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Summary 
 
The work we carried out for the account of this thesis concerned the chemical investigation 

of three plants used in Cameroonian traditional medicine, Maesopsis eminii (Rhamnaceae), 

Autranella congolensis (Sapotaceae) and Pentadesma grandifolia (Guttiferae).  

 

13 compounds were isolated from the bark of Maesopsis eminii (Engl.). Two 

pentacyclic triterpenes, 1α,3β-dihydroxybauer-7-en-28-oic acid (85) and 3β-

dihydroxybauer-7-en-28-oic acid (86) of which (85) is reported here for the first time, 

together with four steroids labelled 91, 92, 24 and 25, and seven phenolic compounds 87-

90, 93, 9, 97+98, were isolated from this plant. 93 was derivatized to its acetate derivative 

labelled 94. Triterpenes were isolated for the first time from this plant and the new 

compound 85 displays moderate antibacterial activity against Gram-positive bacteria such 

as bacillus subtilis ATCC while compound 88 displays good anti-inflammatory activity 

(IC50 9.5 µM) by inhibiting highly the 3α-hydroxysteroid dehydrogenase. 

 

Six known compounds have been isolated from the bark of the plant Autranella 

congolensis (De Wild.) A. Chev., taraxerol (99), taraxerone (100), a mixture of 3β-

docosanoyltaraxer-14-ene (n = 20), 3β-tetracosanoyltaraxer-14-ene (n = 22), 3β-

hexacosanoyltaraxer-14-ene (n = 24) (101), (+)-catechin (97), (24R)-stigmast-7,22(E)-

dien-3α-ol (26) and 24-feruloyltetracosanoic acid (102). 

 

Six known compounds have also been isolated from the root bark of Pentadesma 

grandifolia (E. G. Baker), a bicyclic triterpenoid (13E,17E)-polypoda-7,13,17,21-tetraen-

3β-ol (105), lupeol (23) and four xanthones α-mangostin (103), rubraxanthone (104), 

garcinone E (106) and cowanin (108). Compounds 104 and 105 displayed good anti-

inflammatory activity when tested against 3α-hydroxysteroid dehydrogenase. In addition, 

104 selectively inhibits the cyclooxygenase-2 (COX-2). 

 

 Methods used for the isolation of compounds were mainly column chromatography, 

preparative TLC, and HPLC using solvents with differents polarities and selectivity. 

 The structures of all compounds were elucidated by using modern spectroscopic 

techniques such as 1D and 2D-NMR (HH-COSY, HMBC, HMQC), HRMS and IR 

spectroscopy. 
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1 Introduction 
 

Natural products are naturally derived metabolites and/or byproducts from 

microorganisms, plants, or animals (Baker et al., 2000). In the field of traditional medicine, 

natural products have been exploited for human use for thousands of years, and plants have 

been the main source of compounds used for medicine.  

Traditional healers have from time immemorial exploited the therapeutic properties of 

plants in traditional medicine. They have always known that a particular plant treats a 

disease because it contains a bioactive component or some agents responsible for its power 

to fight the diseases which they treat and which may not be found in another plant. They 

however do not know the active components in the plant, the compound(s) that is/are 

responsible for its medicinal use. The Chinese represent today the largest users of 

traditional medicines, with over 5000 plants and plant products in their pharmacopeia 

(Bensky and Gamble, 1993).  

Nowadays, traditional medicine has given rise to modern therapy. Natural products have 

played, and will continue to play, a key role in drug discovery and are therefore 

traditionally claimed as the cornerstones of drug discovery and development (Cragg et al., 

1997; Grabley and Thiericke, 1999; Newman et al., 2000). In fact, many drugs on the 

market today were discovered from natural sources; one important example is the analgesic 

activity of aspirin (1), which is so far the world’s best known and most universally used 

medicinal agent; it is related to salicin, and has its origin in the plant genera Salix spp. and 

Populus spp. Another example is the antibiotic activity of penicillin (2) discovered 

serendipitously in the laboratory from the fungus Penicillium notatum.  
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Strobel and coworkers demonstrated that natural product compounds have had, and will 

still have an immense impact on modern medicine: in fact, about 40% of prescription drugs 

are based on them (Strobel et al., 2004). Well over 50% of the new chemical products 
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registered by the FDA (Food and Drug Administration) in the time 1981-2002 as 

anticancer agents, antimigraine agents, and antihypertensive agents were natural products 

or derivatives thereof (Newman et al., 2003). Many other examples exist that illustrate the 

value and importance of natural products from plants and microorganisms in modern 

civilizations, and paclitaxel (taxol) (3), which was first isolated from the bark of the Pacific 

yew tree, Taxus brevifolia (Taxaceae), is the most recent example of an important natural 

product that has made an enormous impact on medicine (Wani et al., 1971; Bills et al., 

2002). The WPS (White Point Systems) mentioned that synthetic and combinatorial 

methods would not yield such a complex structural type. A list of some drugs derived from 

plants, with their ethnomedical correlations and sources is given on Table 1.1. 
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Unfortunately, some infectious microorganisms tend to develop resistance against some 

existing drugs. In addition to the resistance against some drugs, new diseases such as 

AIDS, Ebola and SARS are increasing, and therefore create a desperate need for new drugs 

(Strobel et al., 2004). In spite of the fact that much or if not most of what constitues 

modern drugs owes its presence directly or indirectly to chemicals originally found in 

plants, the vast majority of plants has not been assessed pharmacologically for potential 

medicinal value, even those that are currently being used for medicinal purposes by 

indigenous people (Akerele, 1992). The number of higher plant species (angiosperms and 

gymno and Farnsworth, 2001). Of 

these, o

ly (Verpoorte, 2000). Thus, plants represent a largely 

untapped ressource. Beside the fact that they offer the local population immediate access to 

sperms) on this planet is estimated at 250 000 (Fabricant 

nly about 6% have been screened for biological activity, and a reported 15% have 

been evaluated phytochemical
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safe an

 for modern medicine in four basic ways (Farnsworth and 

Soejart

ey are used as sources of direct therapeutic agents 

(2) They serve as raw material base for the elaboration of more complex semi-

al drug candidates from plants collected in Cameroon. In 

rder to establish a certain relationship between the therapeutic properties of plants and the 

natural products that plants may contain, three plants used in Cameroonian traditional 

medicine were investigated: Maesopsis eminii (Rhamnaceae), Autranella congolensis 

(Sapotaceae) and Pentadesma grandifolia (Guttiferae). The choice of the plants was based 

on the fact that their phytochemical studies were less reported in the literature for some, or 

completely absent for the others. 

 

d effective products for use in treatment of illness through self-medication, 

medicinal plants are valuable

o, 1985; Plotkin, 1991): 

(1) Th

synthetic chemical compounds 

(3) The chemical structures derived from plant substances can be used as models 

for new synthetic compounds 

(4) Finally, plants can be used as taxonomic markers for the discovery of new 

compounds. 

 

Based on the long-term use of medicinal plants by humans (often hundreds or thousands of 

years), one might expect any bioactive compounds obtained from such plants to have low 

human toxicity. Obviously, some of  the medicinal plants may be toxic but since there is no 

report on their chronic toxic effects, these plants will then continued to be used by the local 

populations. 

 

As natural products gain increasing importance and attention from chemists and 

pharmacologists, their discovery from new sources will continue to be essential in order to 

provide novel lead compounds which the synthetic chemist can modify. This the major 

reason for embarking on research projects in the field of natural products. This work 

focuses on the isolation of potenti

o
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Table 1.1: Drugs discovery by ethnobotanical leads (Fabricant and Farnsworth, 2001) 

 

Drug Action or clinical use Plant source 
Acetyldigoxin Cardiotonic Digitalis lanata 
Ajmaline Circulatory disorders Rauwolfia serpentina 
Aspirin Analgesic, anti-inflammatory Filipendula ulmaria 
Atropine Anticholinergic Atropa belladonna 
Bergenin Antitussive Ardisia japonica 
Bromelain Anti-inflammatory, proteolytic agent Ananas comosus 
Caffeine Stimulant Camellia sinensis 
(+)-Catechin Haemostatic Potentilla fragaroides 
Cocaine Local anaesthetic Erythoxylum coca 
Codeine Analgesic, antitussive Papaver somniferum 
Colchicine Antitumor agent, antigout Colchicum autumnale 
Danthron Laxative Cassia spp. 
Deserpidine Antihypertensive, tranquilizer Rauvolfia canescens 
Digotoxin Cardiotonic Digitalis purpurea 
Digoxin Cardiotonic Digitalis purpurea 
Emetine Amoebicide, emetic Cephaelis ipeccuantha 
Ephedrine sympathomimetic Ephedra sinica 
Etoposide Antitumor agent Podophyllum peltatum 
Gitalin Cardiotonic Digitalis purpurea 
Gossypol Male contraceptive Gossypium spp. 
Hydrastine Hemostatic, astringent Hydrastis canadensis 
Hyoscamine Anticholinergic Hyoscamus niger 
Kawain Tranquilizer Piper methysicum 
Khellin Bronchodilator Ammi visnaga 
Lobeline Smoking deterrent, respiratory stimulant Lobelia inflata 
Morphine Analgesic Papaver somniferum 
Noscapine Antitussive Papaver somniferum 
Ouabain Cardiotonic Sthrophanthus gratus 
Papain Proteolytic, mucolytic Carica papaya 
Physostigmine Cholinesterase inhibitor Physostigma venenosum 
Picrotoxin Analeptic Anamirta cocculus 
Pilocarpine parasympathomimetic Pilocarpus jaborandi 
Protoveratrines A & B Antihypertensive Veratrum album 
Pseudoephedrine Sympathomimetic Ephedra sinica 
Quinine Antimalarial Cinchona ledgeriana 
Quisqualic acid Anthelmintic Quisqualis indica 
Rescinnamine Antihypertensive, tranquilizer Rauwolfia serpentina 
Reserpine Antihypertensive, tranquilizer Rauwolfia serpentina 
Rorifone Antitussive Rorippa indica 
Rotenone Piscicide Lonchocarpus nicou 
Salicin Analgesic Salix alba 
Stevioside Sweetener Stevia rebaudiana 
Teniposide Antitumor agent Podophyllum peltatum 
Tetrahydropalmatine Analgesic, sedative Corydalis ambigua 
Theobromine Diuretic, bronchodilator Theobroma cacao 
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Trichosanthin Abortifacient Thymus vulgaris 
Tubocurarine Skeletal muscle relaxant Chondodendron 

tomentosum 
Vincamine Cerebral stimulant Vinca minor 
Xanthotoxin Leukoderma, vitiligo Ammi majus 
Yohimbine Aphrodisiac Pausinystalia yohimbe 
Yuanhuacine Abortifacient Daphne genkwa 
 

 

To start the analysis, it is important to understand what are secondary metabolites and what 

is their importance. 

 

1.1 Secondary metabolites from plants 
 

Secondary metabolites are molecules that are not directly necessary for the growth and 

reproduction of a plant, but may serve some role in herbivore deterrence due to astringency 

or they may act as phytoalexins, killing bacteria that the plant recognizes as a threat.  

Secondary metabolites are often involved in key interactions between plants and their 

abiotic and biotic environments that influence them (Facchini et al., 2000). Plants produce 

secondary metabolites as defences against fungi, bacteria, insects and viruses. They also 

produce them as colourful pigments to attract insects for pollination. The exact nature of 

the role of many secondary metabolites is not known although they have been identified 

and extracted.  

Secondary plant metabolites, currently exceeding 100.000 identified substances, belong to 

three major chemical classes: terpenoids (a group of lipids), phenolics (derived from 

carbohydrates) and alkaloids (derived from amino acids) (Edwards and Gatehouse, 1999). 

1.1.1 Terpenoids  
Terpenoids have been cited as the most diverse group of plants products known (Goodwin 

and Mercer, 1983). Many of these products have functions known to be essential to plant 

life (e.g. carotenoids, chlorophyll side-chain and some hormones) whereas the function of 

other terpenoids are unknown (Curry, 1987). Volatile monoterpernoids are the major 

components of essential oils and often function as floral odour glands (Goodwin and 

Mercer, 1983). Terpenoids are discussed in details in part 2.2 of this work. 
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1.1.2 Phenolics  
Phenolic compounds are a huge and diverse group of aromatic compounds usually with 

hydroxyl groups. Phenol itself is the simplest member of the class, although it is not found 

in plants. Many phenolic compounds have three carbon side chains and are called "phenyl-

propanoids". They include pigments, flavour compounds and tannins. They probably 

function in defense against herbivores and in regulation of auxin transport. Attraction of 

insects and birds also play an important role in seed dispercial and pollination (Goodwin 

and Mercer, 1983). The well-known phytoalexin, resveratrol (4), an anticancer agent is an 

example of a phenolic as are flavonoids and tannins which are found in tea, fruits and red 

wine and have many desirable health effects (Oomah, 2003). 

 

OH

OH

HO

 
4 

 

1.1.3 Alkaloids 
Alkaloids, a major class of plant-derived secondary metabolites used medicinally has 

potent pharmacological effects in animals due to their ability to rapidly penetrate cell 

membranes (Wink, 1999). Nicotine, a commercially important alkaloid, is the most 

physiologically addictive drug used by humans. Caffeine, an alkaloid from coffee, tea and 

chocolate is a central nervous system stimulant and mild diuretic. The opium plant contains 

over 25 alkaloids with morphine being the most abundant and most potent painkiller. 

Vincristine and vinblastine, important alkaloids from periwinkle are strong antineoplastics 

used to treat Hodgkins disease and other lymphomas (Wink, 1999). 

 

Secondary metabolites are sought after because they are known to exhibit numerous 

biological activities that promote positive health effects. These activities include 

antibacterial, anticancer, antifungal, and antioxidant that are utilized in the agricultural, 

food and pharmaceutical industries. As a consequence of these numerous applications, the 

world market for plant extracts and isolated secondary metabolites exceeds 10 billion US 
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dollars annually (Oomah, 2003). The pharmacological value of plant secondary 

metabolites is increasing due to constant discoveries of their potential roles in health care 

and as lead chemicals for new drug development (Wink, 1999). 
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2 Literature review 
 
2.1 Previous study of the genera Maesopsis, Autranella and 

Pentadesma 

2.1.1 Generalities on the Genus Maesopsis 
 

M. eminii was introduced from the Bukoba regions in western Tanzania, to the Amani 

Botanic Gardens in the East Usambara (eastern Tanzania) in 1913 when a 1 ha forestry 

trial plot was set up. Large-scale forestry planting was undertaken during the 1960s and 

early 1970s. M. eminii is now dominant in secondary forests near the M. eminii plantation 

and is found in many natural forest treefall gaps (Binggeli and Hamilton, 1993). 

The genus Maesopsis belongs to the plant family Rhamnaceae. This genus is monospecific 

(Hallé, 1970) and is widely distributed throughout the African continent, especially in 

tropical region, from Liberia to Congo, Sudan, Uganda and East Africa. In Cameroon this 

plant is present in the Centre and Southern Provinces. Usually it is an uncommon tree with 

the exception of the forest – savannah boundary in Uganda where it may be dominant. 

Maesopsis eminii is a large African tropical forest tree introduced to various parts of the 

tropics for timber production or as a shade tree (common name: umbrella tree) 

(Sreenivasan and Dharmaraj, 1991). It is naturally regenerating in many places and 

invasive in the rain forests of the East Usambaras. It is a large canopy tree reaching a 

height of about 15 m in Western Africa to over 40 m in East Africa, and a diameter up to 

1.2 m. The trunk is not buttressed, but is cylindrical and straight, free from branches for 10 

to 20 m (see Figure 2.1). It is exceptionally able to live up to 200 years (Normand, 1935). 

The size and the dentation of the entire leaf exhibit much variation. The species is either 

deciduous or semi-deciduous depending on local climatic conditions. The sex expression 

and pollination system is poorly understood but flowers are thought to be hermaphrodite 

and protogynous and insects are the likely pollination agent. Flowering and fruiting starts 

after four to ten years and large seed crops are produced every year often every six months. 

The fruits take six months to mature and change color from green to yellow, red and finally 

to black when ripe (see Figure 2.2) (Binngeli, 1989). Many insects and fungal diseases 

affect M. eminii causing defoliation, stem breakages and bark cankers. 
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Maesopsis eminii is used in African traditional medicine, thanks to the diuretic, purgative, 

emetic and antidiarrhoetic activity of its bark. On the Liberian-Ivory Coast border, this 

plant is considered violently purgative and to be a secondary diuretic and emetic (causes 

vomiting) (Kerharo and Bouquet, 1950). The root-bark is used in Cameroon as diuretic for 

ascites which is an abnormal accumulation of fluid in the abdominal cavity, characterized 

by painless enlargement of the abdomen (Santesson, 1926). Also in Cameroon, this plant is 

used in the Sangmelima region of the Southern province as abortifacient (Noumi et al., 

2001). The bark-pulp in water is injected into the rectum, or the bark in palm-wine, or the 

leaf in decoction is drunk. These are antidotes, and very strong purgatives for the obstinate 

constipation which characterizes the so called “Goat’s disease” (Kerharo and Bouquet, 

1950). The drastic purgative and emetic effects of the bark of Maesopsis eminii are 

reduced by adding a decoction of fresh palm seeds, or rice water  (Kerharo and Bouquet, 

1950). In Nigeria, the bark, pounded with salt from the salt-bush tree, dissolved in  water is 

drunk for constipation and for painful menstruation (Ainslie, 1937). Cooper has also 

mentioned that a bark infusion is used in Liberia to treat “all chronic and latent disease”. A 

leaf decoction is sometimes described as a diuretic and purgative for “yellow fever” 

(Irvine, 1961). 
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 Figure 2.1: Maesopsis eminii forest in Tanzania 
 

 

 

 Figure 2.2: Fruits and foliage of Maesopsis eminni 
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A previous phytochemical study of the non- polar extract of the bark of this plant reveals 

only the presence of anthraquinones and some phenolic compounds like musizin (5), 

chrysophanol (6), physion (7), xanthorin (8), islandicin (9), cynodontin (10), maesopsin 

(1 nd Thomson, 1970; Ekpa et al., 1985). According to 

the fac of t e plan  from he family Rhamnaceae are known as rich sources of 

not only anthraquinones and phenolics, but also steroids and triterpenoids (Ikan, 1991a), 

is species was selected to be investigated with respect to its further constituents, as part 

l plants. 

1), (Janes et al., 1961; Cumming a

t that most h ts  t

th

of a contribution to the phytochemical study of Cameronian medicina
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9    R = H      11  
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2.1.2 Generalities on the Genus Autranella (Mimusops) 
 

Autranella is also known as Mimusops. The genus Mimusops belongs to the family 

Sapotaceae and comprises 30 species (Jahan et al., 1995), one of which, Mimusops 

congolensis (syn. Autranella congolensis), is indigenous to Cameroon. Its other common 

names are Elanzok, Elang (Cameroon), Kabulungu (Zaire). M. congolensis is widely 

distributed throughout the dense equatorial forests (Cameroon, Congo, Gabon, Nigeria, 

etc.) (N'Sosso, 1995). The trees are large, attaining heights of 40 to 50 m, with trunk 
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f the branches, obovate-oblong and shortly 

1996). Mimusops species 

are also reported to have considerable reputation in Indian traditional medicine due to their 

nthelmintic, tonic, and astringent activities (Sahu et al., 1995). The bark and the fruit of 

the treatment of diarrhea and chronic dysentery, and a decoction of 

ounded seeds pasted with oil are used for the treatment of 

 dried flowers induces nasal discharge 

 Mi-glycoside 1 

rganin C (17), 

l (22), 

upeol (23) (Sen et al., 1995; Sahu, 1996, Sahu et al., 1995, 1997; Lavaud et al., 1996; 

rivastava and Singh, 1994; Eskander et al., 2005), steroids and stroidal glycosides, β-

sitosterol (24), sitosteryl β-D-glucopyranoside (25), (24R)-stigmast-7,22-(E)-dien-3α-ol 

(26), (24R)-stigmast-7,22-(E)-dien-3α-ol β-D-glucopyranoside (27), (24R)-stigmast-7,22-

(E)-dien-3α-ol β-D-galactopyranoside (28) (Misra et al, 1970; Jahan et al., 1995) have been 

found as constituents of this genus. Sahu (1996) also mentioned the presence of taxifolin 

(29) which is a flavonol, in the seeds of mimusops elengi. The saponins of fruits were 

reported to possess anti-inflamm g va et al., 1970), and those fom the 

bar

diameters often about 120 cm, sometimes up to 3 m. This trunk develops straight and 

cylindrical boles, that are clear of branches for about 30 m. The leaves are glabrous 

beneath, slightly clustered at the end o

acuminate. They are 10 to 15 cm long and 3 to 4.5 cm broad, with numerous fine lateral 

nerves (Hutchinson and Dalziel, 1963a). The reproductive type is pollination and fertile 

flowers are hermaphrodite; unisexual flowers are absent. Their fruits are oval with a 

pointed tip ripening yellow or orange (Pooley, 1993). The heartwood is red to reddish 

brown with darker streaks; the sapwood, grayish, is not always sharply demarcated from 

the heartwood. The heartwood is rated as very durable though there may be slight termite 

attack, resistant to dilute acids, good weathering characteristics, highly impermeable 

(Chudnoff, 1984). The wood-dust is very irritating to mucous membranes (Anon, 1954), 

and to the respiratory tract (Orsler, 1973). 

Autranella congolensis is used for heavy construction, flooring, furniture and 

cabinetmaking, acid vats,  turnery, joinery (Bolza and Keating,  1972); its seeds are used 

and traded as rattlers for dancers (African Regional Workshop, 

a

M. elengi are used in 

the bark is used as gargle. The p

obstinate constipation. Pillow stuffing made from the

and relieves headache (Misra et al., 1974).  

Previously, several triterpenoid and their saponins, protobassic acid (12),

(13), Mimusopside A (14), Mimusopside B (15), Mi-saponin A (16), A

Mimusin (18), Mimusopgenon (19), Mimugenon (20), β-amyrin (21), Taraxero

L

S

atory activity (Bhar a

k of M. elengi exhibited antiulcer activity (Shah et al., 2003).  
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       25 R = β-D-Glc                                                             27 R = β-D-Glc 

                                                                                                   28 R = β-D-Gal 
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29 

 

Since the chemical constituents of Mimusops congolensis (Autranella congolensis) have 

not been previously investigated, the species was selected as part of our research project on 

plants growing in Cameroon and used in folk medicine. 

with flattened sides (Hutchinson and Dalziel, 1963b). As they regenerate freely from the 

2.1.3 Generalities on the Genus Pentadesma 
 

The genus Pentadesma belongs to the family Guttiferae. It occurs in closed forest region, 

especially in evergreen forest. It is common to swampy areas by stream sides.  15 species 

are known for this genus and are reported in Table 2.1. The species P. butyracea and P. 

grandifolia are widely distributed from Guinea to Cameroon. The genus Pentadesma 

consists of large buttressed evergreen trees up to 30 m and more. Sultanbawa mentioned 

that the species Pentadesma Sabine is only confined to Africa (Sultanbawa, 1980). Trees 

of this genus are easily reared from seed and mature quickly. Their leaves are opposite, 

grouped at the top of the branches, petiolate, 10 to 22 cm long and 3.5 to 7 cm broad, with 

mumerous close parallel lateral nerves  (Bamps, 1970). Their fruits are broadly ellipsoid, 

pointed, about 15 cm long and 10 cm broad; they are readily collected. The seeds are large 
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at is extracted from their seeds, and is used for cooking, soap-making, and on for 

cosmetics. The timber of  P. butyracea is good, useful for pit-props and housebuilding, and 

thought to be fairly resistant to termites. Masts, oars, and canoes can be made from it. The 

root decoction of  P. butyracea is a vermifuge in Liberia (Harley, 1941), and the bark is a 

fish poison in Ghana. The bark infusion is used as lotions for parasitic skin diseases, and 

when boiled it used for diarrhoea. The fat from the seeds is an unguent for skin and hair 

(I

Among the 15

977a; Rosenthaler, 1928) and P. kerstingii (Wagner et al., 1914) have previously been 

investigated with respect to their secondary metabolites. Triterpenoids, sterol and 

xanthones were described. From the bark and timber extracts of P. butyracea the following 

ompounds have been isolated: β-amyrin acetate (30), β-amyrin (31), β-sitosterol (24), 

1,3,5-trihydroxy-2-methoxyxanthone (32), jacareubin (33), osajaxanthone (34) and 

pentadesmaxanthone (35) (Gunasekera et al., 1977a). Xanthones, characteristic secondary 

metabolites of Guttiferae (Monache et al., 1983), were found to be the major constituents. 

They have demonstrated various biological activities, such as antibacterial (Iinuma et al., 

1996), antiinflammatory (Gopal 1 0), and antifungal (Gopalakrishnan et 

an  Jone  to be effective as an 

lator in the treatment of asthma (Jones et al., 1977). In this 

roject, in continuation of the phytochemical work on Cameroonian medicinal plants, the 

hemical 

vestigation for its constituents had been reported previouly. 

 

stump and from self-sown seed, they are suitable trees for reafforestation purposes (Irvine, 

1961).  

F

rvine, 1961). 

 species enumerated, only P. butyracea (Adomako, 1977; Gunasekera et al., 

1

c

akrishnan et al., 98

al., 1997). On the other h d, s described xanthone derivatives

allergy inhibitor, bronchodi

p

constituents of the roots of Pentadesma grandifolia were examined, of which no c

in

HO
 

O

O

                         
30        31    

 

  



 Literature review  
 

17

 
 

O

O OH
OMe

OH
OH  

32 

 

O

O OH

OH

O

HO

O

O OH
3R

R1
R2 O

                           
33 R1 = R2 = OH  R3 = H                                  35 

34 R1 = R2 = H     R3 = OH 

 

Table 2.1: Different species of Pentadesma identified in Cameroon and in Africa. 

 

No Species Authors 

1 Pentadesma grandifolia E. G. Baker 

2 Pentadesma butyracea Sabine 

3 Pentadesma devredii Spirl. 

4 Pentadesma exelliana Staner 

5 Pentadesma kerstingii Engl. 

6 Pentadesma lebrunii Staner 

7 Pentadesma lecomteana Pierre ex A. Chevalier 

8 Pentadesma leptonema Pierre 

9 Pentadesma nigritana E. G. Baker 

10 Pentadesma leucantha A. Chevalier 

12 Pentadesma ogoouensis Baud. 

11 Pentadesma maritima Pierre 

13 Pentadesma parviflora Exell. 

14 Pentadesma reyndersii Spirl. 

15 Pentadesma rutshuruensis Spirl. 
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 traditional medicine. 

Among the compounds isolated from these genera, most of them belong to the class of 

pentacyclic triterpenoids. Although medicinal uses of this class of compounds are rather 

limited, considerable recent work in this regard strongly indicates their great potential as 

drugs. Moreover, despite the remarkable diversity that is already known to exist among the 

carbon skeletons of triterpenes, new variants continue to emerge (Mahato et al., 1992). 

Taking into account the complexity of the structures of triterpenoids, it seemed necessary 

to make a review of the literature on this class of natural products, in order to better be able 

to describe them during this work. 

 

2.2 Properties of pentacyclic triterpenoids and their saponins 
 

Triterpenoids are ubiquitous non steroidal secondary metabolites of terrestrial and marine 

flora and fauna, occurring in the free form as well as in the forms of ether, ester and 

glycoside. As the name implies, triterpenoids are isopentenoids composed of thirty carbon 

atoms. They are built up of six isoprene units and derive from squalene, presumably via 

ring opening of squalene-2,3-epoxide (36) (oxidosqualene), followed by a concerted 

cyclisation (Figure 2.3) (Abe et al., 1993; Wendt et al., 2000). Because of this biosynthetic 

origin, they are all hydroxylated at C-3 position. The cyclization proceeds to give a 

protosteryl or a dammaryl cation which then undergoes a series of 1,2-methyl and hydride 

shifts with proton elimination. The final product of the cyclization is a pentacyclic 

iterpene only if the oxidosqualene previously has the so-called “chair-chair-chair” 

2.1.4 Biological activities of the compounds isolated from the three 
genera 

 

Some compounds isolated from these genera have exhibit some interesting biological 

activities. For example, lupeol (23) exhibited hypotensive activity (Harbone and Baxter, 

1993), in vitro antimalarial activity (Alves et al., 1997), as well as anti-inflammatory 

activity (Geetha and Varalakshmi, 1988). Sitosterol (24) and stigmasterol were found to be 

essential starting materials in pharmaceutical industry where they are used in the 

manufacture of steroidic drugs (contraceptives and anti-inflammatory agents).  

Since the compounds isolated from the three genera belong to several groups of natural 

products presenting various biological properties, this could explain the wide use of these 

plants in

tr
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conformation (Goodwin ss acyclic, mono-, di-, 

tri-, tetra- or pentacyclic carbon skeletons. Pentacyclic triterpenoids are dominant 

constituents of this class and have been widely investigated (Mahato and Kundu, 1994). 

We will limit our study to pen subdivided in several structural 

groups. 

 

, 1980; Abe et al., 1993). They may posse

tacyclic triterpenoids, 

OO

O

chair-boat-chair chair-chair-chair

HH

HO

HOHO

Lupenyl cation

Protosteryl cation

Steroids + Cycloartenol + Lanosterol

36

Dammarenyl cation

 
 

Figure 2.3: Cyclization of oxidosqualene. 
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2.3. continued. 

 

2.2.1 Different structural groups 

According to Mahato and coworkers, pentacyclic triterpenoids can be classified into 22 

, which are represented in Table 2.2. 

A

Figure 

 

structural groups (Mahato et al., 1994)
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rent structural groups of pentacyclic triterpenoids. 

 

Table 2.2. Diffe
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50  Onocerane 51  Lupane 52  Hancokinane 

 

2

3

1

 

2
1

 

2
1

  
ane 53  Fernane 

3 3
 

55  Sorghumane 54  Hop

   

2

3

1

 
56  Friedomadeirane 

21

20
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21
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22

13a

8a

3a

4

 
58  Bic

 
57  Spirosupinane 

adinane 

   

27

18

13

30

28

 
59  Serratane 

 

oside) (Mahato and Kundu, 1994). 

