Durch Deletionen im N-terminalen Bereich von mTRP1ß konnte die essentielle Bedeutung der Coiled-Coil Domäne für diese Interaktionen gezeigt werden. Die drei Ankyrin-ähnlichen Wiederholungen haben auf die Interaktionen im Two-Hybrid-System keinen Einfluß (Tab. 6.2). Die drei verschiedenen Säuger-TRP-Isoformen können folglich ebenso wie dTRP und dTRPL von Drosophila (Xu et al., 1997) über die N-Termini miteinander assoziieren. Im Rahmen dieser Arbeit konnte im Gegensatz dazu jedoch erstmals die für diese Assoziation verantwortliche Domäne, die Coiled-Coil Region, identifiziert werden.

Co-Immunpräzipitationsstudien an transient transfizierten COS-M6-Zellen belegen die Assoziationsfähigkeit der drei mit verschiedenen Epitopen versehenen TRP-Isoformen. MTRP1 β homomerisiert und zwischen mTRP1 β und hTRPC3 werden Heteromere ausgebildet. Auch in

dem für die [Ca²⁺]-Messungen verwendeten HEK293-Zellsystem gibt es Hinweise auf eine Assoziation von hTRP1 und hTRP3 (Xu et al., 1997). Im Rahmen dieser Arbeit wurden erstmalig Hinweise auf eine Homomerisierung von mTRP2 und eine Heteromerisierung mit hTRPC3 gefunden. Die Fähigkeit von mTRP1ß mit mTRP2 zur Heteromerisierung ist schon gezeigt worden (Schäfer, 2001). Für hTRPC3 konnte ebenfalls die Homomerisierung erstmals auf Proteinebene nachgewiesen werden (Abb. 6.9). Durch den Einsatz der Deletionsmutanten von mTRP1 β in Co-Immunpräzipitationsstudien konnte gezeigt werden, daß eine einzelne der postulierten Domänen von mTRP1ß keine essentielle Bedeutung für die Homomerisierung von mTRP1ß oder eine Heteromerisierung mit hTRPC3 besitzt. Die Verwendung der mTRP1β-Mutanten führte in allen Fällen zu Co-Präzipitaten mit mTRP1ß und hTRPC3 (Abb. 6.10). Eine einzelne dieser Domänen ist demnach nicht für eine Gesamtassoziation der TRP-Proteine verantwortlich. Eine Assoziation über die N-Termini ist jedoch für eine Interaktion ausreichend, was nicht nur aus den Daten des Two-Hybrid-Systems deutlich wird, sondern inzwischen auch durch Co-Immunpräzipitationen bestätigt wurde (Schäfer, 2001). Eine Assoziation der N-Termini ist demnach ausreichend aber nicht essentiell, um eine Multimerisierung von TRP-Proteinen herbeizuführen. Diese Resultate ergänzen sich sehr gut mit den oben genannten Daten, die über dTRP und dTRPL bekannt sind und vollständigen diese.

Das im Rahmen dieser Arbeit erhaltene Ergebnis, wonach der komplette C-Terminus keine für die Assoziation entscheidende Rolle spielt, wird von den Ca^{2+} -Messungen an HSG-Zellen bestätigt, wonach die Expression einer hTRP1 Δ CT-Mutante einen höheren Einstrom zur Folge hat als das Protein in voller Länge (Singh et al., 2000). Eine Interaktion über den C-Terminus zur Bildung eines funktionellen Kanals existiert demnach auch *in vivo* nicht.

Durch nicht reduzierende SDS-PAGE und Western Blot-Analyse von Co-Immunpräzipitaten konnte erstmals gezeigt werden, daß ein hochmolekularer, wahrscheinlich über Disulfidbrücken vernetzter Komplex existiert, der bei mTRP1 β und den Mutanten, sowie auch bei mTRP2 und hTRPC3 nachweisbar ist (**Abb. 6.11**). Auch in diesen Komplexen konnten Homo- und Heteromere über verschiedene Epitope mit Hilfe spezifischer Antikörper nachgewiesen werden (**Abb. 6.12**). Dies ist ein deutlicher Hinweis auf die Bedeutung von Disulfidbrücken zur Ausbildung von TRP-Proteinkomplexen.

Eine Reduktion der mTRP1 β -Mutanten-Immunpräzipitate unter suboptimalen Reduktionsbedingungen zeigt ein Bandenmuster, das Dimere, Tetramere und evtl. auch Hexamere erkennen läßt. Nur die Δ pp-Mutante zeigt neben dem Monomer ausschließlich ein Dimer (**Abb. 6.15**). Dies ist der erste proteinbiochemische Hinweis auf eine Tetra- bzw. Hexamerisierung von TRP-Proteinen. Das Ergebnis der Δ pp-Mutante ist in dieser Hinsicht besonders interessant, da die drei extrazellulären Cysteine zwischen der fünften Transmembranregion und der Porenschleife liegen und bei dieser Mutante deletiert sind. Sie sind die einzigen extrazellulären Cysteine in mTRP1 β und die essentielle Bedeutung dieser Aminosäuren wird dadurch bestätigt. Bei mTRP2 und hTRPC3 liegen im ersten Fall zwei extrazelluläre Cysteine zwischen der dritten und vierten Transmembranregion und im letzteren ist ein extrazelluläres Cystein zwischen der ersten und zweiten Transmembranregion lokalisiert. Eine gezielte Punktmutation dieser Cysteine sollte deren Beteiligung an der Ausildung funktioneller TRP-Komplexe zeigen. Daß extrazelluläre Cysteine bei der Bildung funktioneller Kanäle entscheidend beteiligt sind, ist z. B. schon für die K⁺-Kanäle Kir2.3 und TWIK-1 gezeigt worden. Durch Substitution der entsprechenden Cysteine des Kir2.3-Kanals wurde die Kanalaktivität deutlich reduziert, die Assoziation der einzelnen Untereinheiten wurde dadurch jedoch nicht beeinflußt (Bannister et al., 1999). Dagegen ist eine stabilisierende Disulfidbrücke für die Untereinheitenassoziation des TWIK-1-Kanals sogar entscheidend (Lesage et al., 1996).

7.3 Adapterproteine von TRP

Die immunfluoreszenzmikroskopischen Aufnahmen von COS-M6-Zellen zeigen eine Plasmamembran-Co-Lokalisierung von hTRPC3 und LAT (Linker for Activation of T-Cells) (Abb 6.6). Durch Co-Immunpräzipitationen konnte in der vorliegenden Arbeit erstmals gezeigt werden, daß sowohl mTRP1ß als auch mTRP2 und hTRPC3 mit LAT assoziiert sind (Abb. 6.16). LAT ist ursprünglich als plasmamembranlokalisiertes, T-Zell-spezifisches Adapterprotein charakterisiert worden, das in LRD lokalisiert ist und für die Aktivierung von T-Zellen essentiell ist. Es rekrutiert verschiedene Signalmoleküle und ist unter anderem an PLC-y und verschiedene Tyrosinkinasen assoziiert, die entscheidende Bindeglieder zwischen der Aktivierung der Zelle und dem Ca²⁺-Einstrom über die Plasmamembran sind (Zhang et al., 1998-a; Clements et al., 1999; Gross et al., 1999; Leeuwen und Samelson, 1999; Lin et al., 1999; Pasquet et al., 1999; Pivniouk und Geha, 2000). LAT ist in Mastzellen mit Oberflächenmolekülen wie Fc-Rezeptoren assoziiert (Saitoh et al., 2000) und auch in anderern Zellen wie NK-Zellen (Zhang et al., 1998-a) und in einigen B-Zellinien (Engelke, 2001) nachgewiesen worden. Durch die Assoziation der TRP-Kanäle mit LAT, oder dessen evtl. noch nicht identifizierten Homologen in anderen Zellinien oder Geweben, konnte somit ein möglicherweise wichtiges Bindeglied für die Bildung des essentiellen Aktivierungskomplexes gefunden werden. Die direkte Interaktion der TRP-Proteine mit LAT, die unter Umständen erst nach einer Aktivierung der Zelle ausgebildet werden könnte, kann z. B. am T-Zellsystem Jurkat gezeigt werden, in denen verschiedene TRP-Isoformen sowie LAT endogen exprimiert werden.

Die vermutete Verankerung der TRP-Proteine an das Cytoskelett ist bisher nicht gezeigt worden. Da sowohl Ankyrin vermittelte als auch Dystrophin vermittelte Assoziationen mit dem Cytoskelett bekannt sind (siehe Einleitung Kap 1), wurde diese stets als wahrscheinlich Rahmen dieser Arbeit angenommen. Im war es erstmals möglich, durch Co-Immunpräzipitationen die direkte Assoziation von mTRP1ß und dessen Deletionsmutanten mit Aktin auf Proteinebene im Immunblot zu zeigen (Abb 6.18). Ein Einfluß einer einzelnen Domäne auf diese Interaktion wurde nicht beobachtet. Daraus ergeben sich mehrere mögliche Erklärungen: (1) eine Assoziation findet über mehrere Domänen von TRP1 β statt, (2) die interagierende Region liegt nicht innerhalb der deletierten Domänen oder (3) über endogen exprimierte TRP-Proteine oder andere Adapterproteine in COS-M6-Zellen, die wiederum mit den mTRP1\beta-Mutanten assoziieren, wird eine Verbrückung zum Aktincytoskelett vermittelt. Da eine Assoziation mehrerer TRP-Proteine über Disulfidbrücken oder die Transmembransegmente durch die Deletionen der cytosolischen Domänen nicht beeinflußt wird, ist die letzte Annahme, Verbrückung über endogene TRP-Isoformen, die wahrscheinlichste.

Eine direkte Assoziation von Aktin mit Ionenkanälen ist z. B. für den CI-Kanal CIC-2 gezeigt worden. Der cytosolische N-Terminus, der das Aktin-Bindungsmotiv (siehe Einleitung **Kap. 1**) nicht enthält, assoziiert *in vitro* mit Aktin, das in *Xenopus* Oocyten einen inhibierenden Effekt auf die Kanalfunktion ausübt (Ahmed et al., 2000). Auch für andere Ionenkanäle und -transporter gibt es Hinweise auf eine essentielle Interaktion mit dem Aktincytoskelett (Levitan et al., 1995; Matthews et al., 1997; Kurashima et al., 1999)

Für eine Assoziation von mTRP1 β und Caveolin-1 konnte in HEK293-Zellen kein experimenteller Hinweis gefunden werden, während in HSG-Zellen diese Interaktion nachgewiesen wurde (Lockwich et al., 2000). Zwar konnten aus HEK293-Zellen jeweils mTRP1 β und auch Caveolin-1 immunpräzipitiert werden, eine Interaktion war aber nicht zu beobachten (**Abb. 6.17**). Auch Caveolin-1 ist wie LAT ein in LRD-lokalisiertes Protein und eventuell ist in bestimmten Zellinien eine Stimulation nötig, damit eine Assoziation zu den TRP-Proteinen ausgebildet wird.

7.4 Einfluß der postulierten funktionellen Domänen von mTRP1**b** auf den Calciumioneneinstrom in stabil transfizierten HEK293-Zellen

Um die Auswirkung der Deletion einer der postulierten funktionellen Domänen auf die Kanalaktivität von mTRP1 β zu untersuchen, wurden mTRP1 β -FLAG und die Deletionsmutanten stabil in HEK293-Zellen exprimiert. Die Fura-2-[Ca²⁺]-Messungen an mTRP1 β -FLAG und Mutanten exprimierenden Einzelzellklonen ergeben für das Primärsignal,

die Entleerung intrazellulärer Speicher nach Stimulation des G-Protein-gekoppelten PLC-β-Signalweges mit Carbachol, keine signifikante Veränderung des cytosolischen [Ca²⁺]-Anstieg gegenüber den Vektorkontrollzellen. Die Entleerung der Speicher wird durch die Expression von mTRP1 β oder den Mutanten somit nicht beeinflußt. Die [Ca²⁺]-Messungen des Sekundärsignals, das dem relativen Einstrom von Ca²⁺ aus dem Extrazellularraum über die Plasmamembran entspricht, zeigen eindeutig eine signifikante Erhöhung der cytosolischen [Ca²⁺] bei den stabil mTRP1B-exprimierenden HEK293-Zellen gegenüber den Vektorkontrollzellen von ca. 300 nM auf knapp 400 nM (Abb. 6.21 und 6.22). Um den Einfluß des Plasmamembranpotentials auf die Aktivierung von mTRP1ß auszuschließen, wurden Messungen durchgeführt, bei denen dieses Potential durch Änderung der extrazellulären Natrium- und Kaliumsalzkonzentrationen zum Kollabieren gebracht wurde. Aus den Ergebnissen wird deutlich, daß das Potential einen Einfluß auf endogen exprimierte Ca^{2+} -Kanäle ausübt. Die gemittelte cytosolische $[Ca^{2+}]$ des Sekundärsignals liegt signifikant unter dem Kontrollwert (160 nM statt 300 nM), gemessen in einer physiologischen extrazellulären Lösung (Abb. 6.21 und 6.22). Der Mittelwert des Sekundärsignals von stabil mTRP1β-exprimierenden Zellen liegt um ca. 60 nM niedriger als der Vergleichswert. Dieser Wert liegt innerhalb der Fehlergrenzen beider Werte und so kann nicht von einer eindeutigen Erniedrigung des Signals ausgegangen werden. Das Kollabieren des Plasmamembranpotentials führt also zu einem deutlicheren Anstieg des Sekundärsignals bei mTRP1β-exprimierenden Zellen gegenüber den Kontrollzellen.

