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Preface 
 
Small magnetic particles have attracted a lot of interest during the last decades. We may think of 
a magnetic particle as small magnetic sphere which interacts with other magnetic objects nearby 
due to its magnetic stray field. Such particles can be manipulated by external (inhomogeneous) 
magnetic fields because of their permanent magnetic moment. In particular, if particles are 
dissolved in a liquid, their interaction with such fields provides a method to guide them in a fluid 
flow or to restrict their motion to a certain volume. Especially for medical applications, this 
seemed to be of high impact. The pioneering idea was to bind drug agents to such magnetic 
objects which could then serve as magnetic carriers allowing for the indirect control of the 
medical compounds. Such strategies could lead to strong advances for many treatments applied 
nowadays. In particular, they might help to reduce the side effects of non-localized treatments 
such as chemotherapy for cancer therapy where the drugs are only needed in a specific area of 
the body i.e. near to the malignant tumour cells. However, as no directed transport is possible via 
only employing the blood flow, therapeutic compounds necessarily travel through the entire 
body and only a small fraction reaches the actual target. Therefore, large quantities of drugs need 
to be administered which can lead to severe side effects. Guiding the combined particle/drug-
system to or capturing it at the target region would reduce the dosage needed and allow for more 
efficient treatments [JDob06], [RLan90,98], [PGup89,90], [MGal06]. In this regard, magnetic 
particles have been thoroughly studied in respect to the possibility of surface modifications 
which enable their binding to such drug agents [FGao05], [MVad05]. A strong localization is, in 
particular, required when applying magnetic particles in hyperthermia. Here, particles remain 
stationary in a high frequency (up to 100 kHz, but homogeneous) magnetic field close to the 
tumour. Their magnetic moment vector rotates together with the field direction and, due to 
microscopic damping phenomena, the particles serve as heat sources of the surrounding area. A 
temperature increase up to ~ 46°C has been reported to destroy many tumour cells [SNad09], 
[MSal08], [AJor09]. Other applications are the employment of magnetic particles as markers 
detectable by magnetoresistive sensors [HFer03], [MBre04], [JSch03], [DGra04], due to their 
relaxation [WMöl05] or in an indirect manner: superparamagnetic colloids improve the contrast 
in Magnetic Resonance Imaging [MShu07], [RMag91], [ICor05], [PWin05]. 

Though during the last years a lot of effort from experimental as well as theoretical side was 
done and for many applications a estimates on applicability and limitations have been obtained, 
one more obstacle still needs to be tackled in the next years to open such strategies the way for 
the actual in vivo-application: The proof of their biocompatibility is still missing or, in other 
words, it is not accepted at present that magnetic micro- or nanoparticles are not toxic. 
Numerous of studies have been carried out in this field [MMah09a,b], [PMac05],  however, a 
conclusive result is yet to be obtained. Therefore, magnetic particles are still restricted to 
laboratory tasks.  

In this regard, one specific “laboratory task” has developed rapidly in the last years: the lab-

on-a-chip technology, which aims for the integration of all laboratory procedures on a small chip 
[REde00], [ZJia06], [NPam06a]. Due to the miniaturization, this device may be employed with 
only a small sample volume and can be integrated into portable devices allowing for applications 
in any area of the world. The latter advantage was the main driving force when, about three-and-
a-half years ago, a consortium of about ten different participants came together for the first time 
in the small town of Bernried located directly on the wonderful shores of the Starnberger Lake. 
The reason for this gathering was the “kickoff” meeting of the BMBF project “MrBead” 
sponsored by the DFG (whose financial support ma be gratefully acknowledged at this point 
again). The focus of this project was the development of a portable, hand-held device for fast, 
reliable testing of liquids in respect to certain components. Such a device allows for numerous 
applications, ranging from infection or drug abuse testing in human diagnostics to food testing 



 

Particle dissolved in a fluid flow, the 
(stream)lines indicate the behaviour of the 
surrounding liquid. 

and also veterinary medicine. A constraint in this project was that the actual recognition needed 
to be achieved by magnetic particles. It may be interesting to remark that at same time the 
company Philipps® [MMeg05] worked on a similar approach. 

 
What is the idea of employing magnetic particles for the recognition of biological molecules? 

Due to their magnetic stray field, magnetic particles influence other magnetic objects nearby. In 
particular, this allows their detection via magnetoresistive sensors. For the realization of the 
detection, particles and sensor surfaces are specifically coated by different biological surfactants. 
The surface modifications must be chosen so that the biomolecules to be detected serve as 
linkers between both components. Magnetic particles carrying the proper type of linker (e.g. 
antibodies in human diagnostics) can thus bind to the surface. Due to the biological bond, they 
withstand a washing process which serves to purify the sensor surface from sedimented markers 
after the binding has taken place and thus may afterwards be detected. This indirectly proves the 
existence of the linker. From the diagnostic point of view, several questions arise at this point: 

 

a) What exactly is measured? Can we distinguish 
whether 1 particle is placed on the sensor or 
more? Or do we need a certain threshold 
number of particles unless there is no signal? 
Can we conclude from the signal strength the 
number specific bounds and maybe obtain an 
estimation of the linker concentration in the 
original sample? In principle, the fundamental 
question is what can be measured and how 
does the measured signal correspond to a 
infection or a lack of infection. 

 

b) How do particles get to the sensor? Is it 
sufficient to wait for a while and let a 
combined influence of diffusion and gravity 
work or does this approach require too much 
time? Can we pull particles close the sensor by 
e.g. employing magnets, either permanent or 
by switchable current densities? These 
questions centre on the design of the whole 
internal structure of the device, the 
microfluidic channel geometry, also focusing 
on the time scale that is necessary to guarantee 
that all procedures can take place. 

 

c) Can we keep it simple and fast? The device 
should be mainly designed for fast, reliable 
testing employed by non-specialists. Therefore, 
no complex handling of the sample was 
allowed. Ideally, the sample is just deposited 
into the device and after a short time of about 5 
to 10 minutes a result should be given. 

 
 In the summer of 2006, these were the main questions raised, maybe not yet in such a 

specific form, but in principle very similar. One fact, however, was already decided: the device 
would consist of two components, the handheld and the disposable. The handheld consists of all 
those parts which never come into contact with the injected samples: such as data evaluation 

Schematic representation of a circular disc 
under the influence of a magnetic particle, 
lines show the particle field, arrows the 
components within the disc plane. 



 

components, energy source or control keys to start the measuring procedure. A liquid sample 
would only flow through the disposable which thus needs to be replaced after every 
measurement. It contains the actual detection site with microfluidic guidance structure, sensor 
arrays and contacts to the handheld. In principle, its tasks can be summarized as follows: 
 

a) bring particles into solution and enable the specific binding of molecules that shall be 
detected to the magnetic markers 

b) transport particles to the detection site, maybe separate different products if multiple tests 
are evaluated at the same time 

c) detect particles and conclude whether certain components are in the sample or not 
 

Therefore, different components were to be discussed. On the one hand, we needed to design 
a microfluidic geometry for the transport of particles through different functional sites of the 
device. On the other hand, the electromagnetic properties of particles, manipulating external 
fields and the magnetoresistive sensors needed to be understood. Especially in the case of the 
detection properties, many fundamental questions arose. In the framework of this thesis, these 
questions were analyzed by means of simulations. The equations for the description of different 
components are based on continuum theories and are therefore given by partial differential 
equations. These equations were solved by finite element methods which have become one of 
the most popular numerical methods when dealing with such systems. Finite elements work by 
means of the reformulation of the original equation into the so-called weak form which may be 
regarded as a generalization in the sense that a solution of the original problem always solves the 
weak form but not necessarily vice versa. These weak or variational formulations can be 
discretized in a finite dimensional subspace of the original solution space which leads to a set of 
linear equations Ax = b solvable by standard methods of numerical linear algebra. A brief 
summary of how a partial differential equations can be discretized by these ideas is given in 
chapter 1.  

The second chapter deals with the setup of the microfluidic channel design. We will give a 
short introduction to the theory of hydrodynamics focusing on the case of microfluidic which is 
governed by highly laminar flows. Applying hydrodynamic, electromagnetic and gravitational 
forces on the magnetic carriers, we will introduce a lab-on-a-chip system which can handle 
injection, reaction, separation, positioning, and detection procedures. We will prove that the 
proposed geometry maintains certain transport properties for specific time scales. Despite the 
many different tasks, each component employs only a small number of physical phenomena. In 
particular, the amount of components on the microscale such as small current leading wire 
geometries is minimized. Therefore, each part has high potential to lower the complexity of 
existing lab-on-a-chip devices. 

The tools for the discussion of magnetic phenomena are briefly reviewed in chapter 3. In 
particular, the fundamentals of micromagnetic calculations will be explained. These will 
afterwards be applied for the understanding of superparamagnetic particles and their interactions 
in microfluidic channels (chapter 4) and to the description of the magnetoresistive detection 
(chapter 5).  
 

For all the simulations carried out in the framework of the thesis as well as for most of the 
visualizations shown in the figures, COMSOL Multiphysics [COMSOL] was used. For a short 
introduction on how weak equations are implemented refer to Appendix A.1. 

Since the goal of the project is to 100% applied, all predictions important for either handheld 
or disposable had to be tested in experiments. Experiments on the microfluidic devices were 
carried out by F. Wittbracht [FWit08], [FWit09] and B. Eickenberg. The experimental 
investigation of particle detection by magnetoresistive tunnelling sensors was the topic of the 
PhD thesis of C. Albon [CAlb09]. 



 

Table of contents 
 
1. Finite element modelling         1 

      1.1 Basic notations …………………………………………………………………..  1 
      1.2 A short introduction to finite element methods ………………………………...  4 
 1.2.1 Weak formulation …………………………………………………………  6 
 1.2.2 Galerkin discretization …………………………………………………  7 
 1.2.3 Domain triangulation and finite elements ………………………………...  8 
 1.2.4 Assembly and stiffness matrix ………………………………………… 10 
 1.2.5 Parabolic equations and time integration ………………………………... 11 
      1.3 Living on a bubble – Moving domains ………………………………………… 13 
 1.3.1 Level-set-method ………………………………………………………….. 13 
 1.3.2 ALE-method ………………………………………………………….. 14 
 
2. Particles in microfluidic devices       17 

      2.1 Fundamental of hydrodynamics ………………………………………………….20 
 2.1.1 Continuum hypothesis and effective parameters ……………………….. 20 
 2.1.2 Lagrange- and Eulerian frame ………………………………………… 22 
 2.1.3 Navier-Stokes equation and Reynolds number ……………………….. 23 
 2.1.4 The special case of microfluidics ………………………………………… 25 
 2.1.5 Spherical objects dissolved in liquids ……………………………….. 26 
 2.1.6 Boundary conditions ………………………………………………… 28 
 2.1.7 Weak formulation  …………………………………………………. 29 
 2.1.8 Numerical stabilization and Petrov-Galerkin discretization ……………….29 
      2.2 Particle separation by a hydrodynamic switch ………………………………... 31 
      2.3 Transport properties for the low Péclet-regime ………………………………... 36 
      2.4 Microfluidic gravitational positioning system ………………………………... 41 
      2.5 Conclusions …………………………………………………………………. 47 
 2.5.1 Outlook …………………………………………………………………. 48 
 
3. Magnetism          49 

      3.1 From atomic to mesoscopic magnetism ………………………………………… 50 
      3.2 Coupling between mesoscopic moment and atomic structure ………………. 51 
      3.3 Magnetostatics in matter ………………………………………………… 53 
      3.4 Static micromagnetism …………………………………………………………. 54 
      3.5 Dynamic micomagnetism …………………………………………………. 56 
 
4. Magnetically interacting particles       57 

      4.1 Superparamagnetism …………………………………………………………. 58 
      4.2 Homogenously magnetized particles ………………………………………... 59 
      4.3 Magnetization dynamics  …………………………………………………. 60 
      4.4 Dipolar driven demagnetization processes ……..…………………………. 62 
      4.5 Magnetic particles in adiabatically changed magnetic fields ………………. 66 
      4.6 Conclusion and Outlook …………………………………………………………. 71 

4.6.1 Outlook: Magnetic particles in high frequency magnetic fields ……… 72 
 



 

5. Detection of magnetic particles       77 

      5.1 Weak formulation of the thin film approach ……………………………….. 79 
       5.1.1 Tunnelling magnetoresistance sensors ……………………………….. 80 
 5.1.2 COMSOL implementation: PADIMA ………………………………... 82 
      5.2 Manipulation of magnetic vortex states ………………………………………… 84 
      5.3 Space resolutive magnetic detection: “magnetic lenses” ……………………….. 86 
 5.3.1 Comparison to experimental data ………………………………………… 86 
 5.3.2 Estimation of spatial resolution limits ……………………………….. 89 
 5.3.3 Sensors for continuous flow particle measurements ………………. 93 
      5.4 Number resolutive magnetic detection ………………………………………… 96 
      5.5 Conclusion and Outlook …………………………………………………. 99 
 
6. A MrBead-summary        101 

 
Appendix          103 

     A.1 COMSOL Multiphysics  …………………………………………………. 103 
     A.2 Magnetic point-particle under an external force  ……………………….. 105 
     A.3 Variational derivation of the free energy functional for micromagnetism ……… 106 
     A.4 Short introduction to PADIMA ………………………………………………… 109 
 
List of figures          116 

 
List of references         119 

 
List of publications         130 

 
Acknowledgements         135 

 
 
 
 
  
  
  



 

 



 

 
 

 

 
 

 

Chapter 1 
 

Finite element modelling 
 
 
 
 
 
Many physical phenomena introduce observables depending on time and space: A cup of hot 
coffee loses its temperature while the surrounding area gets warmer, a stone thrown into a river 
induces a surface wave travelling spherically away from the point where the stone hit the liquid 
and a leaf is blown through the air along chaotic paths by the wind. All these phenomena can be 
described by partial differential equations (PDEs) which are equations for a set of dependent 
variables (in the examples temperature, surface displacement / liquid velocity and wind velocity) 
consisting of not only the function values but also of the partial derivatives of a certain order. In 
this work, the following examples will prove the most important: (a) the advection-diffusion 

equation describing the dynamics of a particle concentration under the influence of thermal 
motion as well as an additional convection field. Such fields are often obtained from (b) the 
Navier-Stoke/Stokes equation which together with the equation of continuity is the governing 
equation for the evolution of a fluid flow. On the electromagnetic side, we will need to solve (c) 
the Landau-Lifshitz equation combined with (d) the Maxwell equations for matter whose 
solutions describe the magnetization dynamics in magnetic systems.  

Except for very simple systems, the equations mentioned above cannot be solved by analytic 
methods but rather their solutions need to be approximated by numerical means. To get a better 
impression of what we are talking about, we will consider a seemingly easy example: Let be 

nΩ ⊂ �  and denote by ∆ the Laplace operator. For a continuous mapping :f Ω →�  
( ( ))f ∈ ΩC  the inhomogeneous Laplace / Poisson problem is to find a sufficiently smooth 
function :u Ω →�  2( ( ))u ∈ ΩC  so that 

 
u f∆ =  .         (1.1) 

 
This equation can be found in many physical fields, e.g. in electrostatics with u φ=  the electric 
potential and f = ρ the electric charge density. Similar to the way in which a time interval I must 
be specified when defining ordinary differential equations (ODEs), when working with PDEs an 
area nΩ ⊂ �  needs to be chosen. If Ω is bounded, additional boundary conditions are necessary. 
From a mathematical point of view, the properties of solutions of (1.1) are well understood, for 
the unbounded case as well as for bounded geometries [SLar05]: 
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Considering a boundary problem with data f either 0f ≤  or 0f ≥  on Ω, solutions follow a 
maximum principle, i.e. they reach their respective maximum or minimum at the boundary. Such 
a property may be readily employed to prove certain stability estimations ensuring that under a 
small variation of the data f only a small variation of the solution u is expected. In the unbounded 
case, explicit solutions can be found by first constructing a fundamental solution which is a 
function :U Ω →�  satisfying U δ∆ =  with δ the Kronecker δ-distribution. Solutions u for 
arbitrary data f can be obtained from the convolution u U f= ∗  as long as f is at least 
continuously differentiable and reaches all of its non-zero values in a bounded subset of Ω. For 
bounded geometries, a similar relation only holds for a specific type of fundamental solution, the 
so-called Green’s function :G Ω× Ω →�  fulfilling certain continuity conditions along the 
boundary. Solution u can be obtained according to 

 

 ( ) ( , ) ( )u x G x y f y dy
Ω

= ∫         (1.2) 

 
Therefore, finding analytic solutions entails finding a fundamental solution or Green’s 

function. Though such a solution would be ideal, this analytical approach is not typically used in 
mathematical analyses, as there is no known method to directly derive the Green’s function. On 
the other hand, the existence of analytic solutions is considered unproven for many systems. The 
most famous example is probably the Navier-Stokes problem which has been nominated by the 
Clay Mathematics Institute [CMI] as one of the seven Millennium Prize Problems. Therefore, we 
will not stress this point further. Instead, we will pursue a different strategy. 

The task is instead to find an approximate solution of equation (1.1) for given initial and 
boundary values by numerical means. The general method of dealing with this problem is 
actually very old and was first applied by Alexander Hrennikoff in 1941 [AHre41]: The domain 
Ω is divided into smaller subdomains. On each subdomain the approximate solution is 
constructed from an appropriate function space (that of course should be chosen to be as simple 
as possible) of a finite dimension. A finite dimension ensures that the functions are completely 
defined by a finite number of degrees of freedom, e.g. such as affine linear functions :g →� �  
are determined by their values at two points. Due to this discretization, it is possible to reduce 
the original problem to a system of linear equations Ax = b which can be solved by standard 
methods of numerical mathematics (e.g. Newton iteration). 

However, for a long time this method yielded severe complications. To understand why, in 
example (1.1) the function spaces have been given in which each component of the equation 
needs to be chosen. This was not done to confuse the reader or to make the example look more 
complex, but instead to underline the basic properties that need to be fulfilled so that u can be a 
solution of the equation. Figure 1.1 shows a schematic representation of how a numerical 
approximation to the solution might look: the exact solution (black line) was approximated by a 
linear spline (red line). However, such an approximation can no longer be a solution of the 
original equation because it is not even differentiable. In the example considered in section 1.2, 
we will show that it is possible by some reformulation of the original equation (1.1) to generalize 
the inhomogeneous Laplace equation to a formulation requiring u to be only once instead of 
twice partially continuously differentiable. Therefore, original strategies were pursued 
approximating the actual solution by e.g. piecewise trigonometric functions to maintain 
regularity. Yet, such approaches led to severe complications which restricted the application of 
such numerical schemes to only a small set of simple problems. The breakthrough was achieved 
when it was realized that the original problem could be recast into generalized function spaces 
only requiring the approximating functions to be continuous. The ideas and methods introduced 
and developed by Boris Galerkin, John William Rayleigh and Walther Ritz are still the 
fundamental basis of modern finite element methods, which have become one of the most 
powerful numerical methods to solve partial differential equations. 
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Figure 1.1: Exact solution (black) approximated by a piecewise linear, continuous function (red). Since 
the approximation is not differentiable itself, it cannot be a solution of the original system of partial 
differential equations. 

 

 
 

 

In this chapter, the basic ideas of finite element methods are demonstrated analyzing the 
inhomogeneous Laplace equation (1.1), as well as the corresponding parabolic system on static 
and moving domains. After introducing the most common function spaces necessary to 
understand this chapter in paragraph 1.1, the main steps for retrieving the discretized system 
from the original set of partial differential equations is explained in 1.2: We will recast the 
original equation into its corresponding variational or weak form (section 1.2.1). The weak 
formulation may be understood as a generalized version in the sense that it is well defined not 
only for sufficiently smooth functions, but also for mappings of less regularity. In a next step, 
the equation needs to be discretized by a Galerkin approach approximating the original solution 
spaces by finite-dimensional subspaces (section 1.2.2). Introducing the Lagrangian finite 

elements, we provide an explicit method with which to construct the linear space approximations 
(section 1.2.3). Since each individual basis function has a very small support (i.e. each basis 
function is different from zero only among a small subset of Ω), the system matrix A of the 
corresponding linear system Ax = b has only a small amount of entries that are unequal to zero. 
This sparsity of the system matrix is one of the key advantages of finite element methods 
(section 1.2.4). The introductory section will close with a short review on parabolic equations 
(section 1.2.5).  

The parabolic equation may be used to describe time-dependent problems. However, a certain 
type of time dependence cannot be treated in such a framework: a system where the domain Ω 
itself evolves in respect to time. Such phenomena are often encountered in the field of fluid 
structure interactions, where large deformations can be found which can no longer be 
incorporated by linear approaches. Two possible strategies will be introduced in 1.3: (a) the 
Level-set-method, which models interfaces between different geometries as an implicit function 
g as the root function of a higher dimensional mapping ( ) 0gΦ = . (b) the ALE-(Arbitrary 

Lagrangian Eulerian) method which employs multiple frames to map the moving domain onto a 
non-moving configuration. 

 

one-dimensional domain Ω 

exact solution 
 

linear 
approximation 
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1.1 Basic notations 
 
Finite element methods cannot directly deal with unbounded geometries as it is necessary to 
decompose the physical domain into a finite number of subdomains (as will be explained in 
section 1.2). Therefore, if not explicitly stated, nΩ ⊂ �  with n = 2 or n = 3 denotes an open, 
bounded set with boundary ∂Ω  and closure Ω . The set of continuous functions :u Ω →�  on Ω 
will be denoted by ( )ΩC . For the subspace of all k-times continuously differentiable functions, 
we write ( )k ΩC  and denote by 0 ( )k ΩC  the subset of all functions with compact support on Ω. 
Furthermore, we make use of the standard notations for differential operators, defining the 
Nabla- and the Laplace-operator by 1( ,..., )T

n
∇ = ∂ ∂  and 2 2

1 ...
n

∆ = ∂ + + ∂ , respectively. As 
already seen in Figure 1.1, the approximating functions are usually only continuous but not 
differentiable. Therefore, it is necessary to consider function spaces of less regularity, e.g. the p-
integrable functions ( )p

L Ω  and its subspaces, the Sobolev spaces 
, ( )k p

W Ω  and ( )k
H Ω . 

Detailed information on all definitions introduced in this chapter can be found in standard 
textbooks for functional analysis, e.g. [HTri80], [AmEs01] or [MHB06]. In this work, we will 
indicate by ( ),1p

L pΩ ≤ < ∞  the set of measurable functions :u Ω →�  on Ω, so that 
 

 | |p
u dx

Ω

< ∞∫ .         (1.3) 

 
Equipping ( )p

L Ω  with the norm and additionally 2 ( )L Ω  with the scalar product 
 

 

1/

( )
|| || | |p

p

p

L
u u dx

Ω
Ω

 
=  
 
∫   ( )p

u L∈ Ω      (1.4a) 

 2 ( )
,

L
u v uv dx

Ω
Ω

〈 〉 = ∫    2, ( )u v L∈ Ω     (1.4b) 

 
the set ( )p

L Ω  and 2 ( )L Ω  form a Banach and a Hilbert space, respectively. 
When discussing finite element methods, 2 ( )L Ω , the space of square-integrable functions, is 

the most common function space. However, it is usually not sufficient to consider 2 ( )u L∈ Ω  but 
it is also necessary that partial derivatives up to an order k are 2 ( )L Ω − functions. Unfortunately, 
definition (1.3) does not ensure any kind of regularity. In particular, functions in ( )p

L Ω  are 
usually not even continuous. As an example, one 
might take the step functions shown in Figure 1.2 
which obviously have points of discontinuity but 
the integrals of | |p

u  on a bounded domain 
always remain finite. Instead of the common 
(strong) definition of a derivative, it is necessary 
to use a generalized form, the weak derivative or 
the derivative in sense of distributions.  

As a motivation, we choose 1( )u ∈ ΩC  and 

0 ( )ψ ∞∈ ΩC  and follow by partial integration: 
 

u
dx u dx u dx u dx

x x x

ψ ψ
ψ ψ

Ω ∂Ω Ω Ω

∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫  

 
For ( )p

L Ω − functions this identity is chosen as a 
definition: 
 

Figure 1.2: Step function. The function 
contains points of discontinuity and is 
therefore ( )∉ ΩC  but since | |p⋅  remains 
finite, it is ( )p

L∈ Ω  for arbitrary p. 
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Definition (weak derivative): Let nΩ ⊂ �  be open, 0 ( )ψ ∞∈ ΩC  and ( )p
f L∈ Ω . The weak 

derivative is given by ( )p
g L∈ Ω  such that 

 

 
( )

( ) ( ) ( )
x

g x x dx f x dx
x

ψ
ψ

Ω Ω

∂
⋅ = −

∂∫ ∫    0 ( )ψ ∞∀ ∈ ΩC  

 
It stands that the weak derivative is always unique in the sense of ( )p

L Ω − functions, i.e. if 

1g  and 2g  are two weak derivatives, they are identical except along a set of measure “0”. Also, 
if f is differentiable in the strong sense, weak and strong derivative coincide. To give an 
example, we calculate the weak derivative of the heavy-side function Θ given by 

 

 
0 für 0

( )
1 für 0

x
x

x

<
Θ = 

≥
 

It is 
defintion

0

( ) ( ) ( )
( ) ( )

d x d x d x
x dx x dx dx

dx dx dx

ψ ψ
ψ

∞
Θ

= − Θ = −∫ ∫ ∫
� �

  

       lim ( ) (0) (0) ( ) ( )
x

x x x dxψ ψ ψ δ ψ
→∞

= − + = = ⋅∫
�

 

 
Therefore, the weak derivative of the (discontinuous) heavy-side function Θ is given by the 
Kronecker δ-distribution. 

Having introduced a definition for a differentiation that may be applied to ( )p
L Ω − functions, 

we are now able to introduce the Sobolev spaces. Denoting n-dimensional multiindices by 

1 0( ,..., ) n

n
α α α= ∈�  and setting 1| |: ...

n
α α α= + + , we may write differential operators α∂  via 

 

 
1

| |

1

:
... n

n
x x

α
α

αα

∂
∂ =

∂ ∂
 

 
Definition (Sobolev space): For an integer 0k >  and 1 p≤ < ∞ , the Sobolev space 

, ( )k p
W Ω  

is given by the subspace , ( ) { ( ) | ( ) with | | }k p p p
W u L u L k

α α αΩ = ∈ Ω ∂ ∈ Ω ∀ ≤  of ( )p
L Ω . In 

the special case of p = 2, we write ,2 ( ) ( )k k
W HΩ = Ω .  

 
For the discussion of finite elements, it is often sufficient to restrict the analysis to 1( )H Ω , to 

square-integrable functions with square-integrable first-order derivatives. 1( )H Ω  becomes a 
Hilbert space with the scalar product 

 

 1 ( )
, : ,

H
u v u v dx uv dx

Ω
Ω Ω

〈 〉 = 〈∇ ∇ 〉 +∫ ∫    1, ( )u v H∈ Ω   (1.5a) 

 
Apart from the resulting norm 1 1

1/ 2

( ) ( )
|| || ,

H HΩ Ω
⋅ = 〈 ⋅ ⋅〉 , a half-norm 1 ( )

| |
H

u
Ω

 can be introduced by 
 

 1

1/ 2

2

( )
| | | |

H
u u dx

Ω
Ω

 
= ∇ 
 
∫     1( )u H∈ Ω   (1.5b) 

 
Finally, it is necessary to have a generalization of the function space 0 ( )∞ ΩC  which is given 

by the closure of 0 ( )∞ ΩC  in 1( )H Ω  in respect to the corresponding norm. We write 
 

 
1( )

|| ||
1
0 0( ) ( ) H

H
Ω

⋅
∞Ω = ΩC
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1.2 A short introduction to finite element methods 
 
We now return to the example (1.1) considering a bounded domain Ω with smooth boundary ∂Ω. 
To completely specify the problem, additional boundary conditions are necessary. For right now, 
we will assume homogeneous van Neumann conditions, i.e. along the boundary the derivative in 
direction of the surface normal vector n̂  vanishes. The complete problem therefore is to find 

2 ( )u ∈ ΩC  such that 
 

( ) ( )u x f x∆ =    x∀ ∈Ω        (1.6a) 

 ˆ, 0n u〈 ∇ 〉 =   x∀ ∈∂Ω       (1.6b) 

 
with ( )f ∈ ΩC  and ,〈 ⋅ ⋅〉  the Euclidean inner product. For u to be a solution of this equation, u 
must be at least twice continuously differentiable; a solution satisfying this requirement is also 
called strong solution of (1.6). In particular, the piecewise linear approximation shown in Figure 
1.1 does therefore not solve (1.6). The first step for applying finite element schemes to a partial 
differential equation is to lower the regularity constraints on a solution. Consequently, the new 
solution is not necessarily a solution of the original equation anymore but instead a generalized 
solution. 
 
 

1.2.1 Weak formulation 
 
When introducing the weak derivative in section 1.1, we “reassigned” the differential operation 
to a smooth function by partial integration. Here we proceed similarly: let be ( )ψ ∞∈ ΩC  an 
arbitrary smooth function or testfunction. If we multiply (1.6a) by ψ and integrate over Ω, we 
obtain  
 

 u dx f dxψ ψ
Ω Ω

∆ =∫ ∫ . 

 
Integrating the first summand by parts results in 
 

 ˆ, ,n u dx u dx f dxψ ψ ψ
∂Ω Ω Ω

〈 ∇ 〉 − 〈∇ ∇ 〉 =∫ ∫ ∫ . 