 

 

 

Triterpenes are normally hydroxylated at C-3 and certain methyl groups are frequently 

oxidised to hydroxymethyl, aldehyde or carboxyl functionalities. When a sugar moiety is 

linked to a triterpene, the term saponin is used for the corresponding compound. The 

aglycone or non-saccharide portion of the saponin molecule is called genin or sapogenin 

(Hostettmann and Marston, 1995a). The sugar moiety of these saponins are generally 

oligosaccharide, linear or branched, attached to a hydroxyl or a carboxyl group or both. 

The site of attachment may be one (monodesmoside), two (bidesmoside) or three 

(tridesm
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2.2.2 Occurrence and distribution 
 

Triterpenoids and their saponins are extremely widely distributed in the plant kingdom. 

Some plants contain large quantities of triterpenes in their latex and resins, and among their 

physiological functions a chemical defence against pathogens and herbivores has been 

proposed (Brown, 1998). These plant’s constituents content depends on factors such as the 

cultivar, the age, the physiological state and the geographical location of the plant. There 

can be considerable variation in composition and quantity of triterpenoids and saponins in 

vegetable material from different places (Boiteau et al., 1964a, Hostettmann and Marston, 

1995b). 

2.2.3 Isolation procedure 
 
The isolation methods for triterpenoids are based on the extraction of the plant material 

with duly selected organic solvents. Generally, to this end petrol ether, ethyl ether and 

ethanol are employed. More rarely, benzene, carbon tetrachloride, acetone, methanol or 

chloroform are used (Boiteau et al., 1964b). Obtention of pure componenents is 

plished by chromatographic techniques. The current general procedures for 

obtaining crude saponin mixture were reported as follows: 

l, ethanol, water or aqueous alcohol;  

- a defatting step (generally with petroleum ether); this can be performed before the 

ore 

hromatographic separation Steps (Hostettmann and Marston, 1995c). 

.2.4 Typical chemical reactions on pentacylic triterpenes  
2.2.4.1 Acetylation 

This reaction is performed in a sealed tube at room temperature in a mixture of pyridine 

ound (60) was treated with a mixture of pyridine and acetic 

nhydride at room temperature for a few hours to yield (61). When the solution was kept at 

accom

- extraction with methano

extraction step or on the extract itself;  

- extracts are dissolved or suspended in water and shaken with n-butanol saturated with 

water.  

The isolation of pure saponins requires one or (as almost always the case) m

c

2

and acetic anhydride. It takes a short time for free hydroxyl groups and a long time for 

sterically hindred hydroxyl groups. An example has been decribed by Gonzalez and 

coworkers, where comp

a
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room temperature for 24 hours, compounds (61) and (62) were obtained. When the same 

process was followed for 6 days, (61), (62) and (63) were obtained (Gonzalez et al., 1987). 

 

OH

HO

HO

60

OH

AcO

HO

61

OH

AcO

AcO

62

OAc

AcO

AcO

Py

63

ridine/AC2O

RT

 

Few hours
24 hours

6 days

2.2.4.2 Dehydration 

This is a reaction by which triterpenic alcohols can be converted to their corresponding 

alkenes. It can be performed in different manners. Gonzalez and coworkers dissolved 

compound (60) in dry benzene. When evaporated to dryness at 50 °C and 20 mm pressure, 

compound (64) was obtained after purification of the mixture (Gonzalez et al., 1987). 
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OHPOCl /C H

HOHO

6460

3 6 6

50 °C, 20 mm Hg

his is also a characteristic reaction in triterpenoids, accomplished by Jones’s reagent 

ple below was reported by Ngounou and coworkers 

 
 

2.2.4.3 Oxidation of the hydroxyl group 

T

(CrO3 in aq.H2SO4). The exam

(Ngounou et al., 1988). 

 

CO2Me

HO

65

CO2Me

O

66

CrO3/H2SO4

Acetone, 20 min

OH OH

 

2.2.4.4 Methylation of the carboxy group 

separation by chromatography (Caputo et al., 1974). 

 

 

 

Methylation of a carboxy group may be performed using diazomethane in ether at room 

temperature. This reaction is reported for the methylation of a mixture of acids in order to 

facilitate their 
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2.2.4.5 Bromination or bromolactonization of the double bond 

This method involves the treatment of the product with bromine in acetic acid. It was 

reported as a method for the separation of substituted olean-12-en-28-oic acids from the 

corresponding urs-12-en-28-oic acid isomers (Lewis and Tucker, 1983). Members of the 

ursene family were reported to be inert under the conditions used. Thus a mixture of 

ursolic acid and oleanolic acid was dissolved in 90% HOAc-EtOH and treated with 

bromine in acetic acid to give a mixture of bromolactone of oleanolic acid and unreacted 

rsolic acid. This mixture was separated by solvent extraction or chromatography (Lewis 

and Tucker, 1983). Example: 

 

u

COOH

HO

67

HO

68

90% HOAc/EtOH

Br2/AcOH

O
Br

=O

 

leavage of O-acyl glycosidic sugar chains is achieved under basic hydrolysis conditions, 

typically by refluxing with 0.5 M potassium hydroxide (Domon and Hostettmann, 1984; 

Kotchetkov and Khorlin, 1966). Alternatively, 1-20% ethanolic or methanolic solutions of 

potassium hydroxide may be used but there is a risk of methylation, especially of the 

carboxyl groups of triterpene acids (Hostettmann and Marston, 1995d). 

 

 

2.2.4.6 Reduction reactions giving alcohol groups 

The most commonly used reagents are NaBH4 and LiAlH4. LiAlH4 transforms ketone, 

aldehyde, acid and ester triterpenoids to their corresponding hydroxy-triterpenoids. NaBH4 

is more selective since it transforms only aldehyde and ketone to an alcohol.  

2.2.4.7 Basic hydrolysis 

C
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2.2.4.8 Acidic hydrolysis 

Acidic hydrolysis is carried out by refluxing the saponin in acid for a certain time, typically 

with 2-4 M hydrochloric acid for 4 hours. The aqueous solution remaining is extracted 

with diethyl ether, chloroform or ethyl acetate to obtain the aglycone. Extraction of the 

sugars from the aqueous layer is performed with pyridine, after neutralizing the solution 

and evaporation to dryness. The saponins are completely cleaved into their constituents by 

this method. Hence, information is obtained on the identity of the aglycone and the num

nd nature of monosaccharides present (Hostettmann and Marston, 1995e). If a 

 of an ester linkage by basic hydrolysis) is acid 

ydrolysed, the nature of the sugar chains which are ether-linked to the aglycone can be 

 mimusopsic acid (12c) 

(Sahu, 1996). 

ber 

a

prosapogenin (obtained after cleavage

h

established. An aqueous reaction medium can be replaced by alcohol or dioxane 

(Hostettmann and Marston, 1995e). 

An example is the acid hydrolysis of mimusopside A (14, R1 = Glc, R2 = Ara-Rhm-), 

which yielded the genuine aglycone, protabassic acid (12) and three acid-catalysed 

rearranged aglycones, bassic acid (12a), mimusopic acid (12b) and
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 this reduction, Wolff-Kishner reagent, Huang-Minlon 

reagent and Clemmensen reagent (Boiteau et al.,1964c). With the Wolff-Kishner reagent 

n ketone function of base-stable compounds, whatever its 

position, is reduced and replaced by a CH2. This method is generally preferable for 

2.2.4.9 Reduction reactions giving a methylene group 

The reduction of aldehydes and ketones to alkanes is an important reaction used for the 

determination of the position of carbonyl groups in triterpenic ketones and aldehydes. 

Three reagents are usually used for

and Hua g-Minlon reagent, the 

triterpenoids to the Clemmensen reduction, method which is not applicable to acid-

sensitive substrates and often causes isomerizations by displacement of the double bonds 

(Boiteau et al.,1964c). 

 

O

H2N2/KOH

69 70  
 

2.2.5 Structure determination 
 

Structure determination of triterpenoids and their saponins requires a combination of 

ethods in order to arrive at a final conclusion for the structure. Recourse to NMR 

spectroscopy and mass spectrometry are essential in the investigations of these compounds. 

In the case of complex saponins, innovations in these techniques are needed for further 

advances in the investigations (Hostettmann and Marston, 1995f). 

2.2.5.1 Mass spectrometry 

Mass spectrometry has been used as an important tool for structure determination of 

triterpenoids for three decades (Shiojima et al., 1992). The choice of ionization methods in 

MS depends on the polarity, lability, and molecular weight of the compound to be 

m
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nalysed. The so-called “soft“ ionization techniques such as FAB, ESI and 

desorption/chemical ionization (D/CI) are employed to obtain molecular weight and sugar 

sequence information for naturally occuring glycosides (Wolfender et al., 1992; 

Hostettmann and Marston, 1995f).  

The electronic impact MS (EI-MS) is particularly applied to the structure elucidation of 

triterpenoids and the aglycones obtained from saponins. It is possible to observe the 

molecular peak and also to arrive at conclusions about the structure of the terpenoid 

skeleton from the fragmentation pattern. One of the diagnostically important features of the 

EI-MS of terpenoids is the retro-Diels-Alder (RDA) reaction which cleaves the molecule at 

the ring containing a double bond and enables ation to be furnished about the 

s (Djerassi et al., 1962; Budzikiewicz et al., 1963; 

Hostettmann and Marston, 1995f). Examples of RDA reaction are in part 4 of this thesis 

(see Figure 4.3 and Figure 4.7). 

The high resolution mass spectrometry (HR-MS) is applied for the establishment of the 

exact molecular formula since it gives information about the elemental composition 

through exact mass measurements. 

2.2.5.2 NMR spectroscopy 

MR spectroscopy, particularly 13C NMR spectroscopy is now being frequently employed 

 triterpenoid structure elucidation using various methods of signal assignment, e.g. 

ttached proton test (APT), DEPT, and 2D-NMR spectroscopy (Das and Mahato, 1983; 

2.2.5.2.1 1H NMR 

The H NMR spectra of pentacyclic tr lex and tedious to 

analyse. bl s

or doublet absoptions, and mo

skeletons have been assigned since the 1960s (Kojim an ur 89  a  

techniques. Generally, the resonances of th e

observed in the region 

onstrated to be affected by the introduction of various substituents on the carbon 

a

inform

substitution in the ring system

N

in

a

Mahato et al., 1992). 

 

1 iterpenoids are highly comp

However, the methyl peaks of triterpenes are readily discerni e as harp singlet 

st proton resonance positions in oleanene, ursene and related 

a d Og a, 19 ) by  variety of

e eight m thyl groups in triterpenes are 

δ 0.5 to δ 2.0 (Ageta and Arai, 1983). These chemical shifts were 

dem
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keleton (Karliner and Djerassi, 1966; Tursch et al., 1967; Kojima and Ogura, 1989). An s

example is given in Table 2.3 (adapted from Ageta and Arai, 1983). 
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Table 2.3: 1H NMR chemical shifts of Methyl groups for coumpounds 70-75 in CDCl3     

 

                 Methyl signals 

Compound 23 24 25 26 27 28 29 30 Series 

70 0.85 0.83 0.91 1.09 0.95 0.83 0.91 0.91 

71 0.87 0.84 0.95 1.14 1.13 1.00 0.97 0.97 
Taraxarane

72 1.58 1.00 0.86 1.00 1.00 1.17 0.95 1.00 

73 0.88 0.73 0.88 1.01 1.05 1.18 0.97 1.01 
Friedelane

74 0.87 0.82 0.93 0.97 1.14 0.83 0.87 0.87 

75 1.00 0.79 0.93 0.74 1.17 - 0.95 0.95 
Oleanane 

 

 

When difficulties arise in determining the configurations of hydroxyl groups at C-2, C-3 

and C-23, C-24 of oleanene and ursene triterpenes, analysis of the 1H NMR signal peaks of 

the protons on oxygen-bearing carbon atoms gives valuable information (Kojima and 

Ogura, 1989). For example, the distances (∆δ2-3) between the chemical shifts of H-2 and 

H-3 are 0.88 ppm in 2β,3β-(OH)2 and 0.7 ppm in 2β,3β-(OAc)2>0.69 ppm in 2α,3β-(OH)2 

and 0.35 ppm in 2α,3β-(OAc)2>0.57 ppm in 2α,3α-(OH)2 and 0.27 ppm 2α,3α-

(OAc)2>0.12 ppm in 2β,3α-(OH)2 and –0.08 ppm in 2β,3α-(OAc)2. The figures for the 

dihydroxy compounds are larger (ca 0.2 to 0.3 ppm) than those of the corresponding 

diacetates because of the lower downfield shift of the H-3 on acetylation (Kojima and 

Ogura, 1989). 

In the case of saponins, the vast majority of proton resonances of the carbohydrate moiety 

appear in a very small spectral width of 3.0-4.2 ppm, associated with problems of 

overlapping signals (Hostettmann and Marston, 1995f). However, some useful data can be 

btained from 1H NMR spectra for the anomeric configurations and linkages of the sugar 

chain. For example, the coupling constant of the C-1 proton of α–linked glucose units is 

approximately 3 Hz, while β–linked units have a coupling constant of 6-7 Hz (Hostettmann 

and Marston, 1995f). More details on the coupling constant of anomeric sugar protons can 

be found elsewhere (Kizu and Tomimori, 1982; Agrawal, 1982). 

 

o
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2.2.5.2.2 13C NMR  

Carbon-13 NMR spectroscopy is now widely used for the structure determination of 

triterpenoids using various methods of signal assigment, but requires relatively large 

quantities of sample. For assigning chemicals shifts, it is very hepful to compare observed 

data with data reported for model and related compounds. Compilations of assignments of 
13C NMR signal for oleanane (Patra et al, 1981), ursane, lupane, hopane (Wenkert et al., 

1978) triterpenes and  recently a compilation of the 13C NMR data of selected varieties of 

naturally occuring pentacyclic triterpenes (Mahato and Kundu, 1994) have been published.  

The 13C chemical shifts were demonstrated to be affected by the introduction of various 

substituents on the carbon skeleton like in the 1H NMR spectra. For example, Mahato and 

Kundu (1994) found that introduction of a hydroxyl group results in downfield shifts of 34-

50 ppm for α–carbons and 2-10 ppm for β–carbons and upfield shifts of 0-9 ppm for γ–

carbons (Mahato and Kundu, 1994). The substituent effect on chemical shifts of the 

carbinyl carbon atom depends also to the stereochemistry, and the number of  γ–gauche 

s able to interact with the hydroxyl group, as well as the 

ber of 1,3-diaxial interactions of the hydroxyl group with carbon atoms. When 1,3-

carbons bearing hydrogen atom

num

diaxial interactions are absent, the carbinyl carbon is less shielded in the equatorial epimer 

than in the axial one, because of 1,3-diaxial interactions (Mahato and Kundu, 1994). For 

example, a comparison of the 13C data of triterpenes (31) and (76) (see Table 2.4), 

containing equatorial and axial hydroxyl groups respectively at C-3, reveals that not only 

the carbinyl carbon of the equatorial isomer is less shielded (δ 79.0) than the axial one (δ 

76.4), but also the axial C-4 methyl and C-1 methylene groups in (31) are shifted by about 

6.5 ppm and 2.0 ppm, respectively, in comparison to that of triterpene (76) due to γ–

gauche interaction (Mahato and Kundu, 1994). 
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The location of the primary hydroxyl group at C-23, C-24, C-29 and C-30 in oleanenes 

may be determined from the chemical shifts of the hydroxymethylene carbons, as the 

equatorial hydroxymethylenes (C-23 and C-29) are less shielded than their axial 

counterparts (C-24 and C-30) (Mahato and Kundu, 1994). 

Acetylation of the hydroxyl group accentuates the α–effect and diminishes the β–effect, the 

latter being attributed to the γ–effect of the acetyl moiety; the γ–effects, however, remain 

more or less unaltered (see example, in triterpene (67) and (77)). That means that C-3 is 

deshielded, while C-2 and C-4, respectively, are shielded. More details on the substituent 

effects can be found in the review on 13C NMR spectra of pentacyclic triterpenoids 

(Mahato and Kundu, 1994). 

  

Finally, NMR spectroscopy effectively provides the most complete information and 

analysis of the spectra allows conclusion to be drawn about - the presence of substituents 

(hydroxy, carboxyl,…groups), - the number of these substituents, - the number of methyl 

groups, - the presence of double bond from which the terpenoid’s serie can be deduced (by 
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nd related compounds). 

comparison of the observed chemical shifts of the carbons of the double bond with data 

reported for model a
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(adapted from Mahato 

77 

Table 2.4: 13C NMR data of compounds (31), (67), (76) and (77) 

and Kundu, 1994). 

 

Atom No 31 76 67 
1 38.7 36.7 38.5 38.4 
2 27.3 27.6 27.4 23.6 
3 79.0 76.4 78.7 81.1 
4 38.8 39.9 38.7 37.8 
5 55.3 48.8 55.2 55.4 
6 18.5 18.0 18.3 18.3 
7 32.8 32.9 32.6 32.7 
8 38.8 36.7 39.3 39.9 
9 47.7 48.8 47.6 47.6 
10 37.6 36.7 37.0 37.0 

121.8 126.0 122.1 123.0 

27.0 
32.5 

1 31.0 30.6 42.8 
8 29.1 

22 37.2 36.2 32.3 36.0 
23 28.2 28.2 28.1 28.3 
24 15.5 22.1 15.6 16.8 
25 15.6 15.8 15.3 15.6 
26 16.9 18.0 16.8 16.8 
27 26.0 179.0 26.0 26.0 
28 28.4 28.2 181.0 28.2 
29 33.3 32.9 33.1 179.6 
30 23.7 23.6 23.6 19.4 

11 23.6 23.6 23.1 23.6 
12 
13 145.1 137.6 143.4 144.4 
14 41.8 56.0 41.6 41.7 
15 26.2 22.7 27.7 26.6 
16 27.0 26.2 23.4 
17 32.5 32.9 46.6 
18 47.4 47.0 41.3 46.1 
19 46.9 44.2 45.8 40.6 
20 31.
21 34.8 34.2 33.

 

 

For saponins, analysis of the spectra allows conclusions to be drawn on the six aspects:  

(1) positions of attachment of the glycosidic chains to the aglycone, 

(2) sequence, nature and number of monosaccharides,  
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kages,  

) presence of acylglycosides in the chains,  

(5) nature of the one, and

(6 es of d ester  (Hoste n and M , 1995

T sylat a hy  group ending  its n (alcoho nd 

c , cau hange emical s at the nd β-carbons and rarely, γ-

c ative  OH g  in wh e glyco n take e (Mah nd 

K 4). I nterest ugar ca resonce r large  region ct 

f f the enin m . The i cation  NMR ls belo to 

e acch sidue mostly mpariso h those  

(C al., 1 Cheml cowork so proposed a number of simple, general 

rules for saponin analysis:  

(a) the anomeric carbon atoms in pyranoses and in their derivatives resonate at lowest field 

0-110 ppm),  

yranoses give signal at 65-85 

pm; signals of alkoxylated carbon atoms are shifted 5-10 ppm to lower field when 

ompared with the corresponding hydroxy-substituted carbon atoms,  

(c) carbon atoms carrying primary hydroxy groups are found at 60-64 ppm,  

of the β-carbon 

(3) configuration and conformation of the interglycosidic lin

(4

aglyc   

) structur  attache  acids ttman arston f).  

he glyco ion of droxy , dep upon ature lic a

arboxylic) ses a c  in ch  shift  α- a

arbons rel  to the roup, ich th sylatio s plac ato a

undu, 199 t is of i  that s rbon s occu ly in a  distin

rom that o  sapog oiety dentifi of 13C  signa nging 

ach monos aride re relies  on co n wit  of model compounds

hemli et 987). i and ers al

(9

(b) carbon atoms bearing secondary hydroxyl groups in p

p

c

(d) acylation of oxygen leads to smaller (1.5-4 ppm) high frequency shifts 

atom (Chemli et al.,1987).  

Table 2.5 gives the 13C NMR data for methyl glycopyranosides. 
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Table 2.5: 13C NMR data for methyl glycopyranosides. 

 

Sugar C-1 C-2 C-3 C-4 C-5 C-6 

β-D-Glc 104.0 74.1 76.8 70.6 76.8 61.8 

α-D-Glc 100.0 72.2 74.1 70.6 72.5 61.6 

72.1 68.3 73.9 62.5 

β-L-Rha 102.4 71.8 74.1 73.4 73.4 17.9 

β-D-Gal 104.5 71.7 73.8 69.7 76.0 62.0 

α-D-Gal 100.1 69.2 70.5 70.2 71.6 62.2 

β-D-Man 102.3 71.7 74.5 68.4 77.6 62.6 

α-D-Man 102.2 71.4 

α-L-Rha 102.1 71.2 71.5 73.3 69.5 17.9 

β-L-Fuc 97.2 72.7 73.9 72.4 71.6 16.3 

α-L-Fuc 93.1 69.1 70.3 72.8 67.1 16.3 

 

Methylglycosides were measured in D2O (Agrawal, 1992). 

 

 

2.2.5.2.3 Distortionless enhancement by polarisation transfer (DEPT) 

This 13C NMR technique is used to enhance the intensities of carbon signals and determine 

the multiplicities of carbon atom with the aim to differentiate between CH3, CH2 and CH 

signal. 

2.2.5.2.4 2D-NMR Spectroscopy 

he above mentioned techniques are found to be inadequate for unambiguous assignment 

of the 13C resonances of compounds possessing complex structural features. A recourse to 

es of 

ifferent 

MR spectroscopy books and reviews. Some examples are: 

definitive 1H NMR assignments are achieved by 

T

2D-NMR techniques is therefore necessary. There are many variants for the techniqu

2D-NMR. Details on these techniques and their applications can be obtained in d

N

 

Homonuclear correlation spectroscopy. 1H -1H  COSY is one of the most widely used 2D-

NMR experiments for 1H assignment. It used to determine vicinal and geminal 1H-1H 

couplings in molecules.Once the 
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omonuclear COSY or its variant, these can be correlated via 1H-13C COSY spectrum to 

assign 13C signals (Mahato and Kundu, 1994). As such, 1H-1H  COSY not only provides 

ents but also helps in 13C NMR 

R data of these compounds 

e methyl doublet of trichadonic acid (78) was 

found by means of the proton detected direct C-H coupling (HMQC) study, to be highly 

shielded, which is typical for the 23-Me resonance of a 3-oxo-friedelane (Mahato and 

Kundu, 1994). Assuming this resonance assignable to C-23, the application of the HMBC 

technique led to the elucidation of the structure and 13C assignments of this triterpene (78) 

by identifying 2J and 3J connectivities associated with the methyl proton resonances 

(Mahato and Kundu, 1994). 

 

h

information for unambiguous 1H NMR assignm

assignments. 

 

Heteronuclear correlation spectroscopy (HETCOR). 13C-1H correlated spectroscopy is one 

of the most powerful 2D experiments (Mahato and Kundu, 1994). It provides 

connectivities between 13C and 1H signals and also gives the number of hydrogen atoms 

attached to each individual 13C atom. 

 

Heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond 

connectivity (HMBC) are reported as the experiments of choice at present. The HMQC 

experiment is a proton-detected heteronuclear chemical shift correlations technique. The 

HMBC experiment is an inverse-detected 2D-NMR technique used to detect connectivities 

mediated by two- or three-bonds (frequently) and provides important information about the 

molecular structure from the connectivities. As triterpenes have many methyl groups, the 

HMBC experiment is very useful for assigning 13C NM

(Mahato and Kundu, 1994). For example, th

3

14
16

28

3029

78

26

23
24

25
O

HOOC

 

  



 Literature review  
 

39

 
 

 for evaluation of their biological activities. The list of biological 

ctivities associated with triterpenoids and their saponins is very long (Mahato et al., 1992; 

Hostettmann and Marston, 1995g). 

 

2.2.6.1

 

The relation between chemical structure and anticancer, antitumour and anti-HIV activities 

 was studied (Mahato et al., 1992; Hostettmann and 

e tumour promotor 12-O-tetradecanoyl-phorbol 13-acetate (TPA) 

ahato et al., 1992). Several triterpenoids have also been reported to show anti-HIV 

(Hashimoto et al., 1997; Kashiwada et al., 1998). For example, moronic acid (79) showed 

n <0.22 µM (<0.1 µg/mL) by suppressing of the 

proliferation of HIV infected T cells (H9) (Ito et al., 2001). 

2.2.6 Physiological properties of pentacylic triterpenoids and their 
saponins 

 

The wide occurrence in nature and the structural diversity of triterpenoids have always 

attracted attention

a

 Antitumour and anticancer activity 

 

of some pentacyclic triterpenoids 

Marston, 1995e, Ito et al., 2001). Epimanidiol (3β,16α-dihydroxy-olean-12-ene) was found 

to be cytotoxic at 0.226 mmol/L (100 µg/mL) against the following human cancer cell 

lines: HEC-1-A, CAMA-1, ME-180, u-87MG, CALAU-1 and SK-OV-3. Several other 

pentacyclic triterpenoids were tested by Mahato and coworkers and they came out with the 

conclusion that the presence of a 16α-hydroxy group is important for the appearance of 

cytotoxicity (Mahato et al., 1992). Oleanolic acid and their derivatives were also reported 

to be active against th

(M

significa t anti-HIV activity, EC50

 

COOH

O
 

79 
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2.2.6.2 Anti-inflammatory activity 

Triterpenoids are known to exhibit good anti-inflammatory activity (Safayhi and Salier, 

1997). In fact, glycyrrhetinic acid (3β-hydroxy-11-oxo-olean-12-en-30-oic acid) inhibited 

carragenin-induced edema in the rat paw and inhibited leukocyte migration in the pleural 

space induced by dextran injection (Mahato et al., 1992). Mahato and coworkers also 

demonstrated that dihemiphthalate derivatives of  1 -olean-12-ene-3β,30-diol, 18β-olean-

(11),12-diene-3β,30-diol and olean-11,13(18)-diene-3β,30-diol showed a strong 

inhibition of ear edema (Mahato et al., 1992). The saponins from the roots and bark of 

, crossoptine A (80) and crossoptine B (81) have anti-

8β

9

Crossopteryx febrifuga (Rubiaceae)

inflammatory, mucolitic, antioedemic activities (Gariboldi et al., 1990; Hostettmann and 

Marston, 1995g). 

 

HOH2C OH
R1O

HO
COOR2

OH

 
 

80  R1 = Glc                      R2 = α-L-Rhm(1→3)Xyl(1→4)α-L-Rhm(1→2)Ara- 

           81  R1 = Api(1→3)Glc-    R2 = α-L-Rhm(1→3)Xyl(1→4)α-L-Rhm(1→2)Ara- 

 

2.2.6.3 Action on metabolism 

Das and Mahato reported that ursolic acid and its derivatives decreased the blood 

cholesterol, β-lipoprotein and phospholipid concentrations in rabits (Das and Mahato, 

1983).  The decrease in activation of cytooprotective PG synthesis whitin the gastric 

mucosa might contribute to the ulcer healing effect of carbenoxolone (11-oxo-oloean-12-

en-30-oic acid 3β-succinate) (Das and Mahato, 1983). Glycyrrhetinic acid has hypolipemic 

and antiatherosclerotic activity greater than the established antiatherosclerotic polysponin 

(Mahato et al., 1992). 
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. activity 

The antifungal activity of some pentacyclic triterpenoids was tested in vitro using 

2.2 6.4 Antimicrobial 

Saccharomyces carlsbergenesis as test organism and it was found that the pentacyclic 

triterpene glycosides of oleanolic acid and hederagenin (82), with free carboxylic group at 

C-28 and C-27, possess the highest fungicidal activity (Das and Mahato, 1983).   

2.2.6.5 Effect on biosynthesis 

It has been found that hederagenin(82) had a marked inhibitory effect on the rate of protein 

biosynthesis in rat marrow (Das and Mahato, 1983).   

 

COOH

HOH2C
HO

82  
 

2.2.6.6 Molluscicidal activity 

Two saponins  (83) and (84) showed molluscicidal activity against schistosomiasis-

transmitting snails such as Biomphalaria glabrata (Borel et al.,1987). 

 

COOH

OOR2O
R1O
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83 R1 = Rhm   R2 = H 

    84 R1
 = H        R2 = Glc

  





 Aim of study  
 

43

 
 

The m is the isolation and structure determination of secondary 

metab  medicinal plants, to bring new elements into discussion 

lative to the relationship between the therapeutic properties of a plant used in traditional 

3 Aim of study 
 

ain aim of this study 

olites from Cameroonian

re

medicine and the natural products that plant may contain. For this purpose, crude extracts 

from plant materials will be separated using different chromatographic techniques such as 

thin layer chromatography (TLC), column chromatography (CC) and high performance 

liquid chromatography (HPLC). The structure of pure compounds obtained will be 

elucidated using different spectroscopic methods such as one-dimensional nuclear 

magnetic technique (1H, 13C NMR), and two-dimensional NMR techniques such as HMBC 

and HMQC. Each pure compound will be tested for biological activity. 
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her, chloroform and ethyl acetate. Chloroform and 

from the petrol ether extract using different chromatographique techniques. 

4 Results and discussion 
4.1 Isolation and Characterisation of compounds from 

Maesopsis eminii 
 

Air-dried stem bark of Maesopsis eminii was extracted with methanol at room temperature. 