Eine ähnliche Beobachtung bezüglich des moderaten Ca²⁺-Einstroms über die Plasmamembran wurde bei transient hTRP1-exprimierenden COS-M6-Zellen gemacht. Nach Stimulation des IP₃-Signalweges erhöhte sich die cytosolische $[Ca^{2+}]$ um ca. 75 % gegenüber Kontrollzellen, wohingegen bei hTRP3-exprimierenden Zellen die Konzentration um über 200 % anstieg (Zhu et al., 1996) und die Co-Expression beider hTRP-Isoformen in HEK293-Zellen führt zu veränderten Kanaleigenschaften gegenüber den Einzel-TRP-Isoformen. Der heterooligomere hTRP-Kanal wies eine PLC-Abhängigkeit und eine bedeutende Ca²⁺-Sensitivität auf, die für die negative Kontrolle der TRP-Kanalfunktion entscheidend sein könnte (Lintschinger et al., 2000). Auch in Sf9-, CHO-Zellen und Xenopus Oocyten war nach Expression der humanen Isoform TRPC1 ein höherer Ca²⁺-Einstrom zu beobachten, wobei jedoch je nach Zelltyp Unterschiede in der konstiutiven Kanalaktivität und der Abhängigkeit von stimulierenden Agonisten beobachtet wurde (Zitt et al., 1996; Sinkins et al., 1998). Die Ergebnisse dieser Arbeit ergänzen somit die bisher bekannten Eigenschaften der TRP1-Isoform bezüglich der zellunabhängigen Kanalaktivität und die Resultate der Interaktionsstudien geben einen Hinweis auf den

entscheidenden Einfluß von endogen exprimierten TRP-Isoformen auf die Kanaleigenschaften der jeweils untersuchten Proteine.

Um den bisher unbekannten Einfluß der postulierten funktionellen Domänen von mTRP1ß auf die Kanalaktivität zu untersuchen, wurden auch die Deletionsmutanten dieser TRP-Isoform stabil in HEK293-Zellen exprimiert. Nach Deletion der drei Ankyrin-ähnlichen Wiederholungen ist bei Einzelzell-[Ca²⁺]-Messungen kein erhöhtes nM) Sekundärsignal (290)gegenüber den Vektorkontrollzellen (300 nM) zu beobachten und das Signal bleibt signifikant unter dem von mTRP1ß (400 nM). Die Funktion dieser Domäne ist bisher noch nicht näher charakterisiert worden, jedoch ist von Ankyrin bekannt, daß es mit den IP₃-Rezeptoren assoziiert (Bourguignon et al., 1993) und eine Verankerung zum Cytoskelett ausbildet (siehe Einleitung Kap. 1). Da eine Assoziation von TRP1 mit IP₃-Rezeptoren beobachtet wurde (Rosado und Sage, 2000), die eventuell nicht über den C-Terminus von TRP1 vermittelt wird (Lockwich et al., 2000), und die Assoziation zum Aktincytoskelett erstmals in dieser Arbeit gezeigt wird, könnte die ank-Domäne die entscheidende Rolle spielen. Ein Einfluß endogen exprimierter TRP-Proteine auf die Co-Immunpräzipitationen des C-terminal verkürzten TRP1 mit IP₃-Rezeptoren kann nach den Ergebnissen der vorliegenden Arbeit nicht mehr ausgeschlossen werden. Eine Assoziation des C Terminus endogener TRP-Proteine mit den IP₃-Rezeptoren könnte die indirekte Interaktion zu dem C-terminal verkürzten TRP1 herstellen, z. B. über extrazelluläre Disulfidbrücken oder den N-Terminus. Dies wird in weiteren Studien zu untersuchen sein. Interessanterweise sind Proteine bekannt, in denen mehrere Ankyrin-Wiederholungen globuläre Strukturen bilden, bei denen die Untereinheiten aus je sechs Einzelregionen bestehen (Michaely und Bennett, 1993). Demnach könnte auch eine Assoziation der N-Termini über die Ankyrin-ähnliche Domäne vermittelt werden, um so funktionelle Strukturen zu bilden, die mit den IP₃-Rezeptoren oder dem Cytoskelett wechselwirken.

Die beobachtete Dimerisierung der N-Termini im Two-Hybrid-System ist nach Deletion der Coiled-Coil Region nicht mehr zu beobachten und die [Ca2+]-Messungen nach stabiler Expression dieser Mutante in HEK293-Zellen bestätigt die essentielle Bedeutung dieser Domäne. Das Sekundärsignal liegt mit 290 nM signifikant unter dem Wert von 400 nM für die mTRP1B-Klone und im Bereich der Vektorkontrollzellen (300 nM). Ein essentieller Einfluß der Coiled-Coil Domäne auf die Bildung von TRP-Oligomeren konnte bei den Co-Immunpräzipitationsstudien nicht beobachtet werden, doch assoziieren wie oben diskutiert möglicherweise mehrere Regionen miteinander, um einen funktionellen TRP-enthaltenden Kanal zu bilden. Die Interaktion über den N-Terminus ist für eine Dimerisierung ausreichend und die Coiled-Coil Domäne hat auf diese Assoziation zur Bildung einer funktionellen globulären Struktur in diesem cytosolischen Bereich einen entscheidenden Einfluß. Durch Deletion dieser Domäne ist eine Ausbildung dieser Struktur nicht möglich und der N-terminale cytosolische Bereich kann seine regulatorische Funktion nicht mehr ausüben. Ein funktioneller TRP-Kanal kann nicht mehr gebildet werden und der Ca²⁺-Einstrom über die Plasmamembran wird nicht erhöht.

TRP1 Die Strukturvorhersagen für zeigen zwischen dem fünften und sechsten Transmembransegment eine potentielle Porenschleife, ähnlich den spannungsabhängigen Kanälen. Die stabile Expression einer Deletionsmutante, die die Porenregion einschließlich der sie umgebenden Transmembransegmente deletiert, führt zu keinem signifikanten Anstieg des Ca2+-Sekundärsignals in HEK293-Zellen. Auch wenn dies kein endgültiger Beweis dafür ist, daß hier die Porenregion deletiert wurde, so entspricht dieses Ergebnis doch den Erwartungen, daß keine funktionelle Pore mehr gebildet wird. Durch eine Assoziation mit endogen exprimierten TRP-Proteinen, z. B. hTRP3, diese Mutante auch deren Kanaleigenschaften könnte beeinflussen, was den leicht reduzierten Mittelwert des Sekundärsignals erklären könnte.

Im Gegensatz zum N-Terminus scheint der C-Terminus weder für eine direkte Interaktion von TRP-Proteinen entscheidend zu sein, noch für die Ausbildung von assoziierten Untereinheiten des Kanals. Die Deletion der Dystrophin-ähnlichen Domäne reduziert den Ca²⁺-Einstrom gegenüber mTRP1ß um etwa 88 nM und liegt signifikant unter dessen Wert von 400 nM. Im Gegensatz dazu führt die Deletion einer längeren C-terminalen Sequenz ab dem EWKFAR-Motiv zu einer Erhöhung des Ca^{2+} -Einstroms um das 1.5- bis 2-fache und eine Verlängerung der C-terminalen Deletion um weitere 15 AS ergab keine weitere Veränderung des Ca²⁺-Signals (Singh et al., 2000). Ein entscheidender negativ regulierender Einfluß des cytosolischen C-Terminus auf die Kanalaktivität konnte postuliert werden. Durch die Ergebnisse dieser Arbeit kann diese Region auf den Bereich vor der Dystrophin-ähnlichen Domäne lokalisiert werden. Anzunehmen ist, daß bei der Adys-Mutante z. B. die Interaktion mit Adapterproteinen, wie dem Cytoskelett oder den IP3-Rezptoren, inhibiert wird. Die negativ regulierende Domäne, die Nterminal von der Dystrophin-ähnlichen Domäne lokalisiert ist und möglicherweise erst durch eine konformative Änderung nach Stimulation des Kanals aktiviert wird, ist durch die Deletion der dys-Domäne leichter für Signalmoleküle erreichbar und eventuell sogar konstitutiv aktiv. Dies resultiert in dem beobachteten großen Einfluß dieses Elements auf die Kanaleigenschaften von TRP1 und führt so die Reduktion des Einstroms herbei. Ist auch diese Domäne deletiert, fehlt das negativ regulierende Element und es folgt die Erhöhung des Ca²⁺-Einstroms, wie es durch Singh et al. (2000) beobachtet wurde. Somit kann die negativ regulierende Region neu auf die Sequenz vor der Dystrophin-ähnlichen Domäne lokalisiert werden. Ein Alignment aller mTRP-Isoformen (1 bis 8) liefert eine Konsensussequenz ab dem höchst konservierten EWKFAR-Motiv mit 35 Aminosäuren (641 bis 675) (Abb. 7.1). Die weiteren sieben

Aminosäuren bis zur Dystrophin-ähnlichen Domäne (676 bis 682) und Aminosäuren, die vor dem Motiv liegen, liefern keine Übereinstimmung. Auch TRP-Isoformen anderer Spezies, wie *Human, Drosophila, Xenopus* oder auch Rind liefern eine hohe Übereinstimmung mit dieser Konsensussequenz. Für dTRP und dTRPL wird z.B. eine Identität für die ersten 31 AS dieser Konsensussequenz erhalten. Eventuell liegt in diesem Bereich sogar eine Bindungsstelle für einen Ca²⁺-Sensor, der die cytosolische [Ca²⁺] mißt und die Kanäle reguliert. Eine neue Deletionsmutante, die diese Region ausschließt, sollte die gleiche Tendenz zeigen, wie die Cterminale Deletionmutante von Singh et al. (2000).

mTRP1 eta	(U95167)	641	EWKFARAKLWLSYFDDK <mark>C</mark> TLPPPFNII	PSPKTI <mark>C</mark> Y 67	5
mTRP2	(AF111107)	834	SYLREGLVNIL	AAF. 86	9
mTRP3	(AF190645)	672	SWLDDGKPSLV	SFV. 70	б
mTRP4	(AF011543)	634		SLW. 66	8
mTRP5	(AF060107)	638	TWMDEGGPNII	SFL. 67	2
mTRP6	(U49069)	740	AWFEEGRVNLV	SLL. 77	4
mTRP7	(AF139923)	686	AWLDEGRANLV	SFY. 72	0
mTRP8	(AF139923.1)	686	AWLDEGRANLV	SFY. 72	0
Konsensussequenz			EWKFARXKLWXSYFDEGXTLPPPFNIIPSPKSXXY		
			(Y) EDK <mark>C</mark> V SL	L T <mark>C</mark>	
			(R) T VV	(A)	

Abb. 7.1 Alignment einer Sequenz aller acht bekannten mTRP-Isoformen im C-terminalen cytosolischen Bereich

Das Alignment der mTRP-Isoformen führt zu einer Konsensussequenz ab dem EWKFAR-Motiv mit 35 Aminosäuren, in der eine neu postulierte negativ regulierende Domäne liegt. Zwei nur in mTRP1 vorkommende Cysteine sind rot hervorgehoben.

(A)

() Genbank Acc. No. der zugehörigen cDNA-Sequenzen

() gilt nur für mTRP2 bzw. mTRP7 und 8

C nur in mTRP1 β vorkommende Cysteine (AS 658 und 674)

Eine Sonderstellung nimmt bei diesem Homologievergleich mTRP1 β ein. Aufgrund der zwei Cysteine (AS 658 und 674), die in keiner anderen TRP-Isoform vorkommen, könnte TRP1 eine besondere Funktion bei der Ausbildung heteromerer Ca²⁺-Kanäle besitzen. Von LAT ist z. B. bekannt, daß es an zwei cytosolischen Cysteinen palmityliert ist, wodurch es in LRD lokalisiert wird (Zhang et al., 1998-b). Durch eine Lipidverankerung dieser eventuell negativ regulierenden Domäne von TRP1 in den LRD, könnte diese eine andere Funktion als die der anderen TRP-Isoformen besitzen. Erste Hinweise auf eine besondere Funktion, eine generell negativ regulierende, von mTRP1 β auf die Ca²⁺-Kanäle wurden bereits von M. Engelke gefunden (2001).

Widersprüchliche Hinweise gibt es auf die Interaktionsdomäne von TRP-Proteinen mit den IP₃-Rezeptoren. Im Gegensatz zu den Co-Immunpräzipitationen von IP₃-Rezeptoren mit dem Cterminal deletierten TRP1 von Sing et al. (2000) steht die von Boulay et al. (1999) beobachtete *in vitro*-Interaktion zwischen einer in der Dystrophin-ähnlichen Domäne lokalisierten TRP-Konsensussequenz von TRP3, die mit dem IP₃-Rezeptor wechselwirkt. Die Expression der Interaktionssequenzen von TRP3 und IP₃-Rezeptoren in HEK293-Zellen führt zu einem erniedrigten speicherregulierten Ca²⁺-Einstrom. Demnach ist eine direkte Interaktion von TRP über diese Konsensussequenz und IP₃-Rezeptoren bei Deletion des C-Terminus nicht möglich und wird als Resultat dieser Arbeit z. B. über endogen exprimierte TRP-Proteine vermittelt.