 
If we finally exploit van Neumann conditions, we obtain the variational formulation of (1.6) 
 

 , u dx f dxψ ψ
Ω Ω

− 〈∇ ∇ 〉 =∫ ∫        (1.7) 

 
or ( , ) ( )a uψ ψ= �   with 2 ( )

( , ) ,
L

a u uψ ψ
Ω

= −〈∇ ∇ 〉  

    and 2 ( )
( ) ,

L
fψ ψ

Ω
= 〈 〉�  

 
with 2: ( ) ( )a

∞ Ω × Ω →�C C  and : ( )∞ Ω →� �C  a bilinear and linear mapping, respectively. 
Since we started with an arbitrary function ( )ψ ∞∈ ΩC , a solution u of (1.7) needs to satisfy the 
variational equation for all ( )ψ ∞∈ ΩC . However, it needs to pointed out that (1.7) only contains 
derivatives of first order of u. Therefore, a solution of (1.7) needs to meet a lower degree of 
regularity properties than a solution of (1.6). In this sense, (1.7) is weaker than (1.6). In 
particular, a solution of (1.6) is always a solution of (1.7) but the converse is not necessarily true. 
Usually certain conditions on the functions f need to be imposed, for examples see e.g. 
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[MHB06]. Due to van Neumann conditions, (1.7) does not contain any terms depending on the 
domain boundary; in this sense van Neumann boundary conditions are also referred to as natural 

conditions for finite element approaches. If we instead consider e.g. Dirichlet conditions, 
boundary integrals will remain in the variational form. To obtain a similar formulation to (1.7), 
the incorporation of boundary conditions is done by a proper choice of the testfunction space. 
Assuming 0 ( )ψ ∞∈ ΩC  instead of ( )∞ ΩC , boundary contributions always vanish; equation (1.7) 
now needs to hold 0 ( )ψ ∞∀ ∈ ΩC . 

The question is now whether it is possible to find yet more general function spaces also 
containing functions which are easy to handle from a numerical point of view as e.g. piecewise 
polynomials. Obviously, it is not necessary that we choose ( )ψ ∞∈ ΩC  but all operations in (1.7) 
remain well-defined for 1( )ψ ∈ ΩC . Indeed, understanding all derivatives in sense of weak 
derivatives, it is possible to show [MHB06] that it is sufficient to have 1, ( )u Hψ ∈ Ω . Therefore, 
the weak formulation of (1.6) is given by 

 
 
 
 
 

 
Solutions of (1.8) are also called weak solutions. 
 
 

1.2.2 Galerkin discretization 
 
By reformulating the original problem into the weak form, it was possible to decrease the degree 
of required regularity which a solution needs to meet. However, the function spaces 

1 1 2
0 ( ) ( ) ( )H H LΩ ⊂ Ω ⊂ Ω  are infinite dimensional linear spaces; a linear system of type Ax b=  

still introduces an infinite number of degrees of freedom. Therefore, instead of trying to find an 
exact solution 1( )u H∈ Ω  of (1.8), we introduce a finite dimensional subspace 1( )

h
V H⊂ Ω  from 

which approximate solutions 
h

u  as well as approximate testfunctions 
h

ψ  are constructed. The 
approximate problem may be written in a similar way to (1.8): 
 
 
 
 
 
 
Since we consider a finite-dimensional 

h
V , we can choose a finite basis set 1{ ,..., }

N
Λ Λ  of 

h
V . 

Every approximate solution 
h

u  of (1.9) may thus be written in the series expansion 
 

 
1

N

h j j

j

u u
=

= Λ∑   ju ∈�        (1.10) 

 
Due to the linearity of the mappings ( , )

h
a u ⋅  and �  an approximate solution 

h
u  satisfies (1.9) 

h h
Vψ∀ ∈  if it satisfies (1.9) on the finite basis set 1{ ,..., }

N
Λ Λ . Assuming the special form of a 

and �  deduced for the inhomogeneous Laplace problem, inserting (1.10) into (1.9) leads to the 
equation system 
 

 
1

( ) ( , ) , ( , )
N

i i h i h j i j

j

a u u dx u a
=Ω

Λ = Λ = 〈∇Λ ∇ 〉 = Λ Λ∑∫�  

find 1( )u H∈ Ω  such that 
          (1.8) 
 ( , ) ( )a uψ ψ= �   1( )Hψ∀ ∈ Ω  

find 
h h

u V∈  such that 
          (1.9) 
 ( , ) ( )

h h h
a uψ ψ= �   

h h
Vψ∀ ∈  



 

 8 

(a) regular (b) non-regular 

Figure 1.3: Different domain triangulations of a 
polygonal domain. (a) shows a regular triangulation; 
the intersection of neighbouring elements are either a 
node or a whole edge. (b) represents a non-regular 
triangulation; the highlighted edges show deviations. 

 

which follows due to the linearity of ( , )
i

a ⋅ Λ . Therefore, we may rewrite (1.10) in a system of 
linear equations. In matrix form, this is given by 

 
 AU b=          (1.11) 

with T
1( ,..., )

N
U u u= , ,[ ( , )] N N

i j i jA a
×= Λ Λ ∈� , [ ( )] N

j jb = Λ ∈� � . 

 
This procedure is known as Galerkin approach. The matrix A is referred to as the stiffness 
matrix: it is a symmetric positive definite matrix which implies that equation (1.11) has a unique 
solution. Thus, the Galerkin approach always leads to a well-defined solution. For additional 
properties of the stiffness matrix see section 1.2.4. 
 
 

1.2.3 Domain triangulation and finite elements 
 
The preceding section explains how to reduce the original problem from an infinite- to a finite-
dimensional problem. Formulation (1.11) may be readily used and solved e.g. by Newton 
iteration. The remaining unanswered question is how to construct the approximate solution space 

h
V  or the set of basis functions 1{ ,..., }

N
Λ Λ . 

 
Definition (triangulation): A finite system of subsets 1{ ,..., ; }

m i
T T T= ⊂ ΩT  is called 

triangulation if all the Ti are pairwise disjoint open tetrahedrons whose closure covers Ω. The 
corners of the tetrahedrons are called nodes; the set of all nodes is denoted by N. The subset 

int ⊂N N  denotes the set of inner nodes, the nodes that do not lie on 
h

∂Ω .  
 

In other words, a triangulation is a decomposition of the domain into triangles/tetrahedrons 
where different triangles/tetrahedrons do not overlap but every point of Ω lies on one such 
subdomain or along the interface of two of them. It should be pointed out that a perfect covering 
of Ω can only be ensured if ∂Ω is piecewise linear. We will not stress the point of boundary 
approximation by domain triangulation here, for further reading see e.g. [JOde76].  For the 
construction of an approximate vector space 

h
V  not all triangulations are appropriate. Instead 

only the so called regular triangulations are suitable [PCia78]: 
 
Definition (regular triangulation): A triangulation T is regular if for ,i jT T i j∩ ≠ , exactly one 
of the following properties holds: 
 

a) i jT T∩ = ∅  
b) i jT T∩  is a node of Ti and Tj 
c) i jT T∩  is an edge of Ti and Tj 

 
 
This definition basically says that different 
triangles adjacent to each other always have 
either nodes or whole edges in common. 
Fig. 1.3(a) presents a possible regular 
triangulation while Fig. 1.3(b) shows a non-
regular one; the triangles not satisfying the 
definition above are highlighted.  
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Based on a regular domain triangulation, a set of basis functions can be constructed. As an 
example, Figure 1.4 shows a schematic representation of a so-called hat function. The basis 
function : , 1,...,| |

i
iΛ Ω → =� N  is piecewise linear on every triangle, i.e. for every 

{1,...,| |}k ∈ T  it may be written in the following form: 
 
 ( ) ,

i ik ik
x a b xΛ = + 〈 〉 ,  , n

ik ik
a b∈ ∈� �  

k
x T∀ ∈   

 
Figure 1.4 shows a special case, the so-called Lagrange-elements. Each basis function has the 
value “1” at a specified node and “0” at all other nodes. Denoting the node positions by 

1,...,| |{ }j jx = N , the basis functions additionally satisfy ( )  with , 1,...,| |i j ijx i jδΛ = = N . In general, 
Lagrange-elements of order k are given by polynomials of degree ≤ k, examples are shown in the 
insets of Figure 1.4. Except for convection dominated advection-diffusion problems (compare 
section 2.1.8), such functions are employed as a basis in all the applications discussed in this 
work. With these preparations we are now able to define the finite elements: 
 
Definition (finite elements): The Lagrangian hat functions 1{ ,..., }

N
Λ Λ  in respect to a 

triangulation T form the nodal basis. The linear space 1span{ ,..., }
N

V = Λ ΛT  is the space of 
continuous, piecewise linear functions on Ω in respect to the triangulation T. The finite elements 
of Ω in respect to the triangulation T is defined by the tuple ( , )V

TT . 
 

The following two theorems prove that the above-described construction of the approximate 
linear space is well suited for the problem at hand: 
 
Theorem: The space V T  is a finite-dimensional subspace of 1( )H Ω . 
 
Theorem: Let T be a regular triangulation of Ω with nodes at , 1,...,| |

i
x i = N . It exists a unique 

function Vψ ∈ T  that solves for given , 1,...,| |
i

y i∈ =� N  the following interpolation problem 
 

 ( )
i i

x yψ =  1,...,| |i = N  given by 
| |

1

( ) ( )i i

i

x y xψ
=

= Λ∑
N

 

Figure 1.4: Examples of Lagrangian basis functions. (a) A given basis element obtains the value “1” at a 
single node point and is “0” at all other nodes. (b) Lagrangian elements of order “1” (upper plot) and “2” 
(lower plot). In the case of orders ≥ 2 basis functions are not completely specified by their values at the 
nodes anymore; additional points need to be chosen. For 2nd order Lagrangian elements, the centres of 
each edge are chosen (black markers). 
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s3 

s2 

s1 

1 

1 

1 

Figure 1.6: Representation of 2-(red) 
and 3-(grey)simplex. 

Figure 1.5: Domain triangulation and 
stiffness matrix of a finite element 
discretization; only the black entries 
are different from zero. 

To validate this approach, it is necessary to know how far away the approximate solution 
h

u  
is from the exact one u. For elliptic equations, it is possible to show that the error 1 ( )

|| ||h H
u u

Ω
−  

can be estimated by 
 
 1 1( ) ( )

|| || inf || ||
h

h H Hv V
u u C u v

Ω Ω∈
− ≤ −  

 
with a constant C obtained from the Poincaré inequality [HTri80]. In principle, this ensures that 
the solution is as accurate as it can be under the approximation 

h
V  of the solution space. 

 
 

1.2.4 Assembly and stiffness matrix 
 
The main issues for the implementation of finite element methods are the creation or assembly of 
the stiffness matrix A introduced in (1.11) and the solving of the linear system. In regards to 
further applications, we will therefore briefly summarize some important facts. According to 
(1.11) the matrix elements are given by the integral expressions 

 

 ( , ) ,
ij i j i j

A a dx
Ω

= Λ Λ = 〈∇Λ ∇Λ 〉∫  

 
Since the hat functions Λi are only different from zero among a small number of elements, the 
integral is zero in most cases: in principle, a non-zero value is only obtained when hat functions 
to adjacent elements are considered. An example is shown in Figure 1.5. The geometry is 

discretized by a mesh consisting of 794 elements which 
leads to 1660 nodes. Therefore, the stiffness matrix has 
16602 = 2755600 entries. Figure 1.5 shows a plot marking 
all the non-zero values for the system. We find that only a 
small fraction of all entries, 18550, has non-zero values. 
Such a matrix is called sparse. Sparsity of a matrix allows 
for very memory efficient ways in which to handle it. In 
praxis, only the non-zero entries under the information of 
their matrix indices are saved; this is called the assembly of 

the stiffness matrix. 
The triangles of the triangulation are usually of different 

forms. Therefore, instead of evaluating the actual form of 
all basis functions, the integral is recast onto a reference 
element, the unit simpleces Sn given by 

 

{ }, 0, 1n

n i i
S s s s= ∈ > <∑�   (1.12) 

 
Examples of 2- and 3-simplex are shown in Figure 1.6. 

The transformation from an arbitrarily shaped triangle to 
the simplex is given by an affine mapping :

k n k
S TΦ → . 

Considering the two-dimensional case and denoting the 
nodes of an element 

k
T  by , , 1,..,3k jx j = , 

k
Φ  may be 

written in the explicit form 
 

1 2 ,1 1 ,2 ,1 2 ,3 ,1( , ) ( ) ( )k k k k k ks s x s x x s x xΦ = + − + −  
      (1.13) 
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  find 
h h

u V∈ , such that  
 

2

2
( )

( )

( )
, ( ( ), ) ( ),h

h L

L

u t
a u t f t

t
ψ ψ ψ

Ω
Ω

∂
+ = 〈 〉

∂
 

h
Vψ∀ ∈   (1.16) 

1.2.5 Parabolic equations and time integration 
 
The systems considered in the preliminary sections describe a stationary problem; the resulting 
solutions do not show an evolution in respect to time but may be seen as a solution for the long 
time limit t → ∞ . If we are interested instead in the relaxation of a disturbed state back to 
equilibrium or simply need to handle data changing over time, an additional time argument must 
be introduced. Let be [0; ]I T= ⊂ �  a finite time interval, we address the following problem: 
 

 
From a formal point of view, we went over from the theory of elliptical equations to parabolic 
systems. Writing the coefficients of all derivatives of order 2 in a matrix B, all eigenvalues λ 
except of one are either 0λ >  or 0λ < . The remaining value is given by 0λ = . For the 
complete specification of the problem, an additional initial state needs to be specified which is 
given by the initial data 0 :u Ω →� . 

For the treatment of such systems, it is no longer sufficient to merely decompose the domain 
within a Galerkin approach; the time argument also needs to be discretized. To do so, we 
reformulate (1.14) into its corresponding weak form (in a manner similar to the discussions in 
section 1.2.1) 
 

( )
( ), ( )

u t
dx u t dx f t dx

t
ψ ψ ψ

Ω Ω Ω

∂
+ 〈∇ ∇ 〉 =

∂∫ ∫ ∫   1( )Hψ∀ ∈ Ω  

or 2

2
( )

( )

( )
, ( ( ), ) ( ),

L
L

u t
a u t f t

t
ψ ψ ψ

Ω
Ω

∂
+ = 〈 〉

∂
     (1.15) 

 
We declare a weak solution of (1.14) as a function :u IΩ × →�  satisfying (1.15) and 

passing to the limit 20 ( )
|| ( ) || 0

L
u t u

Ω
− →  for 0t → . Further, we demand 1( ) ( )u t H∈ Ω  for almost 

every 0t > . It is possible to show the existence of a weak solution for arbitrary 
2 ( )f L I∈ Ω ×  and 1

0 ( )u H∈ Ω  where 1( , ) ( )u t H⋅ ∈ Ω  for every 0t ≥ . Additionally, for almost 
every 0t > , it is 2( , ) ( )u t H⋅ ∈ Ω  and 2( , ) ( )

t
u t L∂ ⋅ ∈ Ω . For u to be also a strong solution requires 

f to be twice continuously differentiable and the initial conditions to maintain the compatibility 
 

0ˆ, ( ) 0n u x〈 〉 =   and 0 ( ) ( ,0)u x f x−∆ =  for x ∈∂Ω  

 
In respect to the spatial argument parabolic equations are very close to the initially discussed 

elliptic ones. Therefore, the idea is close to apply a Galerkin discretization in respect to space. 
Analogously, we may construct a finite-dimensional linear space 1( )

h
V H⊂ Ω  from which the 

approximated solutions need to be chosen. Addressing the problem 

  find :u I × Ω →� , such that  

( , )
t
u u f x t∂ − ∆ =  for , 0x t∈Ω ≥    

ˆ, ( , ) 0n u x t〈 ∇ 〉 =   for , 0x t∈∂Ω ≥     (1.14) 

0( ,0) ( )u x u x=   for x ∈Ω  
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t 

x x1 x2 

Figure 1.7: Method of lines for the one-
dimensional case 1 2[ , ]x xΩ = . Discrete 
domain points evolve along a continuous 
time argument. 

This way, an approximated problem is received which is discretized in respect to space but 
continuous in regards to the time argument: a pre-step towards the completely discrete model 
which is known as semidiscretization. An approximate solution may be written in respect to the 
nodal basis 1{ ,..., }

N
Λ Λ  via the expansion: 

 

1

( )
N

h j j

j

u u t
=

= Λ∑         (1.17) 

 
with time-dependent coefficients :

i
u I →� ; the hat functions are still independent of the time 

argument. Inserting (1.17) into equation (1.16) and exploiting the bilinearity of the scalar 
product, we may write:  
 

 2 2( ) ( )
1 1

( )
, ( ) ( , ) ( ),

N N
j

j i j j i iL L
j j

u t
u t a f t

t Ω Ω
= =

∂
〈Λ Λ 〉 + ⋅ Λ Λ = 〈 Λ 〉

∂
∑ ∑  

 
Again, we obtain a matrix formulation by introducing the vectors , N

U b ∈�  by ( ) ( )j jU t u t=  
and 2 ( )

( ) ( ),j j L
b t f t

Ω
= 〈 Λ 〉 : 

 

 
U

M AU b
t

∂
+ =

∂
        (1.18) 

with 2 ( )
,ij i j L

M
Ω

= 〈Λ Λ 〉  and ( , )ij i jA a= Λ Λ  

 
M is called the Gramian matrix of the hat functions in 2 ( )L Ω . The theorem of Picard-

Lindelöf (see e.g. [WHac96]) ensures the existence and uniqueness of a solution U which 
remains true also for quasilinear problems, i.e. where the matrix M is linear in U [FNob01]. Due 
to graphical reasons, such a semidiscretization is also 
called (vertical) method of lines: for every 0t ≥  the 
vector valued function ( )U t  evolves at discrete 
domain points along a continuous time argument as 
schematically shown in Figure 1.7. In a second step, 
a discretization of the time argument is necessary. 
Throughout this work, a backward differential 
formula (BDF) of variable order ≤ 5 is used for 
numerical time integration schemes. Their analysis is 
part of the theory of numerical treatment of ordinary 
differential equations, we will therefore not stress 
this point here any further but refer to standard 
literature, e.g. [JBut87] or [UAsch98].  
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1.3 Living on a bubble – Moving domains 
 
In section 1.2.5, we explained how additional time arguments need to be incorporated into the 
numerical scheme. However, the discussion above does not include a very important case which 
is given by systems where the domain Ω itself evolves along the time interval I. In real life such 
changes of the domain are often encountered when analysing physical systems where a 
liquid/gas flow interacts with a solid material. Typical examples can be found e.g. in 
haemodynamics where blood vessels expand and contract during the heartbeat due to forces 
induced by the blood flow; in the analysis of buildings such as skyscrapers which bend in the 
wind; or when an air bubble rises in liquid. As long as such deformations are small, they can be 
treated in the framework of linear elasticity theory; the change of the domain shape can be 
incorporated by additional boundary conditions which are also called transpiration conditions. 
This is no longer possible if large displacements occur and the coupling between different 
physical effects obtains an increasingly non-linear character. We will give two examples of the 
possible different approaches dealing with strong deformations: 

 

(a) the Level-set-method 
(b) the ALE-method 

 
 

1.3.1 Level-set-method 
 
The idea of the Level-set-method is to introduce a continuous function :Φ Ω →� . Due to 
continuity the sign-function decomposes the image ( )Φ Ω  into different sections which may be 
used to model different materials. Therefore, the implicit function g defined by ( ) 0gΦ =  
describes material interfaces. A typical example is shown in Figure 1.8: A gas bubble rises 
within a liquid (top pictures), the initial configuration of Φ is shown on the left side. The lower 
plots show a domain decomposition according to the sign-function; here blue and red areas 
correspond to ( ) 0xΦ <  and ( ) 0xΦ > , respectively. 

 

 
 

Figure 1.8: The rising bubble; example of a moving domain calculated in a Level-set-framework. The 
left plot shows the initial configuration of the function Φ. The right plots show the implicit function  g 
given by ( ) 0gΦ =  indicating fluid-gas-interfaces (black lines) that are moved along the flow profile (red 
arrows). Due to the inhomogeneous velocity distribution, the bubble surface undergoes deformation. 
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Ω0 

Ωt 

t
A

Figure 1.9: Mapping of reference 
configuration Ω0 in the Lagrangian 
frame onto the spatial configuration Ωt. 

ξ 

x 

The evolution of the function Φ is described by a convection-diffusion equation which will 
be discussed in more detail in section 2.1.6. For right now, we just accept that it is given by the 
parabolic equation 

 

 ( )D u R
t

∂Φ
− ∆Φ + ∇ Φ =

∂
       (1.19) 

 
The dynamic change of Φ is due to a convective transport of Φ along a flow u and a reaction rate 
R. In principle, these contributions are sufficient. However, if we take a closer look at the lower 
plots of Figure 1.8, we see that fine structures are generated close to the interfaces. The reason 
for such behaviour will be explained in 2.1.7. Such details start appearing when the convective 
flow dominates the diffusive one, i.e. | | | |D u∇Φ � . Higher diffusion ensures convergence of 
the numerical scheme; the term D− ∆Φ  therefore maintains numerical stability. The choice of D 
itself is very important, as here it has no physical interpretation but is only introduced for 
technical reasons. On the one hand it needs to be large enough to average out numerical 
oscillations. On the other hand, it needs to be sufficiently small to not introduce non-physical 
results.  

A good introduction into the basic ideas and the formalism can be found in [OsFe03]. 
[YCha96] gives a good example how this method can be applied to fluid flow calculations. 
 
 

1.3.2 ALE-method 
 

One of the main disadvantages of Level-set-method based approaches is the fact that in most 
cases a bigger domain than the one of interest needs to be considered. The reason for this is that 
the domain travels through a fixed space, one which must include all possible positions of the 
object studied. The description matches the point of view of a stationary observer; the 
corresponding coordinate frame is called Eulerian or spatial frame. In continuum mechanics, a 
different coordinate system is commonly employed, the Lagrangian frame. In contrast to the 
spatial description, the point of view chosen is that of an observer travelling with the material. In 
his frame, the observer remains at the same position all of the time; therefore, the domain 
remains non-moving and can be written in the form of a reference configuration 0Ω . 

To avoid confusion, we will denote the domain configuration in the spatial frame at time t by 

t
Ω ; coordinates in this frame by x; while ξ denotes the coordinates in the Lagrangian or 
reference frame. The idea of the ALE-method (Arbitrary Lagrangian Eulerian) is to transfer the 
physical phenomena described in the spatial system onto the reference frame and therefore onto 
a non-moving domain which enables the application of the methods discussed in section 1.2. For 
this purpose, we introduce a family of mappings 

0:
t t

Ω → ΩA  holding several properties: 
 

a) 0:
t t

Ω → ΩA  is a homomorphism for every 
,t I∈  i.e. 0( )

t
∈ ΩA C  and 1 ( )

t t

− ∈ ΩA C  
b) the application ( , )

t
t tξ�A  is differentiable 

almost everywhere in I 
 

The connection between the reference system 
and the spatial configuration via the ALE-mapping 

t
A  is schematically shown in Figure 1.9. To get a 
better understanding of how the spatial equation 
can be recast into the reference frame, we will 
address the parabolic equation (1.14) again. 
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w 

Figure 1.10: Change of a function f along 
a trajectory in respect to time. The value 
change is due the change by moving with 
velocity w (a) and by the time dependence 
of f itself (b). 

(a) 

(b) 

A function f declared on the spatial coordinate frame induces a function f�  on the Lagrangian 
frame given by ( , ) ( ( ), )

t
f t f tξ ξ=� A . Time derivatives 

t
∂  of f and f�  are to be understood in 

respect to the corresponding fixed coordinate frame. To transfer between both frames, another 
definition of time derivative is often necessary: the material derivative. This derivative may be 
visualized as the time derivative of a function f along the trajectory of a reference coordinate ξ 
(compare Figure 1.9). In formula, it is 
 

 
1

( ( ), ) ( )
( , ) : ( ( ), ) ( ( ), )

n
t t i

t t

i i

f t dDf d
x t f t f t

Dt dt x dt t

ξ ξ
ξ ξ

=

∂ ∂
= = +

∂ ∂
∑

A A
A A  

  
( )

( , ), ( , )td f
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with w the domain velocity 

Again, a visualization of each component is 
possible: an observable f evaluated along the trajectory 
of a reference point ξ in the spatial system changes in 
respect to time due to the motion of the coordinate ξ 
with velocity w (1st term) as well as the temporal 
evolution of f itself (2nd term). This is schematically 
shown in Figure 1.10.  

With the help of the ALE-mapping, it is possible to 
recast equations formulated in the spatial system onto 
the reference configuration. Considering again the 
parabolic equation (1.14), the weak formulation (1.16) 
goes over to 
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Vψ ∈ , where the integrations need to be extended to the time depending domains 

t
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According to the substitution formula (compare e.g. [OFor99]) an integration of a function 
:

t
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t
f L∈ Ω  can be recast to the domain 0Ω  via a mapping 0:

t t
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Figure 1.11: Contact of two spheres modelled in an ALE-
framework, the colour scale shows the displacement [a.u.] 
along the x-axis (red-positive, blue-negative). When the 
spheres get close to each other, the mesh quality drops 
rapidly and mesh degenerates. 

Here, we may therefore rewrite the parabolic equation into 
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The testfunctions 0( )ψ ∈ Ω� Y  are commonly formulated in respect to the reference 

configuration. Their choice is connected to the space in which the ALE-mapping is discretized 
and needs to maintain the suitability of the finite element discretization [FNob01]. The obtained 
formulation is far more complex, however, it is applicable to a wide range of systems (an 
exception are contact phenomena, see below).  

Though the application of ALE-based methods has gained high popularity, a rigorous 
mathematical analysis is still missing. In this regard though, the geometrical conservation laws 
have drawn a lot interest during the last decade. We do not want to go into detail here, but only 
remark that a numerical scheme meets the geometrical conservation laws if certain geometrical 
properties are maintained in respect to time by the numerical scheme. For finite volume schemes 
the works of Farhat et al. [MLes97], [HGui00] have identified these laws as a minimal condition 
on the precision of the quadrature formula used for numerical time integration. Similar 
observation have been made for finite element schemes, e.g. [AMas96,06] or [DBof04]. 
However, a proper clear-cut analysis is not available so far. 

 
A disadvantage of schemes based on 

ALE-approaches is that they are not 
adaptable to systems in which topological 
changes occur; in particular, it is not 
possible to model contact phenomena in 
such a framework. The reason lies in the 
continuity requirement of the ALE-
mapping which does not allow mapping 
two points separated in the reference frame 
onto the same coordinate in the spatial 
system. From a practical point of view, in 
many cases problems quickly arise if 
overly strong deformations are considered 
(compare Figure 1.11). 
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Chapter 2 
 

Particles in microfluidic devices 
 
 
 
 
 

 
Since the early 1990s, microfluidic lab-on-a-chip systems have been the focus of much research. 
One of the most challenging tasks is the construction of a Micro Total Analysis System (µTAS), 
the integration of several laboratory procedures on a small microfluidic chip [NPam06b], 
[AGij04], [GWhi06]. These tasks include the injection and the preparation of the sample and the 
subsequent guidance by e.g. hydrodynamic or electromagnetic means to the functional sites of 
the device. It is at these sites where chemical reactions take place, which are afterwards 
separated and detected. Each individual component produces a unique set of challenges which 
have been thoroughly studied during the last decade. Due to the considered size scales, the fluid 
flow itself does not behave in a way how macroscopic observations would predict. Inertia effects 
and non-linear dynamics play only a minor role on the investigated scales (for special exceptions 
see e.g. [DCar09], [CBla05]). In particular, this results in severe complications when trying to 
mix several fluid components on the microscale with each other. Where it is sufficient to pure 
two components together on the macroscale, a lot of effort is necessary (see e.g. [EKam09], 
[XNiu06], [MLon09] or [SLee09]) to reach a similar result when dealing with microfluidic 
devices. 

µTAS-devices require for the controlling of the component that is to be analyzed. 
Manipulation techniques of objects dissolved in liquid by applying external influence include 
electrophoretic [NGre98], dielectrophoretic [NGre00], [CYan06], electrothermal [NGre01] and 
magnetophoretic effects [UHäf05], [NPam06c]. What effect can be used for a specific task 
depends mainly on the properties of the component itself, e.g. it needs to be magnetic to feel a 
force in an inhomogeneous magnetic field and therefore enable magnetophoretic procedures. 
The prototype of magnetic components is a magnetic micro- or nanoparticle. During the last 
years, a lot of effort has been done for the creation of particle with different properties [AHüt05], 
[SSun06] and their surface modifications [KWoo05], [SMor05]. In particular, FePt-particles 
[MChe06] have recently attracted a lot of interest due to their strong anisotropy which allows for 
their application in data storage devices [AMos02]. 