The extract was concentrated to dryness to give a sticky residue. This residue was further 

re-extracted successively in petrol et

ethyl acetate extracts were combined on the basis of their similar composition (TLC), and 

the mixture was submitted to a column chromatography over silica gel followed by 

purification using different chromatographique techniques. A new triterpene, 1α,3β-

dihydroxybauer-7-en-28-oic acid (85) in addition to known compounds 1-(24-

ferulyloxytetracosnoyl)-glycerol (93), islandicin (9), β-sitosterol (24), sitosteryl-3 - O -β-

D-glucopyranoside (25) and a mixture of (+)-catechin and (-)-epicatechin (97+98) were 

isolated from this fraction. The known triterpene 3β-hydroxy-bauer-7-en-28-oic acid (86) 

together with obtusifolin (87), chrysophanol (89), 5-hydroxydigitolutein (88) 

helminthosporin (90), stigmasterol (91), sitosteryl-3-O-β-D-galactopyranoside (92) were 

isolated 

Compound 93 was acetylated to its acetate derivative, 94. Their structures have been 

elucidated by spectroscopic methods. The structure of the new triterpene (85) was 

confirmed by X-ray crystallographic analysis. This new triterpene displays moderate 

antibacterial activity against Gram-positive bacteria such as bacillus subtilis ATCC while 

88 displays good anti-inflammatory activity (IC50 9.5 µM) by inhibiting highly the 3α-

hydroxysteroid dehydrogenase. 

 

4.1.1 Extraction 
 

 Plant material was collected in the Centre Province of Cameroon, cut into pieces, air-dried 

and pulverized. The resulting powder has been extracted and purified chromatographically 

following the scheme below: 
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Plant material
chopping

drying

grinding

Powder

Residue Methanolic 
extract

Hexane 
extract

EtOAc

Extraction in MeOH

Residue

Extraction in Chloroform

Chloroform 
Extract

Residue

Purification

3β-Hydroxybauer-7-
en-28-oic acid (86)

Extract

Extraction in EtOAc

Obtusifo-
lin (87)

Chryso- 
phanol (89)

Sitosteryl-3-O-β-D-galac-
topyranoside (92)

Residue

Extraction in Hexane

1-(24-Ferulyloxytetra- 
cosanoyl)-glycerol (93)

Purification

Islandicin 
(9)

5-Hydroxydi- Helmintho-
gitolutein (88) sporin (90)

Stigmaste-
rol (91)

1α,3β-Dihydroxybauer-
7-en-28-oic acid (85)

Catechin 
(97+98)

Sitosteryl-3-O-β-D-glu-
copyranoside (25)

β-Sitosterol 
(24)

 
 

 

4.1.2 Identification of compounds 
4.1.2.1 Identification of ME1 

Compound ME1 (85) was obtained as colorless crystals, mp 302-304 °C and reacted 

positively to the Liebermann-Burchard test for terpenoids. Its molecular formula C30H48O4, 
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as established by ESI-FT-ICR mass spectrometry (m/z 471.34805; calcd. for C30H47O4: 

13

the peak at m/z 227 corresponding to the loss of two water molecules from the fragment at 

m/z 263. The occurrence of these peaks can be explained by the fragmentation displayed in 

Figure 4.3. 

The IR spectrum showed a strong and broad band at 

471.34798), corresponded to seven double bond equivalents.  

The broad band decoupled C NMR spectrum of compound ME1 (85) showed 30 carbon 

signals which were assigned by DEPT and HMQC techniques as seven methyl groups, 

eight methylene groups, eight methine groups and seven quaternary carbons, among them a 

carbonyl group (δ 181.5), two oxygenated sp3 carbons and two sp2 carbons (see Table 4.1). 

The 13C resonances at δ 144.9 and δ 115.3 were found to be characteristic of a ∆7-bauerane 

skeleton (Mahato and Kundu, 1994).  

The 1H NMR spectrum of ME1 (85) also contained resonances corresponding to seven 

methyl groups in the region δ 0.66 to δ 1.02, two of which appeared as doublets at δ 0.82 (J 

= 4.5 Hz) and δ 1.00 (J = 6.0 Hz). These were assigned to Me-29 and Me-30 respectively. 

The acid proton and the ethylenic proton (H-7), were observed as singlets at δ 12.07 

(broad) and δ 5.35 respectively. The 1H NMR spectrum also contained signals of two 

exchangable hydroxy protons at δ 4.35 and δ 4.19. The two hydroxy groups are attached to 

C-1 (δ 70.4) and C-3 (δ 70.8), respectively. All 1H and 13C signals were uniquely assigned 

by HH-COSY, HMQC, and HMBC experiments. Figure 4.1 shows the unique HMBC 

correlations of compound ME1 that provide proof for the connectivity and substitution 

pattern.  

The CI mass spectrum of ME1 (85) exhibited peaks at m/z 490 [M+NH4
+], 473 [MH+], 455 

[M-OH]+, the base peak at m/z 437 [MH+-2H2O] and 427 [M-COOH]+. The signal at m/z 

263 is an indication for an oxygenated bauerene skeleton of which the base peak generally 

appears at m/z 231 (Budzikiewicz et al., 1963). This suggestion was further confirmed by 

ν~  3423 cm-1 (OH). The medium peak 

at ν~  1380 cm-1 is indicative for two geminal methyl groups. In addition, a very strong and 

sharp band was observed at ν~  1693 cm-1 (carboxyl). The presence of the trisubstituted 

ethylene function (C=CH-) in ME1 (85) is supported by the multiple bands observed 

between  ν~  680 cm-1 and 1000 cm-1. The structure obtained by assignment of the 

spectroscopic data was confirmed by the X-ray diffraction analysis of compound ME1 

(85). (see Figure 4.2 and Annex: Tables 7.1, 7.2, 7.3, 7.4, 7.5) . The relative configuration 

f the asymmetric carbon atoms was deduced from the X-ray data (Fokou et al., 2004). In o
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particular, in ring A of ME1, the hydroxy group on C-1 is axial and oriented below the 

lane of the molecule (1α-hydroxy) whereas the one at C-3 is equatorial, oriented above 

rpene, named 1α,3β-

dihydroxybauer-7-en-28-oic acid (85). 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 4.1: Selected HMBC correlations of compound 85. 
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Figure 4.2: Molecular structure (relative configuration) of compound 85 according to X-

ray analysis
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.1.2.2 Identification of ME2 

und ME2  was isolated a colorless powder and the molecular formula 

48O3 blis IMS 6 [M]+). It gave positive response to the 

berma cha terp e 1H NMR spectrum of ME2 (86) was very 

ilar to E ept bited the signal for only one hydroxy group 

δ 4.32  N ned s of 30 carbon atoms which were assigned 

er exam  of t nd H ctra as seven methyl groups, nine methylene 

ups, s hin nd s including the carbonyl 

up at δ The  14 6.4 lie in the same region as the carbons of 

 doub  co 4.9 and δ 115.3) indicating that compound 

2 (see T le 4.1 f MR d the same carbon skeleton as compound 85. 

 sug as rte agments at m/z 247 (63) and m/z 229 (66) 

ent in th ass sp hich w ained by the same fragmentation mechanism 

or co ME dditi ments were observed at m/z 441 [M-CH3]+, 

 [M- d 2O-  most naturally occurring polyoxygenated 

rpeno in  fun sition 3 (Gunasekera and Sutanbawa, 1977; 

u and R togi, 19 rwal ogi, 1974), the single hydroxy group was 

ativel  at t n. T pported by the NMR data (Table 4.1). From 

melting point, 308-310 °C, and its spectroscopic data compared to literature data 

hato u, rav 1991), to ME2 was assigned the structure of 

ydro 7-  (86 elts at 305-308 °C (Meksuriyen et al., 1986). 

4

Compo
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(86) s a 
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at . Th  e 13C M iR conta  r eesonanc

aft ination he DEPT a MQC spe

gro even met e groups a seven quaternary carbon atom

gro  181.4.  signals at δ 4.2 and δ 11

the le bond in mpound ME1 (85) (δ 14

ME ab or 13C N ata) has 

This gestion w  also suppo d by the fr

pres e m ectrum w ere expl

as f mpound 

H

1 (85). A onal frag

438 2O]+ an 423 [M-H CH3]+. As

trite ids conta an oxygen ction at po

Bas as 67, Aga and Rast

tent y dplace hat positio his was su

its 

(Ma and Kund 1994; Chak arty et al., 
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Figure 4.3: Fragmentation mechanism of ME1 (85) and ME2 (86) 

  



 Results and discussion  
 

51

 
 

85 86 

Table 4.1: NMR Data of ME1 (85) and ME2 (86), recorded in DMSO-D6
 

 

 
Atom 
No 

1H NMR 13C NMR 13C NMR 

1 3.50; s 70.4; CH 36.3; CH2

2 1.62; 
1.67; m 35.0; CH2 27.4; CH2

3 3.59; d 70.8; CH 76.8; CH 
4  38.6; C 38.4; C 
5 1.57; s 43.2; CH 

 5.35; s 115.3; CH 116.4; CH 
8  144.9; C 144.2; C 

47.2; CH 
34.7; C 

11 1.50; m 27.8; CH2 27.6; CH2

14.8; CH3 14.9; CH3

23.3; CH3 23.2; CH3

49.9; CH 

6 1.92; m 
2.08; m 23.8; CH2 23.7; CH2

7

9 1.60; m 43.2; CH 
10  38.5; C 

12 1.52; m 32.1; CH2 32.0; CH2
13  36.6; C 36.6; C 
14  40.6; C 40.5; C 

15 1.43; m 
1.73; m 15.0; CH2 15.8; CH2

16 1.75; m 32.1; CH1.30; m 
2 32.0; CH2

17  43.8; C 43.7; C 
18 2.31; s 47.6; CH 47.5; CH 
19 1.05 31.6; CH 31.6; CH 
20 1.10 36.2; CH 36.1; CH 

21 1.07; m 
1.54; m 28.8; CH2 28.7; CH2

22 1.60; m 
2.15; m 25.5; CH2 25.5; CH2

23 0.75; s 
24 0.87; s 27.8; CH3 27.6; CH3
25 0.66; s 13.1; CH3 12.6; CH3
26 1.02; s 23.1; CH3 23.1; CH3
27 0.98; s 21.2; CH3 21.3; CH3
28  181.5; C 181.4; C 
29 0.82; d 21.1; CH3 21.1; CH3
30 1.00; d 
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yellow powder, mp 239-241 °C. The ESI mass 

 (positive mode) showed a peak at m/z 590.8 [2M+Na]+ and in negative mode a 

peak at m/z 282.9 [M-H]-. Its molecular formula C16H12O5, as established by ESI-FT-ICR 

mass spectrometry (m/z 285.07539; calcd. for C16H13O5: 285.07575), corresponded to 11 

double bond equivalents. 

In the 1H NMR spectrum (500 MHz), a singlet at δ 12.83 for a chelated hydroxyl group (8-

); 7.78 (1H, d, J = 6.9 Hz, H-5); 7.63 

) were observed. Another singlet at δ 

.76 was exchangeable in D2O and was assigned to 2-OH. Except the singlet at δ 7.98, the 

e system according to their coupling constants. 

r liphatic region of the proton  spectrum at δ 4.00 and 

δ 188.67 (C-9) and δ 181.72 (C-10). The signal of the carbonyl group at 

rnary carbon atom (δ 123.08, C-9a), the aromatic methyl group at δ 16.43 (3-Me) 

rbon atoms at δ 132.24 (C-10a) and δ 162.44 (C-8) respectively. These results 

4.1.2.3 Identification of ME3 

This compound has been obtained as a 

spectrum

OH) and four signals for aromatic protons at δ 7.98 (s

(1H, t, J = 7.8 Hz, H-6); 7.27 (1H, d, J = 7.8 Hz, H-7

6

three oth r aromatic protons formed an ABC 

Two mo e signals appeared in the a

2.40 and were attributed to a methoxy and an aromatic methyl groups respectively. 

The 13C NMR spectrum contained resonances of 16 carbon atoms which were assigned 

after examination of the DEPT and HMQC spectra as one methyl group, one methoxy 

group (δ 62.29), four methine groups and 10 quaternary carbon atoms including two 

carbonyl groups at 

δ 188.7 confirmed the presence of a chelated hydroxy group, and thus suggested the 

anthraquinone skeleton. The complete 13C NMR data are reported on Table 4.2. The proton 

and carbon assignment is based on the DEPT and HMQC spectra. The different 

interactions observed in the the HMBC spectrum supported the assignment. In fact, the 1H 

NMR singlet at δ 7.98 (H-4) gave cross peaks with the carbonyl group at δ 181.72 (C-10), 

one quate

and the aromatic carbon with O-function at δ 153.90 (C-2). One of the ABC system 

protons, which appeared at δ 7.78 (H-5) gave cross peaks with the carbonyl group at δ 

181.72 (C-10), one quaternary carbon atom (δ 116.82, C-8a) and one tertiary CH aromatic 

carbon at δ 124.22 (C-7). The proton triplet at δ 7.63 (H-6) gave cross peaks with two 

quaternary ca

proved that the chelated hydroxyl group was located at C-8. Hence the aromatic protons 

which showed a doublet signal at δ 7.63 and a triplet signal at δ 7.27 were attributed to H-7 

and H-6, respectively. The above results were also supported by HH-COSY spectrum. 
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Finally ME3 was characterised as 2,8-dihydroxy-1-methoxy-3-methylanthraquinone (87), 

known as obtusifolin which melts at 241-243 °C (Cameron et al.,1989). 
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87 R1 = H      R2 = OH 

.1.2.4 Identification of ME4 

t with a yellow colour, mp 171-174 °C. Its CI mass 

spectrum show peaks at m/z 255 [MH]+ and 254 [M]+. Its molecular formula, C H O ,

an ABC system at δ 7.80 (1H, dd, J = 7.5, 1.0 Hz, H-5), δ 7.66 (1H, dd, 

anol 

a

                                                       88 R1 = OH   R2 = H 

 

4

ME4 presents a cotton wool aspec

15 10 4  

was established by HRMS (CI) (m/z  255.06549; calcd. for C15H11O4 : 255.06573) and 

corresponded to 11 double bonds equivalents. 

The 500 MHz H NMR spectrum showed two singlets for the chelated hydroxyl groups at 

δ 12.10 and 11.99; 

1

J = 8.0, 7.5 Hz, H-6) and δ 7.28 (1H, dd, J = 8.00, 1.0 Hz, H-7), which suggest a 1,2,3-

trisubstituted aromatic ring; one aromatic methyl proton at δ 2.46 and two further aromatic 

protons at δ 7.08 (1H, d, J = 1.2 Hz) and 7.63 (1H, d, J = 1.2 Hz), suggesting a a 1,3,5,6-

tetrasubstituted aromatic ring. All these informations also suggest an anthraquinone 

skeleton. 

Examination of the complete 13C NMR and DEPT spectra reveals the presence of 15 

carbon atoms which were sorted as one methyl group at δ 22.3 , five methine groups and 

nine quaternary carbon atoms including two carbonyl groups (see Table 4.2 for complete 
13C NMR data). These data were found to be similar to those reported for chrysoph

(Knut at al., 1992). 

The IR spectrum showed peaks at ν~  3429, 2921, 2851, 1672, 1627, 1457, 1384, 1272, 

1210, 1055, 753 and 727 cm-1. The 1672 and 1627 cm-1 bands can be assigned to an 

unchelated carbonyl and a chelated carbonyl group in anthraquinone (Joshi et al., 1962). 
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raquinone (89), known as Chrysophanol (Cumming and Thomson, 1970; Dagne 

From all these informations, ME4 was therefore characterised as 1,8-dihydroxy-3-

methylanth

and Steglich, 1984; Knut at al., 1992).  
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                                                                89 R = H       

E5 crystallises as orange needles, mp 235 – 237 °C. Its CI mass spectrum presented 

eaks at m/z 285 [MH]+, 284 . Additiona aks appear  271, 266, 255, 238. Its 

formu 12O5, was established by ESI-FT-IC spectr

5.07554 [MH or C 5.0 +), and corresponded to 11 double 

nd equivalen

e 1H NMR s esen nal oma yl and hyl 

ups respect 6 si d to a chelated hydroxyl group 

eared at δ 12.93. Signals of three aroma givi BC sys .34 

, dd, J = 7. 6) , t, an  (1H, d 1.3 

ion.   

 13C NMR  ME aine es o on atom ere 

igned after n of  an ctra as one methyl group, one 

hoxy group fou roup uate rbon at ing 

 carbonyl g 81.7  δ 1 0) (s  4.2 fo 13C 

 data). 

BC NM eriment was employed to ine the position of the chelated 

ydroxyl group. The proton singlet at δ 7.86 was assigned to C-4 based on the HMBC 

a (three bonds), H-4 to C-9 (four 

bonds). The methyl group was located at C-3 according to the HMBC correlations of its 

                                                                90 R = OH   

 

4.1.2.5 Identification of ME5 

M

p [M]+ l pe at m/z

molecular la C16H R mass ometry (m/z 

28 ] ; calcd. f+
16H13O5: 28 7575 [MH]

bo ts.  

Th pectrum pr ted two sig s for one ar tic meth  one O-met

gro ively at δ 2.3 and 3.93; a gnal attribute

app tic protons ng an A tem at δ 7

(1H 5, 1.3 Hz, H- ; δ 7.79 (1H  J = 7.9 Hz) d δ 7.68 d, J = 7.5, 

Hz, H-8) and a one proton singlet at δ 7.86 (1H, s, H-4) were observed in the aromatic 

reg

The spectrum of 5 also cont d resonanc f 16 carb s which w

ass examinatio  the DEPT d HMQC spe

met  (δ 61.71), r methine g s and 10 q rnary ca oms includ

two roups at δ 1 7 (C-9) and 89.50 (C-1 ee Table r complete 

NMR

A HM R exp determ

h

correlations of H-4 to C-10 (three bonds), H-4 to C-9
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protons to C-4 (three bonds), C-2 (three bonds) and C-4a (four bonds). The HMBC 

 OH proton (three bonds) indicated the location of this 

O-function at δ 163.20 (C-5). The two 

correlation from C-10 to the chelated

chelated OH group at C-5. One of the ABC system protons, which appeared at δ 7.34 (H-6) 

gave cross peaks with the carbonyl group at δ 189.50 (C-10), one quaternary carbon atom 

(δ 133.72, C-10a) and one aromatic carbon with 

remaining aromatic protons were terefore located at C-7 and C-8. 

The IR spectrum showed peaks at ν~  3333 (OH), 1633, 1560, 1475, 1315, 1272, 1092, 

1038 and 749 cm-1. 

All these spectroscopic data together with the meleting point (Lit. 234 – 236 °C; Imre, 

1973) have been found to be close to those of 5-hydroxydigitolutein (88) isolated and 

and decoupled 13C NMR spectrum of ME6 showed 15 carbon signals which 

oups (δ 190.58 and δ 

ating for two protons demonstrated that the two protons are in the same 

chemical environment. These two protons thus assigned to C-6 and C-7. 

The methyl group was located at C-3 accord  to the HMBC correlations of its protons to 

C-4 (three bonds) and C-2 (three bonds) and the HMBC correlations of proton H-4 to C-2 

described for the first time by Imre in 1973. Therefore ME5 was 5-hydroxydigitolutein. 

 

4.1.2.6 Identification of ME6 

ME6 crystallised as a red powder, mp 196-198 °C. It CI mass spectrum presented a peak at 

m/z 271 [MH]+, 255 [MH-O]+. Its molecular formula, C15H10O5, as established by HRMS 

(CI) (m/z 271.06008 [MH]+; calcd. for C15H11O5 : 271.06065) corresponded to 11 double 

bonds equivalent.  

The 500 MHz 1H NMR spectrum presented three singlets at δ 12.97, 12.28 and 12.10 

attributed to the chelated hydroxyl groups; one multiplet of two protons at δ 7.24 (2H, H-6, 

H-7) and two other aromatic protons at δ 7.66 and 7.08. A signal of an aromatic methyl 

group was observed at δ 2.46. The presence of an anthraquinone skeleton was strongly 

supported by the three chelated hydroxyl groups. 

The broad b

were assigned by DEPT and HMQC techniques as four methine groups (δ 129.6, 129.5, 

124.4 and 121.0), 10 quaternary carbons, among them two carbonyl gr

186.57) and one methyl group (δ 22.27) (see Table 4.2 for complete 13C NMR data).  

The signals at δ 129.6 and 129.5 together with the one observed in the 1H NMR spectrum 

at δ 7.24 integr

ing

and the carbon of the methyl group. 
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The IR spectrum showed peaks at ν~  3433 (OH), 1602, 1457, 1296, 1260, 1231, 1181 and 

805 cm-1. 

From all these informations, ME6 was identified as 1,5,8-trihydroxy-3-

methylanthraquinone, known as Helminthosporin (90) (Barba et al., 1992).  
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          87 R1 = H       R2 = OH                                                89 R = H 

          88 R1 = OH    R2 = H                                                   90 R = OH 

 

Table 4.2: 13C-NMR data of compounds (87), (88), (89), (89a) and (90) 

 

 87 88 89 89a 90 
Atom no. 13C-NMR 

(CDCl3) 

13C-NMR 
(CDCl3) 

13C-NMR 
(CDCl3) 

13C-NMR 
(DMSO) 

13C-NMR 
(CDCl3) 

1 146.25; C 148.23; C 162.40; C 161.67 162.80; C 
2 153.05; C 156.75; C 124.36; CH 124.16 124.40; CH 
3 133.05; C 133.63; C 149.30; C 149.26 149.10; C 

  

4 126.98; CH 126.68; CH 121.36; CH 120.64 120.80; CH 
4a 126.46; C 126.00; C 133.26; C 133.10 133.26; C 
5 119.03; CH 163.20; C 119.90; CH 119.41 157.56; C 
6 136.35; CH 124.41; CH 136.95; CH 137.41 129.50; CH 
7 124.22; CH 137.18; CH 124.56; CH 124.49 129.60; CH 
8 162.44; C 118.88; CH 162.70; C 161.41 133.26; C 
8a 116.82; C 117.52; C 115.86; C 115.94 112.48; C 
9 188.67; C 181.77; C 192.50; C 191.72 190.58; C 
9a 123.08; C 124.47; C 113.70; C 113.85 113.93; C 
10 181.72; C 189.50; C 181.97; C 181.57 186.57; C 
10a 132.24; C 133.72; C 133.60; C 133.40 136.95; C 
Me 16.43 16.81 22.27 21.71 22.27 
MeO 62.29 61.71  
 
a 13C-NMR (DMSO) from literature (Knut et al., 1992) 
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7:3 to give a colorless powder, mp 138-140 

29 48 hed by HRMS (EI) (m/z found: 412.37047 [M]+; calcd.: 

412.37052 [M+]), and corresponded to six double bond equivalents. The steroid skeleton 

was also confirmed by the peaks at m/z 273, 271, 255 which were explained by the same 

fragmentation mechanism as for β-sitosterol displayed in figure 4.6.  

The 500 MHz 1H NMR spectrum of this compound showed the presence of three olefinic 

protons at δ 5.33 (1H, s br, H-6), 5.12 (1H, dd, J = 15.1, 8.8 Hz, H-22), 5.10 (1H, dd, J = 

15.1, 8.8 Hz, H-23) respectively. The coupling constants of latter two signals correspond to 

E-configuration. The presence of a steroid skeleton was further confirmed by the 13C NMR 

signals at δ 129.2 and 138.3, characteristic of ∆22–sterol (Rubinstein et al., 1976), and δ 

140.7 and 121.7 characteristic of ∆5–sterol skeleton (Tandon et al., 1990). In addition, the 

H NMR spectrum showed a multiplet at δ 3.55 corresponding to the proton H-3 and 

signals of six methyl groups in the region δ 0.53 to δ 1.02. 
13 bon atoms which were assigned by DEPT 

δ 11.80 to δ 20.00, nine 

ethylene groups, 11 methine groups of which one (δ 71.8) was oxygenated and three 

, 42.3 and 36.5 (see Table 4.4 for complete 13C NMR 

data). The oxygenated carbon atom was deduced to be C-3 based on biosynthetic 

4.1.2.7 Identification of ME7 

ME7 crystallised from a mixture of PE-EtOAc 

°C. This powder was easily soluble in chloroform and gave a positive response to the 

Liebermann-Burchard test for steroid. 

The CI mass spectrum showed peaks at m/z 413 [MH]+ and 395 [M-OH]+. Its molecular 

formula C H O, was establis

1

The C NMR contained resonances of 29 car

and HMQC techniques as six methyl groups in the region 

m

quaternary carbon atoms at δ 140.7

arguments. 

The IR spectrum showed a broad band at ν~  3416 cm-1 (OH). Additional peaks were 

observed at ν~  2865, 1463, 1380, 1055, 1022, 958, 838 and 800 cm-1. 

From all those physical and spectroscopic data together with the literature, ME7 was 

identified to stigmasterol (91) already described by Ikan and which melts at 139-140 °C 

(Ikan, 1991b).  
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4.1.2.8 Identification of ME8 

ME8 crystallised from a mixture of CH2Cl2-MeOH 20:1 to give a colorless powder, mp 

261-263°C. It gave a positive response to the Liebermann-Burchard test for steroids and 

also a blue-violet colour when heated with 10% H2SO4 in MeOH after TLC. The ESI mass 

spectrum showed a quasimolecular ion at m/z 599 [M+Na]+, which suggested a molecular 

mass of 576.  

The EI mass spectrum displayed fragments at m/z 414 [Maglycone]+ and m/z 396 due to the 

, Me-29)]. These were found to be typical signals for 

ddition to the comm

4

t δ 2.88, 3.00, 3.1, 3.30, 3.40 and 3.62 appeared as multiplet. The 

2 droxy groups of 

the sugar moiety.  

The 13C NMR spectrum showed the presence of 35 carbon atoms in the molecule. The 

number of hydrogen substituents of each carbon atom was determined by DEPT and 

HMQC experiments.  Examination of the 13C NMR and DEPT NMR spectra revealed the 

loss of a hexose, presumably glucose from the molecular ion peak (see Figure 4.4). This 

lead to the molecular formula C H O .  

The 500 MHz 
35 60 6

1H NMR spectrum of this compound showed the following signals: an 

olefinic proton (H-6) at δ 5.31 ; six methyl groups in the region δ 0.64 to δ 0.95 [δ 0.64 

(3H, s, Me-18); 0.95 (3H, s, Me-19); 0.89 (3H, d, J = 6.5, Me-21); 0.80 (6H, d, J = 6.9, 

Me-26, Me-27); 0.81 (3H, t, J = 6.5

sitosterol (Iribarren and Pomicio, 1984). In a on signals of a sitosterol 

asignal at δ .20 (d, J = 7.8 Hz) was observed which was assigned to an anomeric proton 

(H-1’). The coupling constant 3J was characteristic for an axial-axial coupling, thus 

showing that the sugar moiety was β-linked to the aglycone (Alam et al., 1996). Further 

signals resonating a

signals at δ 4.86 (1H, d, J = 4.7 Hz), 4.83 (2H, t, J = 5.7 Hz) and 4.40 (1H, J = 7.5 Hz) 

were attributed to four protons exchangeable with D O due to four free hy
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presence of six methyl groups, 12 methylene, 14 methine, and three quaternary carbon 

atoms (see Table 4.4 for complete 13C NMR data). Particular signals at δ 100.7 (C-1’), 76.7 

(C-3’ and C-5’), 73.4 (C-2’), 70.0 (C-4’) and 61.0 (C-6’) indicated the presence of a single 

monosaccharide moiety. These signals were in agreement with those obtained from the 

e β-D-Galactose. All 1H and 13C signals 

 HMBC experiments. The HH-COSY 

ectrum showed a strong coupling interaction between the proton H-3 of the methine 

group and proton H-4 of the methylene group. 

cid hydrolysis of ME as identified as β- 

tosterol (24) by spectral data as well as by direct comparison with the authentic sample 

The IR spectrum showed a broad band at 

literature (Agrawal, 1992; Jahan et al., 1995) for th

were uniquely assigned by HH-COSY, HMQC and

sp

A 8 yielded D-galactose and the aglycone which w

si

(TLC, Rf 0.42 in CHCl3/MeOH 97:3). 

ν~  3400 cm-1 (OH). Additional peaks were 

observed at ν~  3351, 3000, 2853, 1645, 1375, 1350, 1168, 1070, 1030 cm-1. 

From all these informations together with the literature, ME8 was identified as sitosterol 3-

O-β-D-galactopyranoside (92). 
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Figure 4.4: Fragmentation mechanism of ∆5–sterol glucosides 

 

4.1.2.9 Identification of ME9 

ME9 crystallised as a brown powder in chloroform, mp 74-76 °C. Its 1H NMR spectrum 

showed that it was composed of three moieties. One was trans-4-hydroxy-3-

methoxycinnamate, with aromatic protons at δ 6.90 (d, J = 8.2 Hz), δ 7.03 (d, J = 1.9 Hz) 

and δ 7.06 (dd, J = 8.2, 1.9 Hz); a methoxy group at δ 3.91 and a trans-configured double 

bond: δ 6.29 (d, J = 15.9 Hz) and δ 7.60 (d, J = 15.9 Hz). The second moiety showed two 

distinctive methylene groups connected to an oxycarbonyl group (δ 4.18, t, J = 6.8 Hz) and 

a carbonyloxy group (δ 2.33, t, J = 7.5 Hz ); two further methylene units connected to these 

methylene groups mentioned above (δ 1.7, t, J = 6.8 Hz; δ 1.6, m, J = 7.2 Hz); one more 

methylene group (δ 1.37, m) together with a serie of methylene groups as a long aliphatic 

chain (36H, δ 1.22-1.27, br s). The third moiety was identified as a glycerol δ 3.91 (1H, 

m), δ 4.15 (2H, d, J = 6.0 Hz), and δ 3.58 (dd, J = 11.3, 6.0 Hz) and 3.69 (1H, dd, J = 11.5, 
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1, since only one methylene 

rou of this glycerol was shifted downfield δ 4.15 (2H). This suggestion was confirmed 

l   

acety s; one for the phenol (δ 2.33) and two for the aliphatic alcohols ( δ 

2.07

The ESI mass spectrum (positive mode) of  gave a pseudomolecular ion peak at 

657.5 [M+Na]+. Particular peaks were m/z 634.4 [M] , 

corr onding to the olecular form O8, having seven double bond equivalents; 

and  559. + dditio ere al  541.4, 473.4, 177. 