Die alleinige Deletion des EWKFAR-Motivs in mTRP1 β führt zu keinen signifikant veränderten [Ca²⁺]-Meßwerten gegenüber den Vektorkontroll- oder den mTRP1 β -Daten. Aufgrund des großen Fehlerbereichs der Meßwerte kann über dieses Motiv keine Aussage gemacht werden.

Prof. Dr. A. Die in Kooperation mit Lückhoff (RWTH Aachen) durchgeführten elektrophysiologischen Messungen an den stabilen HEK293-Einzelzellklonen bestätigen den Einfluß einzelner Domänen auf die Bildung eines funktionellen TRP-Kanals (Daten nicht gezeigt). Die Expression von mTRP1 β in der vollen Länge führt zu einem konstitutiv aktiven Ioneneinstrom über die Plasmamembran, der wahrscheinlich hauptsächlich durch Na⁺ zustande kommt. Eine ähnliche Beobachtung wurde nach Expression von hTRPC1A in CHO-Zellen gemacht (Zitt et al., 1996). Nach Deletion der potentiellen Porenregion oder der Dystrophinähnlichen Domäne ist dieser Strom nicht mehr meßbar. Diese Daten ergänzen und bestätigen die im Rahmen dieser Arbeit erhaltenen Ergebnisse über die Funktion der postulierten Domänen von mTRP1ß und der konstitutiv aktive Ioneneinstrom erklärt auch das im Gegensatz zu hTRPC3 und mTRP2 geringe Expressionslevel von mTRP1B, da eine erhöhte konstitutive Kanalaktivität toxisch für die TRP1-überexprimierenden Zellen sein könnte.

7.5 Expression von mTRP1**b** in IIA1.6-Zellen

Ca²⁺-Kanäle der Obwohl eine Reihe Eigenschaften in B-Zellen. von die nach Rezeptorstimulation aktiviert werden, gut untersucht sind, ist die molekulare Struktur dieser Kanäle bisher unbekannt. Nach der Isolierung der ersten Säuger-TRP-Proteine sind in verschiedenen **B-Zellinien** auf RT-PCR-Basis verschiedene TRP-Isoformen nachgewiesen worden (Engelke, 2001). In IIA1.6-Zellen werden endogen mTRP1, mTRP2 und mTRP3 exprimiert. In Analogie zu Ergebnissen in Ltk-Zellen (Zhu et al., 1996) wurden im Rahmen dieser Arbeit anti-sense Experimente an IIA1.6-Zellen durchgeführt (Daten nicht gezeigt). Sequenzen, die die potentielle Porenregionen von mTRP1, 2, 4 und 6 umfassen, wurden in antisense Orientierung stabil in der Zellinie exprimiert, sowohl einzeln als auch in Kombination. Positive Klone wurden auf RT-PCR-Ebene identifiziert. Eine Auswirkung auf den Ca²⁺-Einstrom war im Gegensatz zu den Ltk-Zellen, bei denen es zu einem vollständigen Erliegen des Ca²⁺-Einstroms kam, nicht zu beobachten, weder nach Thapsigarginbehandlung zur Speicherentleerung noch nach B-Zellrezeptor-Quervernetzung zur Aktivierung des PLC-y-Signalweges. Da das endogene TRP-Expressionsmuster in den Ltk-Zellen nicht gezeigt wurde und alle vier anti-sense Konstrukte gleichzeitig transfiziert worden sind, ist nicht bekannt, welche TRP-Isoformen den Kanal in diesen Zellen entscheidend beeinflussen. Sicher ist nur, daß mindestens ein anti-sense Konstrukt die Expressionsrate der entsprechenden TRP-Isoform senkt. Ob alle vier anti-sense Sequenzen die Expressionsrate aller vier TRP-Proteine beeinflussen, wurde nicht gezeigt. Somit ist es möglich, daß bestimmte Konstrukte die ihr zugeschriebene Funktion, Hybridisierung mit der endogenen TRP-mRNA, nicht erfüllen. In IIA1.6-Zellen könnten folglich andere TRP-Isoformen als in Ltk-Zellen aktiv sein, bei denen die sense-antisense-Hybridisierung durch Ausbildung von Sekundärstrukturen jedoch nicht erfolgreich verläuft. Da in IIA1.6-Zellen zusätzlich mTRP3 exprimiert wird, könnte auch diese Isoform für den Ca²⁺-Einstrom verantwortlich sein, bzw. die wichtigste Untereinheit des Kanals stellen. Die Ergebnisse von den Ltk⁻-Zellen waren auf die IIA1.6-Zellen nicht übertragbar.

Der Versuch, mTRP1ß in der Maus-B-Zellinie IIA1.6 stabil zu exprimieren, führte erst nach mehreren Transfektionen zu wenigen, zunächst in der RT-PCR, Immunfluoreszenzmikroskopie und im Immunblot positiv getesteten, selektionierten Klonen. Die relativen [Ca²⁺]-Messungen am FACS zeigten bei den ersten Messungen ein deutlich länger anhaltendes erhöhtes Sekundärsignal und somit eine Kanalaktivität nach der Überexpression von mTRP1ß in den Zellen nach BCR-Stimulation. Doch war der Unterschied zu Kontrollzellen nach einigen Passagen nicht mehr zu beobachten; auch der Proteinnachweis war nicht mehr möglich. Die stabile Überexpression von mTRP1 β in IIA1.6-Zellen scheint demzufolge nicht möglich zu sein. Im Gegensatz dazu ist die Expression der App-Mutante stabil und die Proteinexpression dieser Mutante hat keinen Einfluß auf den Ca²⁺-Haushalt der Zellen (Abb. 6.24). Die stabile Überexpression von mTRP1B in voller Länge ist folglich in dieser Zellinie nicht möglich und könnte sogar toxisch sein. Diese Interpretation wird durch die Beobachtung an Daudi-Zellen, einer humanen B-Zellinie, gestützt, bei denen ebenfalls eine stabile Expression von mTRP1ß nicht möglich ist (Engelke, 2001). Doch zeigen diese Ergebnisse erstmals, daß mTRP1ß an der Bildung eines Ca²⁺-Kanals in B-Zellen beteiligt sein könnte und daß dieser mTRP1ß-enthaltende durch Stimulation des B-Zellrezeptors aktivierbar ist. Durch Verwendung eines Kanal regulierbaren Systems, z. B. Tet-On/Off, kann durch konditionelle Expression von TRP-

Isoformen in kurzer Zeit ein hohes Proteinexpressionslevel erreicht und so das Problem der Toxizität umgangen werden (die Etablierung einer Tet-regulierten Expression in einer B-Zellinie wird derzeit von M. Engelke bearbeitet, 2001).

7.6 Zusammenfassung

Zusammenfassend ergeben sich folgende neue Fakten über mTRP1 β , mTRP2 und hTRPC3, die erstmals im Rahmen dieser Arbeit erarbeitet wurden:

- alle drei TRP-Isoformen bilden Homo- und Heterooligomere;
- eine interagierende Domäne ist die cytosolische N-terminale Coiled-Coil Domäne, die ausreichend aber nicht essentiell für die Assoziation ist;
- es werden wahrscheinlich Disulfidbrücken zwischen mehreren TRP-Proteinen ausgebildet, wodurch ein hochmolekularer Komplex gebildet wird;
- alle drei TRP-Isoformen assoziieren mit dem in LRD-lokalisierten LAT-Protein, das für die Zellaktivierung entscheidend ist und mit so essentiellen Signalmolekülen wie PLC-γ und verschiedenen Tyrosinkinasen assoziiert vorliegt (in anderen Zellinien könnten auch bisher unbekannte Homologe von LAT dessen Funktionen übernehmen);
- mTRP1β und die Deletionsmutanten sind an das Aktincytoskelett direkt oder indirekt assoziiert;
- alle postulierten Domänen (ank, cc, pp, dys) sind essentiell f
 ür die Funktion von mTRP1β und f
 ühren bei Deletion zu einer Reduktion des Ca²⁺-Einstroms
 über die Plasmamembran;
- die Aminosäuren 641 bis 675 bilden eine Konsensussequenz über alle acht bekannten mTRP-Isoformen (Abb. 7.1) und besitzen höchstwahrscheinlich eine negativ regulierende Funktion auf die Kanalaktivität der TRP-Proteine. Eventuell liegt hier eine Bindungsstelle für einen cytosolischen Ca²⁺-Sensor;
- die zwei nur in der Konsensussequenz von mTRP1 vorkommenen Cysteine könnten für eine Verankerung in den LRD verantworlich sein, wodurch diese TRP-Isoform eine Sonderstellung erhält;
- es gibt erstmals Hinweise auf die Beteiligung von TRP-Proteinen an der Ausbildung von BCR-gesteuerten Ca²⁺-Kanälen in B-Zellen.

Aus den Ergebnissen dieser Arbeit wird das in Abb. 7.2 gezeigte Modell postuliert, das sich aus der Erweiterung des Modells von Lockwich et al. (2000) ergibt.

Abb. 7.2 Erweitertes Modell für die Assoziation von TRP1 in Lipid-Raft-Domänen

TRP-Proteine bilden Homo- und Heterooligomere, die in Lipid-Raft-Domänen (LRD) lokalisiert sind. Diese Assoziation wird N-terminal über die Coiled-Coil Domäne (cc) sowie extrazellulär über Disulfidbrücken vermittelt. Die Ankyrin-ähnliche Domäne (ank) und/oder die Dystrophin-ähnliche Domäne (dys) interagieren höchstwahrscheinlich mit IP₃-Rezeptoren (IP₃R) des Endoplasmatischen Retikulums (ER). Die Assoziation an das Aktincytoskelett wird ebenfalls über cytoplasmatische Domänen vermittelt. Das transmembrane ebenfalls in LRD-lokalisierte LAT (oder bisher unbekannte LAT-Homologe) ist mit TRP assoziiert und kann die Interaktion zu anderen Proteinen wie Oberflächenrezeptoren oder cytoplasmatischen Signalmolekülen wie Phospholipase C (PLC) oder Tyrosinkinasen (TK), evtl. erst nach Stimulation der Zelle, vermitteln. Dieses Modell ergibt sich aus der Erweiterung des Modells von Lockwich et al. (2000) und die neuen Ergebnisse sind farbig hervorgehoben. Auf die Darstellung einiger Transmembransegmente wurde verzichtet.

neu postulierte negativ regulierende Region mit einer Konsensussequenz über alle bekannten mTRP-Isoformen (AS 641 bis 675 in mTRP1β)

8 Ausblick

Aus den Ergebnissen dieser Arbeit ergeben sich mehrere Ansätze für weitere höchst interessante sowie wichtige Fragestellungen:

- Der hochmolekulare Komplex, der nach nicht reduzierender Aufarbeitung im Immunblot detektiert wird, sollte n\u00e4her charakterisiert werden. Dazu k\u00f6nnten Punktmutationen an extrazellul\u00e4ren Cysteinen durchgef\u00fchrt sowie endogen exprimierte TRP-Proteine untersucht werden.
- 2. Eine mögliche Assoziation der Säuger-TRP-Isoformen über Transmembransegmente ist durch Co-Immunpräzipitationsstudien an den Transmembranregionen zu untersuchen.
- Die Beteiligung der Coiled-Coil Domäne an der Dimerisierung der N-Termini muß durch Co-Immunpräzipitationsstudien an den N-Termini belegt werden, sowie dessen ausreichende aber nicht essentielle Bedeutung für die Assoziation mit anderen TRP-Proteinen (erste Experimente werden derzeit von C. Schäfer durchgeführt, 2001).
- 4. Punktmutationen in der Porenregion sollten die f
 ür die Ca²⁺-Bindung entscheidenden und die im Kanal weiterleitenden Aminos
 äuren identifizieren lassen. Hierf
 ür sind eventuell elektrophysiologische Messungen n
 ötig, da mit ihnen der Einstrom eindeutiger identifiziert werden kann.
- 5. Die cytosolischen mTRP1β-Mutanten sowie die einzelnen N- und C-terminalen cytosolischen Regionen müssen für *in vitro-* und *in vivo-*Interaktionsstudien mit den drei Typen von IP₃-Rezeptoren eingesetzt werden, um endgültig die Lage der Assoziationsdomäne(n) zu lokalisieren.
- 6. Eine neue Deletionsmutante von mTRP1β, die die Aminosäuren 641 bis 675 ausschließt, sollte diese Region als eine negativ regulierende Domäne identifizieren. Eventuell liegt hier eine Bindungsstelle für einen Ca²⁺-Sensor. Hierbei könnte mTRP1 durch die zwei Cysteine (AS 658 und 674) eine Sonderstellung unter den TRP-Proteinen einnehmen.
- 7. Alle gezeigten Protein-Protein-Assoziationen müssen auf endogen exprimierte Proteine übertragen werden, um deren physiologische Bedeutung eindeutig belegen zu können.
- Da die hohe Überexpression von mTRP1β in IIA1.6-Zellen toxisch zu sein scheint, sollte ein regulierbares System verwendet werden, um kurzfristig ein hohes Expressionslevel zu erhalten (z. B. Tet-On/Off, wobei dieses für B-Zellen noch etabliert werden muss; wird derzeit von M. Engelke bearbeitet, 2001).
- Experimente mit verschiedenen anti-sense cDNAs f
 ür mTRP3 sollten den Einflu
 ß dieses Vertreters der TRP-Familie auf den Ca²⁺-Haushalt von IIA1.6-Zellen n
 äher kl
 ären.