Many strategies for their manipulation have been developed in recent years. In particular 
current leading wires which create strongly inhomogeneous magnetic fields have been applied in 
many different ways [ZWan06]. Another method is employment of magnetic components. I. 
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Ennen et al. [IEnn07] observed the self-assembly of magnetic nanoparticles along the domain 
walls in patterned ferromagnetic layers, whereas T. Deng et al. [TDen01], E. Mirowski et al. 
[EMir07] and G. Vieira et al. [GVie09] demonstrated a particle transport via magnetic micro-
components which switched their magnetic configuration periodically in respect to time. Their 
easy handling enables a lot of different applications such as e.g. their purification in respect to 
certain properties [RAfs09]. By tagging them to biomolecules such molecules are indirectly 
accessible to magnetophoretic manipulation themselves. In particular, we may guide 
biomolecules through a µTAS-device employing magnetic fields. This strategy is pursued in this 
work. 

The components of the microfluidic device discussed in this work are schematically shown in 
Figure 2.1. Assuming blood as a carrier liquid, the sample is inserted into the lab-on-a-chip 
structure via a microfilter that separates the blood plasma from the serum, which is necessary to 
prevent the closing of the channel by aggregation of colloidal components within the plasma (i.e. 
clotting). The sample is guided by microfluidic channels to a preparation/reaction chamber 
(Figure 2.1(b)). In our case, the biological binding of biofunctionalized magnetic markers to the 
antigens of interest would take place in this site. In general, this type of chamber can be used for 
all kinds of reaction applications. Upon leaving the reaction site, the solution is transported to a 
separation device (Figure 2.1(c)) where different surfactants are purified from each other and 
travel to a detection site (Figure. 2.1(d)). Due to their magnetic, properties small magnetic 
particles influence soft magnetic material nearby, which creates the possibility to detect them 
with magnetoresistive sensors. If the surface of the sensor itself is specifically coated, the 
corresponding antigen can act as a linker between the sensor and magnetic marker. Depending 
on the response of the sensor, it is therefore possible to indirectly detect the presence of a certain 
antibody and thus to diagnose a certain infection. 

 
Individual components have different requirements for the transport properties; therefore, one 

of the most challenging aspects is the combination of all these tasks. Along the reaction site, 
certain time scales must be maintained in order to enable chemical reactions and biological 
binding processes. Furthermore, the transport should show a diffusive character rather than a 

Figure 2.1: Micro Total Analysis System (for haematological applications) (a) The sample enters the 
microfluidic structure via a microfilter which separates big colloidal components and (b) reaches a 
preparation / reaction site. (c) Depending on their functionalization, a different behaviour along the 
separation device can be used to guide components to a specific detection site (d) enabling the estimation 
of whether a certain component was present in the original sample or if a certain reaction has taken place. 

(a) inlet 

(b) reaction 

blood plasma 

anti-bodies 

blood cells 

(d) detection 

(c) separation 
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convective one, as this facilitates high reaction probability. This changes for the separation site, 
where instead high stability of the flow is necessary to maintain a degree of separation 
purification. This is required in order to make proper estimations according to the signal 
measured at different detection devices. Therefore, different components must be designed not 
only to handle tasks, but also to be compatible with one another. Simplicity is also highly 
desirable when adapting individual components from the laboratory stage to the on-chip 
structure. In particular, this includes avoid electric components (e.g. current leading wire 
geometries) as much as possible. Therefore, the goal of this chapter is to introduce solutions for 
different tasks that are as simple as possible. The proposed designs may also help to reduce the 
complexity of existing lab-on-a-chip devices. 
 

First of all, when analyzing the behaviour of magnetic particles dissolved in a moving fluid, it 
is necessary to understand the dynamics of the liquid itself. In section 2.1, we will therefore give 
a brief review of the fundamental ideas and equations of hydrodynamics, focusing in particular 
on the special case of microfluidics. Sections 2.2 to 2.4 will then discuss different parts of the 
microfluidic chip. The separation device (chapter 2.2) is published in a work entitled A 

hydrodynamic switch: A separation device for magnetic beads, Applied Physics Letters 95, 
2009, while the results presented in chapter 2.3 can be found in A combined reaction-separation 

lab-on-a-chip device for low Péclet number applications, Journal of Applied Physics 106 (2), 
2009. The positioning structure discussed in section 2.4 was recently released under the title 
Positioning system for particles in microfluidic structures, Microfluidics and Nanofluidics 7 (6), 
2009. 
  

The detection mechanism itself will be discussed in detail in chapter 5. For the design of the 
microfluidic guidance structure, it is only necessary to know that a proper detection can only be 
ensured if particles are close enough to the sensors i.e. the bottom of the channel. 

 
In this entire chapter, we will consider a very low particle concentration which allows for the 

assumption of neglectable particle-particle interactions. For high concentrations, different effects 
can be observed which is discussed in the sections 4.5 and 4.6.1. 
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Figure 2.2: Dependency of 
dVA〈 〉  on the volume size dV. 

On the microscale strong fluctuations can be found that 
average out for larger element sizes.   

2.1 Fundamentals of hydrodynamics  
 
Hydrodynamics deal with the description of fluids which can be either gases or liquids. In this 
work, we will focus on the latter case. On the microscopic level, such liquids consist of a large 
amount of particles 23~ (10 )O  interacting with each other. In principle, to achieve an exact 
description of the state of the liquid at every time, a full knowledge of the position and 
momentum of each individual component would be necessary. However, this problem cannot be 
handled due to the resulting number of degrees of freedom; therefore, an effective theory must 
be applied. The basic principles of how to bridge the gap between the discrete microscopic 
description and the continuous mesoscopic level will be explained in this chapter. 

 
 

2.1.1 Continuum hypothesis and effective parameters 
 
It is not possible to completely analyze the motion of each fluid particle at a given time. (Even if 
there would be a way to obtain such information, the result would be of little help as we do not 
observe the actual microscopic processes in experiments on the macroscale but instead witness 
an effective dynamic resulting as some sort of average.) In this sense, an effective theory 
enabling direct access to a small set of dependent variables would be not only much easier to 
handle from a theoretical point of view, but also much more suitable for the actual description of 
the system. A basic requirement of an effective theory is the possibility to average the 
microscopic details in respect to space as well as time. In the framework of hydrodynamics, two 
assumptions, known as the continuum hypothesis, must be met. If this requirement is fulfilled, it 
is possible to approach the discrete liquid by a continuum model. 

 
1) A separation of length scales is possible 

Let A be an observable evaluated at a certain room point r. If we consider instead of the point r 
itself a small cube of volume dV around r and calculate the average 

dV
A〈 〉  of A along dV, the 

obtained value depends on the volume of dV as shown in Figure 2.2. For small elements, at the 
size scale of the intermolecular distance (~ 0.3 nm for liquids and 3 nm for gases [HBru08]) 
strong fluctuations can be found due to the discrete structure of the fluid. If we enlarge the 
volume and therefore average A over a higher number of microscopic details, the mesoscopic 

area is obtained. Fluctuations even out and the value of 
dV

A〈 〉  is independent of the exact size of 
dV. If volume sizes on the macroscale are considered, the average is taken over the regime that is 
supposed to be studied. Even external 
influences may vary on this scale. 

We may approximate the small 
volume dV by a cubic element of side 
length λ. By choosing a value λ ~ 10 nm, 
we can reasonably expect to obtain 
mesoscopic behaviour. The resulting cube 
contains 4~ (10 )O  particles and is 
therefore large from a microscopic point 
of view, but small from a macroscopic 
one. The small elements of volume dV 
will be called volume elements in the 
following. If we talk about a certain 
property of a liquid at point r, we actually 
mean the average of that property along 
the volume element situated at r. 
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(fixed) 

Figure 2.3: Experimental setup for 
rheology measurements. A fluid 
flow is induced by shear stress. 

 
2) A separation of time scales is possible 

We will further assume that along every small volume element dV the system has reached 
thermal equilibrium in respect to a strongly reduced set of (space-dependent) variables; such 
variables are referred to as slow variables. Good candidates for these are densities of conserved 
quantities e.g. mass, momentum or energy density.  
 

In this approach, all micro processes result in an effective behaviour of the small liquid 
element which can be completely described by two fields: a vector field : n n× →� � �u , 
describing the velocity of a volume element at each space-time-point, and a scalar field, denoting 
the pressure : n

p × →� � �  within the liquid. By going from the micro- to the mesoscale, 
different phenomena cannot be described any longer. For example, the interaction between 
single molecules is “lost” by averaging along volumes, which always contain a large number of 
degrees of freedom. Therefore, the model includes certain material parameters that cannot be 
calculated in this framework but need to be obtained by either experimental observations or 
models on the microscale. Three different parameters are important for our analysis: the 
compressibility κ, the density ρ and the viscosity η.  

Compressibility is defined by 
 

 
1 V

V p
κ

∂
= −

∂
         (2.1a) 

 
and is a measure for the relative volume change in respect to pressure. Typical values can be 
found in table 2.1; it should be pointed out that values for liquids are much smaller than those for 
gases. Indeed, compressibility effects of liquids are commonly small enough to be neglected. 
Therefore, we will assume κ = 0 in the following which describes the special case of 
incompressible liquids. 

The density ρ is the ratio between the mass and the volume of a liquid element at a point r. 
Since the fluids regarded are incompressible, the ratio between mass and volume is a constant 
along the whole volume. Thus, denoting the total mass and volume by an index tot, it is 
 

 tot

tot

m

V
ρ =          (2.1b) 

 
The viscosity η is a measure for the inner friction of the 

fluid. Experimentally, it can be determined by the setup 
shown in Figure 2.3: two plates are separated by an initially 
non-moving liquid film; the upper plate is free while the 
lower is chosen fixed. Exerting a force F parallel to the plane 
direction induces a shear stress / A= Fττττ  with A the surface 
area of the plane. This shear stress acts onto the liquid and 
induces a fluid flow. Due to the symmetry of the system, the 
resulting velocity is parallel to the applied force and only 
depends on the y-direction, x ˆ( )u y=u x . The derivative 

y x ( )u y∂  is called strain rate and is obviously connected to 
the applied shear stress y x( ( ))f u yτ = ∂ . In the special case of 
a linear relation  

 

 x ( )u y

y
τ η

∂
=

∂
    (2.1c) 
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the fluid is called Newtonian fluid and the parameter η stands for the viscosity of the liquid. In 
the present work, we will restrict our analysis to Newtonian fluids covering the case of water 
which was used in all the experimental setups. Typical examples of non-Newtonian liquids are 
polymer solutions or blood but also many examples we find regularly in everyday life such as 
paint, shampoo or ketchup. The viscosity of ketchup decreases under high shear rate; therefore, it 
needs to be shaken before it can be poured out of a bottle.  

The introduced parameters are supposed to be independent of space or time. It can be implied 
from this assumption that all of our discussions must be based on a constant temperature T since 
all coefficients show slight temperature dependence. Therefore, a spatially varying temperature 
distribution would introduce an implicit spatial dependence of the material parameters. 
Depending on the temperature gradients found in such systems, different phenomena may occur. 
A well known example is the Rayleigh-Bérnard convection which can be found e.g. in lava 
lamps: the temperature along a certain volume fraction increases leading to a decreasing density 
ρ. If this change occurs sufficiently fast, it introduces a density gradient and the hot, lighter-
volumed fractions ascend due to buoyancy. At a certain height, they cool down again and drift 
back down. 

 
 
2.1.2 Lagrangian and Eulerian frame 
 
For the analysis of hydrodynamic systems two different representations can be chosen which are 
known as Lagrangian and Eulerian frame. As already explained in section 1.3, the Eulerian 
frame is referred to as spatial representation and coincides with the view of a resting observer. 
The liquid flows in respect to a spatially fixed coordinate system: at an arbitrary space point 
different volume elements can be found at different times. This seems to be a natural way of how 
to describe certain phenomena. However, it does not go together with the description of a liquid 
introduced in the preliminary section which identifies small volume elements as the basic 
components and also of the “carrier” of physical properties. 

In chapter 1.3, we already calculated how a variable A changes in respect to time within the 
two different frames. In particular, we introduced the material derivative /D Dt  as the time 
derivative for a fixed reference coordinate along its trajectory within the spatial frame. In fluid 
dynamics, the volume elements correspond to the reference coordinates. Therefore, according to 
equation (1.20), the time evolution of the variable A at a fixed liquid element can be written as 

 

 ( , ) ( , ), ( , )
DA A A

t t t
Dt t

∂ ∂
= +

∂ ∂
r r u r

r
 

 

Table 2.1: Examples for density ρ, viscosity η and compressibility κ at a 
temperature of T = 293.15 K 

Water 

Ethanol 

Mercury 

Air 

998.2 

789.0 

13,546 

1.24 

1.002 ⋅ 10-3 

1.29 ⋅ 10-3 

1.5 ⋅ 10-3 

17.1 ⋅ 10-6 

ρ in kg/m³ η in Pa s 

0.5 ⋅ 10-9 

1.1 ⋅ 10-9 

0.4 ⋅ 10-10 

10-5 

κ in 1/Pa 
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with / t∂ ∂  the usual time derivative and u the velocity of the volume element, i.e. the flow 
velocity. The above formula can be readily extended to a vector-valued observable A by 
replacing the first summand on the right hand side by JAu  with JA the Jacobian of A. However, 
in general literature, the symbolic expression ( )∇u A  is used throughout, we will therefore write 
 

 ( )
D

Dt t

∂
= ∇ +

∂

A A
u A         (2.2) 

 
 

2.1.3 Navier-Stokes equation and Reynolds number 
 
The governing equations for velocity and pressure field can be derived from two general 
physical principles: mass and momentum conservation. As already mentioned, the density is 
considered to be constant along the whole liquid. A mass flow towards a certain space point r is 
therefore only possible if there is a mass flow of the same size away from r. In other words, the 
mass flow ρu does not have any sources or drains and therefore needs to satisfy the equation of 

continuity 
 
 ( ) 0ρ∇ =u , 

 
which in our case can be further simplified due to the assumption of incompressibility 
 
 0∇ =u .         (2.3) 
 

The motion state u of the liquid can be obtained from momentum conservation. The forces 
influencing the motion state originate from shear stresses and pressure gradients along the flow. 
In general, applying Newton’s second law on a volume element dV with boundary Γ and surface 
normal vector n̂ , it is 
 

( ) ˆId
dV dV

Du
d p d d

Dt
ρ σ ρ

Γ

= − ⋅ + +∫ ∫ ∫r n r f r      (2.4) 

 
denoting by Id the identity matrix in n dimensions and by σ the stress tensor. Further, f refers to 
external force densities acting on the liquid which can arise from e.g. gravity or the coupling to 
electromagnetic fields. In the special case of incompressible Newtonian liquids, this equation 
may be reformulates as the Navier-Stokes equation 
 

 ( )
p

t
ν

ρ

∂ ∇
+ ∇ = − + ∆ +

∂

u
u u u f        (2.5) 

 
denoting by /nν ρ=  the dynamic viscosity. If the solution u does not explicitly depend on time, 
the profile is stationary. Otherwise, it is referred to as transient. A derivation of equation (2.5) 
from (2.4) under the assumption of a linear connection between shear and stress can be found in 
standard textbooks, e.g. [HBru08], ][LaLi91] or [GBat70]. 

In contrast to the advection-diffusion equation analyzed in chapter 1, (2.5) is non-linear and 
consequently the solution space is not a linear space. Therefore, sums of solutions as well as 
their scalar multiples generally do not solve (2.5) anymore. In particular, this implies that an 
solution obtained for a certain geometry Ω cannot be mapped onto a scaled geometry. However, 
under certain conditions this is possible. Therefore, we write equation (2.5) in a dimensionless 
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form by introducing a characteristic velocity scale U and a characteristic length scale L and 
denote all variables in respect to these coefficients. In detail, we define dimensionless variables 
 

 :
L

′ =
r

r     :
tU

t
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′ =  

 
( , / )

( , ) :
L Lt U

t
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′ ′
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Omitting external force densities and denoting x y z( , , )′ ′ ′′∇ = ∂ ∂ ∂ , equation (2.5) obtains the 
dimensionless form 
 

 
1

( ) p
t Re

′∂
′ ′ ′ ′ ′ ′ ′+ ∇ = −∇ + ∆

′∂

u
u u u  with 

UL
Re

ρ

η
=    (2.6) 

 
(2.6) only depends on one effective parameter: the dimensionless Reynolds number Re. The flow 
behaviour is strongly connected to this number. An example is given in Figure 2.4: A liquid 
flows through a meandering channel, the flow profile for different Reynolds numbers is shown. 
For low values (a), a stationary profile is obtained. Fluid elements initially situated near to each 
other should travel along parallel 
trajectories: a behaviour that is called 
laminar fluid flow. A characteristic 
change can be observed by raising the 
Reynolds number: the profile becomes 
transient and evolves in a chaotic manner 
as two arbitrary elements initially situated 
infinitesimally close to each other 
increase their distance exponentially. 
Such flow patterns are called turbulent.  

 
The characterization of a flow profile 

can be carried out via a streamline 
analysis. A streamline at a time t is a 
curve 

t
γ  which has the velocity vector 

( )tu  of the profile as a tangent at each 
domain point. If a parameterization ( )

t
γ λ  

is introduced for fixed time t, a streamline 
can be determined by the ordinary 
equation 

 
( )

( ( ), )td
t

d

γ λ
γ λ

λ
= u   (2.7) 

 
Streamlines coincide with the trajectories of liquid elements if a stationary flow is considered. 

An example is shown in Figure 2.4(c). 
 

 
 
 
 

Figure 2.4: Flow through a meandering channel for 
different Reynolds numbers. (a) For low Re a stationary, 
laminar profile is obtained. (b) High Re instead leads to a 
turbulent, transient dynamic, the picture series shows the 
evolution of a chaotic flow. (c) Representation of a 
streamline plot for the high Re-regime. 

(a) 

(b) 

(c) 
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Figure 2.5: Poiseuille flow through a 
cylinder due to a pressure difference 
∆p at the ends of the pipe. 

2.1.4 The special case of microfluidics 
 
It was already mentioned that the dimensionless Reynolds number /Re ULρ η=  is an important 
parameter when classifing fluid flows. Fluid flows in microfluidic devices are usually on a 
velocity scale 4(10 m / s)U

−=O  while typical geometry details of the structure lie on a 
geometrical size scale 4(10 m)L

−=O . If we further consider a liquid with material parameters 
3 3(10 kg / m )ρ =O  and 3(10 Pa s)η −=O , it is 

 
 2(10 ) 1Re

−= �O . 

 
This regime of very small Reynolds number is often referred to as creeping flow regime. 
Different terms in (2.5) may be estimated as follows 
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According to (2.9a), inertia effects play only a minor role on the chosen scales; the time 

dependence of the solution can be omitted. Additionally, non-linear contributions vanish as well. 
We obtain the linearized Stokes equation 

 
 pη∆ = −∇u .         (2.10) 

 
Contrary to highly complex (non-linear) and involved full Navier-Stokes equation, one may 
hope to solve (2.10) together with the equation of continuity for highly symmetric problems. A 
famous example is the Poiseuille flow describing a fluid flow through a cylindrical tube of length 
�  and radius R imposing a pressure difference ∆p between entrance and inlet and a ‘no slip’-
condition along the lateral area. Due to symmetry, the 
flow points along the symmetry axis and is given by the 
parabolic formula 
 

 2 2( ) ( )
4

p
u r R r

η

∆
= −
�

,   (2.11) 

 
a schematic representation of the flow is shown in 
Figure 2.5. A similar result can be obtained for the flow 
between two parallel plates. 

From a formal point of view, the discussion of 
microfluidic flow properties appears to be a lot easier 
due to the absence of non-linear dynamics and chaotic 
flows. On the other hand though, this leads to many 
practical problems since several phenomena observed 
on the macroscale cannot be employed on the 
microscale. A very important example is the mixing of 
e.g. a two-face flow. 
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Figure 2.6: Streamline plot of a 
liquid flowing around a sphere. 

2.1.5 Spherical objects dissolved in liquids 
 
Small spherical objects dissolved in a liquid feel forces acting on them, arising either from the 
motion state of the liquid or from some external source. Gravity and buoyancy are typical 
examples of such external influences. For right now, all such effects shall be summarized in the 
external force Fext. Additionally, a momentum transfer from the liquid to the dissolved object 
takes place. While external forces commonly act on the volume as a whole or some fraction of it, 
the fluid induced forces are transferred along the surface. If a constant fluid velocity is found 
along the surface, no force acts on the spherical objects; a force results from derivatives of the 
velocity components which is given be the stress tensor σ, with 
 

 ji

ij

j i

uu

x x
σ

∂∂
= +

∂ ∂
. 

 
Additional forces originate from pressure gradients. The total force on a planar surface element 
of surface normal n̂  is given by 
 
 ˆ( Id)f pσ= − ⋅ n         (2.12) 
 
with Id the identity matrix. The total force acting on an object dissolved in a fluid flow is given 
by integrating (2.12) along the interface between object and liquid. Since this includes the 
knowledge of the flow itself, analytic expressions are consequently rare. However, for the 
special case of a very small Reynolds number ( 1)Re� , the force a spherical particle of radius R 

moving at a velocity v feels in a homogeneous velocity field u is given by Stokes drag law 
 
 stokes 6 ( )Rπη= −F u v ,        (2.13) 

 
a streamline plot is shown in Figure 2.6. If the particle 
diameter is much smaller than the geometrical size scale 
L, we can approach it by a point mass of density ρpart and 
apply Newton’s second law to calculate the particle 
behaviour. Due to the very small particle masses, inertia 
effects can be neglected; the particle velocity 
instantaneously equals the velocity of the liquid. In case of 
the presence of additional external forces, we may write 
(see Appendix A.2) 
 

6
ext

Rπη
= +

F
v u     (2.14) 

 
 

For higher Reynolds numbers this no longer holds. In this case, (2.14) can be replaced by the 
empirical Khan-Richardson law [CoRi03] which is valid along a wide range Reynolds numbers 
 
 2 2 0.31 0.06 3.45

KR, ( ) (1.84 0.293 )i i i i iR u v Re Reπ ρ −= − +F     (2.15) 
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Figure 2.7: Evolution of the concentration profile 
on a one-dimensional domain for D = 0.5 m2/s. The 
initial configuration (red line) begins to flatten out 
and reaches an equally distributed end state (black 
line).  

When dealing with a large number of particles, we do not investigate each individual 
component but introduce the particle concentration c as the number of particles per unit volume. 
Essentially, this approach follows the same guidelines that were already applied when going 
from the microscopic description of a liquid to the mesoscopic one. Due to the conservation of 
the total mass, a concentration change in respect to time can only originate from a space 
dependent mass flux j 

 

 0
c

t

∂
+ ∇ =

∂
j .         (2.16) 

 
Different kinds of mass fluxes can be considered. A velocity profile u e.g. induced by a 

moving liquid leads to a convective flux conv c=j u . Left to themselves particles dissolved in a 
liquid do not remain resting but move due to thermal effects. An initially space dependent 
concentration will even out over time (compare Figure 2.6). This thermally activated mass 
transport can be described by a diffusive flux diff D c= − ∇j , with the diffusivity D. 
Superimposing the two transport mechanisms and employing equation (2.16) leads to the 
advection-diffusion equation 

 

 ( ) , 0
c

D c c
t

∂
− ∇ ∇ + 〈 ∇ 〉 =

∂
u        (2.17) 

 
The diffusivity D may depend on space in different ways: on the one hand, it may change for 

very high concentrations, becoming a local function in the respect to the concentration 
( ( ))D D c= r  inducing an implicit space dependency. On the other hand, changes of the 

considered domain may significantly reduce the symmetry of the problem. A typical example 
can be found close to the channel wall of a microfluidic structure. Theoretical calculations 
predict a reduction of D to one third of the original value, an effect that can also be observed 
experimentally [LFau94], [AAug07]. For many practical applications though, it may be set at a 
constant value, depending on the properties of the dissolved objects and the carrier liquid. For 
small spheres of radius R, we set [AEin05] 
 

 B

6

k T
D

Rπη
=    (2.18) 

 
with kB the Boltzmann constant and T the 
absolute temperature. 

Whereas the Reynolds number classifies the 
type of flow profile a similar dimensionless 
parameter may be introduced for advection-
diffusion problems. The Péclet number Pe is 
given by the ratio between convection velocity 
and diffusion velocity. Denoting by L the 
diffusive length scale and by U velocity scale of 
the convection field, it is 
 

 
UL

Pe
D

=    (2.19) 

 
Therefore, a high Péclet number corresponds to convection dominated systems, whereas a low 
value corresponds to diffusion dominated problems. 
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2.1.6 Boundary conditions 
 
To completely specify a flow or diffusion problem, additional boundary conditions are needed. 
In order to proceed, it is necessary to define certain terminology and disambiguate common 
assumptions. We will consider a finite, open subdomain nΩ ⊂ �  with boundary ∂Ω on which 
the Navier-Stokes equation (2.5) together with equation of continuity (2.3) is to be solved. 
 

a) ‘No slip’-condition: A common assumption for liquids flowing close to a solid, non-
moving wall that is due to the inner friction of the liquid: here, layers close to the wall 
move at the velocity of the wall itself, i.e. remain non-moving. A ‘no slip’-condition is 
therefore given by the homogeneous Dirichlet condition 

 
( ) = 0u r    for ∈∂Ωr     (2.20a) 

 
b) ‘Slip/Symmetry’-condition: A ‘no slip’-condition requires that the momentum of the 

liquid is completely transferred to the wall. If specially functionalized surfaces are 
introduced, a liquid motion may be observed, although a non-moving wall is considered 
due to small inter-atomic forces. In such cases the liquid can flow along the wall. Such a 
condition can be introduced in order to simplify the system, e.g. exploit certain 
symmetry conditions. ‘Slip’- or ‘Symmetry’-conditions introduce a flow parallel to the 
boundary. Denoting the surface normal vector by n̂ , such situations are modelled by the 
homogeneous Neumann condition 

 
ˆ( ),〈∇ 〉 = 0u r n    for ∈∂Ωr     (2.20b) 

 
c) ‘Neutral’-condition: The ‘Neutral’ boundary condition states that transport by shear 

stresses is zero across a boundary. This condition is denoted neutral since it does not put 
any constraints on the velocity and states that there are no interactions across the 
modelled boundary. 

 

( )T ˆ( ) ( ( )) 0η ∇ + ∇ =u r u r n  for ∈∂Ωr     (2.20c) 
 

d) ‘Inflow/Outflow’-condition: Inlets and outlets of microfluidic are usually given by the 
Dirichlet conditions 

 

B( ) ( )=u r u r  or B( ) ( )p p=r r   for ∈∂Ωr   (2.20d) 
 
 

In the case of the advection-diffusion equation (2.17), it will be sufficient to define either the 
concentration (in case of inlets) or specify the mass flux along the boundary. For the latter, two 
choices are commonly used: Along the boundary, particles are (a) only transported by the 
convective velocity field u or (b) not at all, which are given by 

 

a) ‘Convective flow’-condition:  ˆ, 0D c〈 ∇ 〉 =n   for ∈∂Ωr   (2.21a) 
b) ‘Insulation’-condition:  ˆ, 0D c c〈− ∇ + 〉 =u n  for ∈∂Ωr   (2.21b) 

 
Specifying boundary conditions, a stationary profile is completely defined. In the transient case 
though, additional initial states 0( , )tu r  and 0( , )p tr  for an initial time 0t  must be declared. 
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Navier-Stokes equation: 
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Stokes equation: 
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Advection-diffusion equation: 
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c

Vψ∀ ∈  

2.1.7 Weak formulation 
 
Following the example discussed in section 1.2, the weak formulations of the Navier-
Stokes/Stokes and the advection-diffusion equation can be obtained. Here we denote the 
testfunctions for the variation of the velocity components by 

u
ψ  and employ similar definitions 

for pressure p and concentration c. The choice of approximate function spaces is related to the 
maximum order of the weak derivatives found in the variational form. We denote subspaces by 

1( )V H⊂ Ω  and 2 ( )V L⊂ Ω�  for respective derivative order < 2 and = 0. 

 
For mathematical reviews and analysis of (2.22) refer to [RTem84], [KrLo89] or [FTho81]. A 
every thorough analysis of the advection-diffusion(-reaction) equation (2.23) can be found in the 
book of W. Hundsdorfer, and J. Verwer [HuVe03]. 
 
 

2.1.8 Numerical stabilization and Petrov-Galerkin discretization 
 
When dealing with advection-diffusion equations that are dominated by convective contributions 
(i.e. problems in the low Péclet regime), strong oscillations in the numerical solution can be 
found. An example is shown in Figure 2.8(a) or Figure 1.9 where fine details can be found in 
certain areas of the domain. Over time these features may propagate to other parts of the system 
and, therefore, the solution of the numerical scheme no longer resembles the solution of the 
original equation. Such local numerical instabilities may be overcome by increasing the mesh 
resolution. However, globally increasing the number of elements results in a large increase of 
numbers of freedom while numerical schemes introducing local mesh refinement (adaptive 
solvers) are still not well understood [RNoc09]. Instead, in many cases a different type of 
stabilization, known as artificial diffusion, is employed, which may be understood as a 
generalization of the Galerkin discretization in section 1.2. Here per definition, the approximate 
solution 

h
u  as well as approximate test functions 

h
ψ  are chosen from the same finite-
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Figure 2.9: Basis functions 
with different values for σI in 
comparison to a hat function. 

Figure 2.8: Numerical instabilities in convection 
dominated systems. A concentration travels in the lower 
part of the geometry, (a) shows a solution obtained by a 
Galerkin approach. Instabilities manifest in oscillations that 
may also lead to large negative concentrations (~ – 0.1). (b) 
presents a solution calculated in a Petrov-Galerkin 
framework. No more wiggles can be found. 

dimensional space 
h

V . In contrast, the Petrov-Galerkin method still employs Lagrangian 
elements for the construction of the approximate solution, although for the testfunctions 
functions that are signed and weighted in respect to the convective flow are used. 