The CI mass spectrum m/z 298, and other signals at 

C3H 3]+, 542, 498, 296, 242 and 177. The fragment

4.5 g e an explanat n on the occur e important peaks. The ESI m m 

of the acetate derivative obtained after acety n of ME9 showed the molecular io  

at 761.3 [MH]+ leading to the molecular form 43H68O11, DBE = 10, confirm

phenol and the two aliphatic alcohols were acetylated.   

The f ME9 showed a series of carbon signals which were sorted by 

DEPT and HMQC techniques as five quatern carbonyl groups at 

δ 174.39 and δ 167.50, six methine gr f which one 2) was oxyge one 

m  group (δ , seven methy roups of which three were oxygenated, and 

additional methylene groups appearing as a long and broad signal (δ 29.69 – 29.14) 

attributed to a long aliphatic chain. 

The IR spectrum  a broad band t

3.9 Hz). The glycerol moiety was monosubstituted on position 

g p 

after acety ation of ME9. The 1H NMR spectrum of its acetate derivative showed three 

l group δ 2.06 and 

). 

ME9 m/z 
 +observed on this ESI-MS at 

esp  m ula C37H62

m/z 4 [M-C3H7O2] . A nal peaks w so observed at m/z

 showed the base peak at m/z 543 [M-

7O ation mechanism displayed in figure 

av io rence of th ass spectru

latio n peak

ula C ing that the 

13C NMR spectrum o

ary carbons including two 

oups o  (δ 70.2 nated, 

ethoxy  55.92) lene g

 showed  a  ν~  3422 cm-1 Addit nal peaks were 

bserved at

 (OH). io

 ν~o  2917, 2849, 1737, 1712, 1632, 1596, 1518, 1469, 1273, 1174 and 719 cm-1.  

he 1H NMR data of ME9 showed similarities with those obtained from the literature for a 

mixture of C22-28 ω-hydroxy acid esters of cis and trans-ferulic acid (Kawanishi and 

From all these findings, together with the literature, we assigned to ME9 the structure 

T

Hashimoto, 1987). 

bellow, which correspond to 1-(24-ferulyloxytetracosanoyl)-glycerol (93). 

  



 Results and discussion  
 
62 

 
 

3
1

2

4
5

6

O

O
O

O

OR
ORH3CO

23

1'
3' 2'''

24''

RO

2' 1''' 3'''

 
                                                                  93 R = H 

                                                                  94 R = Ac 

 

O

O
O

O

OH
OH

HO

H3CO
23

-C3H7O2 O

O
O

O
HO

H3CO
23

m/z 634
m/z 559

m/z 543

-C3H7O3

-CO2

m/z 515
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ragmentation mechanism of ME9 

. for C15H10O5 : 

 

 Figure 4.5: F

 

4.1.2.10 Identification of ME11 

ME11 was obtained as red brown powder (6 mg), mp 215-217 °C, soluble in chloroform. 

The CI mass spectrum showed peaks at m/z 271 [MH]+ and 270 [M]+, Its molecular 

formula, C15H10O5, as established by HRMS (EI) (m/z 270.05322; calcd

270.05282) corresponded to 11 double bond equivalents. 

The 500 MHz 1H NMR spectrum presented three singlets at δ 13.48, 12.37 and 12.32 due 

to three chelated hydroxyl groups; three protons giving an ABC system at δ 7.88 (d, 1H, J 

= 7.6 Hz), 7.68 (t, 1H, J = 7.6 Hz) and 7.29 (d, 1H, J = 7.6 Hz). In addition, signals of one 

aromatic proton singlet at δ 7.15 and one aromatic methyl group at δ 2.37 were observed 

on this spectrum. The three chelated hydroxyl groups strongly suggested an anthraquinone 

skeleton.  

The broad band decoupled 13C NMR spectrum of ME11 showed 15 carbon signals which 

were assigned by DEPT and HMQC techniques as four methine groups at δ 136.69 (C-6), 
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 in the literature for islandicin (9) (Simoneau and Brassard, 
1H and 13C NMR spectra showed similarities to 

those reported for islandicin 4-methyl ether (96) except that the signal of the third chelated 

hydroxyl group was replaced by a signal of a methoxy group located at C-4 (Lin et al., 

2001). The compared data are reported in Table 4.3. A HMBC NMR experiment was also 

employed to determine the position of the chelated hydroxyl groups and the aromatic 

methyl group. In fact the chelated OH proton at δ 13.48 (4-OH) was correlated with the 

signal at δ 157.88 (C-4), δ 111.66 (C-4a), δ 141.81(C-3). In turn the signal at δ 157.88 (C-

4) was correlated with resonances at δ 2.37 (Me-3) and δ 7.15 (H-2); the signal at δ 129.04 

(C-2) correlated with resonances at δ 2.37 (Me-3) and δ 12.37 (1-OH). The proton singlet 

(δ 7.15) also showed a cross peak with the carbonyl group at δ 190.45 (C-9), which was 

possible if the proton was attached to C-2. Therefore, ME11 was identified as islandicin 

(9) which melts at 218.5-219 °C (Simoneau and Brassard, 1988). 

 

129.04 (C-2), 124.52 (C-7) and 119.38 (C-5) and 11 quaternary carbons, among them two 

carbonyl groups at δ 190.45 (C-9) and δ 186.56 (C-10).  

According to these data, two structures (9, 95) were possible. The 1H NMR data of ME11 

were identical to those reported

1988; Jammula et al., 1991). In addition its 

7

6
5

8

10

9

4

3
2

1
OHOH O

O
R2

R1

4a

9a8a
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R3  
 

       9    R1 = H       R2 = CH3   R3 = OH 

                                                 95  R1 = CH3   R2 = H       R3 = OH 
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 96 9 

Table 4.3: NMR data of ME11 (9) and its 4-methyl ether (96) 
 

Atom no. 1 13 1H-NMR (CDCl3) 13  (CDCl3) H-NMR (CDCl3) C-NMR (CDCl3) C-NMR

1  159 0; C .6; C  157.7

2 7.18, 12 4; CH 

 14 1; C 

 15 8; C 

a  12 66; C 

(7. 120 7.88, d, (7.6 Hz) ; CH 

(7.5 137 7.68, t, (7.6 Hz) 9; CH 

(7. 123 7.29, d, (7.6 Hz) 2; CH 

  16 53; C 

  11 5; C 

  19 5; C 

  11 1; C 

  18 6; C 

a  13 59; C 

e 1, .63 

O 9, s  

H 51,  

H   

H 6, 

s 6.9; CH 7.15, s 129.0

3 6.6; C  141.8

4 3.8; C  157.8

4 3.6; C  111.

5 7.81, d, 5 Hz) .0; CH 119.38

6 7.68, t,  Hz) .1; CH 136.6

7 7.27, d, 5 Hz) .6; CH 124.5

8 2.0; C  162.

8a 5.5; C  116.2

9 2.3; C  190.4

9a 4.0; C  110.7

10 1.4; C  186.5

10 4.8; C  133.

M 2.4 s 17.2 2.37, s 16

Me 3.8  61.0  

1-O 12.  s   12.37, s 

4-O  13.48, s 

8-O 12.0 s  12.32, s  

 

 

4. 11 

ME12 crystall ed from f PE-CH l3 1:1 to give c lorless p 140-141 

°C. This powder was easily soluble in chloroform and ga

Liebermann-Burchard test for steroids. 

he CI mass spectrum showed peaks at m/z 432 [M+NH4]+ 414 [M]+and 396 [M-H2O]+, 

giving rise to the molecular formula C29H50O, as established by HRMS (EI) (m/z found: 

414.38581 [M]+; calcd.: 414.38617 [M]+), and corresponded to five double bond 

1.2. Identification of ME12 

is  a mixture o C o owder, mp 

ve a positive response to the 

T
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equivalents. The steroid skeleton was also confirmed like in ME7 by the peaks at m/z 273, 

 fragmentation mechanism displayed in figure 4.6. 
1

s (see Table 4.4 for complete C 

MR data to those obtained from the literature (Ikan, 

271, 255 which were explained by the

The H NMR spectrum of ME12 was very similar to that of ME7, except that it exhibited 

the signal for only one olefinic proton at δ 5.30 (1H, s br, H-6). The 13C NMR contains 

also resonances of 29 carbon atoms which were assigned by DEPT and HMQC techniques 

as six methyl groups, 11 methylene groups, nine methine groups of which one (δ 70.5, C-

3) was oxygenated and three quaternary carbon atom 13

NMR data). ME12 was identified as β-sitosterol (24) by direct comparison of its mp (Lit. 

139-140 °C; Ikan, 1991b) and N

1991b; Koizumi et al., 1979). 

 

 

HO

m/z 414 m/z 396

m/z 255

-(side-chain)

-H2O

-(C10H21) (side-chain)

HO
m/z 273

H

HO

m/z 272

m/z 271-H

-H

 
 

Figure 4.6: Fragmentation mechanism of β-sitosterol (24) 
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ME13 crystallised from acetone to give a colorless pow p 258-260 °C. It gave a 

 r the L -Burch  stero -violet 

colour when heated with  in MeOH after TLC which served as a hint towards 

gly sylated ounds ass ed pea 9 [M+Na]+, 

wh  sugg M to e EI  also gave a peak at m/z 414 

[M ycone]+. These finding he m  of C35H60O

Th H NMR spectrum o s ve f ME8 (92). The 13C NMR also 

contained resonances of 35 carbon atoms wh re assigned afte mination of the 

D  and H  spectr thyl lene groups, 14 methine groups 

an ree qu y carb he o tween the NMR spectra of ME8 

(9 nd tho E13 nc  signals fo -D-glucoside in 

ME13 inste ignals lactoside ble 4.4 for comp te 13C NMR and 

Experiment ion, p 1H se sign duced to be 

h terist D-glu e b alysis parison with 

a ethyl β-D-

lucoside (Seo et al., 1978).  

The IR spectrum showed a broad band at 

4.1.2.12 Identification of ME13 

der, m

positive esponse to iebermann

10% H SO

ard test for ids. It also gave a blue

2 4

co  comp . The ESI m spectrum show ks at m/z 59

ich ested be 576. Th  mass spectrum

agl s lead to a t olecular formula 6.  

e 1 f ME13 wa ry similar to that o

ich we r exa

EPT MQC a as six me g yroups, 12 meth

d th aternar on atoms. T nly difference be

2) a se of M  was the prese e of characteristic r the β

ad of s  of β-D-ga  (see Ta le

al Sect age 111 for  NMR data). The als were de

c arac ic of β- coside on th asis of spectral an and by com

the reported dat  for sitosteryl β-D-glucoside (Sakakibara et al., 1983) and m

g

ν~  3398 cm-1 (OH). Additional peaks were 

observed at ν~  2933, 2868, 1640,  1464, 1378, 1163, 1105, 1075 and 1024 cm-1. 

ME13 was finally identified as sitosteryl β-D-glucopyranoside (25) by direct comparison of 

its mp and spectroscopic data. 
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 26 91 92 

Table 4.4: 13C-NMR data of steroidic compounds 24, 25, 26, 91, 92. 

24 25 
Atom 13C-NMR 13C-NMR 13C-NMR 13C-NMR 13C-NMR 

no. (CDCl3) (C5D5N) (CDCl3) (CDCl3) (DMSO-D6) 

1 37.22; CH2 37.54; CH2 37.14; CH2 37.23; CH2 36.73; CH2

2 31.55; CH2 30.31; CH2 27.98; CH2 31.63; CH2 33.23; CH2

3 70.61; CH 78.64; CH 71.07; CH 71.78; CH 76.78; CH 
4 42.30; CH2 40.01; CH2 33.89; CH2 42.27; CH2 38.20; CH2

140.98; C 40.26; CH 140.70; C 140.33; C 
6 121.70; CH 121.94; CH 29.65; CH2 121.70; CH 121.10; CH 

36.98; C 34.20; C 36.48; C 36.11; C 
11 21.00; CH2 21.33; CH2 21.55; CH2 21.20; CH2 20.49; CH2

12 39.70; CH2 39.40; CH2 39.46; CH2 39.74; CH2 39.13; CH2

13 42.20; C 42.54; C 43.29; C 42.29; C 41.74; C 
14 56.80; CH 56.89; CH 55.1; CH 3 56.74; CH 56.08; CH 
15 24.30; CH2 24.55; CH2 23.07; CH2 24.28; CH2 23.76; CH2

16 28.30; CH2 28.57; CH2 28.52; CH2 28.23; CH2 29.16; CH2

17 55.90; CH 56.32; CH 55.90; CH 56.00; CH 55.32; CH 
18 11.80; CH3 12.02; CH3 12.06; CH3 11.84; CH3 11.58; CH3

19 19.40; CH3 19.46; CH3 13.05; CH3 19.38; CH3 18.82; CH3

20 36.10; CH 36.43; CH 40.84; CH 40.48; CH 35.39; CH 
21 18.60; CH3 19.06; CH3 21.10; CH3 21.06; CH3 18.51; CH3

22 33.89; CH2 34.28; CH2 138.18;CH 138.30; CH 33.23; CH2

23 26.03; CH2 26.50; CH2 129.44;CH 129.20; CH 25.30; CH2

24 45.78; CH 46.12; CH 51.25; CH 51.22; CH 45.03; CH 
25 29.11; CH 29.55; CH 31.88; CH 31.87; CH 28.57; CH 
26 21.20; CH3 19.27; CH3 19.84; CH3 21.00; CH3 19.00; CH3

27 19.00; CH3 20.00; CH3 19.04; CH3 19.00; CH3 19.61; CH3

28 23.00; CH2 23.46; CH2 25.41; CH2 26.00; CH2 22.48; CH2

29 12.00; CH3 12.20; CH3 12.26; CH3 11.96; CH3 11.68; CH3

1’  102.63; CH   100.68; CH 
2’  75.37; CH   73.35; CH 
3’  78.48; CH   76.66; CH 
4’  71.78; CH   69.97; CH 
5’  78.19; CH   76.66; CH 
6’  62.91   60.97 

5 140.71; C 

7 31.60; CH2 32.22; CH2 117.43 31.89; CH2 31.27; CH2

8 31.80; CH 32.12; CH 139.57; C 31.87; CH 31.31; CH 
9 50.10; CH 50.42; CH 49.45; CH 50.10; CH 49.50; CH 
10 36.50; C 
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4.1.2.13 Identification of ME14 

ME14 was isolated as a brown powder, mp 87-90 °C. Its molecular formula, 2(C15H14O6), 

)-catechin (97) isolated from 

as established by ESI-FT-ICR mass spectrometry (m/z found: 603.14855; calcd. for 

(C15H14O6)2+Na: 603.14730) showed that it was a mixture of two compounds. As a matter 

of fact, on the ESI mass spectrum, two distinctive peaks were observed at m/z 313.1 

[M+Na]+ and 602.8 (base peak) [2M+Na]+.  

Its 1H NMR spectrum was superposable to that of (+

Autranella congolensis. 

The 13C NMR spectrum of ME14 showed a series of 15 pairs of carbon signals which were 

sorted by DEPT and HMQC techniques (see Table 4.5).  

ME14 was additionally identified as catechin by direct comparison with an authentic 

sample, both having the same Rf  0.32 on TLC in the mixture of CH2Cl2/MeOH 17:3. 

A comparison of these chemical shifts with those reported for catechin (Nay et al., 2001 

and 2002) (see Table 4.5) showed that ME14 was a mixture of (+)-catechin (97) and (-)-

epicatechin (98). 
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Table 4.5: NMR data of compounds 97 and (97+98) 

 

 97a 97 97+98 
Atom 

no 
13C-NMR 
(CD3OD) 

13C-NMR 
(CD3OD) 

13C-NMR 
(DMSO-D6) 

1H-NMR (DMSO-D6) 

2 82.7 79.90; CH 80.92 + 77.98 4.47 + 4.77 
3 68.8 67.51; CH 66.22 + 64.83 3.82 + 4.02 
4 28.4 29.30; CH2 28.12 + 27.78 2.48 + (2.68; 2.36) 
5 157.7 158.04; C 156.45 + 156.36  
6 95.6 96.40; CH 4.99 5.89 
7 157.5 157.69; C 156.15 + 156.09  
8 96.4 95.91; CH 93.97 5.69 
9 156.8 157.40; C 155.68 + 155.26  
10 100.9 100.09; C 98.93 + 98.37  
1’ 132.2 132.31; C 130.47 + 130.43  
2’ 115.3 115.34; CH 114.66 + 114.42 6.72 
3’ 146.2 145.92; C 144.46 + 144.42  
4’ 146.2 145.97; C 144.82  
5’ 116.2 115.91; CH 114.96 + 114.80 6.67 + 6.89 
6’ 120.1 119.42; CH 118.26 + 117.81 6.59 + 6.67 

9

 
a 13C-NMR (CD3OD) from literature (Nay et al., 2001) 
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4.2 Isolation and Characterisation of compounds from 

Autranella congolensis 
 

The crude extract of Aut anella congolensis was fournished by a collaborator, Dr. Nkeng-

Efouet A. P. from the University of Dschang in Cameroon. 

 

4.2.1 Extraction 
 
Plant material was collected in the West Province of Cameroon, cut into pieces, air-dried 

and pulverized. The resulting powder has been extracted and chromatographed following 

the scheme below: 

Stem bark

chopping

drying

grinding

Powder

Extraction with 
CH2Cl2/MeOH 1:1

Residue

Residue Extract

Extraction with Hexane

Flash CC

A (7-18) B (29-34) C
CC

PTLC
CC

(+)-Catechin24-Feruloyltetra-
cosanoic acid

Extract

A1 (1-115) A2 (119-150) A3 (154-227)

Taraxerol Compound 
26

Compound 
101 Taraxerone

CC CC CC

CC
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 Liebermann - Burchard test for terpenoids. Its EI mass 

ctrum and the characteristic double doublet 

ed the compound to be 

MR 

thyl groups, 10 methylene groups, five methine groups among them 

finic carbons at δ 158.4 and 117.1 

-14. In particular the peak at m/z 302 is 

 again with the diene portion, which now 

omprises rings A, B, C. This mechanism was described by Budzikiewicz et al., 1963, as 

well as the occurrence of the base peak at m/z 204 (100). The authors explained the 

occurrence of this base peak by assuming that in the molecular ion the missing electron is 

preferentially removed from the carbon-carbon double bond, followed by the migration of 

4.2.2 Identification of compounds 

4.2.2.1 Identification of Hex_F2 

Hex_F2 crystallised from acetone to give a colorless powder (170 mg), mp 276-278 °C. It 

gave a positive response to the

spectrum indicated a molecular ion at m/z 426 [M+] confirming to the molecular formula 

C30H50O, as established by HRMS (EI) (m/z found: 426.38609 [M+]; calcd.: 426.38617 

[M+]), which corresponded to six double bonds equivalent. 

The 1H NMR spectrum of Hex_F2 contained resonances corresponding to eight methyl 

groups in the region δ 0.90 to δ 1.13, all as singlets. The ethylenic proton (H-15) resonated 

as a double doublet at δ 5.63 (dd, J = 8.2, 3.1 Hz) and the signal of one exchangable 

hydroxy group was observed as a doublet at δ 5.80 (J = 5.7 Hz). According to the fact that 

naturally occurring polyoxygenated triterpenoids in general contain an oxygen function at 

position 3 (Gunasekera and Sultanbawa, 1977; Basu and Rastogi, 1967 and Agarwal and 

Rastogi, 1974) the single hydroxy group was placed at that position. The observation of the 

base peak at m/z 204 (100) in the mass spe

signal of the single olefinic proton in the 1H NMR spectrum suggest

a ∆14-pentacyclic triterpenoid (Ageta and Arai, 1983). The broad band decoupled 13C N

spectrum of Hex_F2 showed 30 carbon signals which were assigned by DEPT and HMQC 

techniques as eight me

one bearing an oxygen (δ 78.2, C-3)  together with seven quaternary carbons (see Table 4.6 

for complete 13C NMR data). The resonances of the ole

were also found to be characteristic of ∆14-pentacyclic triterpenes (Sakurai et al., 1987). 

A closer look on the mass spectra revealed the presence of some major fragments that 

confirmed the localisation of the double bond at C

due to the retro-Diels Alder reaction as has been observed in a similar fashion with the ∆7-

unsaturated derivatives, except that ring D rather than ring C is being opened (see arrows 

on Figure 4.7). Here the charge remains

c
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the C-13 methyl group to C-14; fission of the 11-12 and 8-14 bonds now gives the stable 

diene (m/z 204) (Figure 4.8).  

Finally, Hex_F2 was identified through a comparison (see Table 4.6) of its spectroscopic 

data and mp (Lit. 273-274 °C, Agarwal et al., 1963; 278-279 °C, Sakurai et al., 1987) to 

the literature data (Mahato and Kundu., 1994; Agarwal et al., 1963; Sakurai et al., 1987) as 

taraxerol (99). 
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Figure 4.7: Fragmentation mechanism of Hex_F2 (99) and AC_Hex.2.A (100) 
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R
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 Figure 4.8: O f the b ∆ clic tr es 

 

4.2. Identification of AC_Hex2.A 

AC_Hex2.A crystallised from a to gi s pow 0 mg 2 °C. 

It gave a posi se to th erma st rpenoids. Its ESI mass 

spectrum indicated a molecular ion at m +H+] a /z 849 [2M+ H ]. Its 

mol ar for O, as established by ESI-FT-ICR m ectro ound: 

425 47; c H49O: 7779 7.3593 cd. fo + Na: 

447 74), c  to sev uble b ents.  

The NMR spectra were so sim  thos ol des  above that the carbon 

ske  coul d to b tical erol on e characteristic double 

doublets signal of an olefinic proton [δ 5.  8.2, 3 , H-1 eight 

als of m thyl group protons in the 1H NMR spectrum also strongly suggested 

AC_Hex2.A to be  derivative o  taraxer-14-e . The only d fference MR 

spectrum was the presence of a carbonyl group for a ketone (δ 217.6) and the absence of a 

gnal for a methine group bearing an oxygen substituent (see Table 4.6 for complete 13C 

M om taraxerol, and therefore the 

arbonyl group was localised at C-3. 

ccurrence o ase peak in 14-pentacy iterpen

2.2 

cetone ve a colorles der (6 ), mp 240-24

tive respon e Lieb nn - Burchard te  for te
+nd m/z 425 [M

metry (m/z fmula C30H48 ass specul

 and m/z 4 425.3 4 6; cal r C30H48O .377 alcd. for C30

.359 orresponded en do ond equival

ilar to e of taraxer cribed

leton d be deduce e iden to the tarax e. Th

53 (dd, J = .1 Hz 5)] and the 

si gnnglet si e

 in its 13C N a f ne i

si

N R data). This ketone was deduced to be derived fr

c
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The IR spectrum showed peaks at ν~  3047 cm-1 (olefinic CH), 2939, 2863 (aliphatic CH), a 

strong and sharp peak at ν~  1708 (carbo  ν~nyl). The peak at  1376 cm-1 was indicative for 

100). 

two geminal methyl groups.   

Finally a comparison (see Table 4.6) of its mp (Lit. 240-243 °C, Sakurai et al., 1987) and 

NMR data to those obtained from the literature for taraxerone (Sakurai et al., 1987) 

confirmed that AC_Hex2.A was taraxerone (
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14
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24
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29
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O

 
100 

ass spectrum indicated particular peaks at m/z 804, 776 

and

he APCI-FT-ICR mass spectrometry confirmed that Hex_F1 was composed of three 

compounds with the molecular formulas C56H100O2, C54H96O2 and C52H92O2, respectively 

 : 805.77961, m/z 777.74865; calcd. for C54H97O2 : 

777.74831  and m/z 749.71776; calcd. for C H O  : 749.71701, each corresponding to 

 

4.2.2.3 Identification of Hex_F1 

This compound crystallised from a mixture of PE-CH2Cl2 was obtained as a colorless 

powder, mp 176-178 °C, soluble in chloroform. It gave a positive response to the 

Liebermann - Burchard test for terpenoids. Its ESI mass spectrum contained peaks at m/z 

805, 777 and 749, while the EI m

 748, suggesting that Hex_F1 was a mixture of three compounds which differ one from 

another by a mass difference of 28 corresponding to two methylene groups.  

T

for m/z 805.78011; calcd. for C56H101O2

52 93 2

seven double bond equivalents. 

Its H NMR and C NMR spectra were very similar to those of Hex_F2. In effect, the H 

NMR spectrum displayed a signal of one proton at δ 4.46 (H-3, dd, J

1 13 1

 = 10.4, 5.3 Hz) 

indicating the struture fragment C(sp )H-OCO-, together with one signal at δ 1.25-1.26 

corresponding to a series of methylene groups. The triplet at δ 2.28 (J = 7.5 Hz) was 

3
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l., 1977). This 

 as by direct comparison with the 

r-14-ene (n = 20), 3β-tetracosanoyltaraxer-14-ene (n = 22), 3β-

assigned to a methylene group located at the α-position of the carbonyl group whereas the 

one at δ 0.88 (J = 5.9 Hz) was due to the terminal methyl of an aliphatic chain (Öksüz and 

Topcu, 1987). All those signals indicated the presence of a long aliphatic chain of a fatty 

acid esterified in postion 3 of taraxerol. This conclusion derived from what Cambie et al. 

described in the literature for the esterified β-amyrine esters (Cambie et a

suggestion was confirmed after examination of the broad band decoupled 13C and DEPT 

spectra which showed the following signals: 

- δ 29.17-29.82, long aliphatic chain assigned to methylene groups. 

- δ 14.1, terminal methyl group of a long aliphatic carbon chain (Chavez et al., 1996). 

- δ 34.9, triplet assigned to the methylene group located at the α-position of the carbonyl 

group (Wansi, 2000). 

In addition the C-3 here resonated at lower field (δ 80.6) than that of taraxerol (δ 78.2). 

The complete 13C NMR data are reported in Table 4.6. 

Alkaline hydrolysis of Hex_F1 yielded a mixture of fatty acids and the triterpene which 

was identified as taraxerol by spectral data as well

authentic sample (TLC, Rf 0.34, CH2Cl2/PE 1:1). 

From all those physical and spectroscopic data, Hex_F1 was identified as a mixture of 3β-

docosanoyltaraxe

hexacosanoyltaraxer-14-ene (n = 24) (101). 

 

3
4

1
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28

30

24

25 26

29

23

27

O
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n

 
101 n = 20, 22, 24 
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6 (99), (100) and (101) 

 

Table 4. : 13C NMR data of compounds 

 99 99a 100 100a 101 
Atom no 13C NMR 

(C5D5N) 
13C NMR 
(CDCl3) 

13C NMR 
(CDCl3) 

13C NMR 
(CDCl3) 

13C NMR 
(CDCl3) 

1 38.22; CH2 38.1 38.34; CH2 38.4 37.35; CH2

2 28.02; CH2 27.3 34.14; CH2 34.1 25.17; CH2

3 78.15; CH 79.2 217.60; CH 217.3 80.63; CH 
4 39.41; C 39.1 47.58; C 47.6 37.71; C 
5 55.96; CH 55.7 55.76; CH 55.8 55.61; CH 
6 19.20; CH2 19.0 19.95; CH2 20.0 18.68; CH2

7 35.32; CH2 35.3 35.08; CH2 35.2 35.09; CH2

8 39.29; C 38.9 38.88; C 38.9 38.97; C 
9 49.08; CH 48.9 48.68; CH 48.7 48.72;CH 
10 37.78; C 37.9 37.52; C 37.6 37.87; C 

 49.16; CH 

33.34; CH3

30 21.52; CH3 21.5 21.34; CH3 21.4 21.28; CH3

C

11 17.84; CH2 17.7 17.44; CH2 17.5 17.51; CH2

12 36.89; CH2 36.9 35.77; CH2 36.7 37.68; CH2

13 37.92; C 37.9 37.68; C 37.7 37.53; C 
14 158.41; C 158.1 157.58; C 157.6 157.97; C 
15 117.11; CH 117.0 117.18; CH 117.2 116.92;CH 
16 36.04; CH2 35.9 36.65; CH2 35.8 36.64; CH2

17 38.27; C 38.1 37.73; C 37.7 35.78; C 
18 49.52; CH 49.4 48.75; CH 48.8
19 41.65; CH2 41.4 40.61; CH2 40.7 41.19; CH2

20 28.98; C 29.0 28.79; C 28.8 28.79; C 
21 33.99; CH2 33.9 33.55; CH2 33.6 33.66; CH2

22 33.38; CH2 33.2 33.06; CH2 33.1 33.08; CH2

23 28.67; CH3 28.1 26.08; CH3 26.2 27.99; CH3

24 16.44; CH3 15.6 21.48; CH3 21.5 16.67; CH3

25 15.70; CH3 15.6 14.80; CH3 14.8 15.42; CH3

26 30.04; CH3 30.1 29.84; CH3 29.9 29.92; CH3

27 26.18; CH3 26.0 25.57; CH3 25.6 25.92; CH3

28 30.04; CH3 30.1 29.92; CH3 29.9 29.92; CH3

29 33.44; CH3 33.5 33.35; CH3 33.4 

OO-     173.69 
CH2COO-     34.86 

(CH2)n     29.82-29.17 
CH3     14.14 

 
a 13C-NMR (CDCl3) from literature (Sakurai et al., 1987) 
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his compound crystallised in the mixture of PE-EtOAc as a brown powder, mp 237-

.  

Its 1H NMR spectrum in CD3OD exhibited signals of five aromatic protons where the 

een those appearing at δ 6.96 (1H, d, J = 1.9 Hz, H-2’), δ 6.79 (1H, 

, J = 8.2, 1.9 Hz, H-6’) and δ 6.75 (1H, d, J = 8.2 Hz, H-5’) indicated a 1,3,4-

= 6.5 Hz, H-2), δ 4.17 (1H, m, H-3), δ 

2.85 (1H, dd, J = 16.8, 4.6 Hz) and δ 2.73 (1H, dd, J = 16.8, 2.7 Hz). The large coupling 

indicated that this unit had the 2,3 trans 

onfiguration. 