 Die Verwendung einer TRP-knock out Zellinie könnte den Einfluß der entsprechenden Mutanten, nach stabiler (Re-) Expression in dieser Zellinie, auf den Ca²⁺-Kanal eindeutiger charakterisieren lassen.

8 Literaturverzeichnis

Ahmed, N., Ramjeesingh, M., Wong, S., Varga, A., Garami, E., Bear, C. E. (2000)

Chloride channel activity of CIC-2 is modified by the actin cytoskeleton.

Biochem. J. 352, 789-794.

Albritton, L. M. (1997).

Efficient transfection fo fibroblast and epitheilial cells using an activated-dendrimer reagent.

J NIH Res 9, 52.

Alvarez, J., Montero, M., Garcia-Sancho, J. (1991)

Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx.

Biochem. J. 274, 193-197.

Artelt, P., Morelle, C., Ausmeier, M., Fitzek, M., Hauser, H. (1988)

Vectors for efficient expression in mammalian fibroblastoid, myeloid and lymphoid cells via transfection or infection.

Gene 68, 213-219.

Aruffo, A. und Seed, B. (1987)

Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. *Proc Natl Acad Sci U S A.* **84**, 8573-8577.

Bannister, J. P. A., Young, B. A., Sivaprasadarao, A., Wray, D. (1999)

Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane.

FEBS Lett. 458, 393-399.

Barritt, G. J. (1999)

Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different

intracellular Ca2+ signalling requirements.

Biochem. J. 337, 153-169.

Bell, J. (1989)

The polymerase chain reaction.

Immunology Today 10, 351-355.

Berridge, M. J. (1993)

Inositol trisphosphate and calcium signalling.

Nature **361**, 315-325.

Berridge, M. J. (1995)

Capacitative calcium entry.

Biochem. J. 312, 1-11.

Berridge, M. J. (1997)

Elementary and global aspects of calcium signalling.

J. Exp. Biol. 200, 315-319.

Berven, L., Hughes, B. P., Barrit, G. J. (1994)

A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca²⁺ inflow in hepatocytes.

Biochem. J. 299, 399-407.

Bird, G. S., Bian, X., Putney, Jr., J. W. (1995)

Calcium entry signal?

Nature 373, 481-482.

Birnbaumer, L, Zhu, X., Jiang, M., Boulay, G., Peyton, M., Vannier, B., Brown, D., Platano,D., Sadeghi, H., Stefani, E., Birnbaumer, M. (1996)

On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. *Proc. Natl. Adac. Sci. USA* **93**, 15195-15202.

Bobanoviæ, L. K., Laine, M., Petersen, C. C. H., Bennet, D., L., Berridge, M. J., Lipp, P., Ripley, S. J., Bootman, M. D. (1999)

Molecular cloning and immunolocalization of a novel vertebrate *trp* homologuze from *Xenopus*. *Biochem. J.* **340**, 593-599.

Boulay, G., Brown, D. M., Qin, N., Jiang, M., Dietrich, A., Zhu, M. X., Chen, Z., Birnbaumer, M., Mikoshiba, K., Birnbaumer, L. (1999)

Modulation of Ca^{2+} entry by polypeptides of the insitol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): Evidence for roles of TRP and IP3R in store depletionactivated Ca^{2+} entry.

Proc. Natl. Acad. Sci. USA 96, 14955-14960.

Boulay, G., Zhu, X., Peyton, M., Jiang, M., Hurst, R., Stefani, E., Birnbaumer, L. (1997)

Cloning and expression of a novel mammalian homolog of *Drosophila Transient Receptor Potential* (Trp) involved in calcium entry secondary to activation of receptors coupled by the G_{l} class of G protein.

J. Biol. Chem. 272, 29672-29680.

Bourguignon, L. Y., Iida, N., Jin, H. (1993)

The involvement of the cytoskeleton in regulating IP3 receptor-mediated internal Ca²⁺ release in human blood platelets.

Cell Biol. Int. 17, 751-758.

Bradford, M. M. (1976)

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.

Anal. Biochem 72, 248.

Braun, A.P., Schulman, H. (1995)

A non-selective cation current activated via the multifunctional Ca^{2+} -calmodulin-dependent protein kinase in human epithelial cells.

J. Physiol. (London) 488, 37-55.

Brent, R. und Ptashne, M. (1984)

A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene.

Nature 312, 612-615

Brentlab (2001-a)

Auf folgenden Webseiten sind viele nützliche Hinweise, Tips und Originalmethoden zum LexA-

Hefe-Two-Hybrid-System:

http://www.molsci.org/brentlabweb/interactiontrap.html

http://www.fccc.edu/research/labs/golemis/

Brentlab (2001-b)

http://www.molsci.org/brentlabweb/brent/interaction_trap/testing_baits.txt

Buday, L., Egan, S. E., Rodriguez-Viciana, P., Cantrell, D. A., Downward, J. (1994)

A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine

phosphoprotein is implicated in ras activation in T cells.

J. Biol. Chem. 269, 9019-9023.

Budde, P., Bewarder, N., Weinrich, V., Frey, J. (1994)

Biological functions of human FcyRIIa/FcyRIIc in B cells.

Eur. J. Cell Biol. 64, 45-60.

Casteels, R., Droogmans, G. (1981)

Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery.

J. Physiol. (London) 317, 263-279.

Caterina, M. J., Rosen, T. A., Tominga, M., Brake, A. J., Julius, D. (1999)

A capsaicin-receptor homologue with a high threshold for noxious heat.

Nature 398, 436-441.

Caterina, M. J., Schumacher, M. A., Tominga, M., Rosen, T. A., Levine, J. D., Julius, D. (1997)

The capsaicin-receptor: a heat-activated ion channel in the pain pathway.

Nature 389, 816-824.

Catterall, W. A. (1995)

Structure and function of voltage-gated ion channels.

Annu. Rev. Biochem. 64, 493-531.

Chevisch, J., Zreunz, A. J., Montell, C. (1997)

Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex.

Neuron 18, 95-105.

Cho, H. C., Tsushima, R. G., Nguyen, T.-T. T., Guy, H. R., Backx, P. H. (2000)

Two Critical Cysteine Residues Implicated in Disulfide Bond Formation and Proper Folding of Kir2.1.

Biochem. 39, 4649-4657.

Clapham, D. E. (1995-a)

Calcium signaling.

Cell 80, 259-268.

Clapham, D. E. (1995-b)

Intracellular calcium. Replenishing the stores.

Nature 375, 634-635.

Clements, J. L., Boerth, N. J., Lee, J. R., Koretzky, G. A. (1999)

INTEGRATION OF T CELL RECEPTOR-DEPENDENT SIGNALING PATHWAYS BY ADAPTER PROTEINS.

Annu. Rev. Immunol. 17, 89-108.

Clontech (2001-a)

Website: www.clontech.com

pIRES2-EGFP-Vektor Katalog Nummer 6029-1.

http://www.clontech.com/techinfo/vectors/pIRES2-EGFP.html

"Living ColoursTM Endosome Localization Vectors", User Manual PT2040-1.

http://www.clontech.com/techinfo/manuals/PDF/PT2040-1.pdf

Clontech (2001-b)

Website: www.clontech.com

Matchmarker LexA Two-Hybrid System Katalog Nummer K1609-1, User Manual PT3040-1.

http://www.clontech.com/techinfo/manuals/PDF/PT3040-1.pdf

Congar, P., Leinekugel, X., Ben-Ari, Y., Crepel, V. (1997)

A long-lasting calcium-activated nonselective cation current is generated by synaptic stimulation or exogenous activation of group I metabolic glutamate receptors in CA1 pyramidal neurons.

J. Neurosci. 17, 5366-5379.

Cosens, D. J., Manning, A. (1969)

Abnormal electroretinogram from a Drosophila mutant.

Nature 224, 285-287.

Creighton, T. E. (1979)

Electrophoretic Analysis of the Unfolding of Proteins by Urea.

J. Mol. Biol. 129, 235-264.

Damerval, C., Guillioux, M., Blaisomeau, J., Vienne, D. (1987)

Simplification of Heukeshoven and Dernick's silver stain of proteins.

Electrophoresis 8, 158159.

Del Sal, G., Manfioletti, G., Schneider, C. (1988).

A one-tube plasmid DNA mini-preparation suitable for sequencing.

Nuc. Acids Res. 16, 9878.

DeLisle, S., Blondel, O., Longo, F. J., Schnabel, W. E., Bell, G. I., Welsh, M. J. (1996)

Expression of insoitol 1,4,5-trisphosphate receptors changes the Ca2+ signal in *Xenopus* oocytes. *Am. J. Physiol.* **270**, C1255-C1261.

Drenckhahn, D., Schluter, K., Allen, D., Bennet, V. (1985)

Colocalization of band 3 ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney.

Science 230, 1287-1289.

Dunlap, K., Luebke, J. I., Turner, T. J. (1995)

Exocytotic Ca2+ channels in mammalian cental neurons.

Trends Neurosci. 18, 89-98.

Engelhard, W., Geerds, C., Frey, J. (1990)

Distribution, inducibility and biological function of the cloned and expressed human beta Fc receptor II.

Europ. J. Immunol. 20, 1367-1377.

Engelke, M. (1999)

Gezielte Mutagenese des Maus-trp1β-Gens zur Charakterisierung funktioneller Domänen.

Diplomarbeit, Universität Bielefeld.

Engelke, M. (2001)

Doktorarbeit in Vorbereitung, Universität Bielefeld.

Ervasti, J., M., Ohlendieck, K., Kahl., S. D., Gaver, M. G., Campbell, K. P. (1990)

Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle.

Nature 345, 315-319.

Estojak, J., Brent, R., Golemis, E. (1995)

Correlation of two-hybrid affinity data with in vitro measurements.

Mol. Cell. Biol. 15, 5820-5828.

Fasolato, C., Innocenti, B., Pozzan, T. (1994)

Receptor-activated Ca²⁺ influx: how many mechanisms for how many channels?

Trends Phamracol. Sci. 15, 77-83.

Finn, J. T., Grunwald, M. E., Yau, K.-W. (1996)

Cyclic nucleotide-gated ion channels: an extended family with diverse functions.

Annu. Rev. Physiol. 58, 395-426.

Foley K. P., (1993)

Quantification of RNA using the Polymerase Chain Reaction.

Trends Genet. 9, 380-385.

Friel, D. D. (1996)

TRP: It's Role in Phototransduction and Store-Operated Ca^{2+} Entry.

Cell **85**, 617-619.

Fuchs, R., Blakesley, R. (1983).

Guide to the use of type II restriction endocucleases.

Meth Enzymol **100**, 3-38.

Garcia, R. L., Schilling, W. P. (1997)

Differential Expression of Mammalian *TRP* Homologues across Tissues and Cell Lines. *Biochem. Biophys. Res. Commun.* **239**, 279-283.

Gentile, F., Veneziani, B. M., Sellitto, C. (1997)

Polyacrylamid Gel Electrophoresis in Discontinous Transverse Urea-Gradient Gels.

Anal. Biochem. 244, 228-232.

Gilliland, L. K., Schieven, G. L., Norris, N. A., Kanner, S. B., Aruffo, A., Ledbetter, J. A. (1992)

Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLCγ 1 SH2 domains. *J. Biol. Chem.* **267**, 13610-13616.

Gillo, B., Chorna, I., Cohen, H., Cook, B., Manistersky, I., Chorev, M., Arnon, A., Pollock, J. A., Selinger, Z., Minke, B. (1996)

Coexpression of *Drosophila* TRP and TRP-like proteins in *Xenopus* oocytes reconstitutes capacitative Ca^{2+} entry.

Proc. Natl. Acad. Sci. U. S. A. 93, 14146-14151.

Gilon, P., Bird, G. J., Bian, X., Yakel, J. L., Putney, Jr., J. W. (1995)

The Ca2+-mobilizing actions of a Jurkat cell extract on mammalian cells and *Xenopus laevis* oocytes.

J. Biol. Chem. 270, 8050-8055.

Golemis, E., Gyuris, J., Brent, R. (1994)

Interaction trap/two-hybrid systems to identify interacting proteins. In Current Protocols in Molecular Biology, John Whiley & Sons, Inc., Ch. 13.14.