In principle, such methods increase the diffusion within the system, where the stabilizing 
parameters depend on the local mesh dimension h and the norm of the convective flow | |u . In 
the simplest case, the isotropic artificial diffusion, an additional term 

 

 art

1
| |

2
D h= u  

 
is added to the diffusion constant D. 
Though in most cases oscillations are 
damped and instabilities vanish, the 
solution might not be satisfactory since it 
no longer solves the original equation. 
The Petrov-Galerkin method does not 
change the original equation, but modifies 
the space of testfunctions. Instead of using 
the hat functions 

i
Λ , an additional term is 

added. We write 
 

i i i
κσΛ = Λ +�   (2.24) 

 
with a direction dependent parameter κ 
and an addition weight 

i
σ . Examples of 

such functions are shown in Figure 2.9. 
For the advection-diffusion equation, a 
typical choice is to set 
 
 ( 0) ,ψ ψ δ δ ψ′ ′= + > 〈 ∇ 〉� u  

with 
2| | | |

h cδ
δ ′ = −

u u
 

 
denoting by δ a tuning parameter. This method is also known as 
streamline diffusion or streamline upwind Petrov-Galerkin 

(SUPG). An additional diffusion is introduced via the 
testfunctions, corresponding to an artificial diffusion tensor of 
the form 
 
 sd, ( 0)ij i jD u uδ δ′ ′= >  

 
Changing the testfunction space results in numerical 
stabilization as is apparent from Figure 2.9(b). For further 
information on these methods, see e.g. [ANes03] or [LFra92]. 
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Figure 2.10: Investigated microfluidic separation device. (a) Schematic representation of the structure 
and the external field contributions: the geometry consists of two flow inlets of different maximum 
velocities and two outlets. The magnetic field can be divided into an inhomogeneous contribution 
generated by two ring-shaped wires and a homogeneous z-directed field. (b) Hydrodynamic properties of 
the device, white lines indicate the streamline behaviour in the junction area. For a certain relation factor 
ξ no volume exchange between the channel segments can be found (top). Situations for 0ξ ξ>  and 

0ξ ξ<  are shown in the bottom left and bottom right inset, respectively.  
 

2.2 Particle separation by a hydrodynamic switch 
 
In order to understand some features of the behaviour of small magnetic beads in microfluidic 
devices, we will investigate the separation properties of the microfluidic geometry shown on the 
left side of Figure 2.10(a). Two microfluidic channels of a width of 80 µm run parallel to each 
other with a distance h and are connected via an additional channel segment cutting both 
channels under an angle α. For the inflow velocity in both entrances, a parabolic Poiseuille 
profile according to equation (2.11) is assumed where different maximum values at upper and 
lower entrance are chosen. Denoting these inflow velocities by uup and udown at the inlets A and 
B, respectively, a relation factor ξ can be defined by 

 

up

down

u

u
ξ = .         (2.25) 

 
In particular, an equilibrium value 0ξ  may be identified where no volume flux from the lower 
part B of the geometry to the upper part A can be found. The influence of ξ on the flow 
behaviour is shown in Figure 2.10(b). The proposed geometry acts as a hydrodynamic switch: 
the flow direction can be adjusted by specific choices of ξ. In detail, we obtain a flow from B to 
A or A to B if either 0ξ ξ< or  0ξ ξ>  is chosen, respectively. Additionally, the switch is shut for 

0ξ ξ= . 
According to (2.14), a magnetic particle passing the separation area follows the streamline 

profile of the fluid flow if no further external forces act on the particle. To manipulate magnetic 
beads along the junction area, an inhomogeneous magnetic field is required, which can be 
introduced by current leading wire geometries on the microscale. Many designs have been 
proposed (see e.g. [CLee01]), in our approach, we consider a wire geometry of two opposite 
rings as indicated. The design of the wire configuration follows a guideline according to 
[AWed06], Figure 2.11 shows a finite element simulation of the behaviour of the magnetic field 
between the two rings with a current of 1 mA in each component. 
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Figure 2.11: Inhomogeneous magnetic field created by ring-
shaped electric wires with a current of 1 mA. (a) shows the norm 
of the field, (b) different components of H in the centre of the 
geometry. Apart from the component Hy all other contributions 
are at the scale of numeric noise. Therefore, a force only results 
from the derivative ∂zHy.  

If only electric currents are taken into account, we can easily conclude that a particle will 
always feel an attractive force pointing towards the nearest wire: as the magnetic moment partm  

of the particle aligns with the inhomogeneous magnetic field, it is part ext�m H . Therefore, we 
may write  

 

ext
part part

ext

| |
| |

=
H

m m
H

 

 
The force acting on a magnetic particle is given by (compare section 4.2) 
 
 part 0 part ext( )µ= ∇F m H .        (2.26) 

 
As ext, 0ijk j kHε ∂ = , it is  
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As per definition, the gradient vector 2

ext∇H  points into the direction of the highest increase, 
the direction of the current density itself, which is due to the radially decaying field 1~ r− . 
Therefore, to achieve forces pushing particles from one side of the geometry to the opposite one, 
it is necessary to uncouple the direction of the magnetic moment from the inhomogeneous wire 
field. For this purpose, the whole setup is brought into a strong homogeneous magnetic field 
pointing perpendicular to the plain of the microfluidic structure, compare Figure 2.10(a). Such a 
field does not exert any force onto the particles but fixes the magnetization direction along the z-
axis and we may write part ˆ

zm=m m . Thus, formula (2.26) describing the force onto the particle 
simplifies to 

 

ext
part 0 part ext 0 z( ) m

z
µ µ

∂
= ∇ =

∂

H
F m H       (2.27) 

 
The force in y-direction is determined by the derivative z yH∂ . The numerical simulations 

presented in Figure 2.11 show that this component is the only derivative contributing in the 
centre of the channel geometry; all other components are on the size scale of numerical noise. 
Combing equation (2.27) with 
equation (2.14), the velocity of 
particles passing the separation area 
depends on two particle properties: 
the size and the magnetization. 
Therefore, the microfluidic geometry 
can be used as a separation device for 
particles: We assume that all particles 
enter the geometry through the lower 
entrance B. For the considerations 
here, the particle concentrations are 
chosen sufficiently low so that 
particle-particle interactions can be 
omitted. As a carrier liquid, we 
choose water at room temperature, 
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Concentration dynamics: 
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 1 / 0c c= =    inlet concentration  on ∂ΩA / ∂ΩB   

 ˆ, 0D c〈 ∇ 〉 =n    only convective outflow on ∂Ωex  

 ˆ, 0D c c〈 − ∇ + 〉 =n v   insulation   elsewhere 
 
where the velocity u follows from 
 

pη∆ = ∇u   and  0∇ =u     on Ω 
 
 max4(1 )

x
u s s u= − ⋅ , 0yu =    Poiseuille profile with  on ∂ΩA 

 max4(1 )
x

u s s uξ= − ⋅ , 0yu =   parametrization s ∈ [0,1] on ∂ΩB 

( )T ˆ( ) ( ( )) 0η ∇ + ∇ =u r u r n  Neutral-flow-condition  on ∂Ωex  

 0=u     ‘No slip’-condition  elsewhere 
  
 

which provides the parameters T = 300 K, ρ = 998.2 kg/m³ and η = 1.002 mPa s. If we denote the 
inlet boundaries by ∂ΩA and ∂ΩB and summarize the exits by ∂Ωex, the complete set of equations 
is given by 

 

 
Since the flow profile is stationary, we focus on stationary solutions of the equation system only. 
For small particles, all equations are discretized using quadratic Lagrangian elements except for 
the pressure p which is approximated via linear functions. Analyzing particles of a size 
exceeding ~ 0.5 µm leads to convection dominated systems; diffusive fluxes play a minor role. 
Therefore, for these particle sizes a Petrov-Galerkin approach is employed for the numerical 
discretization of the Stokes equation to guarantee convergence. 

The results of the simulations are shown in Figure 2.12, which presents the relation between 
particles leaving the geometry through the upper exit and the inflow concentration with respect 
to the particle size is shown. If all particles leave through the lower exit a value of “1” results, 
whereas a value of “0” is obtained if all particles leave through the lower exit instead. Therefore, 
these simulations determine what particles of which sizes can be separated for the given set of 
parameters. 

The bigger the junction area (d → 320 µm, h → 320 µm), the more important the diffusive 
effects acting on the particles become. In these cases, very small particles can always be found at 
both exits if a relation factor of ξ = 1.5 is chosen, resulting in a bad separation yield of the 
device. However, an increase of the velocity inflow ratio ξ can always suppress particle 
diffusivity (Figure 2.12(b), (d), (e)). Thus, the proposed microchannel geometry is suitable for 
even particles on the size scale of several 10s of nanometers. Furthermore, in all cases the size 
interval of particles that can be found in both exits is very narrow for high ξ. Therefore, it is also 
possible to separate particles with desired accuracy by a proper adjustment of the fluidic and 
geometric parameters.  
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Figure 2.12: Relation between mass flow through upper and lower exit. A value of “1” corresponds to all 
particles reaching the upper part of the geometry, a value of “0” indicates no particle switching from the 
down to up. The plots show the dependence of the separation properties on different system parameters. 
Values not explicitly given coincide with the reference values d = 200 µm, h = 80 µm, ξ = 1.5, udown = 
100 µm/s and MS∂zHy = 10000 kA/m2. 
 

Figure 2.13: Theoretical prediction of the 
separation properties for the experimentally 
employed M-280 and MyOneTM. 
 

 

 
The experimental verification of the separation device has been realized by F. Wittbracht in 

the framework of his master thesis [FWit09]. All experiments were performed with an optical 
microscope and an attached CCD-camera. The setup enables the simultaneous recording of 
images and current through the conducting lines at 8 frames per second. For the creation of a 
homogeneous external magnetic field in z-direction, a cylindrical coil was used. The magnetic 
gradient field is generated by conducting lines 
on the microfluidic chip as shown in Figure 
2.10. Samples are prepared using optical laser 
lithography and magnetron sputtering for gold 
conducting lines and UV-lithography for 
microfluidic channels. The epoxy-based resist 
SU-8 25 is used as channel material due to its 
mechanical and chemical stability [CLin02]. As 
the fluid flow is generated by hydrostatic 
pressure, a fixed velocity ratio ξ is difficult to 
realize experimentally when using two inlet 
reservoirs. Therefore, in experiments the 
velocity ratio is implemented using one inlet 
reservoir and a channel geometry that splits into 
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two channel branches as shown schematically in Figure 2.10, with an angle α = 26,6° obtained 
also from finite element calculations. For size separation experiments, a mixture of Dynabeads® 
MyOne™ (1.05 µm diameter) and M-280 (2.8 µm diameter) superparamagnetic beads is used. 
Both bead species have narrow very size distributions (CV ≈ 1.9 %) and comparable 
susceptibilities [GFon05]. The homogeneous magnetic field is adjusted to 557 Oe which is the 
maximum of the described setup. For these field values, both bead types are almost completely 
saturated. This verifies the assumption of the simulations of saturated magnetic beads and 
therefore validates (2.27). The current applied through the conducting lines is varied during 
experiments. Employing the particle parameters for the simulations similar plots can be obtained 
as shown in Figure 2.13. 

The maximum velocity value umax is 400 µm/s. In this case, the geometry parameters are 
chosen as d = 160 µm and h = 80 µm. For a separation at higher flow rates, the geometry 
parameters need to be adjusted in respect to Fig. 2.12. Therefore, a separation is theoretically 
possible at any given flow rate and only limited by experimental constraints. Due to the 
experimental realization, the bead solution fills both channels and the analysis of experimental 
results needs to be based on single bead tracking. Manual tracking is achieved using ImageJ 
[ImagJ] and the MTrackJ plugin [MTrak]. In order to grant comparability of the data, tracks of 
beads at similar positions in the channel are evaluated (Figure 2.14(d)). M-280 and MyOne™ 
beads enter and leave the separation region through the lower channel (Figure 2.14(a)) if no 
current is applied to the (ring-shaped) conducting lines. When a current of 180 mA is applied, it 
leads to a magnetic force which drags the M-280 beads to the upper channel exit (compare 
Figure 2.14(b)). At the same current, MyOne™ beads enter and leave through the lower channel 
exit as shown in Figure 2.14(c). Figure 2.15 is obtained by observing the behaviour of bypassing 
beads and shows the ratio of beads flowing from B to A. It is clearly demonstrated that at a 
current of 180 mA the M-280 can be completely separated from the MyOneTM. The small degree 
of impurity (18 %) can be attributed to a factor ξ too small to completely suppress a volume flow 
from B to A. 
 
 

 

Figure 2.15: Comparison between bead flows from 
B to A for different electric currents and bead 
species. 

Figure 2.14: Typical bead trajectories through the 
separation region for different bead species and 
currents. (a) M-280 beads enter and leave the 
separation region through the lower channel at 0 
mA. (b) These beads can be dragged to the upper 
channel by applying a current of 180 mA to the 
conduction lines, while MyOneTM enter and leave 
through the lower channel. (d) shows a 
superposition to ease the comparison. 
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Figure 2.16: Microfluidic lab-on-a-chip geometry consisting of one inlet reservoir (left) and two outlets 
(right). In the centre, a reaction chamber for e.g. particle supply or chemical reactions is embedded. The 
streamline course of the product leaving the reaction chamber can be found in the subplots and 
determines the particle trajectory for particles of radius down to several 100 nm. The two junctions J1 and 
J3 can be used to manipulate the flow in the separation area on the right side in the channel segments A 
and B (see below). At junction J2, the focusing of the particle beam takes place. Additionally, J2 is 
optimized t to suppress particle diffusion, preventing particle flow into the channel segment A. 

 

2.3 Transport properties for the low Péclet-regime 
 
One predominant issue for µTAS devices is the precise magnetic transport of the beads to 
functional device sections such as the reaction chamber or the separation site of the microfluidic 
chip. The transport of magnetic markers in a microfluidic channel is influenced by 
hydrodynamic and magnetic forces. Brownian motion is also important for nanoparticles. While 
a high diffusion is desirable for mixing in a reaction chamber, this is not the case for continuous 
flow separation or directed transport to other parts of the fluidic device. A narrow spatial particle 
distribution stable against diffusion is preferable for the latter [NPam03]. This can be achieved 
by different means: one possibility is hydrodynamic guidance as has been proposed in various 
works, where a focusing of the particle distribution is achieved by additional flow inlets 
[AJah04], [PDit03] or by enforcing high Reynolds numbers on the microscale [DCar07]. Other 
methods exploit e.g. acoustic [JShi08] or dielectrophoretic effects [SRav08]. However, the 
examples given above need either a higher number of inlets or additional physical phenomena, 
such as non-linear flow behaviour, acoustics or electromagnetics, all of which increase the 
complexity of the device. Further, for many devices the applicability to the small particle limit is 
often not discussed, though becomes increasingly important, especially if the focused particle 
beam must be transported to other sites of a lab-on-a-chip system. 

The scope of this section is to integrate the separation device introduced in the preliminary 
section into a microfluidic structure which also fulfills the following requirements:  

 

(1) consists of only one inlet and creates the velocity ratio in the separation site by 
microfluidic flow guidance 

(2) enables chemical reactions along a reaction site, where diffusive transport is 
dominant 

(3) grants a stable transport from the reaction chamber to the separation device 
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Figure 2.17: Influence on the velocity ratio on ξ of the 
junction J1 for different junction geometries. A change of J1 
enables adjusting of ξ without influencing the position of the 
particle beam. 

Here we will try to achieve a very narrow particle beam which in turn enhances the separation 
yield. The analyzed microfluidic lab-on-a-chip geometry is shown in Figure 2.16. As specified, it 
consists of only one entrance which splits into three channel branches. The middle branch passes 
through a reaction chamber; its shape is optimized in order to achieve a high percolation (Figure 
2.16(a)). Additionally, geometry adjustments prolong the average duration of incoming species 
in the chamber so that sufficient reaction times can be granted for applications. The separation 
structure can be found at the right end of the device. 

It was already demonstrated that particles can be separated from each other with respect to 
different properties. For a given property (e.g. size), the parameter ξ determines which values of 
this property can still be separated from each other. Therefore, the degree of adjustment of ξ is 
important for the adaptability of the system to different particle species and will be addressed 
below. Apart from this parameter, a narrow spatial particle distribution flowing from the reaction 
chamber to the separation area is strongly recommended and will lower the size difference of 
particle species that can still be separated from each other. Increasing separation yield or analysis 
resolution by proper spatial preconditioning has been reported in previous works [NPam03]. The 
proposed geometry therefore also fulfills the purpose of focusing particles into a narrow particle 
beam by iterative separation and recombining the fluid flow via several channel junctions (J1, J2 
and J3, Fig. 1). The main influence limiting the functionality of the device is particle diffusion 
which decreases the stability of transport and separation properties. Therefore, the main problem 
is finding a lower bound for the particle size. 

The simulations are carried out in exactly the same manner as was done for the analysis of 
the separation device. Again, velocity components and particle concentration are approximated 
by quadratic Lagrangian elements, the pressure is discretized by linear functions. For sufficiently 
small particles, calculations are carried out in a Galerkin-framework, whereas particles of sizes > 
500 nm are treated by a Petrov-Galerkin approach. The inserts of Figure 2.14 shows simulation 
details of the hydrodynamic properties at important places along the device. It should be 
immediately pointed out that the fluid velocity in the reaction chamber is strongly reduced in 
comparison to the maximum inflow velocity. Therefore, the duration time of particles in this 
area is enhanced, thereby increasing the time scale on which chemical reactions etc. can occur. 
Averaging the fluid velocity and exploiting the linearity of the Stokes equation, the average time 

t〈 〉  a particle spends in the chamber may be estimated by 
 

1
lat maxt g u

−〈 〉 = ,         (2.28) 

 
with a geometry dependent parameter 
given by lat 0.09 mg =  for the geometry 
shown in Figure 2.16. When 
considering the motion of big particles 
(r > 200 nm), diffusive effects play a 
minor role. Since in these cases no 
additional external forces act on the 
particles, the dynamic behaviours 
result from the streamline plot of the 
fluid flow according to equation (2.14). 
The results can be found in Figure 
2.16. Particles leaving the reaction 
chamber are focused into a narrow 
particle beam (Figure 2.16 (b)) and 
follow the flow profile to the lower 
section of the separation area. Here the 
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Figure 2.18: Influence on the velocity ration ξ of the junction 
J3 for different junction geometries. A change of J3 enables 
adjusting of ξ together with the position of the particle beam. 

particle beam is pushed upwards, nearer to the separation junction (Figure 2.16(c), (d)). 
Velocity ratio ξ and spatial distribution can directly be controlled by adjusting the two small 

junctions J1 and J3. Therefore, a change of J1 affects the ratio ξ as shown in Figure 2.17, where ξ 

is plotted in respect to the inlet size for two different junction shapes. The spatial distribution 
remains almost constant. Both parameters may be influenced by changing the third junction J3. 
The upper subplot of Figure 2.18 shows 
the influence of the inlet size on the 
spatial distribution. The two lines here 
indicate the highest / lowest streamline 
starting in the reaction chamber and 
therefore the spatial bounds of the 
particle beam. We find that the width of 
the distribution remains almost constant 
but the position in the channel (width 
80 µm) changes. An increase of ξ for a 
decreasing distance between separation 
junction and beam can be reported. 
Applications with small particles 
strongly benefit from this correlation, 
as diffusion can be suppressed by a 
higher value of ξ. Small geometry 
changes are therefore suitable for 
positioning the particle beam in the flow profile and also adjusting the velocity ratio. According 
to the results of section 2.2, Figure 2.10, a change of ξ from 1 to 5 can strongly change the 
separation yield at the separation site. Therefore, a change of the junction J3 is suitable to 
achieve a value of ξ and therefore to adjust the flow behaviour to specific particles. Junction J1 
can be used for a precise tuning of the fluid flow. 

For large particles, the second junction area J2 ensures the focusing of the particle beam. If 
smaller particles are used, the fluid 
flow through J2 also suppresses 
particle diffusion to the channel 
segment A of the separation device 
(Figure 2.19(a), (b)). However, a 
narrow spatial particle distribution in 
channel segment B can only be found 
for particles of radius down to R = 25 
nm. For smaller particle size, the 
distribution flattens out in the 
separation junction (Figure 2.19(a), 
(b)), lowering the resolution of the 
separation. Further stabilization 
requires higher inflow velocities 
(Figure 2.19(c), max 1 mm/su = ). To 
analyze adaptability to particles on the 
nanoscale, we calculate the normalized 

local Péclet number 
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Figure 2.19: Influence of the particle diffusion on the particle 
beam behaviour for (a) R = 10 nm, umax = 100 µm/s, (b) R = 5 
nm, umax = 100 µm/s, (c) R = 5 nm, umax = 1 mm/s. (d) shows 
the plot of Peloc along the beam line of (c); high values 
correspong to convection-, low to diffusion-dominated 
regimes. 
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with the diffusive length scale � . High locPe  indicates a convection-dominated regime while a 
low value corresponds to a diffusion-dominated one. Choosing 40 mµ=�  as half the channel 
width and restricting the evaluation of locPe  to the area of the desired beam position, Figure 
2.19(d)) is obtained. For a narrow distribution, a high Péclet number is needed along channel 
segment B, which can be exploited to find a lower bound for the maximum velocity. Demanding 
a threshold of  

 

loc max|| || 1Pe Pe Ru= >  

 
the following estimation holds 

 

max
loc

1
|| ||

u
R Pe

>         (2.30) 

 
Equation (2.30) together with equation (2.28) can be used to calculate the working range of the 
device, i.e. the maximum duration time maxt〈 〉  of the particles in the reaction chamber in respect 
to the particle size as 
 

 lat lat
max

rel rel B

6g g
t R

v D v k T

πη
〈 〉 = =

� �
       (2.31) 

 
where we set max rel|| || / u v=u  and relv , again a geometric parameter. For the geometry shown in 
Figure 2.16, we obtain from simulations rel 1.5v = . Therefore, the maximum particle duration in 
the reaction chamber is proportional to the particle radius. 
 

For the experimental comparison, the microfluidic structure was realized by B. Eickenberg 
and F. Wittbracht. Dynabeads MyOneTM are used to visualize the flow behaviour. It needs to be 
pointed out that the magnetic properties are of no importance here. The creation of the 
microfluidic structure coincides with the procedure already explained in section 2.2 (a picture is 
shown in Figure 2.20(a)). The fluid flow is generated via hydrostatic pressure by filling the 
entrance reservoir with an aqueous particle solution with a concentration of 0.02 mg/ml. 

To acquire flow information along the whole structure by particle imaging velocimetry, the 
homogenous solution is filled into the geometry entrance instead of the reaction chamber. The 
resulting streamlines within junctions J2 and J3 are shown in Figure 2.20(b). White lines 
correspond to trajectories of particles passing the reaction chamber, others are coloured in black. 
We find the theoretically predicted focusing effect of junction J2 (Figure 2.20(b)), the volume 
flux coming from the entrance reservoir strongly suppresses the outlet of the reaction chamber 
and no particles from the reaction chamber reach channel segment A. At junction J3 the focused 
particle beam is lifted toward the centre of the channel B. The general behaviour coincides with 
the theoretical prediction, however, in detail the streamline profile differs slightly from the 
calculation. These deviations can be attributed to a very low velocity along this region, which 
makes the particle behaviour very sensitive to small perturbations in the flow. In this particular 
case such perturbations can be provoked by a slight undercut profile of SU-8 microchannel as 
reported in [XLiu05]. The particle trajectories along the separation site (Figure 2.20(c)) match 
the numerical simulation very well. 

In order to experimentally validate the functionality of the device in the low Péclet number 
regime, the flow velocity of the particles is analyzed. The hydrodynamic pressure generates an 
inflow profile with umax = (435 ± 30) µm/s.  An average velocity of u = 20 µm/s is measured 
along the reaction chamber. The geometrical constant glat can be evaluated as glat = (0.1085 ± 
0.0075) m2 and is therefore in strong agreement with the theoretical model. The small deviation 
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Figure 2.20: Microscope images of the experimental realization. (a) shows an overview of the whole 
structure, (b) typical streamline plots in the junctions J2 and J3. White lines pass the reaction chamber, 
other trajectories are coloured in black. (a) shows the streamline plot in the separation site. 

 

results from reasons similar to those already discussed above. This is an experimental 
verification of the validation of equation (2.28), together with the streamline behaviour the 
estimation (2.31) has therefore been proven from experiments.  
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Figure 2.21: Schematic representation of the geometry. A rectangular microfluidic channel of height h1 
and width a1 changes over a length L into a rectangular channel of height h2 and width a2. The particle 
target region e.g. a coated sensor array is place on the bottom of the channel section of decreasing height 
(ramp)  

2.4 Microfluidic gravitational positioning system 
 
At this stage, particles have undergone most of the lab-on-a-chip procedures and, following the 
microfluidic outline given in the introduction, they now reach the detection area. We will still 
see in chapter 5 that a measurable signal can only be found for a sensor-particle distance of 
below some micrometers due to a rapid decay of the particle stray field. Therefore, the remaining 
task of the µTAS-device is to position the particle close to the sensor i.e. on the bottom of the 
channel. As was already discussed in section 2.2, one method for doing this is to employ 
additional electric wires located close to the magnetically sensitive surfaces, which pull particles 
in their direction. Such strategies have been thoroughly investigated [CMik05b] or [NKri08]. 
However, they have several disadvantages: due to the two-dimensional current distribution, 
magnetic particles must be very near to the target region, i.e. the actual sensor, in order to be 
attracted. Therefore, the capture rate is comparatively small. On the other hand, additional 
electric components increase the complexity of the device and also lead to strong particle-
particle interaction which lead to agglomerations [ASin09]. Therefore, we try to pursue a 
different strategy here. 

In many microfluidic systems, it is not necessary to study gravitational effects, since the 
particle velocity due to gravitation is significantly smaller than the fluid flow itself. However, 
denoting by 

z
�  the length scale in z-direction of the geometry, by g the gravitational constant 

and by U the (convective) velocity scale, this is no longer true, if the Froude number 
1/ 2( / )

z
Fr g U

−= �  is on the size scale of (1)O . In this case the resulting particle motion can be 
strongly affected by gravity and buoyancy effects, and therefore may no longer be ignored. The 
microfluidic geometry investigated for this purpose is schematically shown in Figure 2.21: a 
rectangular shaped channel of height h1 and width a1 changes over a length L into a channel of 
height h2 and width a2. The channel segment of decreasing height will be addressed as ramp in 
the following. The target area can be found along the bottom of the ramp section,. In the actual 
application, this is an array of magnetoresistive sensors with a bio-functionalized surface 
enabling specific binding between surface and magnetic markers if the correct linker molecule is 
present in the sample. For later purposes, we define the cross section ratio χ by the relation of 
the area of the cross sections of the ramp exit and the ramp entrance 
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Figure 2.22: Results of the numerical calculations showing the 
concentration profiles, the landing position for different initial 
heights and the position of the concentration maximum for the 
parameters h1 = 50 µm, a1 = 80 µm, h2 = 20 µm, a2 = 200 µm 
and uin = 200 µm/s. Each pair of graphics correspond to a 
different geometry length L. From the top to the bottom L is 
given by 400, 800 and 1200 µm. The upper plot shows the 
resulting concentration profile, the lower the projection of the 
initial height at the entrance along the vector field v.  

For the numerical calculations, we consider particles of a diameter d = 1 µm and a density 
3

part 2500 kg/mρ =  coinciding with the particles used in experimental realization. Gravitation 
enters the advection-diffusion equation via an additional velocity term 
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with u a solution of the Stokes equation for density ρ and viscosity η, D the diffusion constant 
and g the gravitational constant. Due to the symmetry of the system, only one half is modeled 
(indicated by the grey plane, Figure 2.21), imposing a ‘Symmetry’-condition ˆ, 0〈 ∇ 〉 =n u  along 
plane of symmetry. Additionally, we assume convective flow condition ˆ, 0D c〈 ∇ 〉 =n  along the 
target region, corresponding to the assumption that a particle reaching the ground will 
immediately bind to the biocoating. The resulting set of equations is solved again in Galerkin / 
Petrov-Galerkin framework. Due to calculations constraints, the size of the device is limited 
within simulations. This is due to the necessity for a high mesh resolution of the finite element 
discretization at the bottom of the channel which leads to a large number of degrees of freedom 
for structures of a length L > 1.5 mm i.e. high aspect ratios of the employed geometry. The 
resulting concentration profiles on the 
bottom of the ramp for the geometry 
parameters h1 = 50 µm, a1 = 80 µm,   
h2 = 20 µm, a2 = 200 µm, an inflow 
velocity uin = 200 µm/s and different 
values of L = 400, 800, 1200 µm are 
shown in Figure 2.22 (upper subplot of 
each graphic). For sufficiently high L, 
a local minimum and maximum in the 
distribution can be found. Therefore, 
this yields constraints on the sensor 
position on the bottom of the 
microfluidic device: If a homogeneous 
surface coverage is required, sensors 
must be placed near to the ramp 
entrance; high coverage can be 
obtained at the positions according to 
the distributions obtained shown in 
Figure 2.22.  