The broad band decoupled 13C NMR spectrum of AC_F32 shows 15 carbon signals which 

ig  techniques as seven methine groups, seven quaternary 

4.2.2.4 Identification of AC_F32 

T

239°C, soluble in MeOH. Its molecular formula C15H14O6, was established by HRMS (EI) 

(m/z calcld: 290.07815, found: 290.07904 [M+]) and corresponded to nine double bonds 

equivalents

coupling pattern betw

dd

trisubstituted aromatic ring, whereas those appearing at δ 5.94 (1H, d, J = 2.0 Hz, H-6) and 

δ 5.91 (1H, d, J = 2.0 Hz, H-8) were indicative of a 1,2,3,5-tetrasubstituted aromatic ring. 

Further signals were observed at δ 4.82 (1H, d, J 

constant (J = 6.5 Hz) of H-2 with H-3 

c

were ass ned by DEPT and HMQC

carbons among them five bearing an oxygen and one methylene groups (δ 29.3, C-4). A 

comparison of all these spectral data with those of some flavonoids (Rensburg et al., 2000; 

Steynberg et al., 1995) led to the conclusion that AC_F32 should have the basic skeleton of 

flavonoids. These NMR data showed similarities to those of (+)-catechin (Nayet al., 2001) 

after comparison (see Table 4.5).  

Its IR spectrum showed important peaks at ν~  3455, 3164, 2931, 1625 and 1520. From 

all these informations above and, this compound was finally identified as (+)-catechin (97). 

 

4.2.2.5 Identification of Hex_C.1 

Hex_C.1 crystallised from a mixture of PE-CH2Cl2 as a white powder, mp 156-158 °C, 

soluble in chloroform. It gave a positive response to the Liebermann - Burchard test for 

steroids. Its ESI mass spectrum indicated peaks at m/z 413 [M+H]+, whereas the EI mass 

spectrum indicated the molecular ion peak at m/z 412 [M]+, leading to the molecular 

formula C29H48O, as established by HRMS (EI) (m/z calcd.: 412.37047 [M+]), found: 

412.37052 [M+]); this corresponded to six double bond equivalents. 
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he R configuration at C-24 was established by the method of Itoh et al.(1981), based on 

the comparison of the 1H and 13C- NMR spectra with steroids related to α-spinasterol and 

chondrillasterol. 

Finally, Hex_C.1 was identified as (24R)-stigmast-7,22(E)-dien-3α-ol (26), reported 

previously by Itoh et al. (1981). 

 

Its 1H NMR spectrum exhibited signals of olefinic protons at δ 5.03 (1H, ddd, J = 16.0, 

7.0, 7.0 Hz, H-23), δ 5.15 (1H, dd, J = 16.0, 7.0 Hz, H-22), and δ 5.15 (1H, m, H-7), a 

methine proton at δ 3.6 (1H, m, H-3), and six methyl groups of wich two were singlets at δ 

0.55 and δ 0.81, one triplet at δ 0.84 (3H, t, J = 6.5 Hz), and the three other as doublets at δ 

0.86, δ 0.93 and δ 1.03, having a coupling constant in the range 6.5-7.6 Hz. 

Its broad band decoupled 13C NMR spectrum showed 29 carbon signals which were 

assigned by DEPT and HMQC techniques. The particular signals at δ 129.4 and δ 138.2 

were characteristic of a ∆22-sterol (Rubinstein et al., 1976), whereas those at δ 117.4 and δ 

139.6 where characteritic of a ∆7-sterol (Jahan et al., 1995). The methine proton showed a 

cross peak in the HMQC with the carbon signal at δ 71.1, which was assigned to C-3 on 

biogenetic grounds of steroids. The complete 13C NMR data are reported on Table 4.4. 

The EIMS showed further fragments at m/z 273 [M-side-chain]+, m/z 271 [M-(side-chain)-

2H]+, m/z 255 [M-(side-chain)-H2O]+, m/z 253 [M-(side-chain)-H2O-2H]+, 95, 83 and 81 

(see Figure 4.9). The last fragments m/z 95, 83 and 81 were also reported to be 

characteristic of ∆22-sterols (Laine and Elbein, 1971). 

T

HO

24

H

 
26 
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Figure 4.9: Fragmentation mechanism of Hex_C.1 (26) 

 

4.2.2.6 Identification of AC_F7.2 

AC_F7.2 crystallised as a colorless powder in chloroform, mp 82-85 °C. Its 1H NMR 

spectrum showed similarities to that of ME9 (93) isolated from Maesopsis eminii. 

δ 6.29 (d, J = 15.7 Hz) and δ 7.6 (d, J = 15.7 Hz). The second moiety showed two 

However, it was composed of two moieties instead of three as ME9. One was trans-4-

hydroxy-3-methoxycinnamate, with aromatic protons at δ 6.91 (d, J = 8.2 Hz), δ 7.03 (d, J 

= 1.9 Hz) and δ 7.07 (dd, J = 8.2, 1.9 Hz); a methoxy group at δ 3.91 and one ethylene 

trans: 

distinctive methylene groups connected to an oxycarbonyl (δ 4.18, t, J = 6.9 Hz) and to 

carbonyloxy (δ 2.34, t, J = 7.5 Hz); two methylene groups connected to those described 

above (δ 1.7, t and δ 1.6, m); one further methylene group (δ 1.37, m), and the rest of the 

methylene groups as a long aliphatic chain (δ 1.24-1.26, br s). 
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+H]+. The ESI mass spectrum (negative mode) contained a peak at m/z 559 [M-H]-, 

ed by 

the same fragmentation mechanism as for ME9 (93) (Figure 4.5). 

The 13C NMR spectrum of AC_F7.2 showed a series of carbon signals which were 

identified by DEPT and HMQC techniques as five quaternary carbons including two 

carbons (δ 178.80 and δ 167.45) of two carbonyl groups, five methine groups, one 

methoxy group (δ 55.93), six methylene groups of which one was oxygenated, and 

additional methylene groups corresponding to a long aliphatic chain (δ 29.70 – 29.07). A 

comparison of these data with those reported for a mixture of C22-28 ω-hydroxy acid esters 

of cis and trans-ferulic acid showed that AC_F7.2 was 24-feruloyltetracosanoic acid (102) 

(Kawanishi and Higashimoto, 1987; Hiramoto and Wanatabe, 1939). 

 

The ESI mass spectrum (positive mode) of AC_F7.2 gave a pseudomolecular peak at m/z 

561 [M

corresponding to the molecular formula C34H56O6, corresponding to seven double bond 

equivalents; and m/z 531. Its EI MS also showed the base peak at m/z 177, and other 

signals at m/z 560 [M]+, 514, 486, 396, 368 and 194. These fragments can be explain

3

4
5

6

1

2

O

O
OH

O
HO

H3CO
23

1'
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3'
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4.3 Isolation and Characterisation of compounds from 

Pentadesma grandifolia 
 

The crude extract of Pentadesma grandifolia was provided by a collaborator, Mr. Hilaire 

V. Kemami Wangun, from the Hans-Knöll-Institut for Natural Product Research in Jena, 

Germany. 

4.3.1 Extraction 
  

Plant material was collected in the West Province of Cameroon, cut into pieces, air-dried 

and pulverized. The resulting powder has been extracted and further purified 

chromatographically following the scheme below: 

Root bark

Powder

Extraction with MeOH

MeOH Extract 

chopping

drying

grinding

      (20 g)
Residue

Flash CC

CC

B (15-25)A 

PG4PG3

C (26-32)

CC

HPLC

PG1 PG2

D (33-42) E (43-70)

PG5

HPLC
CC

HPLC

PG6

  (3-12)
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4.3.2 Identification of compounds  
 

4.3  Identification of PG1 

 (200 mg), and reacted positively with alcoholic ferric 

chloride, indicating its phenolic nature. It exhibited a molecular ion [M+] at m/z 410.17240, 

 (C-4a) and 144.73 (C-7) also supported the presence of a xanthone skeleton in 

. A 

HMBC NMR experiment was employed to determine the position of these two side chains 

in PG1. One of the prenyl groups was attached to C-2 based on the HMBC correlations of 

H-1’/C-2 (two bonds), H-1’/C-1 (three bonds), H-1’/C-3 (three bonds). The second prenyl 

group was found to be located at C-8 by the HMBC correlations of H-1’’/C-8 (two bonds), 

H-1’’/C-8a (three bonds) and H-1’’/C-7 (three bonds). The HMBC correlation from C-7 to 

the methoxy protons also indicated the locations of the prenyl group at C-8, and the 

.2.1

PG1 was obtained as a yellow gum

leading to the molecular formula C24H26O6 (calcd. for 410.17294), whish corresponds to 12 

double bond equivalents. The 1H NMR spectrum of PG1 displayed signals that suggested a 

polyhydroxylated polyprenylated xanthone structure (Likhitwitayawuid et al., 1997; 

Pattalung et al., 1994; Lee and Chan, 1977; Sakai et al., 1993). It showed, in the downfield 

region, two aromatic proton resonances at δ 6.18 (s, H-4) and δ 6.63 (s, H-5), as well as a 

signal for three OH at δ 4.87 (br s). Two prenyl groups were present in the structure of 

PG1, as evident from the following resonances: (a) two olefinic protons at δ 5.21 (m, H-2’ 

and H-2’’); two pairs of methylene protons at δ 3.24 (d, J = 7.5 Hz, H-1’) and δ 4.02 (d, J = 

6.3 Hz, H-1’’); and four methyl groups at δ 1.64 (s, H3-4’), 1.65 (s, H3-4’’),  1.76 (s, H3-

5’), 1.80 (br s, H3-5’’). The signal of a methoxy group was observed at δ 3.73 (s, 7-OMe). 

The nature of allylic and homoallylic coupling systems within each isoprene moiety was 

explicitly demonstrated in the HH-COSY spectrum. In fact, the 1H NMR spectrum of PG1 

possessed very close resemblance to that of 1,3,6-trihydroxy-7-methoxy-2,5,8-

triprenylxanthone (Likhitwitayawuid et al., 1997), except for the absence of a third prenyl 

moiety located at C-5 in PG1. The presence of six oxygenated aromatic carbon signals on 

the 13C NMR spectrum at δ 161.58 (C-1), 163.57 (C-3), 157.79 (C-6), 156.67 (C-5a), 

156.16

PG1, which has been found to occur in some compounds in other genera in the family 

Guttiferae including Pentadesma (Gunasekera et al., 1977a, Nkengfack et al. 2002, 

Monache et al., 1983). The complete 13C NMR data of PG1 are reported in Table 4.7
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methoxy group at C-7. Finally, PG1 was identified as 1,3,6-trihydroxy-7-methoxy-2,8-

diprenylxanthone, also known as α-mangostin (103) (Matsumoto et al., 2003). 
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4.3.2.2 Identification of PG2  

PG2 was isolated as a yellowish powder (130 mg), mp 205-207 °C. It was deduced to have 

an elemental formula of C24H26O6, as established by HRMS (EI) which showed a 

molecular ion peak at m/z 410.17366 (calcd. 410.17294), and corresponds to 12 double 

bond equivalents. It also reacted positively with alcoholic ferric chloride, indicating its 

phenolic nature. Its 1H and 13C NMR spectra also exhibited signals which were suggestive 

of a polyhydroxylated xanthone structure (see Table 4.7), thus it was deduced to be an 

isomer of PG1. In effect, signals at δH 4.02/δC 27.03 (C-1’), 5.2/125.27 (C-2’), 1.96/40.82 

(C-4’), 1.80/16.66 (C-5’), 2.04/27.61 (C-6’), 5.04/127.51 (C-7’), 1.54/25.80 (C-9’), 

1.51/17.73 (C-10’), δC 135.45 (C-3’) and 131.99 (C-8’) were found to be due to the 

presence of a geranyl group, by comparison of the NMR data with the literature values (Sia 

et al., 1995; Seo et al., 2002; Lee and Ng, 1982); a signal of a methoxy group appeared at 

δH 3.76/δC 61.41. In the 1H NMR spectrum of PG2, the signal of H-1’ of this geranyl group 

appears further downfield δH (4.02) than the usual values of this functionality (Somanathan 

and Sultanbawa, 1972; Jackson et al., 1967). This can be explained from the fact that H-1’ 

is in a region deshielded by the carbonyl group (Seo et al., 2002) which is consistent with 

the assigned position (C-8) of the geranyl group identified by HMBC correlations of H-

1’/C-8, H-1’/C-8a and H-1’/C-7. Thus, PG2 was identified to 1,3,6-trihydroxy-7-methoxy-

8-geranylxanthone, named rubraxanthone (104) (Ampofo and Waterman, 1986). 
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4.3.2.3 Identification of PG3 

PG3 was a white powder (150 mg), mp 213-215 °C. It gives a positive response to the 

Liebermann - Burchard test for terpenoids. Its molecular formula C30H50O was established 

by HRMS (EI) which exhibited the peak of the molecular ion at m/z 426.38650 [M+], 

(calcd. 426.38617), and corresponds to six double bond equivalents. Other characteristic 

peaks were found at m/z 408 [M-H2O]+, 218, 189 on the EI-MS. 

IR absorptions at 3318 and 1638 cm-1 indicated the presence of a hydroxyl group and a 

terminal double bond, while the band at 1378 cm-1 was indicative for two geminal methyl 

groups. 

In the 1H NMR spectrum the presence of the following moieties were deduced: a terminal 

methylene group [δ 4.56 (1 H, d, J = 2.0 Hz); δ 4.68 (1 H, d, J = 2.0 Hz)], one methyl 

group at δ 1.68 (3 H, s), (CH3-C=C), and six other methyl groups in the region δ 1.03 - 

0.76. 

The broad band decoupled 13C NMR spectrum of PG3 shows 30 carbon signals which 

were assigned by DEPT and HMQC techniques as seven methyl groups, 11 methylene 

groups, six methine groups among them one bearing an oxygen (δ 78.97, C-3) and seven 

quaternary carbons. The carbon signals at δ 109.32 and 150.96 ppm were found to be 

characteristic of a ∆20(29)-pentacyclic triterpene (Mahato and Kundu, 1994; Reynolds et al., 

1986). 

The identity of PG3 as lupeol (lup-20(29)-en-3β-ol) (23, page 13) was finally established 

by direct comparison of the mp (Lit. 215-216 °C, Reynolds et al., 1986), IR, EIMS, 1H 

NMR and 13C NMR data with those reported in the literature (Reynolds et al., 1986). 
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Figure 4.10: Fragmentati anism of PG4 (105) 
 
 

4.3.2 entificatio 5 

PG5 w btained as a yel w powder (3.5  reacted positively with alcoholic ferric 

chloride, indicating its phenolic nature. It exhibited a quasimolecular ion [M+H]+ at m/z 

465.22 , correspond he molecula ula C28H33O6 (calcd. 465.22717), and 

therefore establishing a molecular formula 32O6 which corresponds to 13 double 

bond equivalents. The 1  and 13C NMR spectra (see Table 4.7) of PG5 also 

displa signals sug a polyhydr d polyprenyl thone structure 

(Likhi yawuid et a  Pattalung e 94; Lee and 77; Sakai et al., 

1993). In fact, its 1H N trum showe  downfield region one aromatic proton 

resonance at δ 6.47 (s, H-4), and a signal for a chelated OH at δ (s, 1-OH). Three 

preny ups were p n the structure of PG5, as evident from the following 

sonances: (a) three olefinic protons at δ 5.24-5.28 (m, H-2’, H-2’’ and H-2’’’); three 

 (d, J = 7.1 Hz, H-1’’) and 

 4.20 (d, J = 6.8 Hz, H-1’’’); and six methyl protons at δ 1.63 (br s, H3-5’’’), 1.65 (br s, 

3-5’, H3-5’’), 1.78 (br s, H3-4’),  1.81 (br s, H3-4’’’), 1.88 (br s, H3-4’’). 1H and 13C NMR 

pectra of PG5 both possessed very close resemblance to those of garcinone E (Sakai et 

l., 1993) and 7-O-methylgarcinone E (107) (Likhitwitayawuid et al., 1997) (see Table 

.7).  

on mech

.5 Id n of PG

as o lo mg) and

735 ing to t r form

 of C28H

H NMR

yed gesting oxylate ated xan

twita l., 1997; t al., 19 Chan, 19

MR spec d in the

 13.92 

l gro resent i

re

pairs of methylene protons at δ 3.35 (d, J = 7.1 Hz, H-1’), δ 3.60

δ

H

s

a

3
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(106), was established by direct comparison of the IR, EIMS, 1H NMR and 13C NMR data 

with those reported in the literature (Sakai et al., 1993; Likhitwitayawuid et al., 1997). 

5

Finally the identity of PG5 as garcinone E, 1,3,6,7-tetrahydroxy-2,5,8-triprenylxanthone
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4.3.2.6 Identification of PG6 

H

al., 1994) (see Table 4.8). Like for 

PG1, the location of the two side chains at C-2, C-8 and the methoxy group at C-7 were 

PG6 was obtained as a yellow gum and reacted positively with alcoholic ferric chloride, 

indicating its phenolic nature. It exhibited a molecular ion [M+] at m/z 478.23545, leading 

to the molecular formula C24 26O6 (calcd. 478.23554), and corresponds to 13 double 

bonds equivalent. The H NMR spectrum of PG6 also displayed signals suggesting a 

polyhydroxylated polyprenylated xanthone structure (Likhitwitayawuid et al., 1997; 

Pattalung et al., 1994; Lee and Chan, 1977; Sakai et al., 1993). It showed, in the downfield 

region, two aromatic proton resonances at δ 6.27 (s, H-4) and δ 6.81 (s, H-5), a signal for a 

chelated OH at δ 13.76 (s). Signals at δ

1

H 4.08/δC 26.58 (C-1’’), 5.24/123.25 (C-2’’), 

1.99/39.69 (C-4’’), 1.80/16.47 (C-5’’), 1.99/26.50 (C-6’’), 5.00/124.29 (C-7’’), 1.58/25.58 

(C-9’’), 1.52/17.64 (C-10’’), δC 135.59 (C-3’’) and 131.25 (C-8’’) were found to be due to 

the presence of a geranyl group, by comparison of the NMR data with the literature values 

(Sia et al., 1995; Seo et al., 2002), whereas those at δH 3.44/δC 21.45 (C-1’), 5.24/121.50 

(C-2’), 1.82/17.89 (C-4’), 1.74/25.82 (C-5’) and δC135.50 (C-3’) were due to the presence 

of a prenyl group; a signal of a methoxy group appeared at δH 3.78/δC 62.01. In fact, the H 

NMR data of PG6 possessed very close resemblance to those of cowanin (1,3,6-

trihydroxy–2-isoprenyl-8-geranylxanthone (Pattalung et 

1
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supported by the HMBC correlations of H-1’/C-2, H-1’/C-1, H-1’/C-3. The geranyl group 

was located at C-8 by the HMBC correlations of H-1’’/C-8 (two bonds), H-1’’/C-8a (three 

bonds) and H-1’’/C-7 (three bonds). The HMBC correlation from C-7 to the methoxy 

protons also indicated the locations of the prenyl group at C-8, and the metoxy group at C-

7. Hence, PG6 was identified as 1,3,6-trihydroxy–2-isoprenyl-7-methoxy-8-

geranylxanthone, known as cowanin (108). 
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Table 4.7: 13C NMR data of PG1 (103), PG2 (104) and PG5 (106) and 7-O-
methylgarcinone (107) 

  
 103 104  106 106a 107a

Atom 
No 

13C NMR 
(CD OD) 

13C NMR 
(CD OD) 

Atom 
No 

13C NMR 
(CD) CO 

13C NMR 
(CDCl ) 

13C NMR 
(CDCl ) 

3 3 3 3 3

1 161.58 164.78 1 161.63 160.51 160.5 
2 111.42 98.80 2 110.78 108.18 108.3 
3 163.57 165.92 3 162.93 161.51 161.5 
4 93.15 94.09 4 93.10 93.16 93.2 
4a 156.16 158.05 4a 155.74 155.08 155.0 
5 102.76 102.09 5 114.27 113.30 113.9 
5a 156.67 158.41 5a 151.75 151.26 153.5 
6 157.79 156.80 6 148.81 148.72 152.3 
7 144.73 144.93 7 140.49 139.26 142.2 
8 112.23 112.21 8 124.48 124.60 131.8 
8a 138.48 138.67 8a 111.82 111.30 111.9 
9 183.11 183.05 9 183.32 183.05 182.4 
9a 103.77 103.99 9a 103.66 103.65 103.6 

OCH3 61.34 61.41 OCH3   62.0 
1’ 22.24 27.03 1’ 22.05 21.45 21.4 
2’ 123.94 125.27 2’ 123.58 121.52 121.5 
3’ 131.74 135.45 3’ 131.30 133.66 135.7 
4’ 26.01 40.82 4’ 25.90 24.77 25.8 
5’ 18.31 16.66 5’ 17.91 17.90 17.9 
6’  27.61 1’’ 23.20 22.56 22.6 
7’  125.51 2’’ 122.60 121.02 121.1 
8’  131.99 3’’ 132.36 135.13 132.6 
9’  25.80 4’’ 25.90 25.83 25.8 
10’  17.73 5’’ 18.15 17.98 17.9 
1’’ 27.15  1’’’ 21.45 26.4 
2’’ 125.19  2’’’ 121.52 123.5 

133.9 
4’’ 17.96  4’’’ 25.97 25.77 25.8 
5’’ 26.01  5’’’ 18.32 17.90 18.1 

 25.90 
 123.61 

3’’ 131.64  3’’’ 131.51 133.66 

 
a NMR data obtained from the literature (Sakai et al., 1993; Likhitwitayawuid et al., 1997) 
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Table 4.8: NMR data of PG6 (108) and cowanin(108a) 
 

 108 108a

Atom No 1H NMR (CDCl3) 13C NMR (CDCl3) 1H NMR (CDCl3) 
1  160.66  
2  108.50  
3  161.63  

4a  
4 6.27, s 93.25 6.30, s 

155.08  
5 6.81, s 101.53 6.86, s 

155.79  
142.30  

8  112.24  
8a  137.15  
9  182.00  
9a  103.63  

OCH3 3.78, s 62.01 3.80, s 
1’ 3.44, d 21.45 4.45, br d 
2’ 5,24, m 121.50 5.28, m 
3’  135.50  
4’ 1.82, s 17.89 1.82, s 
5’ 1.74, s 25.82 1.76, s 
1’’ 4.08, d 26.58 4.09, d 
2’’ 5.24, m 123.25 5.28, m 
3’’  135.59  
4’’ 1.99, m 39.69 2.03, m 
5’’ 1.80, s 16.47 1.84, s 
6’’ 1.99, m 26.50 2.03, m 
7’’ 5.00, m 124.29 5.03, m 
8’’  131.25  
9’’ 1.58, s 25.58 1.59, s 
10’’ 1.52, s 17.64 1.54, s 

OH-1 13.76  13.80 

5a  154.59  
6  
7  

 
a NMR data obtained from the literature (Pattalung et al., 1994). 
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e compounds isolated  from the 

three plants 

ctivity against Bacillus subtilis ATCC 

tration > 50 µg/mL. It was inactive against all the other organisms tested.  

) 

owed very low activity (IC50 62 and 100 µM, respectively). 3α -HSD appears to be a 

multifunctional enzyme. Its traditional role is to catalyze early steps in androgen and 

cortisone metabolism, by reducing a variety of 3-ketosteroids to their corresponding 3α-

hydroxysteroids. This enzyme is potently inhibited by the major classes of nonsteroidal 

and steroidal antiinflammatory drugs (Penning, 1985). High correlations exist between the 

logarithm of the concentration of drug required to produce 50% inhibition of the enzyme 

(log IC50 value) with that dose in humans required to produce an antiinflammatory 

response. Thes observations led to the suggestion that the inhibition of the enzyme (3α –

ning, 1985). The 

ctivity of PG2 (104) (IC50 14.6 µM) was nearly equal to that of the 

antiinflammatory indomethacin (IC50 15.0 µM), which was chosen as reference, while the 

activity for PG4 (105) (IC50 11.7 µM) was higher than that of the refence. PG4 was 

therefore more active than the pharmaceutical product indomethacin. The antiinflammatory 

activity of PG1 (103) was unsignificant (IC50 195 µM). 

4.4 Biological properties of som

4.4.1 Antibacterial activity 
 

The new triterpene (ME1) (85) displayed moderate a

6633 in concen

4.4.2 Antiinflammatory activity 
 

Inflammation is the first response of the immune system to infection and irritation, 

consisting of certain observable findings; redness, heat, swelling, pain and dysfunction of 

the organs involved. The modern medicine has developed numerous antiinflammatory or 

analgesic drugs which may relieve the inflammation symptoms. These include salicylic 

acid, aspirin, indomethacin, meclofenamic acid, mefenaamic acid, diffusinal, dichlofenac 

and ibuprofene. 

The antiinflammatory activity of seven compounds isolated from the three plants was 

evaluated. ME5 (88), isolated from M. eminii displayed high inhibitory activity (IC50 9.5 

µM) on 3α-hydroxysteroid dehydrogenase (3α –HSD), while ME4 (89) and ME6 (90

sh

HSD), could be used to predict antiinflammatory drug potency (Pen

inhibitory a
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In addition, PG2 (104) also selectively inhibited the cyclooxygenase-2 (COX-2), also 

named prostaglandin endoperoxide H synthase-2 (PGHS-2) (IC50 6 µM), which is an 

isoform of COX-1. COX-1 is considered to be constituvely expressed and to be important 

for homeostatic functions such as maintaining the integrity of the gastric mucosa, 

regulating renal blood flow and mediating normal platelet function. The COX-2 isoform, 

on the other hand, is induced by inflammatory mediators, such as cytokines, in different 

inflammatory states (Vane and Botting, 1998). Cyclooxygenase enzymes (COXs) contain 

dase activities. They catalyze the bis-dioxygenation of 

emonstrated that some COX-2 inhibitors like Vioxx  have serious side effects and have 

been withdrawn from the market. 

 

both cyclooxygenase and peroxi

arachidonic acid to provide prostaglandin (PG) H2, the precursor to the primary PGs and 

thromboxanes (TXs) as illustrated in Figure 4.9 (Hambert and Samuelsson, 1973). The 

therapeutic efficacy of nonsteroidal antiinflammatory drugs (NSAIDs) derives from their 

inhibition of COX (Vane, 1971). These compounds, which are widely used in the treatment 

of pain and inflammation (Lombardino, 1985), non selectively inhibit the two isoforms of 

cyclooxygenase and thus prevent the upregulation of prostaglandin formation, which 

otherwise lead to an increase of vascular permeability, edema, hyperalgesia, pyrexia and 

inflammation (Vane and Botting, 1998; Cryer and Feldman, 1998; Dubois et al., 1998; 

Barbey et al., 2002). The selective inhibitors may relieve the symptoms in these 

pathologies while exhibiting a safer toxicity profile (Battistini et al., 1994; Vane, 1988; 

Vane et al. 1998; Lipsky, 1999). The link between COX-2 activity and inflammation has 

been dramatically confirmed by the clinical efficacy of two inflammatory, selective COX-2 

inhibitors, celecoxib (109) and rofecoxib (110) (Kozak et al., 2002). Recently, it was 
TMd

N
N CF3

NH2SO2

O

H3C   
O

CH3SO2

 
109     110 
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ur  4.9: C nvers n of a achido ic aci

PG2 (104), which has the same selective inhibitory activity like indomethacin (IC50 6 µM) 

against COX-2 was therefore the most active compound isolated from Pentadesma 

grandifolia. ME5 (88) which showed a good activity against 3α-hydroxysteroid 

dehydrogenase, was inactive against COX-2. 

From the point of view of structure-activity relationships, both PG1 (103) and PG2 (104) 

have a similar oxidation pattern (both are 1,3,6-trihydroxy-7-m

Structural differences between these two co nds are the pattern of substitution and the 

type of alkyl chain. PG2 has a geranyl chain at C-8 and no substitution at C-2. PG1 on the 

other hand, is substituted by two isoprenyl chains at C-2 and C-8. Its is considered that the 

geranyl chain at C-8 plays an important ro  the antiinflammatory activity. Both PG1 

nd PG2 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA). 

Arachidonic Acid

sta

or non-

Fig e o io r n d.  

 

ethoxyxanthones). 

mpou

le in

a

PG1 had a minimum inhibitory concentration (MIC) of 3.9-30.5 µM, while PG2 had the 

highest activity (MIC = 0.7-3.1 µM) (Iinuma et al., 1995). When these compounds were 

converted to their tetrahydro derivatives by reduction (111 and 112), the anti-MRSA 
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activity was reduced, especially for 112 (Iinuma et al., 1995). These findings suggested 

that double bonds on the alkyl chains are essential to the activity of a 1,3,6-trihydroxy-7-

methoxyxanthone derivative (Iinuma et al., 1995). 

 

O

O OH

OH

H3CO

HO                        O

O OH

OH

H3CO

HO  
                          111                                                                                  112 

 

4.4.3 Antioxidant activity 
 

The role of active oxygen species (ROS) and free radicals in the onset of several diseases is 

increasingly recognized (Halliwell and Gutteride, 1985). Free radical reactions have been 

implicated in pathology of many human diseases including cancer, ischemic heart disease, 

aging process, inflammation, diabetes, immunodepression, neurodegradative condition, 

arteriosclerosis, arthritis and other disease condition (Maxwell, 1995) and have been 

correlated with oxidative damage. Active oxigen species (ROS) such as superoxide (O2
·−), 

hydrogen peroxide (H2O2), hydroxyl radical (OH·) or singlet oxygen (1O2), are products of 

normal metabolism and are capable of attacking biological molecules leading to injury 

(Devkota, 2005). When the natural antioxidant protection is unbalanced by exogenous 

factors such as smoking, ionizing radiations, certain pollutants, organic solvents and 

pesticides, and endogenous factors such as normal aerobic respiration stimulated 

polymophonuclear leukocyte and macrophages, onset of disease occurs (Gulcin et al., 

2004). 