Golemis, E., Gyuris, J., Brent, R. (1996)

Analysis of protein interactions; and Interaction trap/two-hybrid systems to identify interacting proteins. In Current Protocols in Molecular Biology, John Whiley & Sons, Inc., Ch. 20.0 and 20.1.

Graier, W. F., Simecek, S., Sturek, M. (1995)

Cytochrome P 450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells.

J. Physiol. (London) 482, 259-274.

Greenberg, D. S., Schatz, Y., Levy, Z., Pizzo, P., Yaffe, D., Nudel, U. (1996)

Reduced levels of dystrophin associated proteins in the brains of mice deficient for Dp71.

Hum. Mol. Genet. 5, 1299-1303.

Greenman, J., Tutt, A. L., George, A. J. T., Pulford, K. A. F., Stevenson, G. T., Glennie, M. J., (1991)

Characterization of a new monoclonal anti-Fc γ RII antibody, AT10, and it's incorporation into bispecific F(ab')₂ derivative for recruitment of cytotoxic effectors.

Mol. Immunol. 28, 1243-1254.

Grodberg, J. and Dunn, J.J. (1988)

ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification.

J. Bacteriol. 170, 1245-1247.

Groschner, K., Hingel, S., Lintschinger, B., Balzer, M., Romanin, C., Zhu, X., Schreibmayer, W. (1998)

Trp proteins form store-operated cation channels in human vascular endothelial cells.

FEBS Lett. 437, 101-106.

Gross, B. S., Melford, S. K., Watson, S. P. (1999)

Evidence that phospholipase C- γ 2 interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor γ -

chain after stimulation of the collagen receptor glycoprotein VI in human platelets.

Eur. J. Biochem. 263, 612-623.

Grynkiewicz, G., Poenie, M., Tsien, R. Y. (1985)

A New Generation of Ca²⁺ Indicators with Greatly Improved Fluorescence Properties.

J. Biol. Chem. 260, 3440-3450.

Gurnett, C. A., Felix, R., Campbell, K. P. (1997)

Extracellular Interaction of the Voltage-dependent Ca²⁺ Channel $\alpha_2 \delta$ and α_1 Subunits.

J. Biol. Chem. 272, 18508-18512.

Gyuris, J., Golemis, E., Chertkov, H., Brent, R. (1993)

Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2.

Cell **75**, 791-803.

Hanahan, D. (1985)

DNA-cloning. A practivcal approach. edited by D. M. Glover, IRL Press, Vol. 1, 109-135.

Hardie, R. C., Minke, B. (1993)

Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for

phosphoinositide-mediated Ca2+ mobilization.

Trends Neurosci. 16, 371-376.

Harteneck, C., Plant, T. D., Schultz, G. (2000)

From worm to man: Three subfamilies of TRP channels.

Trends Neurosci. 23, 159-166.

Hofmann, T., Schaefer, M., Schultz, G., Gudermann, T. (2000)

Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2.

Biochem. J. 351, 115-122.

Hooper, N. M. (1999)

Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (Review).

Mol. Membr. Biol. 16, 145-156.

Hoth, M., Penner, R. (1992)

Depletion of intracellular calcium stores activates a calcium current in mast cells

Nature 355, 353-356.

Hoth, M., Penner, R. (1993)

Calcium release-activated calcium current in rat mast cells.

J. Physiol. (London) 465, 359-386.

Howard, P. L., Dally, G. Y., Wong, M. H., HO, A., Weleber, R. G., Pillers, D. A., Ray, P. N. (1998)

Localization of dystrophin isoform Dp71 to the inner limiting membrane of the retina suggests a unique functional contribution of Dp71 in the retina.

Hum. Mol. Genet. 7, 1385-1391.

Hu, Y., Vaca, L., Zhu, X., Birnbaumer, L., Kunze, D. L., Schilling, W. P. (1994)

Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of *Drosophila*.

Biochem. Biophys. Res. Commun. 201, 1050-1056.

Hurst, R. S., Zhu, X., Boulay, G., Birnbaumer, L., Stefani, E. (1998)

Ionic currents underlying HTRP3 mediated agonist-dependent Ca^{2+} influx in stably transfected HEK293 cells.

FEBS Lett. 422, 333-338.

Invitrogen (2001)

Website: www.invitrogen.com

http://www.invitrogen.com/vectordata

Irvine, R. F. (1990)

"Quantal" Ca^{2+} release and the control of Ca^{2+} entry by inositol phosphates: a possible mechanism.

FEBS Lett. 263, 5-9.

Irvine, R. F., Moor, R. M. (1986)

Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates seacerchin eggs by a mechanism dependent on external Ca^{2+} .

Biochem. J. 240, 917-920.

Iwasawa, K., Nakajima, T., Hazama, H., Goto, A., Shin, W. S, Toyo-oka, T., Omata, M. (1997)

Effects of extracellular pH on receptor-mediated Ca^{2+} influx in A7r5 rat smooth muscle cells: Involvement of two different types of channel.

J. Physiol. (London) 503, 237-251.

Jones, B., Tite, J.P., Janeway, C.A. (1986)

Different phenotypic variants of the mouse B cell tumor A20/2J are selected by antigen- and mitogen-triggered cytotoxicity of L3T4-positive, I-A-restricted T cell clones.

J. Immuno. 136, 348-356.

Kameya, S., Araki, E., Katsuki, M., Mizota, A., Adachi, E., Nakahara, K., Nonaka, I., Sakuragi, S., Takeda, S. Nabeshima, Y. (1997)

Dp260 disrupted mice revealed prolonged implicit time of the b-wave in ERG and loss of accumulation of β -dystroglycan in the outer plexiform layer of the retina.

Hum. Mol. Genet. 6, 2195-2203.

Khan, A. A., Soloski, M. J., Sharp, A. H., Schilling, G., Sabatini, D. M., Li, S.-H., Ross, C. A., Snyder, S. H. (1996)

Lymphocyte apoptosis mediated by increased type 3 inositol 1,3,4-trisphosphate receptor. *Science*, **273**, 503-507.

Kiselyov, K. I., Mamin, A. G., Semyonova, S. B., Mozhayeva, G. N. (1997)

Low-conductance high selective inositol (1,4,5)-trisphosphate activated Ca²⁺ channels in plasma membrane of A431 carcinoma cells.

FEBS Lett. 407, 309-312.

Kiselyov, K. I., Shin, D. M., Wang, Y., Pessah, I. N., Allen, P. D., Muallem, S. (2000)

Gating of store-operated channels by conformational coupling to ryanodine receptors. *Mol. Cell.* **6**, 421-431.

Kiselyov, K., Mignery, G. A., Zhu, M. X., Muallem, S. (1999)

The N-Terminal Domain of the IP3 Receptor Gates Store-Operated hTrp3 Channels.

Mol. Cell **4**, 423-429.

Kiselyov, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G. A., Zhu, Birnbaumer, L., M. X., Muallem, S. (1998)

Functional interaction between InsP3 receptors and store-operated Htrp3 channels.

Nature 396, 478-482.

Klein, U., Gimpl, G., Fahrenholz., F. (1995)

Alteration of the myometrial plasma membrane cholesterol content with β -cyclodextrin modulates the binding affinity of the oxytocin receptor.

Biochem. 34, 13784-13793.

Koob, R., Zimmermann, M., Schoner, W., Drenckhahn, D. (1988)

Colocalization and coprecipitation of ankyrin and Na⁺, K⁺-ATPase in kidney epithelial cells.

Eur. J. Cell. Biol. 45, 230-237.

Krautwurst, D., Seifert, R., Hescheler, J., Schultz, G. (1992)

Formyl peptides and ATP stimulated Ca^{2+} and Na^+ inward currents through non-selective cation channels via G-proteins in dibutylyl cyclic AMP-differentiated HL60-cells. Involvement of Ca^{2+} and Na^+ in the activation of β -glucuronidase release and superoxid production. *Biochem. J.* **288**, 1025-1035.

Kuno, M., Gardner, P. (1987)

Ion channels activated by inositol 1,4,5-trisphosphate in plama membrane of human T-lymphocytes. *Nature (London)* **326**, 301-304.

Kurashima, K., D'Souza, S., Szaszi, K., Ramjeesingh, R., Orlowski, J., Grinstein, S. (1999)

The apical Na^+/H^+ exchanger isoform NHE3 is regulated by the actin cytoskeleton.

J. Biol. Chem. 274, 29843-29849.

Laemmli, U. K. (1970)

Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

Nature 227,680-685.

LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., McCoy, J. M. (1993)

A thioredoxin gene fusion expression system that circumvents inclusion body formation in the *E. coli* cytoplasm.

Biotechnology 11, 187-193.

Leech, C. A., Habener, J. F. (1997)

Insulinotropic glucagon-like-peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin

J. Biol. Chem. 272, 17987-17993.

Leeuwen, J. E. und Samelson, L. E. (1999)

T cell antigen-receptor signal transduction.

Curr. Opin. Immunol. 11, 242-248.

Lenz, T., Kleineke, J. W. (1997)

Hormone-induced rise in cytosolic Ca^{2+} in axolotl hepatocytes: properties of the Ca^{2+} influx channel. *Am. J. Physiol.* **273**, C1526-C1532.

Lepple-Wienhues, A., Cahalan, M. D. (1996)

Conductance and permeation of monovalent cations through depletion-activated Ca^{2+} channels

(I_{CRAC}) in Jurkat T cells.

Biophys. J. 71, 787-794.

Lepple-Wienhues, A., Cahalan, M. D. (1997)

A Mysterious Channel: Properties of the Capacitive Ca²⁺ Channel in Lymphocytes.

Cell. Physiol. Biochem. 7, 219-228.

Lesage, F., Lauritzen, I., Duprat, F., Reyes, R., Fink, M., Heurteaux, C., Lazdunski, M. (1997)

The structure, function and distribution of the mouse TWIK-1 K⁺ channel. *FEBS Lett.* **402**, 28-32.

Lesage, F., Reyes, R., Fink, M., Duprat, F., Guillemare, E., Lazdunski, M. (1996)

Dimerization of TWIK-1 K⁺ channel subunits via a disulfide bridge.

EMBO J. **15**, 6400-6407.

Levitan, I., Almonte, C., Mollard, P., Garber, S. S. (1995)

Modulation of a volume-regulated chloride current by F-actin.

J. Membr. Biol. 147, 283-294.

Lewis, R. S., Cahalan, M. D. (1989)

Mitogen-induced oscillations of cytosolic Ca^{2+} and transmembrane Ca^{2+} current in human leukemic T cells.

Cell. Regul. **1**, 99-112.

Lidofsky, S. D., Sostman, A., Fitz, J. G. (1997)

Regulation of cation-selective channels in liver cells.

J. Membr. Biol. 157, 231-236.

Liman, E. R., Corey, D. P., Dulac, C. (1999)

TRP2: A candidate transduction channel for mammalian pheromone sensory signaling.

Proc. Natl. Acad. Sci. USA 96, 5791-5796.

Lin, J., Weiss, A., Finco, T. S. (1999)

Localization of LAT in Glycolipid-enriched Microdomains Is Required for T cell Activation.

J. Biol. Chem. 274, 28861-28864.

Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., Zhu, M., X., Groschner, K. (2000)

Coassembly of Trp1 and Trp3 Proteins Generates Diacylglycerol- and Ca²⁺-sensitive Cation Channels.

J. Biol. Chem. 275, 27799-27805.

Lockwich, T. P., Liu, X., Singh, B. B., Jadlowiec, J., Weiland, S., Ambudkar, I. S. (2000)

Assembly of Trp1 in a signaling Complex Associated with Caveolin-Scaffolding Lipid Raft Domains.

J. Biol. Chem. 275, 11934-11942.

Loirand, G., Pacaud, P., Baron, A., Mironneau, C., Mironneau, J. (1991)

Large conductance calcium-activated non-selective cation channel in smooth muscle cells isolated from rat portal vein.

J. Physiol. (London) 437, 461-475.

Lückhoff, A., Busse, R. (1990)

Refilling of endothelial calcium stores without bypassing the cytosol.

FEBS Lett. 276, 108-110.

Lupu, V. D., Kaznacheyeva, E., Krishna, U. M., Falck, J. R., Bezprozvanny, I. (1998)

Functional coupling of phosphatidylinositol 4,5-biphosphate to inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* **273**, 14067-14070.

Ma, H.-T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., Gill, D. L. (2000)

Requirement of the Inositol Trisphosphate Receptor for Activation of Store-Operated Ca²⁺ Channels.

Science 287, 1647-1651.

Macrez-Leprêtre, N, Kalkbrenner, F., Schultz, G., Mironneau, J. (1997)

Distinct Functions of $G_{\!l}$ and $G_{\!l1}$ Proteins in Coupling $\alpha_1\text{-}Adrenoreceptors$ to $Ca^{2\scriptscriptstyle +}$ Release and

Ca²⁺ Entry in Rat Portal Vein Myocytes.

J. Biol. Chem. 272, 5261-5268.

Matthews, J. B., Smith, J. A., Hrnjez, B. J. (1997)

Effects of F-actin stabilization or disassembly on epithelial CI secretion and Na-K-2Cl cotransport. *Am. J. Physiol.* **272**, C254-C262.