Additionally, the lower subplot 
shows a projection of the initial height 
at the entrance cross section along the 
velocity field v given by (2.27). These 
data are obtained, by solving the 
Level-set-equation (1.19) 

 

 ( ) 0D
t

∂Φ
− ∆Φ + ∇ Φ =

∂
v        (1.19) 

  
as introduced in section 1.3.1 by setting zΦ =  along the channel entrance. Here, we chose D = 0 
but solve (1.19) in a Petrov-Galerkin frame to maintain numerical stability. This plot gives 
information on the resulting concentration profiles if an arbitrary distribution is assumed instead 
of the constant Dirichlet condition 0c c= . Experimentally, this depends on the way the particles 
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Figure 2.23: Calculated capture rates of the device in comparison to a straight channel for different 
lengths (a), cross section ratios (b), inflow velocities (c) and particle densities (d). If system coefficients 
are not explicitly given, it is L = 800 µm, ξ = 1, uin = 200 µm/s and ρpart = 2500 kg/m3.  

are diluted. To quantify the efficiency of the proposed microfluidic structure, the total capture 
rate of the inflowing material is analyzed, i.e. the percentage of the inflowing material that 
reaches the bottom of the geometry before leaving the ramp. The resulting values are compared 
to the corresponding rates of a straight channel of identical L, h1 and w1. The dependency of the 
capture rate on the parameters L, uin, ξ and ρpart are shown in Figure 2.23. The subplots (a), (c) 
and (d) indicate a strong increase of the particles reaching the bottom of the structure. The 
capture rate increases by up to more than 100 % in comparison to the straight channel geometry. 
Even for short distances high capture rates can be achieved (Figure 2.23(a)). Additionally, 
particles of high density partρ  benefit even stronger (Figure 2.23(d)). 

As incompressible liquids are discussed, the flow into the ramp equals the flow out of the 
ramp. Therefore, the time St  an unbound particle remains in the ramp is given by the ratio of the 
ramp volume V and the inflow Γ. For constant h2 the volume of the ramp is given by 
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       (2.28) 

 
The inflow Γ is obtained by integrating the velocity profile u along the ramp inlet 
 

 
inlet

ˆ, dΓ = 〈 〉∫ u n r .        (2.29) 

 
Thus, the time St  decreases if χ decreases. However, this does not necessarily lead to an 
acceleration of the capturing process as can be seen in Figure 2.23(b) since with decreasing χ the 
capture rate of 100 % cannot be maintained. In the cases of Figure 2.23(b), the minimal St  for a 
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Figure 2.24: Experimental results. (a) shows optical microscopy image of typical bead tracks. Three 
different track types can be observed: (1) An immobilized bead shows no change in position over the 
whole time series. (2) Beads binding to the surface show an abrupt vanishing velocity. (3) Non-
immobilized beads follow the velocity profile of the liquid where their velocity by Brownian motion. (b) 
presents a time-dependent velocimetry of the of the presented beads tracks of (a). Fitting track (2) by a 
linear function along the time interval [0 s, 3.25 s] and [3.5 s, 5.5 s] reveals a decrease of the diffusion 
constant to σ1/σ2 ≈ 1/3. 

100 % capture rate is given by 8.4 s (h2 = 40 µm), 6.6 s (h2 = 30 µm), 6.1 s (h2 = 20 µm) and   
4.3 s (h2 = 10 µm). Generally, a further decrease of St  can be achieved by a further flattening of 
the exit. However, limitations are given by the experimental realization of the fluidic structure. 
Furthermore, as long as a constant capture rate is ensured doubling the velocity scale results in 
halving the capture time scale. The ramp structure enables a 100 % rate at far higher velocities 
than the straight channel, Figure 2.23(c), thus decreasing the capture time as well.  

At this point, we may conclude that the proposed ramp structure enables a fast positioning of 
particles along a specified target region. Since the device only bases on hydrodynamic and 
gravitational effects, a low degree of complexity is obtained making it easy to implement such a 
structure into existing microfluidic devices. However, though not necessarily apparent, the very 
simple setup is bought at a cost of geometrical complexity. The three-dimensional ramp structure 
can no longer be realized by standard lithography methods. Instead, the channel structure was 
realized using an injection molding technique provided by Reiner [Reiner], the applied mold 
mask was fabricated by a milling process. Since typical sensor arrays can be on a size scale of up 
to several millimeters [REde00] (~ 2 mm in the framework of the MrBead-project), the 
parameters used for the experimental realization differ slightly from the theoretical 
considerations. For the actual setup, it is h1 = 50 µm, a1 = 80 µm, h2 = 25 µm, a2 = 300 µm and  
L = 3.3 mm are chosen to make the device applicable to a wide range of existing sensor arrays. 
Deviating from the theoretical calculations a longer ramp segment is analyzed here. 
Nevertheless, a tendency can be deduced from the simulation results. For the experimental 
observations carried out by F. Wittbracht [FWit09], the same setup as in the previous sections 
was used. To realize the flow through the channels an oxygen plasma treatment of the 
polycarbonate plates with implemented channel is carried out leading to a reduction in the 
contact angle. Pressure-driven-flow through channels is achieved by hydrostatic pressure 
applying a 1 µl droplet to the channel entrance leading to an inflow velocity at the entrance of 
the ramp of about 70 µm/s. The velocity is thereby determined by the bead velocity. The binding 
of a bead to the bottom plate can be detected optically in situ. 

In the framework of the experiments, different bead solutions were investigated. Besides 
biotin-coated and uncoated Chemagen beads also Dynabeads MyOneTM with a carboxylic acid 
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functionalization are used as a reference. The concentration of all bead solutions is adjusted to    
c = 0.1 mg/ml. Dilutions are realized with DI-water and a PBS-buffer provided by MicroCoat 
[MicCo]. Typical bead tracks as observed in the experiment are shown in Fig. 2.24(b). Three 
different states of movement can be identified: Beads that are already bound to the bottom plate 
show no velocity (1). A binding event can be observed due to the spontaneous vanishing velocity 
(2). Beads that show no immobilization are characterized by a non-vanishing velocity (3). 
Immobilization of beads depends on the surface functionalization of beads and bottom plate and 
the diluting agent. The immobilization behaviour of the different bead species is summarized in 
Table 2.2. Uncoated Chemagen beads show no immobilization, if they are diluted with DI-water, 
however, they immobilize if they are diluted with PBS-buffer. This effect is caused by the 
surface polarity of the beads and bottom plate with respect to the buffer polarity. The biotinilated 
Chemagen beads show immobilization in the DI-water and PBS-buffer dilutions. Analyzing the 
MyOne beads leads to the observation of no immobilization in the reference system. For further 
verification a mixture of biotinilated Chemagen beads and MyOne beads is analyzed. 

Both diluting agents are used. Immobilization can only be detected for the Chemagen but not 
for the MyOne beads. The immobilization of beads, if a ligand-receptor pair is present, is a clear 
indication of beads reaching the channel ground. Brownian motion decreases directly before the 
immobilization event, as shown in Figure 2.24(b). This can be attributed to the reduction of 
diffusion in the vicinity of walls. The decrease of the diffusion constant D can be quantified by 
fitting the time intervals [0 s; 3.25 s] and [3.5 s; 5.5 s] in the case (2) track in Figure 2.24(b) 
independently by linear functions. We find standard deviations σ of the velocity with a relation 
of 1/3, which is in very good agreement with the theoretical prediction and the findings reported 
[LFau94]. 

 
Evaluating the surface coverage of 

immobilized beads on the bottom plate at 
the end of the ramp section with respect to 
the position in x-direction leads to a 
surface coverage distribution presented in 
Figure 2.25. A homogenous coverage of 
the bottom plate with immobilized beads 
can be found. This coincides with the 
numerical results (Figure 2.22) where a 
homogeneous, enhanced (red area of the 
concentration plots) concentration value 
close to the channel exit is obtained. 
However, extrapolating the numerical 

Table 2.2: Immobilization behaviour of different bead species and functionalizations used in the experiments. 

MyOneTM (COOH) 

Chemagen (biotin) 

Chemagen (uncoated) 
 

mixture: 

    MyOneTM (COOH) 

    Chemagen (biotin) 

no immobilization 

immobilization 

immobilization 
 

 

no immobilization 

immobilization 

PBS buffer DI water 

no immobilization 

--- 

no immobilization 

 
 

no immobilization 

immobilization 

Figure 2.25: Surface coverage distribution of beads on the 
channel ground of the microfluidic structure. 
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results leads to the expectation that the maximum should be found in some distance in front of 
the exit. At the distance chosen for the experimental observations all particles should already be 
bound to the functionalized surface. One possible reason for these deviations can be given as 
follows: As already mentioned, the boundary conditions chosen imply an instantaneous binding 
of the particles to the ground. Probably this does not hold in the experimental situation, here 
particles will be dragged along the functionalized surface until the binding takes place. The 
concentration profile is therefore shifted towards the channel exit in the experimental case. 
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2.5 Conclusions 
 

We presented a µTAS-system for preparation/reaction, separation and detection tasks. The 
theoretical design guidelines proposed in this work have been verified by the experiments of F. 
Wittbracht, B. Eickenberg and A. Auge, and overall a very strong agreement of the predictions 
from finite element simulations and experimental observations has been reported. 

The microfluidic separation device presented in section 2.2 enables the separation of 
magnetic beads by using hydrodynamic and magnetic forces. We theoretically predicted the 
behaviour of the system and experimentally proved that it is suitable for the separation of 
magnetic beads with respect to size. Therefore, employing magnetic particles of different 
magnetic properties and choosing different surface functionalization, this device is suitable for 
the separation of different biomolecules (e.g. antibodies) by magnetic carriers. Furthermore, the 
device has been designed to suppress diffusive effects, enabling separation of particles on the 
nanoscale. It was shown that the separation device maintains its functionality even for particles 
down to the size scale of several 10s of nanometers, despite a strong diffusive motion 
contribution if a high enough velocity ratio ξ in both channels is created. We found that for a 
given property e.g. size the parameter ξ determines which values of this property can still be 
separated from each other. Therefore, the degree of adjustment of ξ is important for the 
adaptability to different particle species and is thus a crucial requirement for total lab-on-a-chip 
systems. 

The integration of the separation device in a lab-on-a-chip structure was analyzed in section 
2.3. The adjustment of important hydrodynamic flow properties (velocity ratio, beam position in 
separation site) could be achieved by variation of a small number of geometry parameters. It was 
numerically shown that transport and separation properties are marginally affected by particle 
diffusion down to a particle size scale of 10 nm. To maintain stability we theoretically predicted 
an increase of the inflow velocity leading to a geometry limitation law connecting duration time 
in the reaction site which may be necessary to allow chemical reactions to take place and particle 
size linearly. Due to the design of the channel structure all tasks were realized without additional 
microfluidic components e.g. micropumps of microvalves. The design is therefore easy to 
integrate and might help to reduce the complexity of existing lab-on-a-chip devices. 

For the positioning of the magnetic carriers a microfluidic ramp structure was discussed in 
section 2.4 employing only gravity. The device thereby shows a very homogenous concentration 
over a long range, as well as a local maximum enabling different types of applications. We 
experimentally proved the depositing of magnetic beads on the bottom of the device using 
surface coatings of beads and bottom plates. The evaluation of the surface coverage shows a 
homogenous distribution close to the channel exit which also can be found in the theoretical 
prediction. The ramp structure provides high yield at small time scales. We have also proven by 
numerical simulations that the device can be used as positioning system for particles in the flow. 
For this application particles have to be provided at a certain channel height. The landing 
position follows from the proposed model and predicts a narrow spatial scattering. 
 

At this point only the experimental proof for the combined system is still missing which is 
work in progress and the focus of current Bachelor and Master theses.  
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Figure 2.26: Master curve for different ramp 
lengths, from top to bottom 400, 800, 1200 µm. 

2.5.1 Outlook 
 
An idea to further simplify the device is to combine the separation and the positioning devices. It 
is apparent that the proposed ramp geometry from section 2.4 can easily be extended to a 
separation device of differently functionalized particles. Therefore, the parameters have to be 
adjusted so that a capture rate of 100% is achieved. All particles reach the bottom of the 
geometry and will thus bind on a functionalized surface if they are correctly coated. Certain 
particle species will completely be filtered from the dilution. The separation will occur on the 
above mentioned time scale and is therefore also very fast. 

In this sense, it might be interesting to note the following observation when evaluating the 
results of the ‘Level set’-approach for the calculation of the projection of initial heights along the 
convection field. If we divide the entrance height into equidistant height segments, we can 
calculate the projected area of each individual segment at the bottom of the ramp structure; the 
result is shown in Figure 2.26. The plots show a local maximum followed by local minimum 
which is in agreement with concentration profiles presented in Figure 2.22 corresponding to the 
inverse area. Simulations predict an area distribution which follows some sort of master curve 
W  independent of the geometrical parameters. W  completely characterizes the device. The 
capture rate can be readily obtained via the integral 

 

 1 2
0

( ) ( )
2

L
L

x dx a a= +∫W         (2.30) 

 
The master curve shows a functional dependence in respect to the particle properties. Placing 
sensors for certain particle species at the minimum of W  enables the detection of several 
antibodies in a single chamber, an additional separation device would no longer be necessary. 

However, we have not found a direct 
way to calculate W  for a given set of 
parameter which would be very helpful 
to verify the independence of 
geometrical and material parameters. 
Also from the experimental point of 
view more observation data are 
necessary of verify the existence of such 
behaviour. 
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Chapter 3 
 

Micromagnetism 
 
 
 
 
 
When dealing with hydrodynamic systems, the continuum hypothesis proves key; it allows for 
the possibility of the separation of different scales and, in so doing, permits one to apply an 
effective, mesoscopic theory. In principal, this is a general assumption whenever different scales 
must be bridged, microscopic details lead to a macro- / mesoscopic behaviour. The details 
themselves are no longer important, but enter into the continuous model via a set of 
phenomenological material dependent parameters e.g. density and viscosity in the case of 
hydrodynamics. A rather similar approach can be employed for the description of magnetic 
materials. On the microscopic level magnetism arises due to the spins of atoms and their 
coupling. We may therefore model a solid by a lattice of spins as shown in Figure 3.1. 
Depending on the coupling between adjacent spins 
different behaviour may be found. In this thesis, we 
will mainly be interested in ferromagnetic materials 
[LaLi35] which can be described by the theory of 
micromagnetism. The governing equations may be 
derived in a variational formalism: The equilibrium 
state leads to a minimum of the total free energy of 
the system. This energy may be decomposed into 
several contributions which will be introduced in 
sections 3.1 to 3.3. In particular, similar to our 
introduction of the theory of hydrodynamics, we 
explain how to bridge the gap between microscopic 
details and mesoscopic behaviour. In section 3.4, we 
introduce the Brown equation as the governing 
equation of static micromagnetism and the Landau-

Lifshitz/Landau-Lifshitz-Gilbert equation in 3.5 as 
the respective equation for the phenomenological 
analysis of time-dependent phenomena. 

Figure 3.1: Modelling a magnetic solid by 
a spin grid, with the spin position at the 
grid nodes. 
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3.1 From atomic to mesoscopic magnetism 
 
On the microscopic level, we can consider solids to be perfectly periodic assemblies of atoms. 
To understand the magnetic behaviour of such systems, we assume each atom at a position given 
by Ri to carry a spin Si (compare Figure 3.1). The sign of the exchange integral J determines 
whether neighbouring spins tend to align to each other (J > 0 – ferromagnetic coupling) or prefer 
an antiparallel orientation (J < 0 – antiferromagnetic coupling). The value of J depends on the 
degree of confinement of the atomic orbitals. To investigate the behaviour of magnetic systems, 
the Hamiltonian spin operator 

 
 ( , )

i j i j

i j

J
≠

= −∑H R R S S        (3.1) 

 
can be employed. It is well suited for the description of ordered ferro- and anitferromagnetic 
materials, spin waves as well as spin glasses, but may not be applied for the description of 
itinerate magnetic systems since in these cases the magnetism arises from delocalized electrons. 
In the special case of a cubic lattice symmetry (3.1) simplifies to 
 
 2

i j

i j

J
≠

= − ∑H S S         (3.2) 

 
with the sum expanded only over adjacent spins. Similar to our considerations when motivating 
the effective (continuum) theory of hydrodynamics, magnetic solids on the size scale of up to 
several micrometers consist of too large a number of spins to treat them individually. Focusing 
on the case of a strong ferromagnetic coupling between adjacent spins ˆ

i
m  and ˆ

jm  and writing 
ˆ

i i
S=S m , we may assume that the force between adjacent spins is strong enough to only allow 

slight angle variations ˆ ˆ( , )ij i jθ =� m m . Therefore, the approximation ˆ ˆ| | | |ij i jθ = −m m  holds 
and (3.2) can be rewritten according to 
 
 2 21

22 2 cos 2 (1 )
i j ij ij

i j i j i j

J JS JSθ θ
≠ ≠ ≠

= − = − ≈ − −∑ ∑ ∑H S S  

    2 2ˆ ˆconst cos const ( )2 2

ij j i

i j i j

+ JS + JSθ
≠ ≠

= = −∑ ∑ m m     (3.3) 

 
At this point, we state the existence of a continuous function m̂  satisfying 

 
ˆ ˆ ˆ,j i j| |− = 〈∆ ∇ 〉m m r m         (3.4) 

 
with j j i∆ = −r R R . By introducing (3.4), the discrete spin dynamics (3.2) can then be treated in 
a continuous theory. Therefore, instead of obtaining energy contributions per spin, an energy 
density eA may be calculated denoting the energy per unit volume. Decomposing the function m̂  
into its components, we obtain 
 
 2ˆconst ( )2

j

i j

+ JS
≠

= ∆ ⋅∇∑H r m  

     ( )2 2 2
x y zˆ ˆ ˆconst ( ) ( ) ( )2

j j j
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+ JS x m y m z m
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= ∆ ⋅∇ + ∆ ⋅∇ + ∆ ⋅∇∑  
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Figure 3.2: Energy surfaces of magnetic anisotropy 
energy considering only first order contributions; blue 
coincide with the energetically favourable orientations. In 
the uniaxial case for K < 0, the easy direction goes over to 
an easy plane with normal ê . 

are valid for crystals of cubic symmetry, it is 
 

 ( )2 2 2
x y z( ) ( ) ( )

A
e A m m m= ∇ + ∇ + ∇  with 

2
2

6 j

j

NJS
A = ∆∑ r   (3.5) 

 
with N the number of spins per unit volume. 

The exchange constant A is a measure of the “magnetic stiffness” of a material. High values 
indicate a strong coupling between neighbouring spins, which will overcome external influences 
to a certain degree. Typical values range from 10-12 to several 10-11 J/m. A systematic analysis of 
the stiffness term can be found in Döring’s review of micromagnetics [WDör66] where the 
generalized expression 
 

 
, ,

ˆ ˆ
i i

A jk

i j k j k

m m
e A

x x

∂ ∂
=

∂ ∂
∑  

 
is derived. Here, A is a symmetric tensor degenerating to a scalar for cubic or isotropic materials. 
In principle, hexagonal or other lower symmetry crystals require more exchange stiffness 
constants. However, in practice, the isotropic formula is used in all calculations; no experimental 
determination of anisotropic exchange stiffness coefficients has been recorded [HuSc00].  
 
 

3.2 Coupling between mesoscopic and atomic structure 
 
On the microscopic level, the structure of a crystal is given (if we, for the moment, disregard 
defects such as vacancies and dislocations etc.) by a periodic assembly of a certain elementary 
cell; different crystals can be classified by their symmetry group [CBra72]. Due to spin-orbit 
coupling, this (periodic) substructure induces a direction dependent energy, i.e. the 
magnetocrystalline anisotropy energy of 
the undisturbed crystal. Additional 
induced anisotropies arise from deviations 
from the perfect crystalline symmetry 
which may be introduced by e.g. lattice 
defects. Since the anisotropy energy needs 
to maintain the symmetry of the crystal, 
the dependency is expanded in a series of 
spherical harmonics where in most cases 
only the first (or occasionally the first 
two) contributions are considered since 
thermal agitation of the spins tend to 
average out the higher-order terms.  

Figure 3.2 shows energy surfaces for 
two very important examples: uniaxial and 
cubic symmetries. Energetically 
favourable orientations correspond to blue 
areas, whereas energetically unfavourable 
ones correspond to the red. The directions 
of minimum and maximum energies are 
referred to as easy and hard directions, 
respectively. In formula, they are given as 
follows: 
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a) The upper plots of Figure 3.2 correspond to a uniaxial anisotropy. The energy 
contribution depends on the relative orientation between the vector m̂  and the “crystal 
direction” ê . Up to its fourth-order terms, the anisotropy energy density is given by 

 
  uni 2 uni 4

uni 1 2
ˆ ˆ ˆ ˆ, ,e K K= 〈 〉 + 〈 〉m e m e       (3.6) 

 
The actual type of anisotropy depends on the values of uni

1K . If uni
1K  is positive and large 

in respect to uni
2K , an easy axis is obtained. For large negative uni

1K , we find an easy 

plane or planar anisotropy. Intermediate values uni uni
1 20 / 2K K> > −  lead to an easy 

directions on a cone with angle θ relative to the axis given by 2 uni uni1
1 22sin /K Kθ = − . 

This situation is a conical anisotropy [HuSc00]. 
 

b) The lower plots of Figure 3.2 show cubic anisotropies. The general formula is given by 
 

  ( )cub 2 2 2 2 2 2 cub 2 2 2
cub 1 x y x z y z 2 x y ze K m m m m m m K m m m= + + +    (3.7) 

 
denoting by mi the magnetization components along the cubic axes. The material 
constants cub

2K  and higher-order terms can mostly be neglected. The constant cub
1K  

assumes values in the range of ±104 J/m3 for different materials. The sign of cub
1K  

determines whether the 100〈 〉  or the 111〈 〉  directions are the easy directions for the 
magnetization (compare Figure 3.2). 

  
It should be noted that uniaxial anisotropies can be much stronger than cubic anisotropies, 
reaching some 107 J/m3 for rare earth transition metal permanent magnetic materials.  
 

 

Figure 3.3: Magnetization configurations of an 
elliptical geometry, the colour code corresponds 
to the angle of the magnetization orientation. (a) 
No anisotropy is considered, the magnetization 
aligns with the geometrical easy axis due to stray 
field minimization. (b) A uniaxial anisotropy with 
easy axis parallel to the short semiaxis is 
assumed. The orientation aligns with the 
anisotropy direction, stray field energy though 
leads to the creation of closed magnetization 
“loops”. 

(a) 

(b) 
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3.3 Magnetostatics in matter 
 
A magnetic material of a spatial magnetization distribution M creates a magnetic field H in all of 
space which can be calculated by solving the Maxwell equations for matter. If no external 
current densities are considered, the PDE system is given by the homogeneous set of equations 
for magnetic field H and magnetic flux density B 

 
 0∇ =B           (3.8a)  

0∇ × =H          (3.8b) 
 

Due to (3.8b) the magnetic field H may be written in the form magφ= −∇H  with a scalar 
potential magφ . Further, field and flux density are connected via 

 
 0 0 mag( ) ( )µ µ φ= + = − ∇B M H M .      (3.9) 

 
Combining equations (3.9) and (3.8a), we retrieve the inhomogeneous Laplace equation for the 
magnetic potential φmag 

 
 magφ∆ = ∇M . 

 
In section 3.2, magnetocrystalline anisotropy effects were discussed. A different type of 

anisotropy may be induced by the shape of the magnetic domain Ωmag. Figure 3.3(a) shows the 
magnetic configuration of an ellipse in the absence of magnetocrystalline anisotropy 
contributions: the orientation aligns with the long axis. The origin of this orientation is, however, 
of a completely different nature and coupled to the energy Estray of the magnetic field introduced 
by the magnetic material in the surrounding space. In general, it is 
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 
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d e d

µ

Ω Ω

= − 〈 〉 ≡∫ ∫H M r r .  

with 0
demag ,

2
e

µ
= − 〈 〉H M          (3.10) 

 
this energy is often referred to as demagnetization energy. Considering an additional crystal 
anisotropy, a complex interplay between different energy contributions may arise which leads to 
complex phenomena. Figure 3.3(b) shows the situation of Figure 3.3(a) with an additional 
uniaxial anisotropy with easy axis along the y-axis. Since a y-orientated magnetic distribution 
would entail large stray field energy, an array of antiparallel areas can be found. Each subdomain 
aligns with the easy crystal axis while the antiparallel orientation of adjacent domains minimizes 
the stray field contribution. 
 

Finally, if a magnetic volume is brought into an external field Hext, its energy density is given 
by the Zeeman energy 

 
 Zeeman 0 ext,e µ= − 〈 〉M H .        (3.11) 
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3.4 Static micromagnetism 
 
The energy contributions explained in the preliminary sections allow for the determination of the 
equilibrium state of the magnetization distribution by means of variational calculus. The 
effective equations describing the behaviour of a magnetic material follow one of the most 
general physical principals: minimization of the total free energy E. According to the 
preliminary sections, we may therefore write 
 

 
mag

A ani demag Zeeman( )E e e e e d
Ω

= + + +∫ r  

    ( )
mag

2 2 2 0
x y z ani 0 ext( ) ( ) ( ) , ,

2
A m m m e d

µ
µ

Ω

 
= ∇ + ∇ + ∇ + − 〈 〉 − 〈 〉 

 
∫ H M M H r  (3.12) 

 
with eani a function describing an arbitrary orientation dependence. In order to find the 
equilibrium state, the integral expression must be minimized under the constraint ˆ| | 1=m . To 
maintain this condition, an additional Lagrange parameter λm is introduced. Finally, writing 

magφ= −∇H , we obtain 
 

( )
mag

2 2 2 0
mag m x y z ani mag 0 extˆ[ , , ] ( ) ( ) ( ) , ,

2
E A m m m e d

µ
φ λ φ µ

Ω

 
= ∇ + ∇ + ∇ + + 〈∇ 〉 − 〈 〉 

 
∫� m M M H r

             
mag

2 2 2
m x y z( 1)m m m dλ

Ω

+ + + −∫ r      (3.13) 

 
The equilibrium state is given by the angle distribution m̂  which makes E�  stationary, i.e. it 

needs to satisfy 
 

 mag m
ˆ[ , , ]

ˆ

Eδ φ λ

δ
= 0

� m

m
        (3.14) 

 
The simultaneous variation of all energy contributions can be found in Appendix A.3. The 

result is given by the Brown equation 
 

 
 
 
 
 
 
 
 
 
 
 
 

For the boundary conditions, a homogeneous Neumann condition may be employed for the 
description of a free magnetic surface. In many applications though, this assumption is not 
correct. Thin magnetic films obtain an alignment perpendicular to the layer plane due a strong 
surface anisotropy which has been e.g. in granular CoZrO-systems [YSun05]. Such 
configurations have promising applications for data storage devices as the perpendicular 
magnetization orientation may increase the data / area-ratio. Magnetic multi-layer systems are 

 eff
ˆ 0× =m H      on Ω 

with ani
eff mag ex

0

ˆ( )2 ˆ
ˆ

S

eA

M

δ
φ

µ δ
= − ∆ − − ∇ +

m
H m H

m
 on Ω   (3.15) 

and ˆ| | 1=m       on ∂Ω    
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another common example where homogeneous Neumann conditions do not resemble the 
proposed situation: several magnetic films are coupled to each other across a non-magnetic layer 
(e.g by RKKY-coupling, GMR-junctions [PGrü86], [NBai88] or by tunnelling processes, TMR-

junctions, see chapter 5). In the most general formulation, the behaviour along the boundary of a 
magnetic material with magnetization direction m̂  in contact with a second magnetic material 
described by ˆ ′m  is given by [MLab95] 
 

 surf
bl bq

ˆ ˆ( , )
ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( 2 , )

ˆ
e

A C C
δ

δ

′ 
′ ′× ∇ + − + 〈 〉 = 

 
0

m m
m n m m m m

m
.   (3.16) 

 
esurf denotes a (surface) anisotropy energy density while Cbl and Cbq are the bilinear and 
biquadratic coupling parameters. Examples for layer coupling can be found in the systems 
discussed in chapter 5. 

Equation (3.15) contains the most common contributions considered in micromagnetic 
calculations. Possible extensions are e.g. the incorporation of external stresses or 
magnetostriction both adding an additional term to the effective magnetic field via the 
variational derivative of their energy densities (see e.g. [HuSc00]. Similar to the Navier-Stokes 
equation, the Brown equation contains several material coefficients which arise due to the micro-
details. The origin of the exchange constant A (arising because of the coupling between adjacent 
atoms) was already discussed in section 3.1. The saturation magnetization, on the other hand, is a 
measure for “unsymmetric” spin orientation distribution in the unit cell. In the case of a 
magnetic material, a certain spin orientation dominates. Information on the magnetic structure 
can be obtained via band structure calculations based on the density functional theory (DFT) 
[GoBu00]. An example for a Co2FeAl-crystal in the L21-structure calculated by the SPRKKR-
package by H. Evert [SPRKKR] is shown in Figure 3.4. 
 