 

None of these compounds showed anti-oxidant activity when tested against horseradish 

peroxidase (IC50 ≥ 56 µM).  
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ook 

The aim of this thesis was to isolate and identify secondary metabolites from Maesopsis 

 (Sapotaceae) and Pentadesma grandifolia 

a  relationship between the therapeutic properties of these 

plants in traditional medicine and their constituents. 

e forms of ether, ester and glycoside, and 

belonging to three chemical classes: terpenoids, steroids and phenolics. Triterpenoids were 

first time to occur in this species and one of them (85) was a 

techin (97) was described as an anticancer agent. The fact that these compounds 

isolated from 

various biological properties l 

m ity of its bark.  

 

1

5 Conclusion and outl
 

eminii (Rhamnaceae), Autranella congolensis

(Guttifer e) and to establish a

  

The phytochemical study of Maesopsis eminii led to the isolation of 13 compounds 

occurring in the free form as well as in th

reported here for the 

previously unknown compound. This new triterpene (85) displayed moderate activity 

against Bacillus subtilis ATCC while 5-hydroxydigitolutein (88) displayed a good anti-

inflammatory activity. A mixture of (+)-catechin and (-)-epicatechin (97+98) was isolated 

and (+)-ca

Maesopsis eminii belong to several groups of natural products presenting 

could explain the wide use of this plant in traditiona

edicine, thanks to the diuretic, purgative, emetic and antidiarrhoetic activ
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Chemical investigation of Autranella congolensis led to the isolation of six compounds of 

which three were pentacylic triterpenes of the taraxerane type, together with one ∆7-sterol 

(24R)-stigmast-7,22(E)-dien-3α-ol (chondrillasterol, 26), and two phenolic compounds (+)-

catechin (97) and 24-feruloytetracosanoic acid (102). All these compounds were 

 have been elucidated and verified by spectroscopic 

ethods. Taraxerone (100) and ∆7-sterol were previously reported as constituents of the 

barks of the Mimusops species. With respect arity of the 

co a congolensis which is r the first time with those of 

the imusops confirms its membership ceae. The use of this 

pla matory agent could be linke +)-catechin (97) and 

other constituents, that could not be isolated in tract was a very 

omplex mixture and since many of the plant secondary metabolites are produced in 

sponse to infection (phytoalexins) in small quantities, isolation is sometimes difficult. 

previously known. Their structures

m

to chemotaxonomy, this simil

nstituents of Autranell studied here fo

 genus M of the family Sapota

nt as anti-inflam d to the presence of (

 pure form. The polar ex

c

re
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7,21-tetraen-3β-ol (105), 

102 100 

 

Six known compounds have also been isolated from the root bark of Pentadesma 

grandifolia, a bicyclic triterpenoid (13E,17E)-polypoda-7,13,1
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lupeol (23) and four xanthones α-mangostin (103), rubraxanthone (104), garcinone E (106) 

y activity and cowanin (108). Compounds 104 and 105 displayed good anti-inflammator

and 104 was found to selectively inhibit the cyclooxygenase-2 (COX-2). Lupeol (23) 

exhibited hypotensive activity (Harbone and Baxter, 1993), in vitro antimalarial activity 

(Alves et al., 1997), as well as anti-inflammatory activity (Geetha and Varalakshmi, 1988). 
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These various biological properties of compounds isolated from the root bark of 

 would be at the origin of its ethnomedicinal use. The absence of 

Pentadesma grandifolia contrast with the widespread 

r of higher plants, including plants of the 

amily Guttiferae. We therefore intend to extend the investigation to other parts of this 

species in order to conf  or inf

eventually to isolate some further constituents o  the second hand. 

Taking into consideration what precedes, it is necessary to affir  that plants remain an 

untapped reservoir of potentially useful chemical compounds as drugs, as unique templates 

that could serve as starting ma istry, or as tools for understanding 

the biological processes better  light of the alarming loss 

of plant diversity around the world due to habitat destruction and unsustainable havesting 

me of the medicinal plants with interesting lead compounds will disappear. 

 the conservation of natural resources and 

urces for the overall public benefit. 

Pentadesma grandifolia

any sterol in the root bark of 

occurrence of phytosterol in the bark and timbe

f

irm irm the absence of sterol in this plant in one hand and 

n

m

terial for synthetic chem

(Farnsworth, 1984). However, in

practices, so

One should therefore recognize the importance of

sustainable exploitation of such reso
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 Experimental Part 
 Instruments and Materials  

.1.1.1 General Methods 

ting poin were determ on a Büchi B-540 melting point apparatus and are 

NMR Spectroscopy: 

ded at 250 MHz, 500 MHz or 600 MHz and 13C NMR 

corded at 63 MHz, 126 MHz and 151 MHz, respectively, using deuterated 

 with an  internal standard. The spectrometers were of 

: 

Bruker AC  P (1H NMR, 250 MHz and C NMR, 63 MHz)  

ruker AM vance DRX 5 H NMR, 500 MHz and 13C NMR, 126 MHz) 

ruker Av ce 600 (1H NMR, 600.1 MHz and 13C NMR, 151 MHz).  

 spectra (KBr tablet or film) were recorded on a Jasco FT/IR-410 spectrometer, at room 

mperature. 

ass Co); Electron Impact 70 eV 

I: VG Autospec X (Micromass Co); Chemical Ionization 45 eV 

ire 3000 Electrospray Ionization (Bruker Daltonik Co) 

6
6.1

6.1.1 Instruments 
6

Melting point apparatus: 

 Mel ts ined 

uncorrected.  

 

The 1H NMR spectra were recor

spectra were re

solvents,  tetramethylsil e (TMS) as an

the type

 -  250 13

 -B  A 00 (1

 -B an

 

IR Spectroscopy: 

IR

te

 

MS: 

EI: VG Autospec X (Microm

C

ESI: Esqu

FT-ICR-MS: APEX III (Bruker Daltonik Co) 

 

TLC:  

Silica gel 60 F254, 0.1 mm thick (Merck) and RP-18 F254s, 0.25 mm thick (Merck) on the 

form of aluminum sheets or glass plates were used as stationary phase. The TLC plates 

were developed in various solvent systems at room temperature. All spots were detected by 
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uorescence (254 nm) and/or with a solution of Molybdate/Ce4+ reagent or a diluted 

solution of sulfuric acid (50% v/v) in MeOH followed by heating. 

254 with a 

erck). The preparative TLC plate sizes 20 

x 20 cm provided a large area for chromatographic separation. After the separation, the 

e products were detected with a UV lamp at 254 nm. The bands were 

2Cl2-MeOH 9:1 or EtOAc-

ding on the solubility of the product. The extract was finally 

ness to give the desired product. 

Table 6.1: Molybdate/Ce4+ reagent 

fl

 

PTLC: 

The preparative TLC plates consisted of a 1 mm thick layer of Silica gel 60 F

fluorescent indicator bonded to glass support (M

plate was dried and th

detached from the plate and extracted several 25 mL of CH

MeOH 9:1, depen

concentrated to dry

 

 

 Mass content / kg of solution 

(NH4)6Mo7O24.4H2O 50 g (5.0%)  

Ce(SO4)2 2 g (0.2%) 

H2SO4 (conc.) 50 g (27 mL) (5.0%) 

Water 898 g (898 mL) (89.8%) 

 

 

The Liebermann - Burchard test was used to detect terpenoids and steroids while the 

Shinoda test was used to detect flavonoids. Iron (III) chloride test was used for phenolic 

compounds. 

Liebermann - Burchard test: Unsaturated and hydroxylated triterpenes and steroids show a 

red, blue or green coloration with acetic anhydride and sulfuric acid (Abisch and 

s tend to produce a pink or purple 

) chloride test: Phenolic compounds show a red, blue, green or purple coloration 

ence and color change with conc. HCl and 

magnesium turnings. The coloration can be violet or red-brown. 

Reichstein, 1960). Since terpenoids or their saponin

shade and steroids and their saponins a blue-green coloration, differentiation of the two 

classes is possible. 

Iron (III

with 1% aqueous iron (III) chloride. 

Shinoda test: Flavonoids show effervesc
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ass columns of different sizes were usued. A vertical glass column was filled 

ith with Silica gel 60, 40-63 µm (Merck) and the sample to be separated was placed on 

 a solvent which, under the 

influence of gravity, moves the sample through the column. 

ice for most organic chemists when purifying organic 

mo Separation Products SN 4000 

 

Flash chromatography and atmospheric pressure column chromatography: 

Vertical gl

w

top of this support. The rest of the column was filled with

In the case of flash column chromatography, the solvent was driven through the column by 

applying positive pressure. When applying positive pressure on top of the column, most 

separations could be performed in less than 20 minutes with improved separations 

compared to the traditional column chromatography. This makes flash column 

chromatography the method of cho

compounds. 

 

 

Analytical HPLC 

  

Software Chromquest 

Autosampler Thermo Separation Products AS 100 

Pump Thermo Separation Products P 4000 

Controller Ther

Detector UV detector-Thermo Separation Products UV 6000 

Columns VydacTM 300 C18, 5 µm, 250x4 mm, 

Phenomenex, Jupiter C18, 5 µm, 250x4.6 mm 

VydacTM 218TP54 efficiency C18, 5 µm, 250x4.6 mm 

Eluent A 95% H2O, 5% ACN, 0.1% TFA 

Eluent B 95% ACN, 5% H2O, 0.1% TFA 
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Methods used for analytical HPLC: 

 

Table 6.2: The gradient for analytical method 1 

 

Time Eluent A (%) Eluent B (%) Flow (mL/min) UV (nm) 

0 100 0 

45 0 100 

50 0 100 

55 100 0 

 

 

1 

 

 

220 and 254 

 

 

Table 6.3: The gradient for analytical method 2 

 

Time Eluent A (%) Eluent B (%) Flow (mL/min) UV (nm) 

0 100 0 

5 100 0 

30 0 100 

40 0 100 

50 100 0 

55 100 0 

 

 

1 

 

 

 

220 and 254 

 

 

Preparative HPLC 

  

hromquest 

VydacTM 300, C18, 10 µm, 250x220 mm 

Software C

Pump Thermo Separation Products P 4000 

Controller Thermo Separation Products SN 4000 

Detector Thermo Separation Products UV 1000 

Columns 

VydacTM 218 TP 1022 efficiency, C18, 250x220 mm 

Eluent A 95% H2O: 5% ACN: 0.1% TFA 

Eluent B 95% ACN: 5% H2O: 0.1% TFA 
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UV (nm) 

 

Methods used for Preparative HPLC 

 

Table 6.4: Preparative method 1 

 

Time Eluent A (%) Eluent B (%) Flow (mL/min) 

0 100 0 

45 0 100 

 

 

 

 

50 0 100 

55 100 0 

10 

 

254 

 
Table 6.5: Preparative method 2 

  

Time Eluent A (%) Eluent B (%) Flow (mL/min) UV (nm) 

0 100 0   

5 100 0 

30 0 100 

50 100 0 

 

10 

 

254 

40 0 100 

55 100 0 

 

 

Sonification Baths 

Sonorex RK 510 H (Bandelin) 

Sonorex TK 52 (Bandelin) 

 

Solvents 

All solvents used were previously distilled separately except those which were obtained 

from the compagny Merk. Methylene chloride was first distilled over calcium chloride and 

finally from calcium hydride. Ethyl acetate and Petrolether were distilled from calcium 

chloride. Tetrahydrofuran was first distilled from calcium chloride and finally from 

calcium hidryde and sodium. Water was purified using a Millipore water purification 

system. Acetonitrile (gradient grade) was obtained from Merck. Trifluoroacetic acid was 

obtained from Solvay Fluor and Derivative GmbH. 
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vity screening 

6.1.1.2.1 Materials 

ndicator organisms (bacteria, fungi…) 

6.1.1.2.2 Procedure 

A commonly used agar diffusion procedure that measures the antimicrobial activity was 

used. The culture media are inoculated using aseptic techniques with the selected culture 

by spreading it across the agar surface. Filter-paper discs containing known concentrations 

of different antimicrobial agents are then placed directly onto the inoculated agar. After 

incubation at 37 °C for 24 to 48 hours, the plates are examined for any growth inhibition, 

meaning that the microbe is susceptible to the agent present. If there is no or very little 

inhibition, then the compound is not active against the microbe. The size of the zones of 

inhibition is then recorded; the diameter of the zone is proportional to the amount of 

antimicrobial agent, the solubility of the agent, the diffusion coefficient, and the overall 

effectiveness of the agent. Zones observed on the plates are then compared to standard data 

to determine if the agent can be considered as really active against the test organism. The 

microorganisms used for the test were:  

Bacteria: Bacillus subtilis ATC 6633, Eschericia coli. 

Yeasts: Saccharomyces cerevisiae, Rhodotorula rubra IMET 25030, Sporobolomyces 

salmonicolor SBUG 549, Kluyveromyces marxianus IMET 25148, Candida formata IMET 

25000. 

Fungi: Fusarium culmorum JP 15, Penicillium notatum JP36, Glomerella cingulata, 

Penicillium sp, Phoma destructiva I 1015. 

6.1.1.3 Antiinflammatory activity screening 

6.1.1.2 Antimicrobial acti

Antimicrobial studies was carried out by Mr. Hilaire V. Kemami Wangun, from the Hans-

Knöll-Institut for Natural Product Research, Jena, Germany. 

 

Inoculated cultures of i

Nutrient agar plate 

Filter-paper discs 

Solutions of different concentrations of the test compounds 
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The antiinflammatory studies were carried out by Dr. Albert Härtl from the Leibniz-

Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Jena, 

Germany. 

 

6.1.1.3.1 Inhibition of 3α-hydroxysteroid dehydrogenase 

Antiinflammatory activity of the purified compounds was evaluated using the protocol 

described in the literature by Penning (1985). This method consists of monitoring the 

reduction of 3-ketosteroid, e.g., 5β-dihydrocortisone (5β-pregnan-17α,21-diol-3,11,20-

trione), catalyzed by the NAD(P)-linked 3α-hydroxysteroid dehydrogenase, to its 

corresponding 3α-hydroxysteroid.  

 Enzyme Assays: The reduction of 5β-dihydrocortisone was monitored by measuring 

the change in the absorbance of the pyridine nucleotide at 340 nm. Each essay (1 mL) 

contained the following: 0.840 mL H2O, 0.100 mL 1 M potassium phosphate buffer (pH 

6), 20 µl 9 mM 5β-dihydrocortisone, and 30 µl acetonitrile. The reactions were initiated by 

the addition of enzyme (0.6 µg), and the optical density change was followed over a time 

course of 5 min. Control experiments in which the cytosol was added to incubations in 

which either the 5β-dihydrocortisone or NADPH was absent indicated that the presence of 

both substrates was required before the cytosol would promote a change in absorbance at 

340 nm (Penning, 1985). 

 Inhibition Studies: Increasing amounts of steroidal and non steroidal antiinflammatory 

drugs, added to 3α-hydroxysteroid dehydrogenase of rat liver cytosol, inhibit the reduction 

of 5β-dihydrocortisone (5β-pregnan-17α,21-diol-3,11,20-trione) to its corresponding 3α-

hydroxysteroid. The degree of inhibition was used to predict the pharmacological potency 

of the drugs and the concentration of drug required to reduce the rate of 5β-

dihydrocortisone reduction by 50% (IC50 value) was computed from the resulting dose-

sponse curves. This NAD(P)-linked enzyme therefore plays an important role in both 

androgen and cortisone metabolism (Holt and Scriefers, 1973; Tomkins, 1956; Tomkins, 

one useful in suppressing of 

ated compounds. This assay utilizes the 

re

1956a). It should be noted that cortisone is an horm

inflammation (Penning, 1985).  

6.1.1.3.2 Inhibition of cyclooxygenase-2 (COX-2) 

The Cayman Chemical Chemiluminescent COX (ovine) Inhibitor Screening Assay was 

used to evaluate the inhibitory activity of the isol
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heme-catalysed hydroperoxidase activity of ovine cyclooxygenases to generate 

lu  hydrazide and the substrate 

arachidonic acid (Forghani et al., 1998). Arachidonate-induced luminescence was shown to 

b  of re atalytic activity and demonstrate the turnover activation of the 

e han 8). Inhibition of cyclooxygenase activity measured by 

l sence, by d non-selective inhibitors showed potencies 

s to those o vitro and whole cell methods (Forghani et al., 

1 This Caym inescent COX assay was described as a time 

s ol for scr

 

P on of th

3 ml of assay buffer concentrate was diluted with 27 ml of HPLC-grade water and the final 

 store on ice. For each well 10 µl of enzyme was needed. A solution 

 Assay Buffer (dilute) to achieve a final concentration of 

 the wells and the assay was performed at 25 

onic acid (a Luminometer 

 were added to three other wells and used as 100% initial activity 

wells, while inhibitor wells (three wells) contained a mixture of 10 µl of heme, 10 µl of 

minescence in the presence of a cyclic naphthalene

e an index al-time c

nzyme (Forg i et al., 199

umine a variety of selective an

imilar bserved with other in 

998). an Chemical Chemilum

aving to eening vast numbers of inhibitors. 

reparati e reagents 

assay buffer (0.1 M Tris-HCl, pH 8) was used for dilution of heme and arachidonic acid 

prior to asaying. 58 µl of heme (dissolved in DMSO) was diluted with 942 µl of dilute 

assay buffer. To avoid repeated freezing and thawing, the solution of COX was aliquoted 

into several small vials and stored at –80 °C. 30 µl of enzyme was diluted with 570 µl of 

dilute assay buffer and

of arachidonic acid in ethanol was prepared and stored at –80 °C when not beeing used. 

100 µl of the substrate was transferred to another vial in which 100 µl of 0.1 M KOH was 

added and dilute with 9.8 ml of

116 µM. The prepared arachidonic acid solution was used within 1 hour. A 50 µl aliquot 

yielded a final concentration of 20 µM in the wells. The chemiluminescent substrate was a 

solution of naphthalene hydrazide which was then used as supplied. 

 

Performing the assay 

The final volume of the assay was 290 µl in all

°C. The COX sample were assayed in triplicate in 96-well microplate. The Luminometer 

dispensed both the chemiluminescent substrate and the arachid

with two syringes). 

10 µl of heme, 10 µl of Assay Buffer, and 10 µl of DMSO were added to three wells which 

were used as background wells, 10 µl of heme, 10 µl of Enzyme (either COX-1 or COX-2), 

and 10 µl of DMSO
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hich was allowed to dispense 10 µl of the chemiluminescent 

substrate and then immediately 50 µl of arachidonic acid to all the wells used. The 

lu

s 

 relat  (RLU) of all the samples was determined. The RLU 

 the RLUs of the 100% initial activity and the 

ells. e was also subtracted from 100% initial activity 

sample, and then  initial activity sample, and finally multiplied by 100 

to give the percent inhibition. 

. Albert Härtl from the Leibniz-Institute for 

ed at 37 °C for 30 min. The absorbance was measured at 515 

Enzyme (either COX-1 or COX-2), and 10 µl of inhibitor. Inhibitors were dissolved in 

dimethyl sulfoxide. Several dilutions of the inhibitor were made. The reaction was then 

initiated by adding 200 µl of assay buffer to all the wells used. The plate was then inserted  

into the luminometer w

minescent unit was immediately read for 10 seconds per well. 

 

Calculation

The average ive luminescent units

of the background wells was subtracted from

inhibitor w Each inhibitor sampl

 divided by the 100%

The IC50 value (concentration at which there was 50% inhibition) was determined either by 

graphing the Percent Inhibition or Percent Initial Activity by the Inhibitor Concentration.  

 

6.1.1.4 Antioxidant activity screening 

The antioxidant studies were carried out by Dr

Natural Product Research and Infection Biology, Hans-Knöll-Institut, Jena, Germany. 

 

DPPH (1,1-Diphenyl-2-picryl hydrazyl) free radical scavenging activity 

The reaction mixture containing 5µl of test sample (1mM in DMSO) and 95µl of DPPH 

(1,1-Diphenyl-2-picryl hydrazyl) (Sigma, 300µM) in ethanol was taken in a 96-well 

microtiter plate and incubat

nm. Percent radical scavenging activity was determined by comparison with a DMSO 

containing control. BHA (3-t-butyl-4-hydroxyanisole) was used as a positive controle. All 

the chemicals used were of Analytical Grade (Sigma, USA). 
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The stem bark of Maesopsis eminii was collected in February 2001 at Mfou in the Centre 

 sample was identified at the Cameroon National Herbarium in 

ther, CHCl3 and EtOAc, respectively (see scheme below). 

 

6.1.2 Plant material 
6.1.2.1 Maesopsis eminii 

Province of Cameroon. The

Yaounde, where a voucher specimen is on deposit under the references RL5561; f 234 

/SRF/Cam. 

6.1.2.1.1 Extraction 

Air-dried, powdered stem bark of M. eminii (3 kg) was extracted at room temperature with 

MeOH and concentrated to dryness to afford a viscous residue (70 g). This residue was 

then re-extracted with petrol e
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Plant material
chopping

drying

grinding

Powder

tract

Hexane 
extract

Residue Methanolic 
ex

Extraction in MeOH

Extraction in Hexane

EtOAc
Extract

Residue

Extraction in Chloroform

Chloroform 
Extract

Residue

Purification

3β-Hydroxybauer-7-
en-28-oic acid (86)

Obtusifo-
lin (87)

Chryso- 
phanol (89)

Extraction in EtOAc

Si
top

tosteryl-3-O-β-D-galac-
yranoside (92)

Residue

1-(24-Ferul ox tetr
cosanoyl)-glycerol (

yl y a- 
93)

Purification

Islandicin 
(9)

5-Hydroxydi- 
gitolutein (88)

Helmintho-
sporin (90)

Stigmaste-
rol (91)

1α,3β-D hydroxybauer-i
7-en-28-oic acid (85)

Catechin Sitosteryl-3-O-β-D-glu-
(97+98)copyranoside (25)

 
 

6.1.2.1.2 Separation and purification 

β-Sitosterol 
(24)

ure (4 g), was subjected to column 

of 

eOH 9:1, resulting in 130 fractions of 150 mL 

ach which were combined on the basis of TLC analysis. The elution conditions for the 

chromatographic fractions are given in Table 6.6. 

The concentrated petrol ether extract, an oily mixt

chromatography over silica gel  and eluted with a petrol ether/EtOAc gradient 

increasing polarity, EtOAc and EtOAc/M

e
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 Fractions of the PE-Extract 

 

Table 6.6: Chromatographic

 

Fractions Eluent 

Oily mixture petrol ether 

1-25 petrol ether/EtOAc 19:1 

26-36 petrol ether/EtOAc 9:1 

37-62 petrol ether/EtOAc 17:3 

63-110 petrol ether/EtOAc 4 :1→1:4 and 

EtOAc 

111-130 EtOAc/MeOH 9:1 

 

Fractions 4-15 were eluted with a mixture of petrol ether/EtOAc 19:1, concentrated and 

chromatographed a second time on HPLC using preparative method 1 to afford compound 

ME4 (25 mg) and ME6 (11 mg) after evaporation of solvent followed by lyophilisation. 

The two compounds were obtained at the retention time 34 and 38.4 min (preparative 

l ether/EtOAc 19:1 and 

ompound ME7 (60 mg) 

hich crystallized on standing. 

r trol ether/EtOAc 9:1 and 

concentrated, and chromatographed a second time over 

zed on standing.  

re of petrol ether/EtOAc 1:4 and 

ted, and chromatographed a second time over silica gel, 

HPLC), respectively. 

Fractions 29-33 were eluted successively with mixtures of petro

petrol ether/EtOAc 9:1, respectively, and evaporated to afford c

w

Fractions 34-41 were eluted successively with mixtu es of pe

ether/EtOAc 17:3, respectively, 

silica gel, eluted with pure CH2Cl2  to afford compound ME5 (40 mg). 

Fractions 42-52 were eluted with a mixture of petrol ether/EtOAc 17:3, concentrated, and 

chromatographed a second time on HPLC using preparative method 1 to afford compound 

ME3 (5.5 mg) with a retention time 30.5 min. 

Fractions 61-63  were eluted with a mixture of petrol ether/EtOAc 4:1 and evaporated to 

afford compound ME2 (9 mg), which crystalli

Fractions 105-129 were eluted successively with a mixtu

EtOAc respectively, concentra

eluted with a mixture of CHCl3-MeOH 9:1 to afford ME8 (10 mg), sitosterol 3-O-β-D-

galactopyranoside.  
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he combined mixture of the CHCl3 and EtOAc extracts (8 g) was subjected to a column 

 gradient of increasing 

ns (Table 6.7) of 20 mL each which were combined on the 

T

chromatography over silica gel and eluted with a CH2Cl2-MeOH

polarity resulting in 140 fractio

basis of TLC analysis.  

 

Table 6.7: Chromatographic Fractions of the combined mixture  

 

Fractions Eluent 

1-80 CHCl3-MeOH 97:3 

81-110 CHCl3-MeOH 93:7 

111-140 CHCl3-MeOH 22:3  

CHCl3-MeOH 4:1 

 

Fractions 1-3 were eluted with a mixture of CHCl3-MeOH 97:3, concentrated, and 

time 45.9 min. 

concentrated and 

 were combined to afford a product which was subjected to PTLC for 

y 

ocratic elution over a small column using a mixture of CHCl3-MeOH 19:1, gave 

sively with the mixtures of CHCl3-MeOH 93:7 and 

er 

-β-D-glucopyranoside. 

chromatographed a second time on HPLC using preparative method 1 to afford compound 

ME11 (6 mg) with a retention 

Fractions 4-18 eluted with a mixture of CHCl3-MeOH 97:3, were 

chromatographed a second time over silica gel and eluted with a mixture of CH2Cl2-MeOH 

99:1 to afford compound ME12 (β-sitosterol). 

Fractions 35-57

purification using  a mixture of CHCl3-Toluene-MeOH 19:4:1; compound ME9 (70 mg) 

was obtained.  

Fractions 72-92 were eluted with a mixture of CHCl3-MeOH 97:3 and CHCl3-MeOH 93:7, 

respectively, and combined to afford 250 mg of a product which, after purification b

is

compound ME1 (100 mg). 

Fractions 93-114 were eluted succes

CHCl3-MeOH 22:3, respectively, concentrated, and chromatographed a second time ov

silica gel, eluted with a mixture of CH2Cl2-MeOH gradient of increasing polarity. Sub-

fractions 87-109, eluted with a mixture of CH2Cl2-MeOH 37:3 were concentrated to 

dryness to afford ME13 (27 mg), sitosterol 3-O
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pectively, concentrated, and chromatographed a second time over silica gel, eluted 

ith a mixture of CH2Cl2-MeOH 17:3 to afford ME14 (180 mg) (+ and – catechin). 

ilute HCl (1mL) for 

in CHCl3/MeOH 97:3), 

educed pressure to yield D-galactose, 

cetylation of ME9 

nd stirred for 24 hours at room 

 to the mixture, followed by extraction with EtOAc. 

4-

Fractions 124-136 were eluted with a mixture of CHCl3-MeOH 22:3 and CHCl3-MeOH 

4:1, res

w

 

Acidic hydrolysis of ME8 

ME8 (10 mg) in MeOH (4.5 mL) and H2O (0.5 mL) was refluxed in d

6 hours. Then the mixture was cocentrated and H2O was added, followed by neutralisation 

with 10% NaHCO3. After extraction with EtOAc, the aglycone which was identified as β–

sitosterol by comparison with authentic compound (TLC, Rf 0.42 

was removed. The H2O phase was evaporated under r

which was confirmed by comparison (TLC, EtOAc/MeOH/H2O 7:1:2, Rf 0.13) with a 

sample of β-D(+)-galactose. 

 

A

ME9 (30 mg) was dissolved in C5H5N-Ac2O (4 mL, 1:1) a

temperature. Crushed ice was added

The EtOAc extract was then evaporated to dryness to yield ME10, tetracosanoic acid, 2

[[(2E)-3-[4-(acetyloxy)-3-methoxyphenyl]-1-oxo-2-propenyl]oxy]-, 2,3-bis(acetyloxy) 

propyl ester. 

 

1α,3β-Dihydroxybauer-7-en-28-oic acid (ME1) (85), C30H48O4;  

colorless crystals; mp 302-304 °C;  

IR ν~ max (KBr) cm-1: 3423, 2960, 2930, 2871, 1693, 1457, 1380, 1207, 1041, 790, 651;  

6), see Table 4.1;  

 (23.17), 263 (3.39), 227 (6.24), 207 (16.25), 189 (5.52), 173 (5.86);  

RMS (ESI-FT-ICR) m/z calcd.: 471.34798 [M-H]-, found: 471.34805 [M-H]-. 

c acid (ME2) (86), C30H48O3;  

le 4.1;  

1H NMR (600 MHz, DMSO-D
13C-NMR (63 MHz, DMSO-D6), see Table 4.1;  

MS (CI, NH3) m/z (rel. int. %) 490 (66.46), 472 (16.33), 456 (25.49), 455 (77.34), 437 

(100), 427 (41.40), 391

H

 

3β-Hydroxy-bauer-7-en-28-oi

colorless powder; mp 308-310 °C (Lit. Mersuriyen et al., 1986; 305-308 °C); 
13C-NMR (126 MHz, DMSO-D6), see Tab

MS (EI) m/z (rel. int. %) 456 (69), 441 (100), 438 (6), 423 (54). 
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ellow powder, mp 239-241 °C (Lit. Cameron et al.,1989; 241-243 °C);  

IR

Obtusifolin (ME3) (87), C16H12O5; 

y

 ν~ max (KBr) cm-1: 3355, 1647, 1594, 1466, 1385, 1278, 765, 733;  

 2.40 (3H, s, Me), 4.00 (3H, s, OMe), 6.76 (1H, s br, 

, 2-OH), 7.27 (1H, d, J=7.8 Hz, H-7), 7.63 (1H, t, J=7.8 Hz, H-6), 

) m/z calcd.: 285.07539 [M+H]+, 307.05708 [M+Na]+, found: 

285.07575 [M+H]+, 307.05769 [M+Na]+;  

MS (ESI) m/z 590.8 [2M+Na]+, MS (ESI, negative mode) m/z 282.9 [M-H]-. 