Mattie, M., Brooker, G., Spiegel, S. (1994)

Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an insoitol-trisphosphate-independent pathway.

J. Biol. Chem. 269, 3181-3188.

McDonell, M. W., Simon, M. N., Stuider, F. W. (1977)

Analysis of restrictin fragments of T7 DNA and determination of molecular weights by electrophoreses in neutral and alkaline gels.

J Mol Biol 110, 119-146

McKay, R. R., Szymeczek-Seay, C. L., Lievremont, J.-P., Bird, G. St. J., Zitt, C., Jüngling,

E., Lückhoff, A., Putney, J. W., Jr. (2000)

Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3.

Biochem. J. 351, 735-746.

Mendolsohn, A. R. und Brent, R. (1994)

Biotechnology applications of interaction traps/two-hybrid systems.

Curr. Opin. Biotech. 5, 482-486.

Merrit, J. E., Jakob, L., Hallman, T. J. (1989)

Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils.

J. Biol. Chem. 264, 1522-1527.

Mery, L., Mesaeli, N., Michalak, M., Opas, M., Lew, D. P., Krause, K. H. (1996)

Overexpression of Calreticulin Increases Intracellular Ca^{2+} Storage and Decreases Store-operated Ca^{2+} Influx.

J. Bio. Chem. 271, 9332-9339.

Michaely P. and Bennett, V. (1993)

The membrane-binding of ankyrin contains four independently folded subdomains, each comprised of six ankyrin repeats.

J. Biol. Chem. 268, 22703-22709.

Minke, B., Selinger, Z. (1996)

The roles of *trp* and calcium in regulating photoreceptor function in *Drosophila*.

Curr. Opin. Neurobiol. 6, 459-466.

Mizuno, N., Kitayama, S., Saishin, Y., Shimada, S., Morita, K., Mitsuhata, C., Kurihara, H., Dohi, T. (1999)

Molecular cloning an characterization of rat trp homologues from brain.

Brain Res. Mol. Brain Res. 64, 41-51.

Montell, C. (1997)

New light on TRP and TRPL

Mol. Pharmacol. 52, 755-763.

Montell, C., Rubin, G. M., (1989)

Molecular characterization of the *Drosophila trp* locus: a putative integral membrane protein required for phototransduction.

Neuron 2, 1313-1323.

Mori, Y., Takada, N., Okada, T., Wakamori, M., Imoto, K., Wanifuchi, H., Oka, H., Oba, A., Ikenaka, K., Kurosaki, T. (1998)

Differential distribution of TRP Ca²⁺ channel isoforms in mouse brain.

Neuro Report 9, 507-515.

Morrow, J. S., Cianci, C. D., Ardito, T., Mann, A. S., Kashgarian, M. (1989)

Ankyrin links fodrin to the alpha subunit of Na, K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells.

J. Cell Biol. 108, 455-465.

Mozhayeva, E. G. M., Naumov, A. P., Kuryshev, Y. A. (1990)

Inositol 1,4,5-trisphosphate activate two types of Ca²⁺-permeable channels in human carcinoma cells.

FEBS Lett. 277, 233-234.

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H. (1986)

Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction.

Cold Spring Harb. Symp. Quant. Biol. 51 Pt 1, 263-273.

Munaron, L., Antoniotti, S., Distasi, C., Lovisolo, D. (1997)

Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts.

Cell Calcium 22, 179-188.

Nagamine, K., Kudoh, J., Minoshima, S., Kawasaki, K., Asakawa, S., Ito, F., Shimizu, N. (1998)

Molecular Cloning of a Novel Putative Ca²⁺ Channel Protein (TRPC7) Highly Expressed in Brain. *Genomics* **54**, 124-131.

Nakai, B. H., Kubo, T., Fukuda, K., Akiba, I., Maeda, A., Mishina, M., Numa, S. (1988)

Different sensitivities to agonist of muscarinic acetylcholine receptor subtypes.

FEBS Lett. 240, 95-100.

Nelson, W. J., Veshnock, P. J. (1987)

Ankyrin binding to $(Na^+ + K^+)$ ATPase and implications for the Organization of membrane domains in polarized cells.

Nature 328, 533-536.

Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H. (1982)

Gene transfer into mousee lyoma cells by electroporation in high electric fields.

EMBO J. **1**, 841-854.

Novagen (2001)

Website: http://www.novagen.com

pET System Manual, 9th Edition, 2000, Novagen, Inc.

http://www.novagen.com/html/techfram.html

Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., Yamakuni, T., Tanaka, I., Shimizu, S., Ikenaka, K., Imoto, K., Mori, Y. (1999)

Molecular and Functional Characterization of a Novel Mouse Transient Receptor Potential Protein Homologue TRP7. Ca²⁺-PERMEABLE CATION CHANNEL THAT IS CONSTITUTIVELY ACTIVATED AND ENHANCED BY STIMULATION OF G PROTEIN-COUPLED RECEPTOR:

J. Biol. Chem. 274, 27359-27370.

Okada, T., Shimizu, S., Wakamori, M., Maeda, A., Kurosaki, T., Takada, N., Imoto, K., Mori, Y. (1998)

Molecular Cloning and Functional Characterization of a Novel Receptor Activated TRP Ca²⁺ Channel from Mouse Brain.

J. Biol. Chem. 273, 10279-10287.

Parekh, A. B., Penner, R. (1996)

in: Organellar Ion Channels and Transporters (Ehrlich, B. E., Clapham D. E., eds.), pp. 231-239, Rockefeller Univ. Press, New York

Parekh, A. B., Penner, R. (1997)

Store depletion and calcium influx.

Physiol. Rev. 77, 901-930.

Pasquet, J.-M., Gross, B., Quek, L., Asazuma, N., Zhang, W., Sommers, C. L., Schweighoffer, E., Tybulewicz, V., Judd, B., Lee, J. R., Koretzky, G., Love, P. E., Samelson, L. E., Watson, S. P. (1999)

LAT Is Required for Tyrosine Phosphorylation of Phospholipase C γ 2 and Platelet Activation by the Collagen Receptor GPVI.

Mol. Cell. Biol. 19, 8326-8334.

Peppelenbosch, M. P., Tertoolen, L. G. J., den Hertog, J., de Laat, S. W. (1992)

Epidermal growth factor activates calcium channels by phospholipase A215-lipoxygenase-mediated leukotriene C4 production.

Cell **69**, 295-303.

Petersen, C. C. H., Berridge, M. J. (1994)

The regulation of capacitative calcium entry by calcium and protein kinase C in *Xenopus oocytes*. *J. Biol. Chem.* **269**, 32246-32253.

Philipp, S., Cavalié, A., Freichel, M., Wissenbach, U., Zimmer, S., Trost, C., Marquart, A., Murakami, M., Flockerzi, V. (1996)

A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL.

EMBO J. **15**, 6166-6171.

Philipp, S., Hambrecht, J., Braslavski, L., Schroth, G., Freichel, M., Murakami, M., Cavalié, A., Flockerzi, V. (1998)

A novel capacitative calcium entry channel expressed in excitable cells.

EMBO J. **17**, 4274-4282.

Phillips, A. M., Bull, A., Kelly, L. E. (1992)

Identification of a *Drosophila* gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene.

Neuron 8, 631-642.

Pivniouk, V. I., Geha, R. S. (2000)

The role of SLP-76 and LAT in lymphocyte development.

Curr. Opin. Immunol. 12, 173-178.

Poenie, M., Alderton, J., Tsien, R. Y., Steinhardt, R. A. (1985)

Changes of free calcium levels with stages of the cell division cycle.

Nature 315, 147-149.
Prekeris, R., Mayhew, M. W., Cooper, J. B., Terrian, D. M. (1996)

Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. *J.Cell. Biol.* **132**, 77-90.

Printen, J. A., Sprague, G. F. (1994)

Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all

members of the MAP kinase cascade.

Genetics 138, 609-619.

Putney, Jr., J. W. (1986)

A model for receptor-regulated calcium entry.

Cell Calcium **7**, 1-12.

Putney, Jr., J. W. (1997)

Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry.

Cell Calcium 21, 257-261.

Putney, Jr., J. W. and Bird, G. St. J. (1993)

The inositol phosphate-calcium signaling system in nonexcitable cells.

Endocr. Rev. 14, 610-631.

Putney, Jr., J. W., Poggioli, J., Weiss, S. J. (1981)

Receptor regulation of calcium release and calcium permeability in parotid gland cells.

Philos. Trans. R. Soc. London B Biol. Sci. 296, 37-45.

Randriamampita, C., Tsien, R. Y. (1993)

Emptying of intracellular calcium stores release a novel small messenger that stimulates calcium influx.

Nature 364, 809-814.

Restrepo, D., Teeter, J. H., Schild, D. (1996)

Second messenger signaling in olfactory transduction.

J. Neurobiol. 30, 37-48.

Rogers, S., Wells, R., Rechsteiner, M. (1986)

Amino acid sequences common to rapid degraded proteins: the PEST hypothesis.

Science 234, 364-368.

Rosado, J. A., Sage, S. O. (2000)

Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca^{2+} stores are depleted.

Biochem. J. 350, 631-635.

Rossier, M. F., Bird, G. S. J., Putney, J., Jr. (1991)

Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments.

Biochem. J. 274, 643-650.

Saitoh, S., Arudchandran, R., Manetz, T. S., Zhang, W., Sommers, C. L., Love, P. E., Rivera,

J., Samelson, L. E. (2000)

LAT Is Essential for FcERI-Mediated Mast Cell Activation.

Immunity **12**, 525-535.

Sakura, H., Ashcroft, F. M. (1997)

Identification of four trp1 gene variants murine pancreatic beta-cells.

Diabetologia 40, 528-532.

Sambrook, J., Fritsch, E. F., Maniatis, T. (1989)

Molecular Cloning. A laboratory manual 2nd edition, Cold Spring Harbor Laboratory Press.

Sa-Pereira, P., Duarte, J., Costa-Ferreira, M. (2000)

Electroelution as a simple and fast protein purification method: isolation of an extracellular xylanase from Bacillus sp. CCMI 966.

Enzyme Microb. Technol. 27, 95-99.

Sargeant, P., Farndale, R. W., Sage, S. O. (1993-a)

ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets.

J. Biol. Chem. 268, 18151-18156.

Sargeant, P., Farndale, R. W., Sage, S. O. (1993-b)

The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombinevoked tyrosine phosphorylation and Ca2+ entry in human platelets.

FEBS Lett. 315, 242-246.

Schäfer, C. (1998)

Klonierung und Expression verschiedener Varianten der aminoterminalen cytoplasmatischen Domäne eines potentiellen Calciumkanals aus Maus B-Zellen zur Gewinnung spezifischer polyklonaler Antikörper.

Diplomarbeit, Universität Bielefeld.

Schäfer, C. (2001)

Dissertation in Vorbereitung, Universität Bielefeld.

Schuster, V. L., Bonsib, S. M., Jennings, M. (1986)

Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. *Am. J. Phyisol.* **251**, C347-C355.

Schwarz, R. S., Rybicki, A. C., Nagel, R. L. (1997)

Molecular cloning and expression of a chlorid channel-associated protein pI_{Cln} inhuman young red blood cells: association with actin.

Biochem. J. 327, 609-616.

Shcherbatko, A., Ono, F., Mandel, G., Brehm, P. (1999)

Voltage-Dependent Sodium Channel Function Is Regulated Through Membrane Mechanics. *Biophys. J.* **77**, 1945-1959.

Shieh, B.-H., Zhu, M.-Y. (1996)

Regulation of the TRP Ca^{2+} channel by INAD in *Drosophila* photoreceptors.

Neuron 16, 991-998.

Shuttleworth, T. J. (1996)

Arachidonic Acid Activates the Noncapacitative Entry of Ca²⁺ during [Ca²⁺]_i oscillation.

J. Biol. Chem. 271, 21720-21725.

Shuttleworth, T. J., Thompson, J. L. (1998)

Muscarinic Receptor Activation of Arachidonate-mediated Ca^{2+} Entry in HEK293 Cells Is Independent of Phospholipase C.

J. Biol. Chem. 273, 32636-32643.

Sieh, M., Batzer, A., Schlessinger, J., Weiss, A. (1994)

GRB2 and phospholipase C-gamma 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation.

Mol. Cell. Biol. 14, 4435-4442.

Sieman, D. (1993)

in: *Non-Selective Cation Channels: Pharmacology, Physiology and Biophysics* (Sieman, D. and Heschler, J., eds.), pp. 3-25, Birkhauser Verlag, Basel

Simons, K., Ikonen, E. (1997)

Functional rafts in cell membranes.

Nature 387, 569-572.

Singer-Lahat, D., Liu, J., Wess, J., Felder, C. C. (1996)

The third intracellular domain of the m3 muscarinic receptor determines coupling to calcium influx in transfected Cinease hamster ovary cells.

FEBS Lett. 386, 51-54.

Singer-Lahat, D., Rojas, E., Felder, C. C. (1997)

A9 fibroblasts transfected with the m3 muscarinic receptor clone express a Ca^{2+} channel activated by carbachol, GTP and GDP.