Figure 3.4: Density of states for a Co2FeAl crystal assembled in the L21-lattice structure, i.e. for 
interpenetrating fcc-lattices with base positions at (0 0 0) , 1 1 1

4 4 4(   ) , 1 1 1
2 2 2(   )  and 3 3 3

4 4 4(   ) . Due 
to asymmetric behaviour of spin-up and spin-down electrons, the material possesses a non-zero magnetic 
moment ~ 4 µB with µB the Bohr magnetron. The lower plot shows the contribution of different electrons. 
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3.5 Dynamic micromagnetism 
 
Equation (3.15) may be used to calculate the equilibrium state of a magnetization distribution. 
However, it does not give any information on how this state was reached. If a magnetic moment 
is brought into an (effective) external magnetic field, it starts to precess around the field 
direction with the Lamor frequency Lamor eff| |ω γ= H  with the gyromagnetic ratio γ. The 
dynamic behaviour is given according to 
 

 eff

ˆ
ˆd

dt
γ= − ×

m
m H   with 50

elec

1.105 10
2

ge m
g

m As

µ
γ = ⋅ ⋅=   (3.17) 

 
with e the elementary charge, melec the electron mass and g the Landé factor which is for many 
ferromagnetic materials given by g ≈ 2. The dynamics obtained from (3.17) describe a 
precession of the magnetic vector m̂  around the effective field effH . The angle enclosed does 
not change in respect to time (Figure 3.5) which occurs since no damping mechanisms have been 
taken into account. Damping of the precession originates from many different phenomena: eddy 
currents, macroscopic discontinuities (Barkhausen jumps), diffusion and the reorientation of 
lattice defects, or spin-scattering mechanisms can all introduce irreversibilities and losses. The 
first two examples introduce long-range dynamics which cannot be separated from the domain 
structure. However, all local effects can be summarized in a single term with a 
phenomenological, dimensionless damping parameter α describing the intrinsic loss. The 
dynamics are given by the Landau-Lifshitz equation [LaLi35] 

 

 eff

ˆ ˆ
ˆ ˆd d

dt dt
γ α= − × − ×

m m
m H m        (3.18) 

 
or alternatively, by substituting (3.18) into itself and reformulating [TGil55] 
 

 eff2 2

ˆ ˆ
ˆ ˆ

1 1
d d

dt dt

γ αγ

α α
= − × + ×

+ +

m m
m H m  

 
by the Landau-Lifshitz-Gilbert equation. The 
parameter α  can usually be found on a scale 
from 10-3 to 0.1. Different influences have been 
studied in the works of A. Azevedo, e.g. 
[AAze00]. 
 

In order to investigate the influence of spin 

currents, an additional term needs to be added to 
(3.18) which can be found in the works of J. 
Slonczewski [JSlo96] and L. Berger [LBer96]. 
 
 
 

precession 
without damping 

damped 
precession 

precession 
axis 

Figure 3.5: Precession without (black) and with 
(red) damping. The angle between magnetic vector 
and precession axis is constant over time if no 
damping is taken into account. 
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Chapter 4 
 

Magnetically interacting 

particles 
 
 
 
 
 
The Landau-Lifshitz equation describes the equilibrium state of a magnetization distribution for 
magnetic objects on the mesoscale. In particular, it holds for magnetic particles down to a 
particles size of several nanometers. However, if objects below a certain size scale are 
considered, magnetic domains can no longer be found. This is due to the fact that on small 
dimensions the exchange energy dominates all other contribution and does not allow for a spatial 
change of the magnetization distribution. This leads to the concept of superparamagnetism 
which will be explained in section 4.1; the properties of a superparamagnetic and consequently 
homogeneously magnetized sphere are summarized in section 4.2. Similar to paramagnetic 
materials, superparamagnetic objects show no stray field if no external field is applied. The 
particles employed for theoretical calculations and experimental observations in chapter 2 were 
assumed to be superparamagnetic. However, due to their sizes of about 1 to several micrometers 
they do not fulfil the size requirements, but their magnetic configuration should show a domain 
structure. In section 4.3, we will generalize such magnetic microparticles by the concept of 
magnetic beads which consist of superparamagnetic nano-components embedded in a polymer 
matrix. If we apply the Landau-Lifshitz equation to such systems the original set of partial 
differential equations may be reduced to a set of ordinary differential equations. Due to this 
substructure, the magnetic behaviour of such magnetic beads is influenced by the dipolar 
coupling of the nanoparticles. An analysis on the deviations of the static properties from the 
Langevin-formalism was recently achieved by V. Schaller et al. [VSch09a,09b] by means of 
Monte Carlo simulations. In section 4.4, we investigate the consequences on the dynamic 
relaxation processes which result from such nano(sub)structure. Thereby, we employ a similar 
approach that was also used by D. Laroze et al. [DLar08] to study the dynamic behaviour of two 
interacting dipoles. A key assumption for the systems discussed in chapter 2 was that sufficiently 
low particle concentrations are employed, so that particle-particle interactions can be neglected. 
From the experimental point of view such an assumption can always be easily met but it does not 
allow for fast, high-throughput applications. These problems have been addressed in many 
works e.g. [MWik06] or [NPam04]. In the last section of this chapter, we consider particle-
particle interactions for particles dissolved in liquid when brought into a homogeneous, external 
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Figure 4.1: Stoner-Wohlfarth asteroid. A single domain 
particle with uniaxial anisotropy (of arbitrary origin) changes 
its magnetization orientation if an external field is applied 
which lies outside the asteroid. In units of HMS/(2µ0K1) the 
switching lines are given by 3cos ϕ−  and  3sin ϕ  for parallel 
and orthogonal field, respectively. 

bcc-Fe 

fcc-Co 

Fe50Co50 

Fe3Co 

Fe3O4 

Fe2O3 

1714 

1420 

1910 

1993 

415 

380 

16.0 

15.8 

23.6 

17.0 

28.0 

34.9 

MS in kA/m Dsp in nm 

Table 4.1: Magnetizations and superparamagnetic 
size limit for different materials [AHüt04]. 

magnetic field where they agglomerate in rod-like structures. Self-assembles particle arrays have 
recently been in used in the group of M.A.M. Gijs [FLac08,09], [VSiv09] for the development of 
sandwich immunoassays. However, particles are trapped in such devices. In continuous-flow 
applications, such interactions are considered as negative side effects which lead to different 
effective rates and may also lead to a decreased device yield [CMik05]. In section 4.5 a novel 
method is presented to readily employ the particle-particle interaction for controlling the 
behaviour of assemblies within a fluid flow. We will show that the particle flow may be 
uncoupled from such liquid flow by a homogeneous field only, and can be guided by the relative 
orientation of (fluid) flow and field direction as long as changes are adiabatically. 
 
 
4.1 Superparamagnetism 
 
Due to the interplay between different energy contributions discussed in chapter 3, the magnetic 
material splits up into several magnetic domains. When dealing with systems of decreasing sizes, 
certain energy contributions dominate. In particular, the exchange energy does not allow for any 
spatial change of the magnetization orientation below certain dimensions; the system consists of 
only a single domain. In this case, the behaviour of the system is governed by the interplay of the 
demagnetization field, magnetocrystalline anisotropy and external perturbations. For special 
cases such as the Stoner-particle (spherical geometry), the switching behaviour can be discussed 
by analytic means, leading to the so-called switching asteroids [StWo48], Figure 4.1. 

The three remaining contributions depend 
on the volume of the particle, while the 
thermal energy kBT is constant with kB, the 
Boltzmann constant, and T, the absolute 
temperature. Below a certain critical size, 
thermal agitation may be sufficient to switch 
the magnetization configuration between 
different minima. If we consider spherical 
particles with cubic anisotropy, thermal energy 
overcomes the switching barrier below the 
superparamagnetic size limit Dsp which is 
given by 

 
3
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254
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D k T
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π
 
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 

 (4.1) 

 
with K1 the first cubic anisotropy 
constant. Higher orders are not 
considered in this formula as the 
process is driven by thermal effects. 
The originally ferromagnetic material 
loses its memory: objects under the 
limit Dsp show no hysteresis but exert 
paramagnetic behaviour. Since their 
magnetic moments are far higher than 
paramagnetic objects, this is called 
superparamagnetism. Typical material 
values are given in Table 4.1. 
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Figure 4.2: Stray field of a homogeneously 
magnetized sphere. (a) Streamline plot, (b), (c) 
in-plane components for M perpendicular and 
parallel to plane, respectively. 

4.2 Homogeneously magnetized spheres 
 
In many model approaches investigating the influence of small magnetic particles, it is sufficient 
to model magnetic markers with a homogeneously magnetized sphere of radius R and magnetic 
moment partm . The stray field created by such a particle can be derived from the Maxwell 
equations of magnetostatics: 0∇ =B  and 0∇ × =H . Due to the second equation, the magnetic 
field may be expressed by a scalar potential magφ  in the form magφ= −∇H . Expressing the 
magnetic flux density by 0 ( )µ= +B M H , magφ  needs to satisfy the inhomogeneous Laplace 
equation 

 
 magφ∆ = ∇M .         (4.1) 

 
In the case of an unbounded domain, an analytic solution can only be found for highly 

symmetric systems. In our case, due to the axis-symmetry of the problem, an expansion of magφ  
into a series of the orthogonal basis set of the axissymmetric function space, the Legendre 
polynoms, is possible. Exploiting the infinity limits | | 0→H  for | | → ∞r  and the continuity of 

�H  and ⊥B  along material interfaces, it can be shown that [JJac75] 
 

 part part
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3 ,1
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= − 

∆ ∆ 

m r r m
H r

r r
      (4.2) 

 
with part∆ = −r r r  (compare Appendix A.4). A representation of the stray field by a streamline 
plot is shown in Figure 4.1(a). (b) and (c) show area cross-sections parallel to the xy- and the xz-
plane under the assumption of part ˆ�m z , respectively. 

If a magnetic volume V of magnetization M is 
brought into an external field H, it contains a 
potential energy density E depending on the relative 
orientation between M and H. Consequently, a torque 
ττττ results aligning the magnetization direction with the 
field orientation. Additionally, if an inhomogeneous 
field is considered, a magnetic force magF  acts on the 
magnetic object 

 

 0 ,
V

E dµ= 〈 〉∫ M H r   (4.3a) 

⇒ mag 0 ( )
V

F E dµ= −∇ = ∇∫ M H r  (4.3b)  

and 
V

dτ = ×∫M H r    (4.3c) 

 
It should be pointed out that a magnetic moment does 
not feel a force in a homogeneous field. This fact was 
already applied in the setup of the magnetic 
separation device discussed in chapter 2.2. A strong 
homogeneous field induced a torque aligning the 
moment vectors in z-direction, leading to a very 
specific particle motion. 
 



 

 60 

Figure 4.4: Internal structure of a magnetic bead. 
Superparamagnetic nanoparticles are embedded in 
polymer matrix. A protective ligand shell is 
employed to maintain stabilization. 

Figure 4.3: Magnetic behaviour of 
Dynabeads MyOneTM obtained from 
AGM-measurements. No hysteresis 
can be found. 

4.3 Magnetization dynamics 
 
When modelling magnetic particles in microfluidic devices a common assumption is a 
superparamagnetic behaviour. However, if we consider e.g. the Dynabeads MyOneTM, the 
picture of a magnetically massive sphere cannot be correct since the particle dimensions can be 
found on a size scale of about 1 µm. The magnetic 
behaviour does not show any hysteresis though, as 
presented in Figure 4.3. Therefore, we need to refine the 
conception of a magnetic particle. In Figure 4.4 a schematic 
representation of the internal structure of a magnetic bead 
or multi-core particle is shown. Small superparamagnetic 
nanoparticles are embedded in a polymer matrix that is 
stabilized by a ligand shell. The magnetic cores commonly 
consist of magnetite or maghemite, S 380 kA/mM ≈ , but 
also other materials of higher magnetization have been 
recently studied and promise higher responses to magnetic 
fields or stronger influence on detection devices. The 
response of free magnetic moments to an external 
homogeneous magnetic field is given by the Langevin-

function 
 

0 B

B 0

,
( ) coth

,

k T
L

k T

µ

µ

 〈 〉
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H M
H

H M
.     (4.4) 

 
Due to dipolar coupling between individual 

nanoobjects, the behaviour can differ slightly 
from (4.4). Deviations were analyzed by Schaller 
et al. [VSch09a,b] by means of Monte Carlo 
simulations.  

However, such an approach does not give 
information on the dynamic behaviour of such 
objects. To do so, we will analyze the system by 
solving the Landau-Lifshitz equation where we 
incorporate the simplifications introduced in 
sections 4.1 and 4.2. 

Considering superparamagnetic components, 
the magnetization along each nanoparticle is 
constant in respect to space ˆ ˆ( , ) ( )t t=m r m . 
Therefore, the effective magnetic field effH  
introduced in (3.15) simplifies to 

 

 ani
eff mag ex

ˆ( )
ˆ

eδ
φ

δ
= − − ∇ +

m
H H

m
.      (4.5) 

 
In particular, the dynamic equations no longer depend on space; the set of partial differential 
equations can be refigured as a set of ordinary equations.  
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Considering a system of N such particles, the ODE system can be written in matrix form 
 

 eff(Id ) H
t

α γ
∂

− =
∂

� �m
M M ,       (4.6) 

 
denoting by Id the identity mapping on �3N×3N and by M  the blockdiagonal matrix 
 

 
1 0
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with ˆ

n,ij ijk n, jmε=M , 1,...,n N= . Further, the following vectors have been employed 
 

 x,1 y,1 z,1 x,2ˆ ˆ ˆ ˆ( , , , ,...)T
m m m m

t t

∂ ∂
=

∂ ∂

�m
 

and eff eff ,x ,1 eff ,y,1 eff ,z,1 eff ,x,2( , , , ,...)T
H H H H=H . 

 
In this way, the solution of dynamic equations (3.15) applied on the N single-domain paticle 

system simplifies to an integration of equation (4.6) in respect to time. A similar approach was 
employed by D. Laroze et al. [DLar09] in order to investigate the dynamics of two interacting 
magnetic dipoles. Our calculations show identical results for this case. A typical magnetization 
evolution for the case of two dipolar coupled magnetic nanoparticles of diameter 20 nm with a 
centre distance of 25 nm can be found in Figure 4.5 if magnetic parameters of MS = 1000 kA/m 
and α = 0.01 are assumed. The left plot shows the trajectory of the normalized magnetic 
moments. Since both curves converge to the same point, they align parallel along the symmetry 
axis of the system. 

Figure 4.5: (a) Example for the dynamic behaviour of magnetic single domain nanoparticles. The left 
side shows the moment vector trajectories of two 20 nm particles with of a distance of 25 nm, a saturation 
magnetization MS = 1000 kA/m and a damping coefficient α = 0.01. The evolution of single components 
can be found in the plot on the right side. (b) magnetic equilibrium and properties of a nanoparticles 
assembly. Depending on the direction of an external field, different M(H)-behaviour can be observed. 

(a) 

[1 0 0] 

[1 1 0] 
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Figure 4.6: Particle size distribution of 100 particles according 
to the logarithmic normal distribution with expectation value 
of 6nmR〈 〉 = and 2 nmσ = . The inset shows the spatial 
particles distribution on a sphere of radius R = 50 nm. 

4.4 Dipolar driven demagnetization processes 
 
In order to investigate the influence of the dipolar coupling on the demagnetization dynamics, a 
geometrical setup as shown in Figure 4.6 is chosen: small magnetic nanoparticles are equally 
randomly distributed across the volume of a three-dimensional sphere of radius RS. The radii R 
of the magnetic nanoparticles follow a logarithmic normal size distribution 
 

 
2

1 ln
( ) exp

22

R a
R
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π

− 
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      (4.8) 

 
with an expectation value R〈 〉  and a standard deviation σ given by 
 

21
2exp( )R a b〈 〉 = +  and 2 21

2(exp( ) 1) exp(2 )b a bσ = − ⋅ + , 

 
respectively. For each particle, we assume a uniaxial anisotropy with easy axis vector ˆ

i
e . The 

orientation of easy direction is chosen equally randomly along the surface of the two-
dimensional unit sphere. For this particular case, the anisotropy functional is given by 
 

 2
ani

ˆ ˆ ˆ( ) (1 )f K= − 〈 〉m e,m   ⇒ ani ˆ( ) ˆ ˆ ˆ2 ,
ˆ

f
K

δ

δ
= −

m
e m m

m
  (4.9) 

 
For the geometrical setup, we choose N = 100 nanoparticles. As an initial condition, the 

magnetization vectors are assumed to point in z-direction. This coincides with the experimental 
situation of particles in a strong external magnetic field which is switched off at t = 0. The 
external magnetic field acting on a particle is obtained by the summation of the stray field 
contributions of neighbouring particles according to the dipolar expression (4.2). We restrict the 
summation to all particles of a distance 
smaller than five times the average 
particle radius coinciding with the 
findings by Schaller et al. [VSch09b]. 
We refer to the total magnetic moment 
of the multi-core particle at time t by 
m(t) and to its components by mx, my 
and mz, respectively. 

The trend in magnetic nanoparticle 
synthesis works to create particles with 
higher magnetization which ensures 
better particle handling in many 
applications e.g. magnetic separation or 
detection.  Saturation values of around 
MS = 1000 kA/m have been reported in 
12 nm Co-particles [IEnn08] which 
will be chosen as a reference here. The 
application of our findings to lower 
magnetizations (e.g. magnetite or maghemite, MS ≈ 350 kA/m), will be discussed below. Setting 
further α = 0.005, K = 0, 6 nmr〈 〉 = , σ = 2 nm, and R = 50 nm, the evolution of the total 
moment m is presented in Figure 4.7. The inset shows the typical behaviour of the normalized 
magnetization components of a single object inside the super structure.  
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Figure 4.7: Dynamic relaxation of the total magnetic moment 
of a structure as shown in Figure 4.5 for the parameters MS = 
1000 kA/m, α = 0.005, 6nm,R〈 〉 = 2 nmσ = and R = 50 nm, 
the inset shows the behaviour of a single superparamagnetic 
particle inside the structure. 

As a matter of quantification, we 
introduce the typical decay duration τ 
via  

 
( ) ( 0) exp( 1)m m tτ = = ⋅ −  (4.10) 

 
In case of a single particle with a 

uniaxial anisotropy, the relaxation time 
τ is a function of the damping 
coefficient showing a minimum at α = 
1 (Figure 4.8, dashed line) [SRus06] 
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~
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α
τ

α

+
  (4.11) 

 
However, due to its substructure a 

magnetic multi-core particle exhibits 
deviating dynamics. 
 

In Figure 4.8, the influence of different parameters on the relaxation time τ is presented. Each 
data point corresponds to an average of logτ  of 25 calculations with independently generated 
geometries. The error logτ∆  is calculated from standard deviation. Increasing the saturation 
magnetization MS by a given factor leads to an equivalent increase of the logarithmic relaxation 
time logτ . A similar effect can be observed by varying the radius RS of the multi-core particle; 
the relaxation time increases with increasing distance between nanoparticles. From this result, 
we can also extrapolate to the lower magnetization cases such as magnetite or maghemite, which 
scale by a factor given by the relation between the saturation magnetizations. The deviation of 
the times is directly related to the deviation of the particle size distribution. Choosing particles of 
a fixed radius R = 6 nm, we find a 
relaxation time almost independent of 
the geometry configuration. For higher 
σ the error logτ∆  increases. 

A strong magnetic anisotropy 
decreases the relaxation time and a 
minimum of τ can be found. This 
minimum occurs at α = 1 if the 
anisotropy becomes the dominating 
driving force within the system. The 
relaxation dynamic increasingly 
resembles the behaviour of a single 
particle (Figure 4.9, dashed line) 
though far smaller relaxation times can 
be observed for very high and very low 
damping coefficients for multi-core 
particles. This is due to the random 
orientation of the easy axis e of each 
nanoparticle. However, since such 
demagnetization processes are no 
longer dipolar driven, they are beyond 
the scope of our discussion. In the 

Figure 4.8: Dependence of the relaxation time on different 
geometry and material parameters. In all calculations  

6nmR〈 〉 = . If the values for the remaining parameters are not 
explicitly given, they are MS = 1000 kA/m, K = 0, σ = 2 nm 
and RS = 50 nm. 
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following we will therefore address systems with K = 0, only. In these cases, the curve shape 
remains unaffected, independent of the chosen parameters. For high damping constants, the 
dynamic behaviour of the three-dimensional system coincides with the relaxation of a single 
particle with uniaxial anisotropy (Fig. 4.9, dashed line). The low damping cases strongly differ 
from this situation. The relaxation time τ is independent of the damping coefficient α. 

To gain a better understanding of the governing dynamics causing an α-independent τ, we 
investigate similarly assembled systems on lower dimensions. Assuming again particles of MS = 
1000 kA/m, K = 0, R = 6 nm, we analyze the following particle patterns: (1) the three-
dimensional spatial distribution as considered above, (2) a two-dimensional 10×10-
cubic/hexagonal lattice of lattice constant 15 nm in the x-y-plane, (3) a one-dimensional particle 
array of 25 particles along the x-axis at a distance of 15 nm. In the cases of (2) and (3), we add a 
random spatial distortion of a mean value of 0.25 nm in random directions. The initial state of 
the magnetization is chosen to be in positive y-direction. In the case of (3), a switching of the 
magnetization direction from y- to x-direction is expected. Thus, the total moment will not decay 
and the definition of τ needs to be slightly modified. Instead of the decay length, we analyse the 
increasing duration of the mx-component: 

 
 x y( ) ( 0) (1 exp( 1))m m tτ = = ⋅ − −        (4.12) 
 

This is in accordance with (4.12) in the sense that both definitions of τ coincide with the time 
when the magnetization has reached the limit of t → ∞  up to a 1/e-fraction. 

 
The results are shown in Figure 4.9: 

The one-dimensional particle chain 
shows a behaviour similar to that of a 
single particle with uniaxial anisotropy 
[HKro07]. Qualitatively this can be 
readily understood; though no 
magnetocrystaline anisotropy is 
considered in our calculations, the 
assembly of particles introduces an 
effective uniaxial shape anisotropy 
which originates from dipolar coupling 
between the single-domain 
nanoparticles. The systems can be 
considered comparable as the time τ 
increases with decreasing damping in 
the low damping regime, differing from 
the two- and three-dimensional 
configuration. This coincides with the 
finding by D. Laroze [DLar09] for 
dynamic two particle systems.  

The two-dimensional particle lattices follow the one-dimensional behaviour for damping 
coefficients α > 1, but differ for the low damping cases. Here no minimum can be found and τ 
goes to an α-independent value. Different lattice symmetries lead to the same stationary τ value, 
the curves, however, are shifted in respect to their α dependency. Here the hexagonal lattice 
reaches stationary relaxation time for smaller α than the cubic grid. The shift is due to a different 
number of direct neighbours in the geometry, which is 4 for the cubic and 6 for the hexagonal 
structure. This is also in accordance with the three-dimensional structure where higher numbers 
of neighbours (between 6 (cubic) – 12 (hexagonal)) can be achieved. A stationary τ behaviour is 
found for even smaller α. 

Figure 4.9: Relaxation of multi-core systems of different 
dimensions. In the case of high damping coefficients, α > 1, 
the behaviour is similar, though relaxation is faster for a higher 
value α. For small damping coefficients the relaxation time τ 
depends on the dimension of the structure. 
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According to our findings, the relaxation should occur along different paths depending on the 
system dimension. In the range of high damping (α > 1), the system is overdamped; the phase 
trajectory in the k-space is independent of the spatial ordering investigated. The velocity of each 
magnetic moment vector goes to zero without strong oscillations. For small damping constants, 
the occupied k-space volume obtains a certain structure depending on the dimension of the 
system (Figure 4.10(a)). The dynamics of the one-dimensional array take place in the plane 
perpendicular to the chain direction. The k-volume of two-dimensional lattices is restricted to an 
ellipsoid containing the one-dimensional subplane. Only the three-dimensional spatial 
configuration shows a full spherical symmetry in their dynamics. 

Common expectation suggests that an individual moment should become stationary after a 
time, determined by the parameter α, because the damping coefficient can be interpreted as 
measure for the energy leaving the system. This is actually the case as shown in Figure 4.10(b) 
for a 10×10-cubic lattice. The trajectories of each moment reveal that the equilibrium is 
dynamic. For each k-state, there is a mirrored state; thus the total magnetization cancels out over 
time until the microscopic dynamic vanishes. The situation in the three-dimensional case is 
similar, though there are even more possible configurations due to less spatial ordering.  

To conclude, we have investigated the dynamic demagnetization behaviour of magnetic 
multi-core particles in regards to different parameters. We have shown that the three-
dimensional structures exhibit a dynamic behaviour that strongly deviates from single particle 
relaxations in the low damping regime. It may be remarked that these values of the damping 
coefficient are the only of physical relevance for common magnetic materials. 

The observed behaviour could be related to an increase of the accessible volume in the k-
space with increasing system dimension. One-dimensional particle chains qualitatively show a 
similar behaviour to single particles with uniaxial magnetocrystalline anisotropy. Their motion is 
confined to a two-dimensional subplane of the k-space, which leads to increasing relaxation time 
for decreasing α < 1. This confinement is broken for systems of higher spatial dimension, 
resulting in relaxation time independent of the damping coefficient in the low damping regime. 
These findings are attributed to the fact that the macroscopic equilibrium for these dimensions is 
dynamic; the microscopic dynamics are still transient.  

 
 

Figure 4.10: k-space volumes of different systems. (a) Cuts through the k-space trajectories for systems 
of different dimensions for α = 0.001: 25 particle chain (black), 10×10-cubic lattice (blue), 100 particles 
of 6nm,R〈 〉 = MS = 1000 kA/m, K = 0, σ = 2 nm and RS = 50 nm (red). (b) Structure of k-volume for a 
10×10-cubic lattice for α = 1. For each state, there is a mirrored state; though on the microscopic level not 
stationary, the global structure has reached equilibrium. The red markers indicate the k-trajectory of a 
fixed particle in the array. 
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Figure 4.11: Agglomeration of particles of sizes between 0.5 and 1 µm in a homogeneous magnetic field 
parallel to the y-axis. The saturation magnetization of the particles is set to 1000 kA/m, their initial 
positions are chosen randomly on a two-dimensional sphere of radius 25 µm.  

4.5 Magnetic particles in adiabatically changed magnetic fields 
 
We now return to the microfluidic devices discussed in chapter 2. One of the key assumptions 
when analyzing the separation device in section 2.2 was that we are dealing with sufficiently low 
particle concentrations. Considering superparamagnetic magnetic beads, this requirement is not 
important as long as particles are not brought into an external field. However, the situation 
changes if external fields come into play. Even if homogeneous fields are considered, the 
magnetic moments of the particles begin to align parallel to the field direction. For sufficiently 
high concentrations, such fields can influence nearby particles; a strong particle-particle 
interaction due to the dipolar stray field of each individual object arises. These interactions may 
also introduce hydrodynamic forces evoking a different behaviour than the analysis of free 
particles would predict [CMik05], [TSaw08]. In such fields, magnetic particles begin aligning in 
one-dimensional chain arrays as shown in Figure 4.11. Since the dipolar attraction between 
neighbouring particles is very strong, chains do not break under fluid-induced shear stress. 
Instead, the chain will turn until an equilibrium configuration is reached, for strong magnetic 
fields the chain direction will coincide with the direction of the magnetic field. 

If the size of such chains is sufficiently smaller than the geometrical size scale of the device, 
the chain will travel as a confined object through the microfluidic structure. Except for some 
smaller corrections on the velocity and the angular momentum, the behaviour does not differ 
from the single particle case so long as no other (inhomogeneous) fields are considered. 
However, if chain length and geometrical size scale are comparable, different effects can be 
observed. In recent works of M.A.M. Gijs [FLac08,09], [VSiv09] chains were capture aligned 
perpendicular to the flow direction to realize sandwich immunoassays. However for continuous 
flow devices, such interactions have been regarded as negative side-effects which decrease the 
yield of devices. Contrary to these, we will employ such interactions for the manipulation of the 
particle flow without changing the fluid flow or applying inhomogeneous magnetic fields 
introduced by components on the microscale. Similar to the approaches discussed in the second 
chapter, the focus lies on keeping the device as simple as possible to make it applicable not only 
for laboratory system but also for many lab-on-a-chip devices. 
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The main component of the particle flow control device is schematically shown in Figure 
4.12. A round reservoir leads to a rectangular channel. A homogeneous magnetic field H is 
applied along the whole microfluidic structure. The magnetic moment of diluted particles will 
align with the field direction and a particle j will feel a force due a particle i according to  

 

 mag 0 part part( )ji j iµ= ⋅∇F m H        (4.13) 

 
with part

iH  the dipolar particle stray field of particle i according to (4.2). 
Thus, particles will start to 

agglomerate in chains oriented parallel to 
the external field. The average chain 
length depends on the concentration in the 
reservoir. A sufficiently long chain can 
only pass the junction area if the angle 
between chain and fluid flow direction is 
very small, otherwise it will be blocked at 
the junction. Smaller chains reaching the 
junction from the lower or the upper part 
of the geometry will feel a torque due to 
the flow profile rotating their orientation 
parallel to the direction of the outlet 
channel as schematically shown in Figure 
4.12(a). Fig. 4.12(b) shows a finite 
element calculation of the fluid profile in 
the junction area according to the Stokes equation (2.10). Magnetic and hydrodynamic torques 
always have opposite sign. Thus, if they are of similar size, smaller chains might pass the 
junction area and pass into the outlet. However due to a symmetric Poiseuille flow profile, the 
hydrodynamic torque vanishes along the outlet. The particle flow is blocked though the 
hydrodynamic flow remains. Critical conditions for the blocking of chains depend on the chain 
length L, the angle α between chain orientation and the external magnetic field H, and the 
magnetic moment of the particle chain.  