 

Chrysophanol (ME4) (89), C15H10O4; 

yellow powder, mp 171-174 °C (Lit. Ekpa et al., 1985; 194-196°C) ;  

IR

1H NMR (500 MHz, CDCl3, δ ppm):

exchangeable with D2O

7.78 (1H, d, J=6.9 Hz, H-5), 7.98 (1H, s, H-4), 12.83 (1H, s, 8-OH);  
13C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.2; 

HRMS (ESI-FT-ICR

 ν~ max (KBr) cm-1: 3429, 2921, 2851, 1672, 1627, 1457, 1384, 1272, 1210, 1055, 753, 

727;   
1H NMR (500 MHz, CDCl3, δ ppm): 2.46 (3H, s, Me), 7.08 (1H, d, J=1.2 Hz, H-2), 7.28 

(1H, dd, J=8.4, 1.0 Hz, H-7), 7.63 (1H, d, J=1.2 Hz, H-4), 7.66 (1H, t, J=8.0 Hz, H-6), 

7.80 (1H, dd, J=7.5, 1.0 Hz, H-5), 11.99 (1H, s, 1-OH), 12.10 (1H, s, 8-OH);  
13C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.2; 

HRMS (CI, NH3) m/z  calcd.: 255.06549 [M+H]+, found: 255.06573 [M+H]+;  

MS (CI, NH3) m/z 255 [MH]+, 254 [M]+. 

 

5-hydroxydigitolutein (ME5) (88), C16H12O5;  

orange needles, mp 235 – 237 °C; 

IR ν~ max (KBr) cm-1: 3333 (OH), 1633, 1560, 1475, 1315, 1272, 1092, 1038, 749;   
1H NMR (500 MHz, CDCl3, δ ppm): 2.36 (3H, s, Me), 3.93 (3H, s, OMe), 7.34 (1H, dd, 

J=7.5, 1.3 Hz, H-6), 7.68 (1H, dd, J=7.5, 1.3 Hz, H-8), 7.79 (1H, t, J=7.9 Hz, H-7), 7.86 

(1H, s, H-4), 8.02 (1H, s br, exchangeable with D2O, 2-OH), 12.83 (1H, s, 5-OH).  
13C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.2; 

HRMS (ESI-FT-ICR) m/z calcd.: 285.07554285 [MH]+, found: 285.07575285 [MH]+;  

MS (CI, NH3) m/z 285 [MH]+, 284 [M]+
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Helminthosporin (ME6) (90), C15H10O5;   

red powder, mp 196-198 °C;  

IR ν~ max (KBr) cm-1: 3433 (OH), 1602, 1457, 1296, 1260, 1231, and 1181, 805;  
1H NMR (500 MHz, CDCl3, δ ppm): 2.46 (3H, s, Me), 7.08 (1H, s, H-2), 7.24 (2H, H-6, 

H-7), 7.66 (1H, s, H-4), 12.10 (1H, s, 1-OH), 12.28 (1H, s, 5-OH), 12.97 (1H, s, 8-OH).  
13C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.2; 

RMS (CI, NH3) m/z calcd.: 271.06008 [MH]+, found: 271.06065 [MH]+;  

M ]+

 

S ol (ME  C29H48O;  

 white powder, mp )  

I

H

S (CI, NH3) m/z 271 [MH]+, 255 [MH-O

tigmaster 7) (91),

 138-140 °C (Lit. Ikan, 1991; 139-140 °C

R ν~ max (KBr) cm 80, 1055, 1022, 958, 838 and 800;   
1 R (500 MH (3H, s, Me-18), 0.79 (3H, d, J=6.45 Hz, Me-26), 

0 , s, Me-19 z, Me-29), 0.93 (3H, d, J=6.45 Hz, Me-27), 1.02 

(3H, d, J=6.67 Hz, Me-21), 3.55 (1H, m, J=5.23 Hz, H-3), 5.00 (dd, J=15.07, 8.79 Hz), 

5.12 (1H, dd, J=15.07, 8.79Hz), 5.33 (1H, s br, H-6);  
1 R (126 M able 4.4; 

HRMS (EI) m/z calcd.: 412.37052 [M+], found. 412.37047 [M+];  

-1: 3416, 2865, 1463, 13

H NM z, CDCl3, δ ppm): 0.53 

.80 (3H ), 0.83 (3H, t, J=6.50 H

3C-NM Hz, CDCl3, δ ppm), see T

MS (CI, NH3) m/z 413 [MH]+, 397, 395 [M-OH]+, 383, 271, 255 

 

Sitosterol 3-O-β-D-galactopyranoside (ME8) (92), C35H60O6;  

white powder, mp 261-263 °C;  

IR ν~ max (KBr) cm-1: 3400, 3351, 3000, 2853, 1645, 1375, 1350, 1168, 1070, 1030;   
1H NMR (500 MHz, DMSO-D6, δ ppm): aglycone: 0.64 (3H, s, Me-18), 0.80 (6H, d, 

J=6.9 Hz, Me-26 and Me-27), 0.81 (3H, t, J=6.5 Hz, Me-29), 0.89 (3H, d, J=6.5 Hz, Me-

21), 0.95 (3H, s, Me-19), 3.46 (1H, m, H-3), 5.31 (1H, s br, H-6); sugar: 2.88 (1H, m, H-

2’), 3.00 (1H, m, H-4’), 3.1 (1H, m, H-5’), 3.30 (1H, m, H-3’), 3.40 (1H, m, H-6’), 3.62 

(1H, m, H-5’), 4.20 (1H, d, J=7.5 Hz, H-1’).  
13C-NMR (126 MHz, DMSO-D6, δ ppm), see Table 4.4; 

MS (ESI): m/z 599 [M+Na]+;  

MS (EI): m/z (rel. int. %) 414 (30) [Magl.]+, 396 (100), 381 (19), 329 (12). 303 (17), 273 

(10), 255 (25), 231 (9), 213 (21), 175 (10), 163 (14), 161 (24), 147 (30), 145 (35), 119 

(27). 107 (40), 95 (46), 81 (51).  
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brown powder; mp 74-76 °C.  

 

1-(24-ferulyloxytetracosanoyl)-glycerol (ME9) (93), C37H62O8;

IR ν~ max (KBr) cm-1: 3422 cm-1 (OH), 2917, 2849, 1737, 1712, 1632, 1596, 1518, 1469, 

1273, 1174, 719;  

1H NMR (500 MHz, CDCl , δ ppm): 1.22-1.27 [36H, s, (CH )18], 1.37 (2H, m, H-21’’), 

1.6 (2H, m, J=7.2 Hz, H-22’’), 1.7 (2H, t, J=6.8 Hz, H-2’’), 2.33 ( 2H, t, J=7.5 Hz, CH -

CO), 3.47 (1H, br, exchangeable D O, OH), 3.58 (1H, dd, J=11.3, 6.0 Hz, 

3 2

2

2 CH2-OH), 3.69 

(1H, dd, J=11.5, 3.9 Hz, CH2-OH),  3.91 (3H, s, 3-OMe), 3.91 (1H, m, CHOH), 4.15 (2H, 

d, J=6.0 Hz, COOCH ), 4.18 (2H, t, J=6.8 Hz, O=C-O2 CH2CH ), 6.29 (1H, d, J=15.9 Hz, 

=CH, H-2’), 6.90 
2

(1H, d, J=8.2 Hz, H-5), 7.03 (1H, d, J=1.9 Hz, H-2), 7.06 (1H, dd, J=8.2, 

1.9 Hz, H-6), 7.6 (1H, d, J=15.9 Hz, =CH, H-1’); 

7.43369 [M+Na]+, found: 

[M+Na]+; 

 (

, 473.4, 177;  

.69 (C-3’’- C-20’’), 34.16 (C-23’’), 55.92 (OMe), 63.31 (C-3’’’), 64.66 (C-1’’), 

, 167.50 (C-3’), 174.39 (C-24’’). 

HRMS (ESI-FT-ICR) m/z calcd.: 635.45175 [M+H]+, 65

635.45231 [M+H]+, 657.43432 

MS ESI) m/z 657.5 [M+Na]+; (ESI, negative mode) m/z 634.4 [M]+, m/z 559.4 [M-

C3H7O2]+, 541.4

MS (CI, NH3) m/z 543 [M-C3H7O3]+, 542, 498, 298, 296, 242 and 177;  

MS (EI) m/z (rel. int. %) 542 (13) [M-C3H8O3]+, 514 (17), 498 (8), 298 (57), 296(12), 242 

(23), 226 (10), 199 (17), 194 (18), 191(13), 177 (36), 97(15), 95 (17), 83 (22), 69 (35), 61 

(100), 55 (54); 
13C-NMR (126 MHz, CDCl3, δ ppm): 24.90 (C-22’’), 26.00 (C-21’’), 28.77 (C-2’’), 

29.14-29

65.11 (C-1’’’), 70.22 (C-2’’’), 109.38 (C-2), 114.83 (C-5), 115.55 (C-2’), 123.07 (C-6), 

126.94 (C-1), 144.72 (C-1’), 146.87 (C-3), 148.06 (C-4)

 

Islandicin (ME11) (9), C15H10O5; 

red-brown  powder, mp 215-217 °C; 

IR ν~ max (KBr) cm-1: 3420, 2926, 2854, 1734, 1601, 1458, 1248, 1176, 1077, 814, 710;  
1H NMR (500 MHz, CDCl3, δ ppm):  13.48 (1H, s, 4-OH), 12.37 (1H, s, 1-OH), 12.32 

H, s, 8-OH), 7.88 (1H, d, J=7.6 Hz, H-5), 7.68 (1H, t, J=7.6 Hz, H-6), 7.29 (1H, d, J=7.6 

), see Table 4.3; 

(1

Hz, H-7), 7.15 (1H, s, H-2), 2.37 (3H, s, Me); 
13C-NMR (126 MHz, CDCl3, δ ppm

HRMS (EI) m/z found: 270.05322 [M+], calcd.: 270.05282 [M+];  
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MS (EI) m/z (%) 270 (66) [M]+, 155 (13), 141 (14), 127 (18). 99 (27), 85 (54), 69 (44), 57 

(100);  

 

β-Sitosterol (ME12) (24), C H O;  29 50

colorless powder, mp 140-141 °C;  

IR ν~ max (KBr) cm-1: 3420, 3410, 3050, 1670, 1374, 1364, 950, 880;  

.40 (1H, m, H-3), 5.30 (1H, s br, H-6); 

C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.4; 

96 (64), 381 (22), 273 (12), 255 (35), 231 (10), 

(23), 147 (36), 145 (49), 119 (28). 109 (26), 95 (46), 81 

. 

1H NMR (500 MHz, CDCl3, δ ppm): 0.53 (3H, s, Me-18), 0.71 (3H, s, Me-19), 0.82 (3H, 

d, J=6.8 Hz, Me-26), 0.84 (3H, t, J=6.9 Hz, Me-29), 0.95 (3H, d, J=6.5 Hz, Me-27), 1.00 

(3H, d, J=7.2 Hz, Me-21), 3
13

MS (EI): m/z (rel. int. %) 414 (42) [M]+, 3

213 (26), 175 (8), 163 (15), 161 

(61)

 

Sitosteryl β-D-glucopyranoside (ME13) (25), C35H60O6;  

colorless powder, mp 258-260 °C;  

IR ν~ max (KBr) cm-1: 3398 (OH)  2933, 2868, 1640, 1464, 1378, 1163, 1105, 1075, 1024; 
1H NMR (500 MHz, C5D5N, δ ppm): aglycone: 0.67 (3H, s, Me-18), 0.89 (6H, d, J=6.8 

.00 (3H, d, J=6.4 Hz, Me-21), 

 (1H, s br, H-6); sugar: 

H, m, H-5’), 4.20 (1H, d, J=7.8 Hz, H-1’); 

C-NMR (126 MHz, C5D5N, δ ppm), see Table 4.4; 

81 (17), 329 (11). 303 (13), 273 (8), 

, 163 (11), 161 (19), 147 (23), 145 (23), 119 (16). 107 

Hz, Me-26 and Me-27), 0.86 (3H, t, J=6.5 Hz, Me-29), 1

0.90 (3H, s, Me-19), 0.95 (3H, s, Me-19), 3.46 (1H, m, H-3), 5.31

2.88 (1H, m, H-2’), 3.00 (1H, m, H-4’), 3.1 (1H, m, H-5’), 3.30 (1H, m, H-3’), 3.40 (1H, 

m, H-6’), 3.62 (1
13

MS (ESI): m/z 599 [M+Na]+;  

MS (EI) m/z (rel. int. %) 414 (24) [Magl.]+, 396 (100), 3

255 (18), 231 (7), 213 (15), 163 (14)

(24), 95 (28), 81 (23). 

 

Catechin (ME14) (97+98), (C15H14O6)2,   

brown powder, mp 87-90 °C;  

IR ν~ max (KBr) cm-1: 3570, 3160, 1625, 1520, 1469, 1441, 1385, 1183, 1140;   
1H NMR and 13C NMR (see Table 4.5);  

ESI-FT-ICR MS (m/z 603.14855; calcd for (C15H14O6)2+Na, 603.14730);  
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roon), cut 

ESI (positive mode): m/z 313.1 [M+Na]+ and 602.8 (base peak) [2M+Na]+

 

6.1.2.2 Autranella congolensis 

6.1.2.2.1 Extraction 

Plant material (stem bark) was collected at Dschang (Western province of Came

into pieces,  air-dried and pulverized. The resulting powder has been extracted with hexane 

and CH2Cl2-MeOH.  

 

Stem bark

chopping

drying

grinding

Powder

Extraction with 
CH2Cl2/MeOH 1:1

Residue

Residue Extract

Extraction with Hexane

Flash CC

A (7-18) B (29-34) C
CC

PTLC
CC

Extract

CC

A1 (1-115) A2 (119-150) A3 (154-227)

Taraxerol Compound 
26

CC CC CC

Compound Taraxerone101

(+)-Catechin24-Feruloyltetra-
cosanoic acid
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6.1.2.2.2 Separation and purification 

The residue (180 g) obtained after evaporation of the CH2Cl2-MeOH extract, was 

fractionated over silica gel (0.04-0.063 mm). Elution with a petrol ether/EtOAc mixture of 

increasing polarity afforded 68 fractions of 250 mL each which were collected and mixed 

on the basis of TLC analysis (Table 6.8). 

 

Table 6.8: Chromatographic Fractions 

 

Fractions Eluent 

1-5 petrol ether and petrol ether/EtOAc 4:1 

6-20 petrol ether/EtOAc 3:2 

21-30 petrol ether/EtOAc 2:3 

31-44 petrol ether/EtOAc 1:4 

45-54 EtOAc 

55-62 EtOAc/MeOH 19:1 

63-68 EtOAc/MeOH 9:1→4:1 

 

Fractions 7-18 were eluted with a mixture of petrol ether/EtOAc 3:2, concentrated, and 

ubjected to repeated column chromatography over silica gel. After isocratic elution using 

a m xture of CH2Cl2/cyclohexane/MeOH 90:10:3, 70 sub-fractions of 20 mL each were 

collected and monitored by TLC. Sub-fractions 20-43 were concentrated and purified by 

AC-F7.2. 

2Cl2 1:1 to CH2Cl2/MeOH 19:1 resulted in collection of 

250 fractions of 20 mL each,  which were examined by TLC. Fractions 1-115 eluted with a 

petrol ether/ CH2Cl2 mixture of increasing polarity were concentrated and subjected to 

repeated column chromatography over silica gel to afford Hex_F1 and taraxerone, 

AC_Hex2.A. Fractions 119-150 were purified on column chromatography over silica gel, 

eluted with pure CH2Cl2 to afford taraxerol, Hex_F2. Fractions 154-227 were purified on 

s

i

PTLC using the same solvent mixture to give 

Fractions 29-34 were eluted with mixtures of petrol ether/EtOAc 2:3 and petrol 

ether/EtOAc 1:4, concentrated, and subjected to repeated column chromatography over 

silica gel. Elution with a mixture of CH2Cl2/MeOH 19:1 to 9:1 to give catechin, AC_F32.    

The hexane extract was also subjected to column chromatography over silica gel. Elution 

with a mixture of petrol ether/CH
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column chromatography over silica gel, eluted with a CH2Cl2/MeOH mixture of increasing 

po

 

 of Hex_F  MeOH (5mL) and 20 mL of 

rolled by TLC. After evaporation under 

mixture, followed by extraction with CHCl3 to 

the hydrol  confirmed to be taraxerol by TLC (Rf 0.34, 

/PE 1:1), M H NMR. The basic solution was acidified (pH 5-7) with 10% 

 extracted e mixture of fatty acids. This mixture was not 

rther analysed. 

 

larity to afford (24R)-stigmast-7,22(E)-dien-3α-ol, Hex_C.1. 

Alkaline hydrolysis of Hex_F1 

30 mg 1 was refluxed in 5% KOH solution in

toluene for 20 hours. The reaction was cont

reduced pressure, water was added to the 

isolate ysis product, which was

CH2Cl2 S and 1

HCl and  with EtOAc to isolate th

fu

24-Feruloyltetracosanoic acid (AC_F7.2) (102), C34H56O6;  

brown powder; mp 82-85 °C;  

IR ν~ max (KBr) cm-1: 3422 (OH), 2917, 2849, 1737, 1712, 1632, 1596, 1518, 1469, 1273, 

1174 and 719;  
1H NMR (500 MHz, CDCl3, δ ppm): 1.25 [36H, s br, (CH2)18], 1.37 (2H, m, H-21’’), 1.61 

(2H, m, J=7.22 Hz, H-22’’), 1.7 (2H, t, J=6.8 Hz, H-2’’), 2.34 ( 2H, t, J=7.5 Hz, CH2-CO), 

5.82 (1H, br, exchangeable with D2O, OH), 3.93 (3H, s, 3-OMe), 4.18 (2H, t, J=6.9 Hz, 

O=C-OCH2CH2), 6.29 (1H, d, J=15.7 Hz, =CH, H-2’), 6.91 (1H, d, J=8.2 Hz, H-5), 7.03 

(1H, d, J=1.9 Hz, H-2), 7.07 (1H, dd, J=8.2, 1.9 Hz, H-6), 7.61 (1H, d, J=15.7 Hz, =CH, 

H-1’);  

MS (EI) m/z (rel. int. %) 560 (14) [M]+, 532 (11), 514 (20), 486 (13). 396 (24), 368 (14), 

194 (47), 177 (95), 137 (26), 97 (34), 83 (47), 69 (66);  

MS (ESI) m/z 561 [M+H]+, ESI (negative mode) m/z 559 [M-H]-;  
13C-NMR (125 MHz, CDCl3, δ ppm): 24.69 (C-22’’), 26.00 (C-21’’), 28.76 (C-2’’), 29.06-

29.70 (C-3’’- C-20’’), 33.84 (C-23’’),31.93 (C-), 55.93 (OMe), 64.65 (C-1’’), 109.38 (C-

2), 114.68 (C-5), 115.65 (C-2’), 123.06 (C-6), 127.04 (C-1), 144.66 (C-1’), 146.72 (C-3), 

(24R)-Stigmast-7,22(E)-dien-3-α-ol (Hex_C.1) (26), C29H48O;  

147.86 (C-4), 167.45 (C-3’), 178.80 (C-24’’).  

 

colorless powder, mp 156-158 °C;  

IR ν~ max (KBr) cm-1: 3420, 2955, 2869, 1652, 1457, 1375, 1042, 971, 668;  
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H, s, Me-19), 0.83 (3H, t, J=6.5 Hz, Me-29), 0.93 (3H, d, J=6.5 Hz, Me-27), 1.02 

ound: 412.37052 [M+];  

18). 273 (19), 271 (47), 

)-Catechin (AC_F32) (97), C15H14O6;  

1H NMR (500 MHz, CDCl3, δ ppm): 0.53 (3H, s, Me-18), 0.79 (3H, d, J=6.5 Hz, Me-26), 

0.80 (3

(3H, d, J=6.7 Hz, Me-21), 3.59 (1H, m, H-3), 5.03 (1H, ddd, J=16.3, 10.8, 7.6 Hz, H-23), 

5.15 (1H, dd, J=16.3, 10.8Hz, H-22), 5.13 (1H, s, H-7). 
13C-NMR (126 MHz, CDCl3, δ ppm), see Table 4.4; 

HRMS (EI) m/z calcd.: 412.37047 [M+], f

MS (EI) m/z (rel. int. %) 412 (30) [M]+, 394 (36), 381 (31), 379 (

255 (100), 253(65), 229 (40), 213 (53), 173 (22), 161 (37), 145 (44), 131 (34), 119 (45). 

105 (80), 81 (94), 69 (61). 

 

(+

brown powder, mp 237-239 °C;  

IR ν~ max (KBr) cm-1: 3503, 3455, 3164, 2931, 1625, 1520, 1469, 1441, 1389, 1183, 1142, 

H, dd, J=16.8, 2.7 Hz, H-4b), 2.85 (1H, dd, 

; 

Taraxerol 3-tetracosanoate, Taraxerol 3-docosanoate 

1094, 1044, 1015, 793, 626;  
1H NMR (500 MHz, CD3OD, δ ppm): 2.73 (1

J=16.8, 4.6 Hz, H-4a), 4.17 (1H, m, H-3), 4.80 (1H, d, J=6.5 Hz, H-2), 5.91 (1H, d, J=2.0 

Hz, H-8), δ 5.94 (1H, d, J=2.0 Hz, H-6), 6.75 (1H, d, J=8.2 Hz, H-5’), 6.79 (1H, dd, J=8.2, 

1.9 Hz, H-6’), 6.96 (1H, d, J=1.9 Hz, H-2’); 
13C-NMR (126 MHz, CD3OD, δ ppm), see Table 4.5

HRMS (EI) m/z. calcd.: 290.07815[M+], found: 290.07904 [M+];  

MS (EI) m/z (rel. int. %) 290 (33) [M]+, 272 (18), 163 (7), 152 (43). 139 (100), 123 (40), 

77 (8), 69 (10).  

 

Taraxerol 3-hexacosanoate, 

(Hex_F1) (101), C56H100O2, C54H96O2 and C52H92O2;  

colorless powder; mp 176-178 °C;  

IR ν~ max (KBr) cm-1: 2916, 2850, 1731, 1558, 1540, 1507, 1472, 1376, 1000, 668;  

, 

MS (ESI-FT-ICR): m/z calcd.: m/z 805.77961 [M1+H]+, calcd. for C56H101O2, m/z found: 

805.78011 [M1+H]+; m/z calcd.: 777.74831  [M2+H]+, calcd. for C54H97O2, m/z found: 

1H NMR (500 MHz, CDCl3, δ ppm): 0.81 (3H, s, Me-28), 0.85 (3H, s, Me-23), 0.87 (3H, 

s, Me-29), 0.88 [3H, t, J=5.9 Hz, Me-24’(26’)(28’)], 0.90 (6H, s, Me-24, Me-30), 0.95 

(6H, s, Me-25, Me-26), 1.09 (3H, s, Me-27), 1.24-1.26 [36H, s br, (CH2)18], 4.46 (1H, dd

J=10.4, 5.3 Hz, H-3), 5.53 (dd, J=8.2, 3.1 Hz, H-15);  
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araxerol (Hex_F2) (99), C30H50O;  

777.74865 [M2+H]+ and m/z calcd.: 749.71701 [M3+H]+, calcd. for C52H93O2, m/z found: 

749.71776 [M3+H]+;  

 

T

colorless powder; mp 276-278 °C;  

IR ν~ max (KBr) cm-1: 3482, 2997, 2933, 2867, 1473, 1457, 1384, 815, 690, 668;  

.97 (3H, s, Me-30), 1.00 (6H, 

], found: 426.38617 [M+];  

9 (34), 

A) (100), C30H48O;  

1H NMR (500 MHz, CDCl3, δ ppm): 0.91 (3H, s, Me-26), 0

s, Me-24, Me-27), 1.02 (3H, s, Me-29), 1.09 (3H, s, Me-25), 1.13 (3H, s, Me-28), 1.25 

(3H, s, Me-23), 3.45 (1H, m, J=5.3 Hz, H-3), 5.63 (dd, J=8.2, 3.1 Hz, H-15), 5.80 (1H, d, 

J=5.7 Hz, 3-OH);  

HRMS (EI) m/z calcd.: 426.38609[M+

MS (EI) m/z (rel. int. %) 426 (17) [M]+, 411 (10), 408 (17), 393 (21). 365 (14), 302 (35), 

287 (24), 284 (21), 269 (32), 257 (13), 241 (14). 218 (28), 204 (100), 203 (17), 18

121 (36), 109 (28). 105 (28), 95 (33), 81 (28).  

 

Taraxerone (AC_Hex2.

white powder; mp 240-242 °C;  

IR ν~ max (KBr) cm-1: 3047, 2939, 2863, 1708, 1473, 1376, 995, 816, 687;  

δ ppm): 0.80 (3H, s, Me-26), 0.88 (3H, s, Me-28), 0.89 (3H, 

-30), 1.05 (3H, s, Me-25), 1.06 (3H, s, Me-

3), 1.11 (3H, s, Me-27), 5.53 (dd, J=8.2, 3.1 Hz, H-15).  

5.37747 [M+H]+, 447.35936 [M+Na]+, found: 

974 [M+Na]+; 

collected at Bagangté (Western Province of Cameroon in 

ces, air-dried and pulverized. Voucher specimen documenting 

erbarium, Yaoundé-Cameroon. The resulting 

owder has been extracted with MeOH.  

 

1H NMR (500 MHz, CDCl3, 

s, Me-24), 0.93 (3H, s, Me-29), 1.04 (3H, s, Me

2

MS (ESI-FT-ICR): m/z calcld.: 42

425.37779 [M+H]+, 447.35

MS (ESI): 425 [M+H]+, 849 [2M+H]+.  

 

6.1.2.3 Pentadesma grandifolia 

6.1.2.3.1 Extraction 

Plant material (root bark) was 

December 2001), cut into pie

the collection are deposited at the National H

p
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Root bark

Powder

Extraction with MeOH

MeOH Extract 

      (20 g)
Residue

Flash CC

CC

B (15-25)A 

PG4PG3

C (26-32)

CC

HPLC

PG1 PG2

D (33-42) E (43-70)

PG5

HPLC
CC

HPLC

PG6

  (3-12)

ing

 

 

6.1.2.3.2 Separation and purification 

A part of residue (20 g) obtained after evaporation of the MeOH extract, was fractionated 

over silica gel. Elution with a petrol ether/EtOAc mixture of increasing polarity, followed 

by EtOAc and a mixture of EtOAc/MeOH 9:1 to 4:1 respectively, afforded 70 fractions of 

250 mL each which were collected and combined on the basis of TLC analysis (see 

chromatogram below, Table 6.9) 

 

 

 

 

 

chopp

drying

grinding
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Table 6.9

Fractions Eluent 

 

: Chromatographic Fractions of the MeOH Extract 

 

1-15 petrol ether and petrol ether/EtOAc 9:1 

16-27 petrol ether/EtOAc 4:1 

28-40 petrol ether/EtOAc 3:2 

41-49 petrol ether/EtOAc 2 :3 

50-60 EtOAc 

61-70 EtOAc/MeOH 9:1→4:1 

 

 

Fractions 3-12 (oily mixture) were eluted with petrol ether and a mixture of petrol 

and subjected to repeated column chromatography over 

silica gel, eluted with a mixture of petrol ether/EtOAc 19:1 and petrol ether/EtOAc 23:2. 

Sub-fractions 14-27 were eluted wi her/EtOAc 19:1 to give PG4 (1 g) as a 

PG3 (150 mg) precipitated from the sub-fractions 49-90, eluted with a mixture 

Fractions 15-25 eluted with a mixture of petrol ether/EtOAc 9:1 and petrol ether/EtOAc 

4:1 was chromatographed a second time over silica gel (0.04-0.063 mm) to give a yellow 

powder which after further purification on HPLC, using preparative method 2, yield PG6 

(4 mg), retention time 41.8 min. 

Fractions 26-32 eluted with the mixture of petrol ether/EtOAc 4:1 and petrol ether/EtOAc 

3:2 was chromatographed a second time over silica gel. Isocratic elution using a mixture of 

CHCl3-MeOH 100:1 results in 110 fractions (ca 5 mL per fraction). The sub-fractions 24-

52 crystallised to give a yellow powder (700 mg), which was further purified on 

preparative HPLC to give PG1 as a yellow gum (200 mg), having a retention time 30.3 

min. The subfractions 53-68 crystallised to give PG2 as a yellowish powder (130 mg).  

Fractions 33-42 were evaporated and subjected to preparative HPLC using method 1 to 

yield PG5 (3.5 mg) having the retention time 36.7 min.   

stin (PG1) (103), C24H26O6; 

yellow gum (200 mg);   

ether/EtOAc 9:1, concentrated, 

th petrol et

viscous oil. 

of petrol ether/EtOAc 23:2. 

 

α-Mango
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IR ν~ max (KBr) cm-1: 3405, 3101, 2978, 2934, 1779, 1605, 1463, 1375, 1284, 1158, 816, 

71
1H D3OD, δ ppm): 6.63 (1H, s, H-5), 6.18 (1H, s, H-4), 5.21 (2H, m, 

H-2 7 (3H, s, 1-OH, 3-OH, 6-O H, d, J = 6.3 Hz, H-1’’), 3.73 

(3H, s, 7-OMe), 3.24 (2H, d, J=7.5 Hz, H-1’), 1.80 (3H, s br, H -5’’), 1.76 (3H, s, H3-5’), 

1.6  H3-4’);  

HRMS (EI) m/z calcd.: 410.17294 [M]+; found: 4

MS  (rel. int. %) 410 (67) [M]+, 367 (42), 355 (34), 354 (38), 353 (20), 340 (21), 

339 (100), 323(21), 321 (17), 311 (23), 297 (12), 285 (14), 162 (10), 115 (7), 77(10), 69 

(9).