J. Membr. Biol. 159, 21-28.

Singh, B. B., Liu, X., Ambudkar, I. (2000)

Expression of Truncated Transient Receptor Potential Protein (Trp1a): EVIDENCE THAT THE

TRP1 C-TERMINUS MODULATES STORE-OPERATED CA²⁺ ENTRY.

J. Biol. Chem. 275, 36483-36486.

Sinkins, W. G., Estacion, M., Schilling, W. G. (1998)

Functional expression of TrpC1: a human homologue of the *Drosophila* Trp channel. *Biochem. J.* **331**, 331-339.

Sinkins, W. G., Vaca, L., Hu, Y., Kunze, D. L., Schilling, W. P. (1996)

The COOH-terminal domain of Drosophila TRP channels confers thapsigargin sensitivity.

J. Biol. Chem. 271, 2955-2960.

Smith, P. R., Saccomani, G., Joe, E. H., Angelides, K. J., Benos, D. J. (1991)

Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells.

Proc Natl Acad Sci U S A **88**, 6971-6975.

Somasundaram, B., Norman, J. C., Mahaut-Smith, M. P. (1995)

Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes.

Biochem. J. 309, 725-729.

Spiegel, S., Foster, D., Kolesnick, R. (1996)

Signal transduction through lipid second messengers.

Curr. Opin. Cell Biol. 8, 159-167.

Stratagene (2001-a)

http://www.stratagene.com

http://www.nature.com/display/stratagene/cell.htm

Stratagene (2001-b)

http://www.stratagene.com

http://www.stratagene.com/vectors/selection/plasmid1.htm

Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., Li, M., Ramesh, V., Zhu, M. X. (2000) Association of Mammalian Trp4 and Phospholipase C Isozymes with a PDZ-Domain containing Protein, NHERF.

J. Biol. Chem. 275, 37559-37564.

Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., Dawson, A. P. (1990)

Thapsigargin, a tumor promotor, discharges intracellular Ca^{2+} stores by specific inhibition of the endoplasmic reticulum Ca^{2+} -ATPase.

Proc. Natl. Acad. Sci. USA 87, 2466-2470.

Thastrup, O., Dawson, A. P., Scharff, O., Foder, B., Cullen, P. J., Drobak, B. K., Bjerrum, P. J., Christensen, S. B., Hanley, M. R. (1989)

Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage.

Agents Actions 27, 17-23.

Tomita, Y., Kaneko, S., Funayama, M., Kondo, H., Satoh, M., Akaike, A. (1998)

Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rat homologue of TRP, expressed in *Xenopus* oocytes.

Neurosci. Lett. 248, 195-198.

Trüb, T., Frantz, J. D., Miyazaki, M., Band, H., Shoelson, S. E. (1997)

The Role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 Protein in T Cell Receptor Signaling. *J. Biol. Chem.* **272**, 891-902.

Tsien, R. W., Lipscombe, D., Madison, D., Bley, K., Fox, A. (1995)

Reflections on Ca^{2+} -channel diversity.

Trends Neurosci. 18, 52-54.

Tsien, R. Y., Rink, R. Y., Poenie, M. (1985)

Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths.

Cell Calcium **6**, 145-157.

Tsiokas, L., Arnould, T., Zhu, C., Kim, E., Walz, G., Sukhatme, V. P. (1999)

Specific association of the gene product of *PKD2* with the TRPC1 channel.

Proc. Natl. Acad. Sci. USA 96, 3934-3939.

Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., Socolich, M., Zuker, C. (1997)

A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. *Nature* **388**, 243-249.

Vaca, L., Kunz, D. L. (1995)

IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells.

Am. J. Physiol. 269, C733-C738.

Vaca, L., Sinkins, W. G., Hu, Y., Kunze, D. L., Schilling, W. P. (1994)

Activation of recombinant trp by thapsigargin in Sf9 insect cells.

Am. J. Physiol. 267, C1501-C1505.

Van Den Herik-Oudijk, I. E., Westerdaal, N. A., Henriquez, N. V., Capel, P. J., van de Winkel, J. G. (1994)

Functional analysis of human FcyRII (CD23) isoforms expressed in B lymphocytes.

J. Immunol. 152, 574-585.

Vancompernolle, K., Goethals, M., Huet, C., Louvard, D., Vandekerckhove, J. (1992)

G- to F-actin modulation by a single amino acid substitution in the actin binding site of actobindin and thymosin beta 4.

EMBO J. **11**, 4739-4746.

Vancompernolle, K., Vandekerckhove, J., Bubb, M. R., Korn, E. D. (1991)

The interfaces of actin and Acanthamoeba actomindin Identification of a new actin-binding motif. *J. Biol. Chem.* **266**, 15427-15431.

Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., Zhu, X., Birnbaumer, L. (1999)

Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletionactivated capacitative Ca^{2+} entry channel.

Proc. Natl. Acad. Sci. 96, 2060-2064.

von Tscharner, V., Prod'hom, B., Baggiolini, M., Reuter, H. (1986)

Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration.

Nature **324**, 369-372.

von zur Mühlen, F., Eckstein, F., Penner, R. (1991)

Guanosine 5'-[β-Thio]Triphosphate Selectively Activates Calcium Signaling in Mast Cells. *Proc. Natl. Acad. Sci. USA* **88**, 926-930.

Vostal, J. G., Jackson, W. L., Shulman, N. R. (1991)

Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins.

J. Biol. Chem. 266, 16911-16916.

Weber, J. R., Orstavik, S., Torgersen, K. M., Danbolt, N. C., Berg, S. F., Ryan, J. C. (1998) Molecular Cloning of the cDNA encoding pp36, a tyrosine phosphorylated adaptor protein

selectively expressed by T cells and natural killer cells.

J. Exp. Med. 187, 1157-1161.

Weinrich, V., Sondermann, P., Bewarder, N., Wissel, K., Frey, J. (1996)

Epitope mapping of new monoclonal antibodies recognizing distinct human FcRII (CD32) isoforms. *Hybridoma* **15**, 109-116.

Wes, P. D., Chevesich, J., Jeromin, A., Rosenberg, C., Stetten, G., Montell, C. (1995)

TRPC1, a Human Homologue of a *Drosophila* Store-Operated Channel. *Proc. Natl. Acad. Sci. USA* **92**, 9652-9656.

West, Jr., R. W., Yocum, R. R., Ptashne, M. (1984)

Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG.

Mol. Cell. Biol. 4, 2467-2478.

White, T. J., Arnheim, N., Erlich, H. A. (1989)

The polymerase chain reaction.

Trends Genet. 5, 185-189.

Wissenbach, U., Bödding, M., Freichel, M., Flockerzi, V. (2000)

Trp12, a novel Trp related protein from kidney.

FEBS Lett. 485, 127-134.

Wissenbach, U., Schroth, G., Philipp, S., Flockerzi, V. (1998)

Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. *FEBS Lett.* **429**, 61-66.

Wu, X., Babnigg, G., Villereal, M. L. (2000)

Functional significance of human trp1 and trp3 in store-operated Ca²⁺ entry in HEK-293 cells. *Am. J. Phyiol. Cell Physiol.* **278**, C526-536.

Xu, X. Z., Li, H. S., Guggino, W. B., Montell, C. (1997)

Coassembly of TRP and TRPL produces a distinct store-operated conductance.

Cell **89**, 1155-1164.

Yang, S.-N., Larsson, O., Bränström, R., Bertorello, A. M., Leibiger, B., Leibiger, I. B., Moede, T., Köhler, M., Meister, B., Berggren, P.-O. (1999)

Syntaxin 1 interacts with the L_D subtype of voltage-gated Ca^{2+} channels in pancreatic β cells.

Proc. Natl. Acad. Sci. USA 96, 10164-10169.

Yanish-Perron, C., Vieira, J., Messing, J. (1984)

Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.

Gene 33, 103-119.

Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P., Samelson, L. E. (1998-a)

LAT: The ZAP-70 Tyrosine Kinase Substrate that Links T Cell Receptor to Cellular Activation. *Cell* **92**, 83-92.

Zhang, W., Trible, R. P., Samelson, L. E. (1998-b)

LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation.

Immunity 9, 239-246.

Zhu, X., Chu, P. B., Peyton, M., Birnbaumer, L. (1995)

Molecular cloning of a widely expressed human homologue for the *Drosophila* trp gene. *FEBS Lett.* **373**, 193-198.

Zhu, X., Jiang, M., Birnbaumer, L. (1998)

Receptor-activated Ca²⁺ Influx via Human Trp3 Stably Expressed in Human Embryonic Kidney (HEK)293 Cells. EVIDENCE FOR A NON-CPACITATIVE CA²⁺ ENTRY.

J. Biol. Chem. 273, 133-142.

Zhu, X., Jiang, M., Peyton, M., Boulay, G., Hurst, R., Stefani, E., Birnbaumer, L. (1996)

Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca^{2+} entry. *Cell* **85**, 661-671.

Zimmermann, U., Schulz, J., Pilwat, G. (1973)

Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias.

Biophys. J. 13, 1005-1013.

Zitt, C., Obukhov, A. G., Strübing, C., Zobel, A., Kalkbrenner, F., Lückhoff, A., Schultz, G. (1997)

Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion.

J. Cell Biol. 138, 1333-1341.

Zitt, C., Zobel, A., Obukhov, A. G., Harteneck, C., Kalkbrenner, F., Lückhoff, A., Schultz, G. (1996)

Cloning and Functional Expression of a Human Ca^{2+} -Permeable Cation Channel Acticated by Calcium Store Depletion.

Neuron 16, 1189-1196.

Zweifach, A., Lewis, R. S. (1993)

Mitogen-Regulated Ca²⁺ Current of T Lymphocytes is Activated by Depletion of Intracellular Ca²⁺ Stores.

Proc. Natl. Acad. Sci. USA 90, 6295-6299.

Zweifach, A., Lewis, R. S. (1995)

Rapid inactivation of depletion-activated calcium current (I_{CRAC}) due to local calcium feedback.

J. Gen. Physiol. 105, 209-226.

Anhang 1 Immunfluoreszenzmikroskopische Aufnahmen zur Plasmamembranlokalisierung von mTRP1**b**, mTRP2, hTRPC3 und LAT in transient transfizierten COS-M6-Zellen (folgende Seite)

COS-M6-Zellen wurden mittels **DEAE-Dextran** transient transfiziert und die Immunfluoreszenzmikroskopie nach 2d durchgeführt. mTRP1β, mTRP2 sowie LAT sind mit einem cmyc-Epitop und hTRPC3 auch mit einem HA-Epitop versehen. Die Fusionsproteine wurden mit den monoklonalen Antikörpern 9E10 Maus-anti-c-myc bzw. 3F10 Ratte-anti-HA und den Sekundärantikörpern Ziege-anti-Maus-Cy2 bzw. Ziege-anti-Ratte-Cy3 sichtbar gemacht. EGFP, das nach Transfektion mit pIRES2-EGFP exprimiert wird, dient als cytosolisches Markerprotein. (a) EGFP; (b) mTRP1β-c-myc; (c) mTRP2-c-myc; (d) hTRPC3-c-myc; (e) hTRPC3-HA; (f) LAT-c-myc. Die erste Spalte zeigt die Cy2-Fluoreszenz (b bis f) oder EGFP (a), die zweite die Cy3-Fluoreszenz und die dritte Spalte die deckungsgleich übereinandergelagerten Fluoreszenzbilder. In der vierten Spalte ist das jeweilige Durchlichtbild zu sehen.

a1	a2	a3	a4
b1	b2	b3	b4
c1	c2	c3	c4
di 🔗 🔗	d2	d3 S	d4
e1	e2	e3	e4
fl	f2	f3	f 4

Anhang 2 Plasmamembran-Co-Lokalisation von mTRP1b-c-myc und Mutanten mit hTRPC3-HA an transient transfizierten COS-M6-Zellen (folgende Seite)

COS-M6-Zellen wurden mittels DEAEDextran transient transfiziert und die immunfluoreszenzmikroskopischen Aufnahmen nach 2 d durchgeführt. mTRP1B und Mutanten sind mit einem c-myc-Epitop und hTRPC3 auch mit einem HA-Epitop versehen. Die Fusionsproteine wurden mittels den 3F10 Ratte-anti-HA monoklonalen Antikörpern 9E10 Maus-anti-c-myc bzw. und den Sekundärantikörpern Ziege-anti-Maus-Cy2 bzw. Ziege-anti-Ratte-Cy3 sichtbar gemacht. (a) mTRP1βc-myc + hTRPC3-HA; (b) mTRP1βΔank-c-myc + hTRPC3-HA; (c) mTRP1βΔcc-c-myc + hTRPC3-HA; (d) mTRP1 β Δpp-c-myc + hTRPC3-HA; (e) mTRP1 β ΔEWKFAR-c-myc + hTRPC3-HA; (f) mTRP1 β Adys-c-myc + hTRPC3-HA; (g) hTRPC3-c-myc + hTRPC3-HA. Die erste Spalte zeigt die Cy2-Fluoreszenz, die zweite die Cy3-Fluoreszenz und die dritte Spalte die deckungsgleich übereinandergelagerten Fluoreszenzbilder. In der vierten Spalte ist das jeweilige Durchlichtbild zu sehen.