The dependencies can readily be 
deduced: Since the rotation is blocked 
by the channel wall, the total torque 
needs to vanish. The turning of the 
particle chain is stopped by a force F 
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The direction of the force depends 

on the angle α between the chain 
direction and the magnetic field. 
Denoting the channel width by h, the 
force direction can be calculated by 
cos /h Lα = . The critical force 
necessary to block the chain depends 
also on properties of the channel wall. 
However, from (4.14) we can 
qualitatively conclude that for high 

Figure 4.12: Schematic representation of the investigated 
device. A circular inlet reduces to a straight rectangular 
channel. The orientation of a travelling particle chain 
changes depending on the acting forces. 

Figure 4.13: (a)  Schematic of the investigated microfluidic 
device. It consists of two inlet reservoirs IB and ID, a reaction 
chamber R and a waste outlet. If the direction of the 
homogeneous magnetic field is chosen as B or D particles flow 
from the corresponding inlet into the chamber R. For directions 
according to A or C the waste or the drain is opened, 
respectively. (b) A possible improvement of the device: 
multiple channels are flooded by a single liquid reservoir; 
particles get into solution via particles reservoirs on a second 
bottom disc.  
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enough field strengths | H | and magnetizations MS, it is always possible to fix the chain within 
the channel. Experimentally, it was shown that such blocking values can be reached without 
difficulties. 

With this approach, different applications are possible. As an example we regard the structure 
shown in Figure 4.13(a) which serves as a particle diverter. Two inlet reservoirs IB and ID lead 
via straight channels with different orientations into a reaction chamber R. This chamber has two 
outlets: a drain reservoir for the collection of the reaction product and a waste that serves for 
initialization processes. If either orientation B or D is chosen, a particle flow from the 
corresponding inlet can be observed. This flow runs until the configuration is changed by 
opening the opposite valve; by washing the reaction chamber R; by applying the orientation A; 
by unlocking the waste or by transporting the particle mixture into the drain reservoir by 
applying a field in direction C. Basically, it is possible to extend this geometry to a higher 
number of inlets. Combining the structure in Figure 4.13(b) with a rotating magnetic field 
defines a cycle in which a specified number of particles always enter the reaction chamber. One 
turn of the field corresponds to two filling and emptying cycles of the reaction chamber. 

Experiments on these systems have been carried out by F. Wittbracht. The channel geometry 
is realized using standard optical lithography and soft-lithography methods. In a first step, a 
negative of the designated fluidic geometry is produced by optical lithography of SU-8 3025 on 
a siliconoxide-terminated silicon wafer. Baking steps and exposure doses are chosen according 
to manufactures’ instructions. This SU-8 structure serves as a mold mask in the second step of 
the sample preparation. Second, the polydimethylsiloxane (PDMS) polymer kit is thoroughly 
mixed employing a 1:10 mass ratio of curing agent to silicone elastomer. After mixing the 
polymer solution, the mold mask is covered with the PDMS mixture. Afterwards the PDMS is 
cured at 80°C for 4.5 hours. After stripping the PDMS-layer off the substrate and trimming the 
channel structure, reservoirs are cut and the channels are cleaned in an ultrasonic bath. A 
siliconoxide-terminated silicon wafer serves as a channel bottom plate. To ensure proper sealing 

of the microfluidic geometry, a plasma 
oxidation of the PDMS structure and 
the silicon wafer is carried out, which 
in turn leads to the formation of an 
irreversible seal between the PDMS 
and siliconoxide surfaces [BJo00]. The 
resulting microfluidic device is shown 
in Figure 4.14(a). Reservoirs have a 
radius of 500 µm, the channel 
dimension are given by a length of       
2 mm, a width of 20 µm and a height of 
25 µm. Channels are arranged in a 
rotational symmetry originating from 
the reaction chamber. Instead of a 
circular geometry, we chose an elliptic 
shaped chamber R to ensure better 
percolation. The chamber has semiaxes 
of 160 µm and 80 µm. 

The experimental setup consists of a digital optical microscope (VHX-600, Keyence) with a 
built-in CCD-camera producing up to 28 frames per second. The sample is positioned on a 
pivotable sample holder which is surrounded by a pair of coils for the generation of a 
homogenous magnetic in-plane field. The field strength can be adjusted up to 490 Oe, while the 
orientation of the field direction can be adjusted by turning the sample stage. Since 
agglomeration along the channels can be expected (as per the discussions in the preliminary 
section), superparamagnetic particles need to be used in order to ensure the dissolving of clusters 

Figure 4.14: Optical microscopy image of the microfluidic 
device used in the experiments. The centred reaction chamber 
has a radius of 50 µm. All channels are 30 µm wide. The 
channel height of 25 µm is determined by a cross section 
image of the mold mask. 
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when the field direction is set to flow direction. To distinguish particles flowing from different 
inlet reservoirs into the reaction chamber, different magnetic objects are used: The bead-carrying 
reservoirs IB and ID are filled with solutions of Dynabeads MyOneTM and Dynabeads M-280 
[GFon05] at concentrations of 10 mg/ml. Both bead species have narrow size distributions with 
standard deviations lower than 2%. Due to their different diameters of 1.05 µm and 2.8 µm, 
respectively, they can easily be kept apart by optical microscopy. 

At the beginning of the experiment, the drain channel is filled with de-ionized water until the 
microfluidic device is completely filled. The bead reservoirs are subsequently filled with the 
corresponding bead solutions. During the filling process, the magnetic field of 490 Oe is aligned 
parallel to the drain channel. Due to dipolar interactions of the magnetic beads and the resulting 
chain formation aligned to the external field, no particle flow can be observed. By changing the 
relative orientation of the magnetic field and the microfluidic device, the bead flow can be 
manipulated. Figure 4.15(a-b) represents the case of field orientation D: Particles (M-280) begin 
to flow into the reaction chamber from the inlet ID at a velocity of 100 µm/s. As long as the 
magnetic field vector points in this direction, no flow of MyOneTM bead chains can be observed. 
Changing the relative orientation of microfluidic geometry and applied magnetic field (Figure 
4.15(c)) stops the particle flow of M-280 particles. Aligning the field direction with the 
orientation B results in a flow of MyOneTM bead chains from the inlet IB into the reaction 
chamber (Figure 4.15(d-e)) while all other particles fluxes e.g. from ID or into waste or drain are 
inhibited. The merging of incoming bead chains with chains deposited in the reaction chamber in 
preliminary procedure steps can be observed; this assembly is presented in Figure 4.15(f). After 
the formation of a bead chain consisting of M-280 and MyOneTM beads, the orientation of 
magnetic field and sample is changed again, leading to a parallel alignment of drain channel and 
magnetic field. During the rotation of the sample, the assembled bead chain breaks apart. This 
effect is due to the interaction of the bead chain with the reaction chamber wall. While one end 
of the chain is fixed at the contact point to the wall and can consequently no longer align in field 
direction, the opposite end follows the external field. This leads to high stresses along the chain 
centre which in the end cause the chain to break apart. The small fragment of the bead chain 
remains in the reaction chamber, whereas the large fragment is transported out of the reaction 
chamber as shown in Fig. 4.15(g-i), if the appropriate magnetic field direction is chosen. To 
prevent chain fragments from remaining in the reaction chamber, further optimization of the 
chamber shape is necessary. 

 

Figure 4.15: Microscopy images of the 
microfluidic device during operation. Particle flow 
can be controlled by the orientation between fluid 
flow and external field direction. 

Figure 4.16: Microscopy images of chain blocking 
within the connecting channels. The marked chain 
is blocked in (a) and (b) but starts moving to the 
reaction chamber as soon as the field and flow 
orientation are parallel to each other (c), (d). 
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The gating of particle flow for certain magnetic field directions is shown in Figure 4.16. If the 
magnetic field is aligned parallel to the drain channel, a bead chain consisting of M-280 is kept 
from entering the reaction chamber, due to bead chain wall interactions as explained by (4.14). 
As displayed in Figure 4.16(a-b), the particle flow into the reaction chamber is inhibited, while 
the chamber is emptied into the drain. A chain of M-280 is blocked within the transport channel. 
Changing the orientation of the sample and the magnetic field, enables the flow of the previously 
detained M-280 bead chain into the reaction chamber as shown in Figure 4.16(c-d). 

Other beneficial effects can be observed for the operation of the device. Due to rotational 
degrees of freedom, chains can rotate along their axis within the fluid flow to attain higher 
stability. This effect is shown in Figure 4.17(a), a particle chain reaches the channel wall and 
enhances stability by adjusting its spatial configuration to the fluid flow by rotation as shown 
schematically in Figure 4.17(a). Since superparamagnetic beads are employed, the switching off 
of the external magnetic field leads to the collapse of bead agglomerations and therefore enables 
the flow of individual particles. The deagglomeration is presented in Figure 4.17(b), the 
dissolving time for this process is given by only a few seconds. Thus, a bead mixture can be 
prepared in the reaction chamber and can afterwards be employed without additional 
preparations for further applications. 

 
It needs to be pointed out again that the major advantage of this method is that only a 

homogeneous macroscopic magnetic field is necessary. In contrast to existing particle diverters 
(see e.g. [NPek05]) no electric components on the microscale are necessary which makes the 
device were easy to handle and in particular sufficient for the integration in existing lab-on-a-
chip devices. 
 
 

Figure 4.17: Additional effects enhancing the functionality of 
the device. (a) A particle chain reaches a blocked configuration 
close to one of the exits of the reaction chamber R, its stability 
is increased by self-ordering of particle positions within the 
fluid flow. (b) Switching off the external magnetic field, the 
particle chains dissolve within a time span of several seconds. 
 



 

 71 

4.6 Conclusion and Outlook 
 
In this chapter, we have investigated the influence of dipolar particle coupling with the help of a 
simplified version of the Landau-Lifshitz equation. For simplification, it was necessary that 
particles are homogeneously magnetized which made it possible to rewrite the original set of 
partial differential equations into a set of ordinary ones. 
 

In section 4.4, we studied the dynamic demagnetization behaviour of magnetic multi-core 
particles in regards to different parameters. We have shown that the three-dimensional structures 
exhibit a dynamic behaviour strongly deviating from single particle relaxations in the low 
damping regime. It may be remarked, that these values of the damping coefficient are the only 
ones of physical relevance for common magnetic materials. The observed behaviour could be 
related to an increase of the accessible volume in the k-space with increasing system dimension. 
One-dimensional particle chains qualitatively show a similar behaviour to single particles with 
uniaxial magnetocrystalline anisotropy. Their motion is confined to a two-dimensional subplane 
of the k-space, which leads to an increasing relaxation time for decreasing α for α < 1. This 
confinement is broken for systems of higher spatial dimension, resulting in relaxation times 
independent of the damping coefficient in the low damping regime. These findings are attributed 
to the fact that the macroscopic equilibrium for these dimensions is dynamic; the microscopic 
dynamics are still transient. These results have been accepted for publication in Dynamic 

simulations of the dipolar driven demagnitization process of magnetic multi-core nanoparticles, 
J. Magn. Magn. Mat., in press. 

In section 4.5, it was shown that dipole-dipole interaction between magnetic beads can be 
employed to manipulate the particle flow in continuous flow devices by applying a homogenous 
magnetic field only. Particles can be restricted to areas without changing the state of motion of 
the liquid and without the integration of electromagnetic components on the microscale which 
should be a major advantage of this setup in comparison to existing diverters. Additionally, 
captured particle chains can be released without any delay by aligning field and fluid flow 
direction. The geometry investigated can easily be extended to a particle diverter of numerous 
inlet reservoirs for mixing and reaction applications and due to its simplicity, it can be easily 
implemented into existing devices. To our knowledge the predictions and realizations presented 
here, show the first direct employment of dipolar particle-particle interactions in continuous flow 
devices. The results entitled Particle flow control by induced dipolar particle interactions are 
currently under consideration at Microfluid. Nanofluid. 

 
For the discussion in section 4.5, we only considered the case of magnetic fields that change 

sufficiently slowly so the chain axis can always follow the field orientation. If very high 
frequencies are considered though, very strong hydrodynamic forces act on the chain segments. 
In particular, this might lead to the breaking of the assembly followed by a repulsive force 
between the resulting two segments which is due to dipolar interaction. Mikkelsen et al. 
[CMik05] already reported that in situations where dissolved particles interact with each other 
via dipolar coupling also very high hydrodynamic forces can be observed. In the framework of 
this thesis, different aspects of such phenomena have been investigated. However, the analysis of 
these systems is still work in progress; therefore, we will only give a short outlook. 
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Figure 4.18: Construction of the ALE-
mapping via a second domain 
triangulation 2T : (a) triangulation 2T  
with particle positions as inner nodes, 
(b) resulting linear hat functions. 

(a) 

(b) 

4.6.1 Outlook: Magnetic particles in high frequency fields 
 
In this model, it is not sufficient to discuss the linear Stokes equation for the description of the 
liquid properties but instead the full Navier-Stokes equation needs to be considered. Though a 
model on the microscale is investigated, very high local Reynolds numbers can be reached. It is 
therefore necessary to have an appropriate mesh resolution 
near to the particles themselves. Similar as to the works of 
V. Thümmler and W.J. Beyn [WBey04,08,09], the mesh is 
transported in respect to the particle motion. The 
implementation is done in an ALE-framework (compare 
section 1.3). For the definition of the ALE-mappings 

0 0:
t t

Ω → Ω ≅ ΩA , we introduce a second domain 
triangulation 2T : the inner nodes intN  are indicated by the 
positions, additional auxiliary nodes need to be specified 
along the domain boundary. From the set of nodes, we 
obtain the triangulation using Delaunay algorithm. The 
result is presented in Figure 4.18(a). 

The ALE-mappings can now be defined by employing 
standard finite element techniques (compare section 1.2.4): 
Denoting the nodes of a triangle T by 1 2 3, ,r r r  with 

T( , )
i i i

x y=r , T can be parameterized by parameters s1 and 
s2 via mapping the triangle T onto the two-dimensional 
simplex S2. Using the affine mapping 

 

1 2 1 1 2 1 2 3 1( , ) ( ) ( )
T

s s s sΦ = + − + −r r r r r  (4.15) 

 
it can be shown that 
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 (4.16b) 

 
Assuming the mesh velocity is (a) equal to the particle velocity on the particle domains and (b) 
changes linearly in between the particles, suitable functions to model the mesh velocity are given 
by the linear hat functions (compare Figure 4.18(b)) 
 

 3 2 3 3 2 3
1 2

2 1 3 1 3 1 2 1

( )( ) ( )( )
( , ) 1 ( )

( )( ) ( )( )T

y y x x x x y y
x y s s

x x y y x x y y

− − − − −
Λ = − + =

− − − − −
.   (4.17) 

 
However, this choice leads to difficulties concerning numerical stability resulting from a rapidly 
decreasing element quality of the original FEM-mesh. To overcome these problems, slightly 
modified functions are applied: 
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with 1 2, [0,0.5)θ θ ∈  two numerical parameters which lead to an acceleration of surrounding 
mesh elements and increase the mesh quality. A thorough analysis estimating the choice of θ1 

and θ2 has not yet been accomplished, however, we find indications for a coupling to the element 
growth rate close to the particle positions. Denoting the ALE- or reference coordinates of a 
particle at spatial coordinate ri by ξξξξI, the displacement ∆r of an initial coordinate r may be 
written by 
 

 1 2( ) ( , , , )i i T

i

r x yξ θ θ∆ = − ⋅ Λ∑ �r        (4.19) 

 
with ( )

t
= + ∆rA ξ ξξ ξξ ξξ ξ  the ALE-mapping. The physical equations can be recast into the reference 

system according to (1.21). It should be pointed out, that in this case the ALE-formalism is not 
employed to deal with a moving domain as introduced in section 1.3. Instead it locally ensures a 
sufficient mesh resolution which is 
necessary for a proper discretization of the 
Navier-Stokes equation and the time-
dependent dynamics. An example for two 
interacting objects is shown in Figure 4.19, 
the positions of the particles coincide with 
the areas of high resolution. The ALE-
approach maintains the mesh resolution 
close to the particle positions. 
 

Just as the application of Stokes 
equation is not correct here, we may no 
longer neglect inertia effects. Therefore, 
treating each particle as a point mass rather 
than applying (1.14) right away, the motions of the particles need to be calculated from 
Newton’s second law 

 

 ,fluid ,mag ,pen
i

i i i i

d
m

dt
= + +

v
F F F        (4.20) 

 
with  mi mass of i-th particle 
  ,fluidiF  fluidic forces acting on the i-th particle 
  ,magiF  magnetic forces acting on the i-th particle 

,peniF  penalty forces acting on the i-th particle preventing particle from 
overlapping 

 
As locally high Reynolds numbers can be found, fluidic forces are modeled by the Khan-
Richardson force (2.15), instead of applying Stokes drag law which only holds in the creeping 
flow regime. The magnetic force is given by ( )

i
∇m H  with mi the particle moment and H the 

magnetic field at the particle position. Finally, for the penalty contribution, we choose a force 
originating from a Lennard-Jones-potential: 
 

 pen LJϕ= −∇F  with 
12 6

LJ ( ) 4r
r r

σ σ
ϕ ε

    
= −         

    (4.21) 

 
with ε the depth of the potential well and σ the distance at which the inter-particle potential is 
zero. 

10 µm 

Figure 4.19: Moving mesh for two interacting particles. 
The ALE-approach maintains a high mesh resolution 
close to the particle positions. The plots show the initial 
configuration (left) and mesh displacement after a certain 
time (right). 
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A moving particle exerts a force on the liquid. Considering particles as point masses, this 
force is given by 

 
 ( , ) ( ) ( ( ) )i i

i

t t tδ= ⋅ −∑f r f r r  

 
Unfortunately, this expression introduces some technical difficulties. The Kronecker δ-
distribution is no longer an 2L − function, the convergence of such numerical schemes therefore 
becomes problematic. For the implementation, we introduce instead additional geometry nodes, 
where we employ weak point terms. 

First, calculations were carried out under the assumption of a particle mass density of 2500 
kg/m3 and a saturation magnetization of 1000 kA/m. The carrier liquid is supposed to be water at 
room temperature, therefore, we set η = 1.002 ⋅ 10-3 Pa s and ρ = 998.2 kg/m3. Starting with only 
two particles of identical radius R, we observe the following frequency-dependent distance 
behaviour as presented in Figure 4.20: at low frequencies, the distance of the particles strongly 
decreases and remains constant (this can also be found experimentally). At very high 
frequencies, particles oscillate against each other. However due to a very rapidly changing 
magnetic field, the particles wander close to their initial position; the average distance in respect 
to time that a particle moves is close to zero. From Figure 4.20, we learn that there is clearly a 
critical frequency area, where particles are pushed apart (~ 25 kHz for particles of a radius 10 
µm and ~ 10 kHz for particles of a radius 20 µm). This area changes if particles of different size 
are investigated, as can be seen in Figure 4.20(b). Similar results are obtained if different values 
for the magnetization MS are discussed. 

Regarding the motion of the particles, it is interesting to notice that the particles on the 
microscale can actually reach macroscopic velocities (Figure 4.21). Thus, it is no longer clear 
whether magnetic or hydrodynamic interaction is the main force contributing. For the 
comparison, we choose a system of two interacting magnetic markers of R = 1 µm and the 
remaining parameters as given above. If a frequency of 50 kHz is applied, such particles induce 
a flow profile as shown in Figure 4.22(a). A third probe particle of variable radius feels fluidic 
and magnetic forces. The dominant contribution depends on the particle position. Figure 4.22(b) 

Figure 4.20: Behaviour of the particle distance in 
respect to the field frequency for the case of a particle 
of radius (a) 10 µm and (b) 20 µm. 

Figure 4.21: Particle velocities for particles of radius 
R = 10 µm for different field frequencies. 



 

 75 

shows an influence plot. Electromagnetic interactions dominate along blue areas, whereas in the 
red ares, hydrodynamic forces play a major role. The green regions correspond to intermediate 
regimes. Similar to the findings of C. Mikkelson et al. [CMik05], we find a dominating magnetic 
contribution at short range.  

Unfortunately, a thorough analysis of these systems is not yet finished at the moment. 
However, the simulation examples at this point already indicate that the modeling of particles 
immersed in fluid flows as “free particles” might lead to wrong results if high concentrations in 
strong external fields are considered. The importance of different force contributions will be 
addressed in future works. A point of high interest in this regard will be the question whether 
non-linear effects can be observed. Such phenomena would have promising applications in the 
field of mixing in the laminar flow regime. 

 
 
 

 

Figure 4.22: (a) Velocity profile resulting from particle 
movement for R = 1 µm, MS = 1000 kA/m and f = 50 kHz. 
(b) Dominant force on a third probe particle with radius R0 
= R, 0.75 R and 0.5 R. Blue areas correspond to dominant 
magnetic forces, red to dominant fluidic contributions. 

10 µm 

0 1 2 3 4 5 6 7 

| u | in cm/s 

(a) 

(b) 
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Chapter 5 
 

Detection of magnetic particles 
 
 
 
 
 
After the discussion of the magnetic properties of magnetic beads and nanoparticles and their 
behaviour in continuous flow devices, we return to the originally stated problem: the detection of 
magnetic markers. Magnetic particles influence soft magnetic material nearby due to their 
magnetic stray field. This enables their detection by magnetoresistive sensors and thus an 
indirect visualization of every biological or chemical component bound to the marker [SWan08], 
[HBrü05]. This strategy has been pursued during the last decade in applications involving 
biological recognition [DGra03]. 

Different measuring tasks may be formulated. The simplest question to answer is if a 
magnetic bead or particle is close to the sensor. However, since the particle stray field is 
inhomogeneous, additional information on the position of the particle might be possible, i.e. 
instead of only asking for a yes/no-answer, we want to obtain (spatially highly resolved) position 
information. In regards to applications, it might also be interesting to know how many particles 
are within detection range. Since magnetic fields follow the principle of superposition, (i.e. the 
magnetic field of two magnetic particles is given by the sum of the individual particle stray 
fields) the effect of a single particle should be smaller than the evoked sensor response of several 
magnetic agents. Depending on the detection task, different requirements need to be met by the 
sensor setup. Number sensitive particle detection demands a sensors response independent of the 
particle positions. This commonly implies sensor dimensions far larger than the particle sizes 
[YLiu06]. We will still show that the total signal sums up linearly from the contribution of each 
particle as long as particle-particle interaction can be omitted. Thus, the magnitude of the 
measured signal refers uniquely to the number of particles. If instead a high space resolution is 
required, strong response changes in respect to the particle position need to be achieved which 
entails the employment of sensors of sizes equal to or smaller than the particle dimensions. 

Both applications are limited by the influence of device noise, which introduces a threshold 
of the magnetic field strength that can still be detected. Since the magnetic stray field decays 
rapidly with the distance between particle and sensor, such thresholds introduce strong 
restrictions on the measurable signal [SKog98], [PHed09]. As recently shown by J. Loureiro et 
al. [JLou09], dynamic measurements of particles in continuous flows are possible if sensor 
layouts and target particles of sufficient sizes and magnetic moments are chosen. However, this 
gives no guideline for the sensor design if particles on the nanometer size scale are considered.  
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The sensors discussed in this chapter can all be found on the size scale of < 1 µm. At these 
dimensions, the stray field coupling between neighbouring magnetic films is of major 
importance. In section 5.1, the model used for the simulation is discussed. We employ a two-
dimensional approach for the calculation of the layer dynamics while the magnetic stray field is 
simulated in a three-dimensional frame. We will also briefly explain the implementation of our 
approach by the COMSOL plug-in PADIMA which was developed in the framework of this 
thesis (for a brief introduction refer to appendix A.4). In section 5.2, we test our approach 
investigating the behaviour of a vortex free layer state under the influence of an external 
magnetic field and compare the results with an analytic model. The description of single particle 
detection may be found in section 5.3. After establishing our model by comparison to the 
experimental data, we estimate the space resolution of such a magnetoresistive detector. In 
particular, we introduce a method how to construct sensor arrays that have detection precision 
below a given threshold with only a small amount of sensors employed. To overcome difficulties 
with the particle height due to a rapidly decaying stray field which is one of the main problems 
for the in flow detection [JLou09], we introduce sensor geometries and show that it is possible to 
increase the detection range via highly sensitive areas. The chapter ends with analysis of the 
multi particle case, where we combine the model of dipolar-coupled homogeneously magnetized 
spheres to the sensor model. We will see that the particle signal can be decomposed into a linear 
contribution originating from free particles and a hysteresis one from coupled particles. 
 

The main results of this chapter have been published in various scientific journals. The 
analysis of the experimental observations made by C. Albon in the framework of her PhD thesis 
[CAlb09] led to two publications. The interpretation of the measured signal for the case of a 
single MyOneTM, presented in section 5.3.1, can be found in Tunneling magnetoresistance 

sensors for high resolutive particle detection, Applied Physics Letters 95 (2), 023101 (2009). 
The analysis of the influence of particle-particle coupling as discussed in section 5.4 have been 
published in Number sensitive detection and direct imaging of dipolar coupled magnetic 

nanoparticles by tunnel magnetoresistance sensors, Applied Physics Letters 95 (16), 163106 
(2009). The estimation of the spatial resolution limits and the entailed design guidelines 
employing elliptically shaped sensors was released in: On the resolution limits of magnetic 

sensors for particle detection, New Journal of Physics 11, 113027 (2009). 
The results presented in section 5.3.3 have been submitted to Applied Physics Letters.: 

Toward the magnetoresistive detection of single nanoparticle: new strategies for particle 

detection by adjustment of sensor shape and are currently under consideration. 
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5.1 Weak formulation and thin film approach 
 
For the implementation of the dynamic equations of micromagnetism, it is necessary to bring the 
original equation into the weak formulation. Starting from 
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we multiply with an arbitrary vector test function ψψψψ and integrate over the whole magnetic 
domain magΩ . It needs to be pointed out that the maximum order of weak spatial derivatives 
allowed is ≤ 1 since the discretization is done in a Galerkin framework with 1

mag( )H Ω  as the 
solution space for weak solutions. Therefore, the first summand appearing in the effective field 
Heff needs to be rewritten according to 
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The last equality holds since the third summand is a product of the antisymmetric tensor ijkε  and 
the symmetric one ˆ ˆ

o j o km m∂ ∂ , therefore its overall sum vanishes. Integrating by parts and 
assuming a homogeneous van Neumann condition, (5.1) simplifies to 
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Thus, the weak form of (3.18) may be written as 
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Modelling systems with high aspect ratios in a finite element framework leads to 
complications: to maintain numerical stability and thus ensure convergence of the numerical 
scheme, triangles / tetrahedrons of high element quality need to be employed for the domain 
discretization. The element quality is a measure of how close the subdomains are to an 
equilateral triangle / tetrahedron. In the case of thin magnetic layers, this requires that the lateral 
domain decomposition is on the same scale as the perpendicular one which is bounded by the 
film thickness itself. Thus, a full three-dimensional treatment leads to a very high number of 
elements and, consequently, also to a large amount of degrees of freedom. 

Therefore, in this work a different approach is chosen: due to magnetic exchange energy the 
size scale on which a change of magnetization components can be observed exceeds the 
thickness of the film by several magnitudes. Considering a magnetic layer in x-y-plane, we can 
approximate the distribution by ˆ ˆ( , , ) ( , )x y z x y=m m ; the magnetic thin film can be modelled by 
a two-dimensional geometry. The sensors discussed in this work all have an area of less than 1 
µm2. For this type of setup, the coupling of magnetic films via their stray field is of major 
importance [DMey06]. In order to ensure high exactness of the field approximation, a three 
dimensional approach is chosen. For practical calculations, we work in two frames: a three-
dimensional one for the calculation of the magnetic potential φmag and a two-dimensional system 
for magnetic properties of the layers. It needs to be remarked that the calculation of the magnetic 
potential needs to be restricted to a finite domain. The size of the domain has to be adjusted so 
that the domain boundary does not influence the field along the magnetic domain. Due to a 
strong coupling between adjacent layers, a surrounding sphere of radius given by twice the 
radius of the circumscribing sphere of the sensor geometry is found to be sufficient. 

Since for the evaluations of φmag in the three-dimensional system the evaluation of m̂  is 
necessary and vice versa, we also need to introduce projection mappings connecting both frames 
with each other. Denoting the free magnetic layers in three dimensions by 3

mag,iΩ  and the two-
dimensional domain by 2

magΩ , these projection mappings are given via 
 
 3 2

mag, mag:i iΦ Ω → Ω   1 2 3
mag mag,:i i

−Φ Ω → Ω     (5.4) 
     ( , , ) ( , )x y z x y�         ( , ) ( , , )x y x y z�  
  

for every z such that ( , , )x y z  can be found in the i-th layer. Thus, the magnetization m̂  in 
the two-dimensional frame is projected onto the three-dimensional layers via 1ˆ

i

−Φ
m  whereas 
the potential in the two-dimensional coordinate system is given by mag iφ Φ
 . A schematic 
representation of the modelling settings is shown in Figure 5.1: a magnetic multilayer system 
with a magnetization distribution initially aligned with the positive x-axis goes over to its 
equilibrium configuration. Due to the chosen dimensions (side length of 100 nm), the dynamics 
are dominated by the stray field coupling of layers. The equilibrium states of the layers are well-
known solutions for micromagnetic systems. From top to bottom we find a vortex, an S- and a 
C-state [HKro00]. 
 