 

Ru 24 26O6; 

yel 5-207 °C;  

IR

9;  

NMR (500 MHz, C

’ and H-2’’), 4.8 H), 4.02 (2

3

5 (3H, s, H3-4’’), 1.64 (3H, s,

10.17240 [M]+;  

 (EI) m/z

 

braxanthone (PG2) (104), C H

lowish powder (130 mg), mp 20

 ν~ max (KBr) cm : 3432-1 , 2968, 2914, 2838, 16 577, 1513, 1467, 1433, 1298, 

1270, 1163, 1115, 1077, 1030, 841, 827, 627;  

1H 3 , H-4), 6.08 

(1H , t, J=6.3 Hz, H-2’), 5.04 (1H, t, J=6.9 Hz, H-7’), 4.04 

(2H  s, 7-OMe), 2.0 , 1.80 

(3H , s, H -9’), 1.51 (3H, s, H

HR  [M]+; found: 4

MS (rel. int. %) 410 (21) [M]+, 341 (100), 342 (21), 311 (15), 309 (11), 299 (23), 

288 (13), 271 (7), 69 (11). 

 

Lupeol (PG3) (23), C30H50O;  

colorless powder (150 mg), mp 213-215 °C (Lit. Reynolds, 1986; 215-216 °C);  

IR

46, 1607, 1

NMR (600 MHz, CD OD, δ ppm): 6.68 (1H s, H-5), 6.17 (1H, d, J=2.0 Hz, 

, d, J=2.0 Hz, H-2), 5.20 (1H

, d, J=6.3 Hz, H-1’), 3.76 (3H, 4 (2H, m, H-6’), 1.96 (2H, m, H-4’)

, s, H3-5’), 1.54 (3H 3 3-10’);  

MS (EI) m/z calcd.: 410.17294 10.17366 [M]+;  

 (EI) m/z 

 ν~ max (KBr) cm-1: 3318, 2931, 2870, 1734, 1673, 1638, 1486, 1452, 1379, 1257, 1241, 

1042, 933, 880, 806;  
1H NMR (500 MHz, CDCl3, δ ppm): 4.68 (1 H, d, J=2.0 Hz), 4.56 (1 H, d, J=2.0 Hz), 1.68 

(3 H, s, Me-30), 1.03 (3 H, s, Me-26), 0.97 (3 H, s, Me-23), 0.94 (3 H, s, Me-27), 0.83 (3 

H, s, Me-25), 0.79 (3 H, s, Me-28), 0.76 (3 H, s, Me-24), 0.68 (1 H, d, J=9.4 Hz, H-5);     

HRMS (EI) m/z calcd.: 426.38617 [M+], found: 426.38650 [M+];  
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), 365 (22), 

316 (10) 4), 189 

(86), 161 (42), 147 (46), 135 (83), 121 (84), 109 (84), 95 (100), 79 (52), 55 (82).  

 

 (13E,17E poda- 1-tet l (PG  C30H50

 yellow oil (1g);  

IR

MS (EI) m/z (rel. int. %) 426 (54) [M]+, 411 (17), 408 (26), 354 (38), 393 (14

, 315 (13), 297 (15), 257 (13), 234 (14), 229 (21), 218 (76), 207 (57), 203(5

)-Poly 7,13,17,2 raen-3β-o 4) (105), O; 

 ν~ max (KBr) cm-1: 3 , 144 091, 
1H NMR Hz, C  ppm , S, 5.12 (3 H-13, H-17, H-

21), 3.22 ( , J = 4 4 Hz, 1 (3H -26), 1 , br s, Me-30), 

1.61 (6H, br s, Me-28 and Me-29), 1.59 (3H, s, Me-27), 0.96 (3H, br s, Me-23), 0.84 (3H, 

br s, Me-24), 0.74 (3H, br s, Me-25);  

MS (ESI-FT-ICR) m  427 +H] 999 [ 4]+, 449.37539 

[M+Na]+,  427. +H]+ 4 [M 449.37 +Na]+;  

MS (EI) m  int. % ) [M] 9 (4) 203 (1  (16), 187 (31), 

175 (10), ), 13 23 (1 2), 1 95 (26), 81 (64), 68 (14), 69 

(100), 55  (49);

MS (CI, N /z (rel. int. %) 444 (55) [M+NH4]+ ) [M+H 9 (100) [M+H-

H2O] +, 203 (10), 137 (16), 95 (10);  

MS (ESI)  [M+

MS (ESI, negative mo 1.8 [

 

Garcinone E (PG5) (1 32O6

 yellow powder (3.5 m
1H NMR Hz, (  δ pp (1H,  6.47 ( H-4), 5.28 (1H, 

m, H-2’), 5.27 (1H, m 5.25 ( -2’’’) , d, J z, H-1’’’), 3.60 

(2H, d, J= , H-1 (2H, d z, H  (3H, s ’), 1.81 (3H, s, 

H3-4’’’), 1.78 (3H, s, H3-4’), 1.65 (6H, s, H3-5’ and H3-5’’), 1.63 (6H, s, H3-5’’’);  

MS (ESI-FT-ICR) m/z calcd.: 465.22717 [M+H]+, 487.20911 [M+Na]+,  found: 465.22735 

[M+H]+, 487.20918 [M+Na]+,  

MS (ESI) m/z 465 [M+H]+,  

MS (ESI, negative mode) m/z 463 [M-H]-.   

 

376, 2926 3, 1383, 1 1060;   

(500 M D3OD, δ ): 5.38 (1H  br H-7), H, m, 

1H, dd .55, 11.1  H-3), 1.7 , br s, Me .68 (3H

/z calcd.: .39344 [M +, 444.41 M+NH

 found: 39315 [M , 444.4195 +NH4]+, 499 [M

/z (rel. ) 426 (5 +, 408, 33 , 271 (5), 0), 189

147 (15 7 (16), 1 9), 121 (2 07 (22), 

(26), 41   

H3) m , 427 (38 ]+, 40

m/z 427 H]+;  

de) m/z 46 M+Cl] .   -

06), C28H ; 

g);  

(600 M CD)3CO, m): 13.92 s, 1-OH), 1H, s, 

, H-2’’), 1H, m, H , 4.20 (2H =6.8 H

7.1 Hz ’’), 3.35 , J=7.1 H -1’), 1.88 , H3-4’
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Co

am rpho w solide

IR

wanin (PG6) (108), C29H34O6; 

o us yello  (4 mg); 

 ν~ max (KBr) cm-1: 3433, 1643, 1611, 1583, 1451, 1160; 
1H NM z, C ): 13.76 (1 .81 ( 1H 7 (1H, s, 

H-4), , H-2’, H-2’’), 5.00 (1H, m H, d, J=6.1 Hz, H-1’’), 3.78 

(3H, s 44 (  Hz, H-1’) H-4’’, (3H, br s, 

H3-4’) r s, 4 (3H, s, H , s, H3-9’’), 1.52 (3H, s, H3-

10’’);

HRM lcd. [M+], found: 478.23545 [M+]; 

MS (E nt. % [M]+, 423 (10), 409 (100), 367 (34), 356 (57), 353 (66), 

339 (16), 313 (14), 301 (28), 299 (15), 297 (13), 285 (11), 257 (6), 81 (8), 69 (15). 

R (500 MH DCl3, δ ppm H, s, 1-OH), 6 , s, H-5), 6.2

5.24 (2H, m , H-7’’), 4.08 (2

, . 7-OMe), 3 2H, d, J=7.1 ,   1.99 (4H, m, H-6’’), 1.82 

, 1.80 (3H, b  H3-5’’), 1.7 3-5’), 1.58 (3H

  

S (EI) m/z ca : 478.23554 

I) m/z (rel. i )  478 (47) 
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7.1 Selected HMBC correlations of compound ME1  
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Table 7.1. Crystal data and structure refinement for compound 1.  
   
Measurement device Nonius KappaCCD 
Em C
For 4
Te
Wa 0
Cr group 1
U

b
c

V
Z 4

F(000) 1040 
Cr d hab ,Colourle
Th llect
In 17, -40
Reflections collected / uniqu  0.037] 
C = 30.0
A
Ma ission
Pro ution ent 
R s on F2

Data / restraints / parameter
Go
Final R indices [I>2sigma(I 837 [70
R 0861 
Absolute structure paramet
Largest diff. peak and hole 
R d isotrop

pirical formula 30 H48 O4
mula weight 72.68 

mperature 100(2) K 
velength .71073 A 

ystal system, space Orthorhombic P 21 21 2
nit cell dimensions a = 7.36000(10) A. 

 = 12.31600(10) A. 
 = 29.2710(4) A. 

olume 2653.29(6) A3

, Calculated density ,  1.183 Mg/m3

Absorption coefficient 0.076 mm-1

ystal size, colour an it 0.30 x 0.30 x 0.08 mm3 ss plate 
eta range for data co ion 3.10 to 30.00 deg. 

dex ranges -10<=h<=10, -17<=k<= <=l<=41 
e 30886 / 7687 [R(int) =

ompleteness to theta 0 99.6% 
bsorption correction multi-scan 

x. and min. transm  0.9939 and 0.9775 
grams used for sol and refinem SHELX-97 

efinement method Full-matrix least-square
s 7687 / 0 / 499 

odness-of-fit on F2 1.039 
)] R1 = 0.0339, wR2 = 0.0 94] 

indices (all data) R1 = 0.0384, wR2 = 0.
er -0.2(5) 

0.278 and -0.157 e.A-3

emarks Hydrogens were refine ically. 
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otropic displacement 

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
   

 x z U(eq) 

Table 7.2.  Atomic coordinates ( x 104) and equivalent is
parameters (A2 x 103) for compound 1.  

y 
O(1) 61(1) 2( 23(1)  4 1079 1) 5846(1) 
O(2) 86(1) 4( 468 23(1) 
O(3) 65(1) 3(1 872 22(1) 
O(4) 66(1) 1(1 569 18(1) 
C(1) 80(2) 0(1 206 17(1) 
C(2) 33(2) 7( 497 21(1) 
C(3) 67(2) 3( 974 21(1) 
C(4) 48(1) 9(1 245 15(1) 
C(5) 70(2) 9(1 725 15(1) 
C(6) 90(2) 4( 934 18(1) 
C(7 18(2) 7(1 425 20(1) 
C(8 77(1) 5(1 667 14(1) 
C(9) 91(1) 9(1 198 15(1) 
C(10) 558(2) 3(1 379 16(1) 
C(11) 1563(2) 8155(1) 9261(1) 18(1) 
C(12 91(2) 5(1 742 16(1) 
C(13) 76(1) 2(1 499 14(1) 
C(14) 14(1) 
C(15) 94(2) 5(1 19(1) 
C(16) 10(2) 6(1 19(1) 
C(17) 303(2) 1(1 981 15(1) 
C(18 05(1) 0(1 480 15(1) 
C(19 37(2) 1(1 195 17(1) 
C(20 37(2) 3(1 735 21(1) 
C(21 92(2) 8(1 804 24(1) 
C(22 78(2) 6(1 013 23(1) 
C(23 50(2) 8( 824 18(1) 
C(24) 1390(2) 10825(1) 7310(1) 22(1) 
C(25) 4214(2) 10078(1) 9454(1) 20(1) 
C(26) 6714(2) 8777(1) 9287(1) 21(1) 
C(27) 1410(2) 10135(1) 8585(1) 19(1) 
C(28) 3824(2) 8086(1) 6992(1) 19(1) 
C(29) -1021(2) 8267(1) 6123(1) 24(1) 
C(30) 1566(2) 7008(1) 5505(1) 29(1) 

 30  1080 1) 5 (1) 
 36
 18

 795
 710

) 9
) 8

(1) 
(1) 

 30  994 ) 6 (1) 
 38  1089 1) 6 (1) 
 44  1055 1) 6 (1) 
 29  998 ) 7 (1) 
 35  965 ) 7 (1) 
 49  1011 1) 7 (1) 

) 55  990 ) 8 (1) 
) 43  903 ) 8 (1) 
 46  901 ) 9 (1) 
 3  806 ) 9 (1) 

) 12  813 ) 8 (1) 
 23  904 ) 8 (1) 

2457(2) 8796(1) 7976(1) 
 5 857 ) 7758(1) 
 6 847 ) 7230(1) 
 2  895 ) 6 (1) 

) 17  924 ) 6 (1) 
) 10
) 20

 823
 809

) 6
) 5

(1) 
(1) 

) 40  818 ) 5 (1) 
) 46  927 ) 6 (1) 
) 20  1052 1) 5 (1) 
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Table 7.3.  Bond distances in compound 1 
 

Bond Distance 
[Å] 

Bond Distance [Å] 

O(1)-C(23) 1.2157(14) C(14)-H(14) 0.972(13) 
O(2)-C(23) 1.3334(13) C(15)-C(16) 1.5493(14) 
O(2)-H(2) 0.797(19) C(15)-H(15A) 0.996(16) 
O(3)-C(10) 1.4509(12) C(15)-H(15B) 0.999(15) 
O(3)-H(3) 0.80(2) C(16)-C(17) 1.5581(15) 
O(4)-C(12) 1.4354(12) C(16)-H(16A) 0.983(18) 
O(4)-H(4) 0.845(18) C(16)-H(16B) 0.980(16) 
C(1)-C(23) 1.5344(14) C(17)-C(28) 1.5453(15) 
C(1)-C(22) 1.5406(15) C(17)-C(18) 1.5721(14) 
C(1)-C(18) 1.5518(15) C(18)-C(19) 1.5748(14) 
C(1)-C(2) 1.5565(15) C(18)-H(18) 0.992(15) 
C(2)-C(3) 1.5306(15) C(19)-C(29) 1.5302(16) 

C(2)-H(2A) 0.965(17) C(19)-C(20) 1.5447(15) 
C(2)-H(2B) 1.010(17) C(19)-H(19) 1.014(15) 
C(3)-C(4) 1.5369(15) C(20)-C(21) 1.5306(17) 

C(3)-H(3A) 0.989(17) C(20)-C(30) 1.5355(17) 
C(3)-H(3B) 0.922(15) C(20)-H(20) 1.027(16) 
C(4)-C(5) 1.5326(13) C(21)-C(22) 1.5353(18) 
C(4)-C(24) 1.5520(15) C(21)-H(21A) 0.968(16) 
C(4)-C(17) 1.5690(14) C(21)-H(21B) 0.985(17) 
C(5)-C(6) 1.3340(15) C(22)-H(22A) 0.961(15) 
C(5)-C(14) 1.5289(14) C(22)-H(22B) 1.014(16) 
C(6)-C(7) 1.5101(14) C(24)-H(24A) 0.982(17) 
C(6)-H(6) 1.002(16) C(24)-H(24B) 0.993(17) 
C(7)-C(8) 1.5372(14) C(24)-H(24C) 0.978(17) 

C(7)-H(7A) 0.991(16) C(25)-H(25A) 0.989(14) 
C(7)-H(7B) 0.992(17) C(25)-H(25B) 0.929(18) 
C(8)-C(13) 1.5533(15) C(25)-H(25C) 0.993(17) 
C(8)-C(9) 1.5714(13) C(26)-H(26A) 1.020(15) 
C(8)-H(8) 0.991(14) C(26)-H(26B) 1.000(14) 
C(9)-C(10) 1.5373(14) C(26)-H(26C) 0.993(15) 
C(9)-C(26) 1.5405(15) C(27)-H(27A) 0.955(15) 
C(9)-C(25) 1.5447(14) C(27)-H(27B) 0.996(18) 
C(10)-C(11) 1.5130(16) C(27)-H(27C) 0.945(15) 
C(10)-H(10) 1.010(13) C(28)-H(28A) 0.957(19) 
C(11)-C(12) 1.5316(14) C(28)-H(28B) 0.964(17) 

C(11)-H(11A) 0.979(14) C(28)-H(28C) 0.98(2) 
C(11)-H(11B) 0.994(15) C(29)-H(29A) 0.947(17) 
C(12)-C(13) 1.5462(14) C(29)-H(29B) 0.973(16) 
C(12)-H(12) 0.980(15) C(29)-H(29C) 1.032(17) 
C(13)-C(27) 1.5431(14) C(30)-H(30A) 0.972(18) 
C(13)-C(14) 1.5617(14) C(30)-H(30B) 0.988(17) 
C(14)-C(15) 1.5362(15) C(30)-H(30C) 1.029(17) 
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Table 7.4.  Bond angles in compound 1 
 

 Angle 
[deg] 

 Angle [deg] 

C(23)-O(2)-H(2) 107.3(14)  C(17)-C(16)-H(16A) 108.7(10)  
C(10)-O(3)-H(3) 109.1(16)  C(15)-C(16)-H(16B) 111.6(9)  
C(12)-O(4)-H(4) 105.7(11)  C(17)-C(16)-H(16B) 105.7(10)  
C(23)-C(1)-C(22) 111.02(8)  H(16A)-C(16)-H(16B) 103.7(14)  
C(23)-C(1)-C(18) 108.45(9)  C(28)-C(17)-C(16) 108.10(9)  
C(22)-C(1)-C(18) 113.16(9)  C(28)-C(17)-C(4) 109.40(8)  
C(23)-C(1)-C(2) 102.62(8)  C(16)-C(17)-C(4) 108.46(8)  
C(22)-C(1)-C(2) 109.34(9)  C(28)-C(17)-C(18) 112.29(8)  
C(18)-C(1)-C(2) 111.75(8)  C(16)-C(17)-C(18) 107.38(9)  
C(3)-C(2)-C(1) 113.45(9)  C(4)-C(17)-C(18) 111.08(8)  

C(3)-C(2)-H(2A) 108.4(9)  C(1)-C(18)-C(17) 115.13(9)  
C(1)-C(2)-H(2A) 106.2(9)  C(1)-C(18)-C(19) 111.64(8)  
C(3)-C(2)-H(2B) 108.4(9)  C(17)-C(18)-C(19) 113.68(8)  
C(1)-C(2)-H(2B) 110.2(9)  C(1)-C(18)-H(18) 104.5(8)  

H(2A)-C(2)-H(2B) 110.1(13)  C(17)-C(18)-H(18) 105.1(8)  
C(2)-C(3)-C(4) 111.98(10)  C(19)-C(18)-H(18) 105.6(8)  

C(2)-C(3)-H(3A) 108.7(10)  C(29)-C(19)-C(20) 110.73(9)  
C(4)-C(3)-H(3A) 109.6(10)  C(29)-C(19)-C(18) 111.06(9)  
C(2)-C(3)-H(3B) 112.0(8)  C(20)-C(19)-C(18) 113.58(9)  
C(4)-C(3)-H(3B) 110.2(8)  C(29)-C(19)-H(19) 106.7(9)  

H(3A)-C(3)-H(3B) 104.0(13)  C(20)-C(19)-H(19) 105.2(8)  
C(5)-C(4)-C(3) 112.09(9)  C(18)-C(19)-H(19) 109.2(8)  
C(5)-C(4)-C(24) 106.54(8)  C(21)-C(20)-C(30) 110.30(10)  
C(3)-C(4)-C(24) 107.51(9)  C(21)-C(20)-C(19) 110.34(9)  
C(5)-C(4)-C(17) 109.03(8)  C(30)-C(20)-C(19) 111.75(10)  
C(3)-C(4)-C(17) 109.50(8)  C(21)-C(20)-H(20) 110.3(9)  
C(24)-C(4)-C(17) 112.18(9)  C(30)-C(20)-H(20) 107.2(9)  
C(6)-C(5)-C(14) 119.44(9)  C(19)-C(20)-H(20) 106.8(9)  
C(6)-C(5)-C(4) 122.89(9)  C(20)-C(21)-C(22) 113.36(10)  
C(14)-C(5)-C(4) 117.64(9)  C(20)-C(21)-H(21A) 110.3(10)  
C(5)-C(6)-C(7) 124.57(10)  C(22)-C(21)-H(21A) 107.7(9)  
C(5)-C(6)-H(6) 120.1(9)  C(20)-C(21)-H(21B) 107.7(10)  
C(7)-C(6)-H(6) 115.1(9)  C(22)-C(21)-H(21B) 111.2(10)  
C(6)-C(7)-C(8) 114.57(9)  H(21A)-C(21)-H(21B) 106.4(13)  

C(6)-C(7)-H(7A) 106.9(9)  C(21)-C(22)-C(1) 113.30(10)  
C(8)-C(7)-H(7A) 109.6(9)  C(21)-C(22)-H(22A) 109.9(8)  
C(6)-C(7)-H(7B) 109.0(8)  C(1)-C(22)-H(22A) 110.2(9)  
C(8)-C(7)-H(7B) 108.1(9)  C(21)-C(22)-H(22B) 109.6(9)  

H(7A)-C(7)-H(7B) 108.4(13)  C(1)-C(22)-H(22B) 109.3(9)  
C(7)-C(8)-C(13) 111.59(8)  H(22A)-C(22)-H(22B) 104.2(13)  
C(7)-C(8)-C(9) 112.59(8)  O(1)-C(23)-O(2) 121.59(10)  
C(13)-C(8)-C(9) 116.98(8)  O(1)-C(23)-C(1) 124.23(10)  
C(7)-C(8)-H(8) 106.8(8)  O(2)-C(23)-C(1) 114.01(10)  
C(13)-C(8)-H(8) 104.4(8)  C(4)-C(24)-H(24A) 112.9(10)  
C(9)-C(8)-H(8) 103.3(8)  C(4)-C(24)-H(24B) 110.1(10)  

C(10)-C(9)-C(26) 108.56(9)  H(24A)-C(24)-H(24B) 106.3(13)  
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C(10)-C(9)-C(25) 110.88(8)  C(4)-C(24)-H(24C) 111.3(10)  
C(26)-C(9)-C(25) 107.52(9)  H(24A)-C(24)-H(24C) 109.8(14)  
C(10)-C(9)-C(8) 105.66(8)  H(24B)-C(24)-H(24C) 106.0(13)  
C(26)-C(9)-C(8) 108.15(8)  C(9)-C(25)-H(25A) 108.0(9)  
C(25)-C(9)-C(8) 115.87(8)  C(9)-C(25)-H(25B) 113.9(10)  

O(3)-C(10)-C(11) 106.64(8)  H(25A)-C(25)-H(25B) 105.0(13)  
O(3)-C(10)-C(9) 106.6(8)  C(9)-C(25)-H(25C) 110.5(9)  
C(9)-C(10)-H(10) 110.0(8)  H(25A)-C(25)-H(25C) 110.8(13)  
C(10)-C(11)-C(12) 110.58(8)  H(25B)-C(25)-H(25C) 108.3(14)  

C(10)-C(11)-H(11A) 109.7(9)  C(9)-C(26)-H(26A) 110.4(9)  
C(12)-C(11)-H(11A) 110.4(8)  C(9)-C(26)-H(26B) 109.8(9)  
C(10)-C(11)-H(11B) 110.4(9)  H(26A)-C(26)-H(26B) 108.7(12)  
C(12)-C(11)-H(11B) 107.9(8)  C(9)-C(26)-H(26C) 110.9(8)  

H(11A)-C(11)-H(11B) 107.8(12)  H(26A)-C(26)-H(26C) 109.1(12)  
O(4)-C(12)-C(11) 109.06(8)  H(26B)-C(26)-H(26C) 108.0(12)  
O(4)-C(12)-C(13) 108.99(8)  C(13)-C(27)-H(27A) 113.1(9)  
C(11)-C(12)-C(13) 112.22(8)  C(13)-C(27)-H(27B) 110.4(10)  
O(4)-C(12)-H(12) 111.0(8)  H(27A)-C(27)-H(27B) 105.0(13)  
C(11)-C(12)-H(12) 108.8(8)  C(13)-C(27)-H(27C) 111.5(9)  
C(13)-C(12)-H(12) 106.7(8)  H(27A)-C(27)-H(27C) 109.9(13)  
C(27)-C(13)-C(12) 108.50(8)  H(27B)-C(27)-H(27C) 106.5(13)  
C(27)-C(13)-C(8) 112.95(8)  C(17)-C(28)-H(28A) 109.8(11)  
C(12)-C(13)-C(8) 109.81(8)  C(17)-C(28)-H(28B) 110.0(10)  
C(27)-C(13)-C(14) 110.23(8)  H(28A)-C(28)-H(28B) 110.3(15)  
C(12)-C(13)-C(14) 109.40(8)  C(17)-C(28)-H(28C) 112.5(11)  
C(8)-C(13)-C(14) 105.89(8)  H(28A)-C(28)-H(28C) 110.0(16)  
C(5)-C(14)-C(15) 113.74(8)  H(28B)-C(28)-H(28C) 104.0(15)  
C(5)-C(14)-C(13) 110.88(8)  C(19)-C(29)-H(29A) 114.3(10)  
C(15)-C(14)-C(13) 114.00(8)  C(19)-C(29)-H(29B) 109.2(10)  
C(5)-C(14)-H(14) 106.4(8)  H(29A)-C(29)-H(29B) 105.2(13)  

C(15)-C(14)-H(14) 108.8(8)  C(19)-C(29)-H(29C) 110.0(10)  
C(13)-C(14)-H(14) 102.1(8)  H(29A)-C(29)-H(29C) 107.5(14)  
C(14)-C(15)-C(16) 114.88(9)  H(29B)-C(29)-H(29C) 110.4(13)  

C(14)-C(15)-H(15A) 108.4(9)  C(20)-C(30)-H(30A) 110.8(10)  
C(16)-C(15)-H(15A) 108.5(9)  C(20)-C(30)-H(30B) 110.6(9)  
C(14)-C(15)-H(15B) 107.9(9)  H(30A)-C(30)-H(30B) 110.4(14)  
C(16)-C(15)-H(15B) 110.4(9)  C(20)-C(30)-H(30C) 110.8(9)  

H(15A)-C(15)-H(15B) 106.3(13)  H(30A)-C(30)-H(30C) 104.9(14)  
C(15)-C(16)-C(17) 116.34(9)  H(30B)-C(30)-H(30C) 109.3(13)  

C(15)-C(16)-H(16A) 109.9(9)    
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Table 7.5. Hydrogen coordinates ( x 104) and isotropic  
                 displacement parameters (A2 x 103) for compound 1 
 

 x y z U(eq) 
H(2) 2480(3) 11158(15) 5300(6) 41(5) 
H(3) 4640(3) 7720(18) 9939(7) 56(6) 
H(4) 1250(2) 6634(13) 8713(6) 31(4) 

H(2A) 4870(2) 11179(12) 6333(5) 26(4) 
H(2B) 2880(2) 11480(13) 6532(5) 29(4) 
H(3A) 4880(2) 11205(14) 7141(6) 34(4) 
H(3B) 5480(2) 10116(11) 6962(4) 17(3) 
H(6) 5720(2) 10686(12) 7775(5) 26(4) 

H(7A) 5400(2) 10607(13) 8589(5) 30(4) 
H(7B) 6810(2) 9679(12) 8436(5) 25(4) 
H(8) 4856(19) 8322(11) 8567(4) 17(3) 
H(10) 4002(18) 7361(11) 9240(4) 14(3) 

H(11A) 1070(2) 8826(11) 9390(5) 18(3) 
H(11B) 870(2) 7537(12) 9394(5) 22(4) 
H(12) 0(2) 8266(11) 8675(4) 18(3) 
H(14) 3170(19) 8133(11) 7967(4) 14(3) 

H(15A) -250(2) 9175(13) 7845(5) 29(4) 
H(15B) 90(2) 7901(12) 7899(5) 25(4) 
H(16A) -490(2) 8811(13) 7102(5) 31(4) 
H(16B) 530(2) 7716(13) 7132(5) 30(4) 
H(18) 620(2) 9714(11) 6515(4) 22(3) 
H(19) 1310(2) 7543(12) 6373(5) 22(3) 
H(20) 1580(2) 8701(12) 5524(5) 29(4) 

H(21A) 4720(2) 8108(12) 5514(5) 29(4) 
H(21B) 4480(2) 7574(14) 5995(6) 34(4) 
H(22A) 5330(2) 9697(12) 5790(5) 21(3) 
H(22B) 5600(2) 9143(12) 6264(5) 28(4) 
H(24A) 780(2) 11011(13) 7022(6) 33(4) 
H(24B) 1880(2) 11515(14) 7434(5) 34(4) 
H(24C) 500(2) 10569(13) 7533(5) 34(4) 
H(25A) 4700(2) 10021(12) 9768(5) 23(3) 
H(25B) 2980(2) 10191(13) 9490(5) 32(4) 
H(25C) 4740(2) 10716(14) 9294(5) 35(4) 
H(26A) 7090(2) 8079(12) 9126(5) 27(4) 
H(26B) 6930(2) 8689(11) 9622(5) 21(3) 
H(26C) 7490(2) 9383(11) 9177(5) 21(3) 
H(27A) 1120(2) 10252(12) 8898(5) 27(4) 
H(27B) 220(2) 10157(14) 8421(5) 36(4) 
H(27C) 2100(2) 10724(12) 8472(5) 24(4) 
H(28A) 3500(3) 7485(15) 6802(6) 42(5) 
H(28B) 4020(2) 7846(14) 7301(6) 37(4) 
H(28C) 5000(3) 8377(15) 6898(6) 48(5) 
H(29A) -1500(2) 7651(13) 5971(5) 30(4) 
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H(29B) -1320(2) 8880(13) 5928(6) 33(4) 
H(29C) -1680(2) 8333(13) 6433(6) 35(4) 
H(30A) 1770(3) 6405(14) 5713(6) 41(5) 
H(30B) 2290(2) 6910(12) 5223(6) 32(4) 
H(30C) 200(2) 6972(13) 5426(5) 34(4) 
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7.3 1H and 13C NMR spectra of compounds 85, 86, 101 and 104 
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