a1	a2	a3	a4
b1	b2	b3	64
cl	c2	c3	c4
dl	d2	d3	d4
el	e2	e3	e4
fl	f2	f3	f4
gl	. ^{g2}	, ^{g3}	g4

Anhang 3 Co-Lokalisation von mTRP1**b**-c-myc und Mutanten mit hTRPC3-HA in der Plasmamembran von transient transfizierten HEK293-Zellen (folgende Seite)

HEK293-Zellen wurden mit "Superfect" transient transfiziert und die immunfluoreszenzmikroskopischen Aufnahmen nach 2 d durchgeführt. mTRP1β und Mutanten sind mit einem c-myc-Epitop und hTRPC3 mit einem HA-Epitop versehen. Die Fusionsproteine wurden mit den monoklonalen Antikörpern 9E10 Maus-anti-c-myc bzw. 3F10 Ratte-anti-HA und den Sekundärantikörpern Ziege-anti-Maus-Cy2 bzw. Ziege-anti-Ratte-Cy3 sichtbar gemacht. (a) mTRP1βc-myc + hTRPC3-HA; (b) mTRP1βΔank-c-myc + hTRPC3-HA; (c) mTRP1βΔcc-c-myc + hTRPC3-HA; (d) mTRP1βΔpp-c-myc + hTRPC3-HA; (e) mTRP1βΔEWKFAR-c-myc + hTRPC3-HA; (f) mTRP1βΔdys-c-myc + hTRPC3-HA. Die erste Spalte zeigt die Cy2-Fluoreszenz, die zweite die Cy3-Fluoreszenz und die dritte Spalte die deckungsgleich übereinandergelagerten Fluoreszenzbilder. In der vierten Spalte ist das jeweilige Durchlichtbild zu sehen.

al	a2	a3	a4
b1	b2	b3	b4 S
c1	c2	c3	C4
d1	d2	d3	
e1	e2	e3	e4
fl f()	f2	f3 C	f4

Anhang 4 Klonierungsschemata von mtrp 1 b-Epitop und pET32a(+)-mtrp 1-CT

- (A) Klonierung von mtrp1β-FLAG und der Deletionsmutanten über Kpn I und Xba I in die verwendeten Expressionsvektoren pcDNA3, pBEHpAC18 und pIRES2-EGFP (über Sma I und Klenowbehandlung des mtrp1β-FLAG). * Stopcodon
- (B) Klonierung von mtrp1β-CT (ohne FLAG) über pBluescript KS in den Expressionsvektor pET32a (+) mit den angegebenen Restriktionsendonukleasen zur rekombinanten Expression in E. coli BL21(DE3). Das aufgereinigte Fusionsprotein diente zur Generierung spezifischer polyklonaler Kaninchenantikörper. * Stopcodon

(A) pcDNA3-m $trp1\beta$ oder NT-Mutanten

(B) htrpc3-Konstrukt von Prof. Dr. A. Lückhoff (RWTH Aachen)

Anhang 5 Klonierungsschemata der cytosolischen N- und C-Termini von m*trp* 1**b** und h*trp* c3 in die Hefe-Two-Hybrid System Expressionsvektoren pEG202 und pJG4 -5

- (A) Klonierung von mtrp1βNT und Mutanten über Kpn I/BstE II und Klenow-Behandlung in pEG202 und pJG4-5 (EcoR I und Klenowbehandlung), CT über Xho I/Xba I und Klenow-Behandlung
- (B) Klonierung von hrpc3NT über Nco I/Eco81 I und Klenow-Behandlung in pEG202 und pJG4-5 (EcoR I und Klenowbehandlung), CT über Vsp I/Dra I und Klenow-Behandlung

Anhang 6Klonierungsschemata der cytosolischen N- und C-Termini von mtrp 2 in die Hefe-Two-HybridSystem Expressionsvektoren pEG202 und pJG4-5

Die Klonierung von mrp2NT erfolgte über Kpn I (Klenow) und Sal I in die EcoR I (Klenow) und Xho I restringierten Vektoren pEG202 und pJG4-5.

Die Klonierung des CT von m*rp*2 erfolgte über *Bcl* I und *Not* I in pEG202 (*Bam*H I und *Not* I). Aus dem gebildeten Konstrukt wurde m*rp*2CT über *Eco*R I und *Xho* I in pJG4-5 kloniert.

Anhang 7 PCR-in vitro - Mutageneseschemata der mtrp 1b-Deletionsmutanten

Die Deletionsmutanten wurden durch PCR-*in vitro*-Mutagenese mit den in Klammern angegebenen Oligonukleotiden generiert und nach Sequenzierung in die n*urp*1β-cDNA über die angegebenen Restriktionsschnittstellen kloniert. Die Deletionsmutanten Äank, Äcc, Ädys wurden von M. Engelke kloniert (1999).

Abbildungsverzeichnis

Abb. 1.1	Schematische Darstellung der Generierung des Ca ²⁺ -Signals durch Tyrosinkinsasen- und G-	
	Protein-gekoppelte Rezeptoren am Beispiel des B-Zell- und des muskarinischen	
	Acetylcholin-Rezeptors	2
Abb. 1.2	Domänenstruktur von dTRP, dTRPL und TRP1	13
Abb. 1.3	Phylogenetischer Stammbaum der TRP-Proteinfamilie	13
Abb. 1.4	Strukturanalogie zwischen spannungsabhängigen Ca ²⁺ -Kanälen und TRP1	15
Abb. 1.5	Modell für die Interaktion von TRP1 in einem Signalkomplex in HSG-Zellen	18
Abb. 6.1	<i>in vitro</i> -Mutagenese von mTRP1β	58
Abb. 6.2	Silberfärbung einer Expression des mTRP1-CT-Fusionsproteins und anti-His ₆ -Blot	60
Abb. 6.3	Charakterisierung des anti-mTRP1-CT-Antiserums	60
Abb. 6.4	Nachweis der Expression des LexA -BD-mTRP1-CT-Fusionsproteins im Western Blot	63
Abb. 6.5	β -Galactosidaseaktivität bei der Dimerisierung von mTRP1 β -NT und den N-terminalen	
	Deletionsmutanten	64
Abb. 6.6	Co-Lokalisierung von LAT und hTRPC3 in der Plasmamembran von COS-M6-Zellen	66
Abb. 6.7	Immunfluoreszenzenmikroskopische Aufnahmen von mTRP1 β und Mutanten, mTRP2 sowie	
	hTRPC3 in COS-M6- (A) und HEK293-Zellen (B) zur Plasmamembran- und Co-	
	Lokalisierung	67
Abb. 6.8	Immunpräzipitation von mTRP1 β -FLAG und hTRPC3-HA und Fc γ RIIb (PL17) als Negativ-	
	Kontrolle	69
Abb. 6.9	Homo - und Hetero -Co-Immunpräzipitationen von mTRP1 β , mTRP2 und hTRPC3	70
Abb. 6.10	Homo- und Hetero-Co-Immunpräzipitationen von mTRP1 β -FLAG und Mutanten mit	
	mTRP1β-c-myc und hTRPC3-HA	71
Abb. 6.11	Immunblot nach einer nicht reduzierenden SDS-PAGE der Immunpräzipitationen von	
	mTRP1β-FLAG und Mutanten, mTRP2-FLAG sowie hTRPC3-HA	72
Abb. 6.12	Nicht reduzierende SDS-PAGE der Co-Immunpräzipitationen von mTRP1 β -c-myc mit	
	mTRP1β-FLAG oder hTRPC3-HA	72
Abb. 6.13	Immunblot eines 8 M Harnstoff-SDS-PAA-Gels mit mTRP1β-FLAG und Mutanten	75
Abb. 6.14	Immunblot nach einer SDS-PAGE unter (A) nicht reduzierenden und (B) reduzierenden	
	Bedingungen	76
Abb. 6.15	Immunblot nach einer SDS-PAGE unter suboptimalen Reduktionsbedingungen der	
	Immunpräzipitationen von mTRP1β-FLAG und Mutanten	77
Abb. 6.16	Co-Präzipitation von LAT-c-myc mit mTRP1β- und mTRP2-FLAG sowie mit hTRPC3-HA	78
Abb. 6.17	Versuch der Co-Präzipitation von in HEK293 endogen exprimiertem Caveolin mit mTRP1β-	
	FLAG	79
Abb. 6.18	Co-Präzipitation von Aktin mit mTRP1β-FLAG und Mutanten aus COS-M6-Zellen	80
Abb. 6.19	Immunfluoreszenzmikroskopische Aufnahmen zur Plasmamembranlokalisierung von	
	mTRP1β und Mutanten in stabil transfizierten HEK293-Zellen	81

142	Abbildungs- und Tabellenverzeichnis	
Abb 6 20	Immunnrözinitationan von mTDD18 und Mutantan aus stabil transfiziartan HEV 202 Zellan	<u>ہ</u> م
Abb 6 21	Madulation das Ca ²⁺ Einstrams über die Dischermerken	82 82
ADD. 0.21	modulation des Ca -Einstroms über die Plasmamemoran	63
ADD. 0.22	Einzelzell-[Ca ²⁺]-Messungen an stabil mTRP1B oder Mutanten exprimierenden HEK293-	
	Zellen	83
Abb. 6.23	Einzelzell-[Ca ²⁺]-Messungen und Modulation des Ca ²⁺ -Einstroms über die Plasmamembran	
	nach Depolarisierung des Membranpotentials	85
Abb. 6.24	$[Ca^{2+}]_{rel}$ -Messungen und immunfluoreszenzmikroskopische Aufnahmen an mTRP1 β - und	
	Äpp-exprimierenden IIA1.6-Zellen	87
Abb. 7.1	Alignment einer Sequenz aller acht bekannten mTRP-Isoformen im C-terminalen	
	cytosolischen Bereich	98
Abb. 7.2	Erweitertes Modell für die Assoziation von TRP1 in Lipid-Raft-Domänen	102
Anhang 1	Immunfluoreszenzmikroskopische Aufnahmen zur Plasmamembranlokalisierung von	
	mTRP1β, mTRP2, hTRPC3 und LAT in transient transfizierten COS-M6-Zellen	132
Anhang 2	Plasmamembran-Co-Lokalisation von mTRP1 β -c-myc und Mutanten mit hTRPC3-HA an	
	transient transfizierten COS-M6-Zellen	134
Anhang 3	Co-Lokalisation von mTRP1 β -c-myc und Mutanten mit hTRPC3-HA in der Plasmamembran	
	von transient transfizierten HEK293-Zellen	136
Anhang 4	Klonierungsschemata von mtrp1β-Epitop und pET32a(+)-mtrp1-CT	138
Anhang 5	Klonierungsschemata der cytosolischen N- und C-Termini von mtrp 1 β und htrp c3 in die	
	Hefe-Two-Hybrid System Expressionsvektoren pEG202 und pJG4-5	139
Anhang 6	Klonierungsschemata der cytosolischen N- und C-Termini von mtrp2 in die Hefe-Two-	
-	Hybrid System Expressionsvektoren pEG202 und pJG4-5	140
Anhang 7	PCR-in vitro-Mutageneseschemata der mtrp1β-Deletionsmutanten	140

Tabellenverzeichnis

16 42 49
42 49
42 49
/0
42
54
54
57
62
64

Lebenslauf

Olaf Friedrich, geboren am 02.05.1970 in Reinbek

Beruflicher	Werdegang
-------------	-----------

seit September 1997	Wissenschaftlicher Mitarbeiter in der Biochemie II der
	Fakultät für Chemie der Universität Bielefeld
0108.1997 und 0305.1996	Wissenschaftliche Hilfskraft am Institut für Meereskunde der
	Universität Kiel, Abt. Marine Planktologie
14.05.1997-09.06.1997	Wissenschaftliche Hilfskraft am Institut für Meereskunde der
	Universität Kiel, Abt. Meeresphysik,
	FS METEOR-Forschungsreise im Nord-Atlantik
0408.1997 und 10.1996-02.1997	Wissenschaftliche Hilfskraft am Institut für Organische
	Chemie der Universität Kiel
0203.1997	Wissenschaftliche Hilfskraft am Anorganische Chemie der
	Universität Kiel
	Lehrtätigkeit
0612.1996	Wissenschaftliche Hilfskraft im Sonderforschungsbereich
	313 der Universität Kiel
0409.1994	Wissenschaftliche Hilfskraft am Institut für Physikalische
	Chemie der Universität Kiel
	Lehrtätigkeit

Studium der Chemie

09.1997-03.2001	Dissertation im Arbeitskreis von Prof. Dr. J. Frey in der
	Biochemie II der Fakultät für Chemie der Univerisät
	Bielefeld
10.1990-04.1997	Studium der Chemie an der Universität Kiel
11.1995-04.1997	Diplomarbeit im Arbeitskreis von Prof. Dr. U. Lüning am
	Institut für Organische Chemie der Universität Kiel
	Thema: "Untersuchung der übergangsmetallkatalysierten
	Oxidation von Olefinen mit konkaven 1,10-Phenanthrolin-
	Liganden"

Gedruckt auf alterungsbeständigem Papier °° ISO 9706