 

5.1.1 Tunnelling magnetoresistance sensors 
 
The sensors investigated in the following consist of ferromagnetic, conducting layers which are 
separated by an insulating tunnelling barrier. Due to tunnelling processes of electrons across the 
barrier, a tunnelling current can be measured that was first observed in 1975 by M. Julière in 
Fe/GeO/Co-junctions [MJul75]. The resistance along the device changes if an external magnetic 
field is applied, an effect that is called Tunnelling MagnetoResistance(TMR)-effect.  In 
particular, a low resistance Rp is found for parallel orientation of the magnetizations of the layers 
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Φ1
 

Φ2
 

Φ3
 

Figure 5.1: Schematic representation of the simulation approach. For the calculation of the magnetic 
stray field, a three dimensional approach is chosen. This frame is connected via projection mappings ΦI 
on each layer with a two-dimensional geometry employed for the calculation of the magnetization 
dynamics. The example shows the relaxation of an initially homogeneously magnetized trilayer system. 
Due to the choice of the material parameters, different equilibrium states are reached. From top to bottom, 
we find vortex-, S- and C-state which are common solutions for such systems [HKro00]. 

 
 

 
while a high resistance Rap is obtained if 
layer magnetizations are oriented 
antiparallel. The TMR-ratio is defined by 
 

ap p

p

TMR
R R

R

−
= .  (5.5a) 

 
Julière related the tunnelling current to the 
so-called spin polarization P which is a 
measure for the spin relation at the Fermi 
level (compare Figure 5.2).  

We denote the spin polarizations of top 
and bottom electrode by Ptop and Pbottom, 
respectively. TMR-value and polarizations 
can be connected by applying a simple two 
current model in which a current running 
through the device is decomposed into 
electrons with different spins. The tunnelling 
probability of a spin with a given spin 
direction depends on the spin density at the 
Fermi-level in both electrons. The modelling 
of different cases is shown in Figure 5.2. In 
particular, by employing the spin 

Figure 5.2: (a) Tunnelling processes depending on the 
spin polarization at the Fermi level EF, (b) resistance 
approximation be two current model and (c) 
approximation of the continuous magnetization layer by 
a parallel connected array of homogeneous segments. 
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polarization (5.5) may be rewritten as 
 

top bottom

top bottom

2
TMR
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P P

P P
=

−
        (5.5b) 

 
Considering a system of two ferromagnetic layers with layer magnetization 1 2

ˆ ˆ,m m , 
respectively, the TMR-ratio needs to be connected to the effective values. We therefore think of 
the magnetic layers as an array of homogeneously magnetized layer stacks assembled in a 
parallel circuit. In this situation, the behaviour of each element is given by (5.5b) and depends on 
the relative orientation of the magnetization orientations. Employing the parallel connection, the 
equivalent resistance may be calculated and the TMR-value based on the effective variables is 
obtained. The TMR-value depends on the relative orientation of the magnetization vectors at 
every point in the film plane and is given by [WSch04] 
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with TMRmax the maximum TMR-value obtained from experimental comparison and Amag the 
interface area of the magnetic films.  

When dealing with very thin films, the stray field interaction between neighbouring magnetic 
layers is not the only coupling that needs to be considered. Due to the very thin non-magnetic 
spacer layer, roughness and defects within the surfaces are correlated as shown in Figure 5.3. A 
bump in the lower electrode induces a feature in the upper electrode and vice versa. A common 
approach to take these perturbations into account is to assume a sinusoidal roughness structure of 
wave length λ and amplitude h. According to Néel this leads to an additional surface energy JNéel 
[LNée62] given by 
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m m      (5.7) 

 
According to (3.16), this term acts 

along the boundary of the magnetic 
domains. We incorporate it into our 
model, by adding the additional term 

Néel
ˆ/

i
C Jδ δ⋅ m  where the constant C 
transforms the surface energy into the 
corresponding volume term. This 
approach is reasonable as no change of 
the magnetization vector perpendicular 
to the film plane is expected. 
 
 

Figure 5.3: Layer coupling via correlated surface 
roughness. Néel coupling favours a parallel alignment of 
the magnetization in adjacent layers. 
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5.1.2 COMSOL implementation: PADIMA 
 
In many cases, we are only interested in the equilibrium state of the magnetization configuration 
of the whole system. In general, this means we are looking for a solution of the static equation 
(3.15) and therefore do not need an additional time integration. However, from an applied point 
of view, trying to solve the static equation of micromagnetism directly by finite element methods 
does not usually succeed because the linear system solver does not converge. The reason can be 
found in a “bad” initial guess that is too far away from the actual solution. In order to solve only 
the static systems Ax = b, a “good” initial guess is necessary. In our approach, such an initial 
guess is obtained by solving the dynamic equations for a specified number of time steps. Since 
we are not actually interested in the evolution, the damping parameter α can be adjusted to 
decrease the solving time. Motivated by our findings in section 4.4, we usually set α = 1 for 
preconditioning purposes. Such a choice leads to strong reduction of oscillations within the 
solution. After a certain calculation time tstop, the time dependent solver is aborted and the 
stationary solution is solved employing stop( )hu t  as an initial guess.  

For the numerical solving process, certain scales are of importance and govern the 
discretization of the magnetic domain Ωmag. In respect to the material parameters, a typical 
length scale L is given by [HcSu00] 

 

 
A

L
K

=         (5.8) 

 
with the exchange constant A and the energy scale K. This length scale may be taken as a 
measure of resolution of the finite element mesh. The employed domain discretization needs to 
be sufficient to resolve structures of at least the dimensions L. 

In the framework of this thesis, an easy to handle COMSOL plug-in, PADIMA, was 
developed to offer many of the applications described in the following sections in a predefined 
form and therefore requires the user to specify only a small set of parameters for the model 
setup. A short introduction is given in Appendix A.4 

 

Figure 5.4: Graphical user interface of PADIMA used for model setup enabling various applications. 
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5.2 Manipulation of magnetic vortex states 
 
To test the implementation into COMSOL MultiphysiscsTM, we applied our model to the 
following situation: A circular magnetic layer of diameter d and thickness h as shown in Figure 
5.5 goes over to a vortex state. As a second magnetic layer, we consider a homogeneously 
magnetized electrode with magnetization oriented parallel to the y-axis. The vortex may be 
manipulated by an external homogeneous magnetic field leading to different TMR-ratios if we 
assume a second magnetic layer with a 
homogeneous magnetization distribution parallel 
to the y-axis. For the sake of simplicity, we will 
only consider the free layer. As layer material, we 
assume CoFeB in an amorphous phase, leading to 

 
11

CoFeB 2.86 10 J/mA
−= ⋅  

2
S,CoFeB 1194kA/mM =  

 
according to [CBli06] and ani 0f ≡ . Experimental 
investigations on systems of this type can be found 
in the works of R. Lehndorff [RLeh07,08,09]. 
Applying a homogeneous, external magnetic field 
H, the vortex positions changes. Analytic 
discussions of these systems by K.Y. Guslienko 
[KGus01,06,08] predict a response of type 
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   (5.9) 

 
Equation (5.3) has been solved, choosing an undisturbed vortex state as the initial 

configuration. Simulations have been carried out for the parameters d = 300, 500, and 700 nm 
and h = 10, 15, and 20 nm. If an external homogeneous magnetic field along the x-direction is 
applied, the vortex core changes its position. The displacement occurs into the direction of the 
region, where external field and magnetization distribution are antiparallel to each other. Thus, 
the system minimizes its Zeeman energy. The position of the vortex in dependency of the 
external magnetic field is shown in the magnetization plots of Figure 5.6 for the case of d = 500 
nm and h = 20 nm. For small fields, this shift is proportional to the external field. If the vortex 
reaches the boundary of the disc, an increase of the magnetic exchange energy 
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with Ωmag the magnetic domain, can be observed (Figure 5.6, top plot). This leads to a motion of 
the vortex. Any further increase of the external field results in a complete alignment of the soft 
electrode with the external field direction; the vortex is driven out of the layer. From the 
calculated magnetization patterns, the TMR-ratio can be obtained evaluating the angle between 
the magnetization in the upper and the lower electrode at each point of the sensor according to 
(5.8). Simulations also show that the TMR-ratio remains constant if the magnetization 
orientation in the lower electrode and the external field are orthogonal to each other. Figure 5.7 
is obtained by plotting 0( TMR/ )

H
d dH =  against the ratio h / d. In particular, we find the 

analytically predicted behaviour. 

Figure 5.5: Vortex state in a circular disc of 
diameter d and thickness h. 
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Figure 5.6: (a) Influence of 
the magnetic field on the 
vortex position and the 
exchange energy EA in 
respect to the applied field. 
(b) resulting TMR-ratios for 
different d and h. 

 
 

 
 

 

Figure 5.7: Influence of the ratio between thickness and diameter on the 
derivative 0( TMR/ )Hd dH = . The dashed line is a fit of a/TMR + b to the 
obtained data. 
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5.3 Space resolutive magnetic detection: “magnetic lenses” 
 
As already discussed in section 4.3, a homogeneously magnetized sphere creates a magnetic 
dipolar stray field in the entire space. Close to the particle itself, such a field is rather 
inhomogeneous. In particular, we may not assume a homogeneous particle contribution along 
the sensor area if the particle, sensor and the distance between the particle and sensor are on the 
same size scale. Based on this observation, we may also conclude that a change of the particle 
position entails a change of the magnetic field along the sensitive area and, thus, also a change of 
the sensor response according to section 5.1.1. If it would be possible to find a correlation 
between the TMR-response and the position of the particle, a measurement would provide 
additional information instead of only the answer to a yes/no-question.  

The goal of this section is to estimate the limits for a magnetoresistive detection of magnetic 
particles under the constraint that we want to predict the position of the particle as precisely as 
possible. In all our considerations we will assume CoFeB-layers with a magnetization of MS = 
1194 kA/m and an exchange constant of A = 2.86 ⋅ 10-11 J/m [CBli06]. For the sake of simplicity, 
we will also assume CoFeB in an amorphous phase by setting ani 0f ≡ . However, before we can 
employ our model to make predictions, a comparison between theoretical calculations and 
experimentally obtained data is necessary in order to ensure our analysis resemble the actual 
situation.  
 
 

5.3.1 Comparison to experimental data 
 

As reference data, we choose the experimental situation studied in the PhD theses of C. Albon 
[CAlb09]: Magnetic tunnel junctions (MTJ) with the following configuration (thicknesses given 
in nanometer) was developed: Ta(6.5) / Cu(30) / Ta(19) / Cu(9) / MnIr(12) / CoFe(3) / Ru(0.9) / 
CoFeB(2.8) / MgO(1.5) / CoFeB(4) / Ru(8) /Ta(4) / Au(50), compare Figure 5.8. The MTJ was 
created on a thermally oxidized Si/SiO2-wafer using DC-magnetron sputtering for metal targets 
and RF-magnetron sputtering for the MgO barrier. The shape of the sensor was chosen elliptical 
with a length of 400 nm on the longitudinal and 100 nm on the transverse axis, respectively. The 
experimental setup and its properties are shown in Figure 5.8. 

For the discussions here only the following details are of concern: The bottom ferromagnetic 
layer was pinned by annealing the 
stack in a vacuum at 350°C for one 
hour in an external magnetic field of 
6000 Oe applied parallel to the hard 
(transversal) axis of the element. Due 
to high shape anisotropy of the 
elements, the magnetization of the soft 
ferromagnetic electrode aligns parallel 
to the long axis of the ellipse (compare 
also section 3.2). This setup enforces a 
linear output of the MTJ-element over 
a magnetic field range of ±500 Oe. The 
possibility of such strong fields allows 
for bringing the particles close to 
saturation which in particular makes 
TMR-sensors suitable for a direct 
detection of magnetic markers with no 
further electronic amplifications.  

Figure 5.8: (a) Experimental realization of the sensor array 
showing the sensor elements and the connections to the outside 
by conducting lines, (b) single sensor element, (c) 
representation of the sensor output having two ferromagnetic 
electrodes in a parallel (red) or an orthogonal orientation (blue). 
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Similar to the experimental realizations of other devices discussed superparamagnetic 1 µm 

Dynabeads MyOneTM were used as magnetic markers and placed on top of the sensor by a 
dropping procedure. For the actual detection, an in-plane DC magnetic field was applied over the 
linear range of the sensor. Since the sensitivity varies between each sensor, we introduce the 
relative resistance change via  

  

 part sensor

sensor

TMR
R R

R

−
∆ =  

 
with Rpart and Rsensor the resistance of the TMR-sensor with and without a particle, respectively.  

Ta 6.5 nm 

Cu 30 nm 

Ta 19 nm 

Cu 9 nm 

MnIr 12 nm 

CoFe 3 nm 

Ru 0.9 nm 

CoFeB 2.8 nm 

MgO 1.5 nm 

CoFeB 4 nm 

Ru 8 nm 

Ta 4 nm 

Au 50 nm 

Figure 5.9: Layer configuration employed in the experiments. (a) For the theoretical simulations it is 
sufficient to focus on the CoFeB / MgO / CoFeB-subsystem. (b) Magnetization configuration of the 
magnetic trilayer system and (c) equilibrium state obtained as a solution of the micromagnetic equations 
if there is no external field applied. The bottom electrode is assumed to be pinned; the top is free and 
attains its free state due to the interplay of geometrical anisotropy and stray field coupling to the lower 
ferromagnetic film. (d) magnetic characterization of the employed MyOne-beads, obtained from AGM-
measurements. 

(a) 

(b) modelled system 

(c) equilibrium state 

400 nm 

100 nm 

(d) magnetic beads (MyOneTM) 

SiO2-wafer 
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If we apply (5.5) and refer to TMRpart and TMRsensor for the TMR-value with and without a 
particle, respectively, we may rewrite the definition of ∆TMR according to 

 

 part sensor part 0 sensor 0 part 0 0 sensor 0 0

sensor sensor sensor 0

( ) ( ) ( ) / ( ) /
TMR

/

R R R R R R R R R R R R

R R R R
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sensor 0 0 sensor

( ) / ( ) / TMR TMR

( ) / 1 TMR 1

R R R R R R

R R R

− − − −
= =

− + +
  (5.10) 

 
with R0 the resistance value of the free sensor. Equation (5.10) will be used to compare different 
sensors with each other. In order to investigate the response of the sensor in respect to the 
particle position, we introduce a discrete grid above the sensing free layer. The grid nodes rpart 
are given by 

 
 part 1 m ( 1) 0.2 mx µ i µ= − + − ⋅ ,  i = 1, … , 11 
 part 1 m ( 1) 0.1 my µ i µ= − + − ⋅ ,  j = 1, … , 21    (5.11) 
 part 0.562 mz µ=  

 
The choice of the z-coordinate results since no passivation layer can be found on the sensor 
surface. Therefore, a particle deposited directly on the surface has a distance from the soft layer 
given by the sum of particle radius and the thicknesses of all layers in between, in detail: 
 
 part 0.5 m 8 nm(Ru) 4 nm(Ta) 50 nm(Au) 0.562 mz µ + + + = µ=  
 

Due to the pinning of the bottom CoFeB-layer, we only take the magnetization direction 1m̂  
as free, the distribution 2m̂  in the lower layer is set to 2

ˆ ˆ=m y . The two magnetic layers are 
coupled via their stray field. Additionally, we assume a Néel-coupling according to (5.7) with 
structural parameters λ = 30 nm and h = 3 Å. The equilibrium state is presented in Figure 5.8(c). 
The stray field coupling is apparent: instead of aligning parallel to the soft geometrical axis of 
the ellipse, the magnetization vector is rotated counter clockwise attaining a position between 
geometrical easy and hard axes. For the calculations, we consider an external magnetic field 
parallel to the y-axis with Hy = 24 kA/m which corresponds to a particle saturation of 0.56 times 
the saturation magnetization according Figure 5.8(d). This corresponds to a magnetization of 
67.2 kA/m if Dynabeads® MyOneTM are considered [GFon05]. 

Calculating the magnetization 
distribution in the free layer with a 
particle at the position given by (5.11), 
we obtain discrete ∆TMR-values that 
have been extended by linear 
interpolation to the ∆TMR-map 
presented in Figure 5.10(a). Comparing 
the calculation results with the 
experimental findings, a very strong 
quantitative agreement may be 
reported. The deviation of the ratio at 
the centre position can be explained by 
local topographical changes which have 
strong influences on the measured 
signal if the bead is close to the sensor.  
 

Figure 5.10: Comparison between experimental data and 
theoretical calculations. (a) ∆TMR-values for particle positions 
at the grid nodes. The grey level separates positive and 
negative values. (b) Top view of the ∆TMR-map, white 
markers indicate the bead positions for the comparison. 



 

 89 

5.3.2 Estimation of the spatial resolution limits 
 
Due to the very strong agreement between experimental data and the simulation results, the 
model introduced may be used to analyze the limitations when estimating the particle position in 
respect to the sensor. Figure 5.11 shows 
again a top view of a TMR-map for an 
external field y 16 kA/mH = . The 
response map shows a maximum value 
TMRmax close to the sensor position and 
two local minima TMRmin in some 
distance from it. The response is symme-
tric to two axes which are obtained by a 
rotation of the ellipse axes of an angle α. 
This rotation originates from the coupling 
of the two magnetic layers. Sign and size 
of α depend on the interplay of the two 
coupling effects mentioned above: While 
Néel-coupling favours parallel alignment, 
the stray field interaction between the 
two layers lead to an antiparallel 
configuration. For sensors of an area 
smaller than 1 µm2, stray field interaction 
is commonly dominating [DMey06]. 

 
In a first step, we analyze the influence of the external magnetic field on the sensor response. 

Similar calculations as presented in Figure 5.11 are carried out for field values of Hy = 8 kA/m, 
24 kA/m, 40 kA/m and 56 kA/m. The particle magnetization is chosen according to Figure 
5.8(d) and given by 0.31, 0.57, 0.69 and 0.76 times the saturation value, respectively. To ease the 
comparison between different maps, we employ again the relative ∆TMR-ratio 

 

part stack

stack

TMR TMR
TMR

TMR 1

−
∆ =

+
    (5.10) 

 
The results are shown in Figure 5.12. 
We find that an increasing external 
field value leads to an increasing 
effect change at the centre of the 
sensor. However at the same time, 
the measurable TMRpart-values 
decrease as shown in Figure 5.12. In 
particular, they will rapidly drop 
below the threshold of noise that can 
always be found in such devices 
[PHed09]. Therefore, high fields 
increase the resolution of the sensor, 
but decrease the area in which a 
particle can be detected. This is 
similar to the behaviour of optical 
lenses. If a critical field value is 
exceeded, the response of the sensor 

Figure 5.11: TMR-map for a homogeneous magnetic field 
of 16 kA/m along the y-axis. Crossings of black lines 
correspond to grid nodes; the origin of the coordinate system 
coincides with the centre of the sensor (white ellipse). The 
pattern shows symmetries, though the symmetry axes do not 
coincide with the semiaxes of the ellipse but are turned by 
an angle α due to the coupling (stray field/Néel-coupling) of 
the electrodes. 

Figure 5.12: ∆TMR-maps for zpart = 0.562 µm and external field 
strengths of H = 8, 24, 40 and 56 kA/m applied parallel to the y-
axis. The degree of particle saturation is given by 0.31, 0.57, 0.69 
and 0.76. The inset shows crosscuts through the centre along the 
y-axis. 
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changes (Figure 5.12, Hy = 56 kA/m); the maximum ∆TMR-value does not increase any further 
but decreases together with TMRpart. 

An analysis of the angle values 
shows that this point coincides with 
α = 0 (Figure 5.13). This behaviour 
is due to two factors: while the 
external magnetic field increases 
linearly, the particle moment 
reaches saturation and therefore, the 
external field will overcome the 
particle influence at a certain point. 
On the other hand, the sensing free 
top layer reaches saturation and 
becomes less sensitive. Thus, it 
should be pointed out that ideal 
detection conditions can be obtained 
by adjusting the external magnetic 
field to the particles to be detected 
and the sensor chosen for the 
detection. 
 

The obtained TMR-maps can be used to estimate the position of the magnetic particle. Here, 
we will focus on the distance d 

 
2 2
part partd x y= +   for part 0.562 mz µ=    (5.11) 

 
between the particle and the ellipse centre of the top electrode. As is already apparent from 
Figure 5.11, a single TMR-value corresponds to several particle positions and can therefore only 
give an upper and a lower bound for the distance. To analyze these bounds, we divide the 
interval [TMRmin, TMRmax] into N equally sized sub-intervals 1,...,{ }i i NMR =∆ . For our analysis, the 
size of 

i
MR∆  is basically arbitrary; it only needs to introduce a proper class division of the data 

points along the discrete grid nodes. For the data analysis we choose N = 100. In the 
experimental situation however, the minimal size of 

i
MR∆  will correspond to the achievable 

exactness of the measurement. The map is divided according to the assignment of each map 
point to the corresponding interval 

i
MR∆ . This defines a relation between 

i
MR∆  and the 

distance d of the regarded map point to the centre of the sensor. A  
i

MR d∆ − − plot is presented 
in Figure 5.14. Due to the construction each, 

i
MR∆ − interval corresponds to a set of d-values. A 

single measurement can therefore only give an upper and a lower bound for the distance between 
particle and sensor; the two lines of data points show these bounds. At a given ∆TMR-value, 
each distance value in between is possible. However if additional measuring directions are taken 
into account, further information can be obtained. 

Figure 5.13: Sensor characteristics for different external fields 
applied parallel to the y-axis. For high fields the maximum and 
minimum measurable TMRpart-values decrease. The angle α 
increases and reaches zero close to Hy = 56 kA/m 
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Referring to the data of our calculations, we can estimate the degree of accuracy to which the 

distance d between particle and sensor centre can be determined by combining different 
measurement directions. As a simplification, we will assume that the particle is stationary during 
all measurements. As can be seen from Figure 5.12, employing different field values along the y-
axis will cause several difficulties: the ∆TMR-response changes at every position in the same 
manner, therefore, additional information on the particle position can only originate from a 
varying angle α. This effect, however, is difficult to exploit as significant angle perturbations 
require fields lying in the range of particle and sensor saturation. This reduces the visibility field 
as already explained above by a large amount which leads to a decreased spatial resolution. 

Instead, we combine bound estimations for applying external magnetic fields parallel to x- 
and z-axis. Thus, we obtain upper and lower bounds 
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respectively, according to Figure 5.15. The best estimation for the distance d is given by the 
interval 
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where the minimum and the maximum need to be taken over all three measuring directions. For 
the evaluation, only ∆TMR-values are taken into account which cannot be found along the 
boundary of the grid. Based on our calculation, no estimation is possible for these; values are 
given in Figure 5.15. The distance estimates for the combined detection upd  and downd  are shown 
in Figure 5.16(a). Upper and lower bound almost coincide near to the sensor, while the interval 
size increases with increasing particle-sensor distance d. Certain features (local maxima in the 
lower bound-map, highlighted in Figure 5.16) can be found due to the combined measurement 
which increases the accuracy of the position detection. The maximum absolute error 
 
 

up down{ , }
max | |
d d

d d
δ

δ
=

∆ = −         (5.13) 

 

estimation limit 

Figure 5.14: Upper and lower 
distance bounds obtained from 
the map shown in Figure 5.11. 
According to a measured ∆TMR-
value, the distance can be 
estimated by the highlighted area. 
The estimation limit results from 
the finite grid size of 3 µm. For 
∆TMR-values found along the 
grid boundary no evaluation is 
possible. 
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is presented in Figure 5.16(b). If a certain threshold of minimum exactness is defined, we obtain 
guidelines on how to construct sensor arrays, which ensure such measurement resolution along 
all the x-y-plane. Figure 5.16(c) shows the top view to the total error surface, the grey area 
corresponds to estimation bounds below an error of 0.2 µm and the resulting sensor assembly. 
 
 

 

Figure 5.16: Error estimates according to the simulation data of Figure 5.15. (a) shows upper and lower 
bound for each grid point, a particle at a given coordinate leads to a corresponding distance estimation. 
Different features can be found in the lower bound ddown which originate from the combination of several 
estimations. (b) presents the maximum error ∆d from the actual distance. The grey level coincides with 
the plane ∆d = 0.2 µm. The subplot (c) shows a possible sensor array where the sensor positions are 
chosen according to (b) so that a detection with a precision of ∆d = 0.2 µm is achieved 

additional 
features 

Figure 5.15: Plots for upper and lower 
d-bounds obtained form the TMR-maps 
for external magnetic fields of 16 kA/m 
along the positive coordinate axes. The 
intervals given, the estimations gaps, 
indicate the range of ∆TMR where there 
is no estimation possible because not all 
corresponding values con be found on 
the grid chosen. Jumps in the ∆TMR 
surface can be attributed to a finite mesh 
resolution. 
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5.3.3 Sensors for continuous-flow particle measurements 
 
If particles on the size scale of nanometers are considered, two different problems usually need 
to be addressed: (1) though the magnetization of the particle material can reach much higher 
values [AHüt05], their over-all magnetic moment is still far smaller due to the particle size. (2) 
Minimizing the detecting signal sensors leads to a change of the dominating energy 
contributions: the smaller the sensor dimensions, the more important the interplay between 
exchange energy and layer coupling via stray field. This leads to a strong confinement of the 
magnetization distribution, i.e. sensors consist of a signal domain. In particular, they show no 
hysteresis but also behave rather stiffly. A direct consequence of these difficulties can be seen in 
the error plot of Figure 5.16. At a certain distance, the magnetic particle stray field is no longer 
sufficient to evoke a strong sensor response. This results in a large error and usually in a signal 
below the noise threshold. While a lack of 
detection range parallel to the x-y-plane 
can be handled by designing a sensor array 
as discussed in section 5.3.2, there is no 
such possibility available to increase the 
view in z-direction. This is also not 
necessary for our original problem as we 
consider magnetic markers which 
immediately bind to the surface. However, 
recent developments have revealed a great 
deal of interest for the detection of 
magnetic beads in continuous flow devices 
[JLou09]. Figure 5.17 shows TMR-maps 
for particles magnetized by an external 
field of 16 kA/m parallel to the y-axis for 
different particle heights. The response of 
the sensor decreases rapidly with distance. 
To ensure detection a higher field value 
according to Figure 5.12 might be essential for experimental measurements. 
  

However, this would be undertaken at the 
cost of visibility field. In this section we pursue 
a different strategy: the adjustment of the 
sensor geometry. Three different sensor 
geometries to compare are shown in Figure 
5.18: (a) a sensor of elliptical shape, (b) a 
rectangular layout and (c) a star-shaped 
multilayer with S5-symmetry. The dimensions 
for the cases (a) and (b) are chosen so that each 
geometry has an identical area of 80,000 nm2. 
Further, we again assume a TMR-sensor 
consisting of two ferromagnetic CoFeB-layers 
separated by an insulating tunnelling barrier. In 
all configurations the bottom electrode has a 
fixed magnetization direction. The 
magnetization direction in the sensing free top 
electrode is calculated as a solution of the 
Brown equation (3.15). For the comparison we 

Figure 5.17: ∆TMR-maps for different heights: zpart = 
0.562, 0.75, 1, 1.25, and 2 µm for H = 16 kA/m applied 
parallel to the y-axis. The two-dimensional plots present 
cross-sections along x = 0. 

Figure 5.18: Schematic representation of the 
investigated sensor setups (a) ellipse similar to the 
preliminary sections, (b) a rectangle and (c) a star. 
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will neglect Néel coupling, which does not imply a strong restriction as the layer coupling is 
mainly dominated by the stray field coupling as we have already noticed in section 5.3.1. For the 
quantification of the sensitivity, a homogeneously magnetized probe particle of radius R = 20 nm 
and saturation magnetization Mpart = 1000 kA/m with magnetization vector perpendicular to the 
film is placed along a discrete grid with grid nodes at rpart. The nodes run equidistantly between 
the values xmin, xmax and ymin, ymax, respectively. Parameters for different geometries are given in 
Table 5.1. 
 

 

Figure 5.19 to 5.21: Properties of the 
differently shaped sensors. Plot (a) and (b) 
show the equilibrium state of the free layer 
system for top and bottom layer, 
respectively. (c) and (d) present ∆TMR-
maps for a particle height at z = 50 nm and 
z = 500 nm. 

Figure 5.19: Elliptical sensor 

Figure 5.20: Rectangular sensor 

Figure 5.21: Elliptical sensor 
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Figure 5.22: Comparison of the maximum sensor 
response of the investigated sensor geometries. While 
elliptical and star-shaped geometries cannot detect 
particles at a certain distance, the rectangular shaped 
sensor maintains its detecting properties. 

 
The dipolar magnetic particle field is calculated by (4.2) which leads to ∆TMR-maps in a 

manner similar to our approach in the preceding section. The results are summarized in Figures 
5.19 to 5.21. The subplots (a) and (b) show the equilibrium configurations of the upper free 
sensing layer and the pinned bottom electrode, respectively. (c) and (d) present ∆TMR-maps for 
a distance between the centre of the magnetic particle to the sensing electrode of 50 and 500 nm. 
All cases have one thing in common: highly sensitive areas can only be found along the 
boundaries of the electrodes if the particles are near to the sensor (subplots (c)). A particle placed 
directly on top of the sensor but in some distance to the boundary segments does not contribute 
to a strong response. This effect is due to the above mentioned stiffness of the single domain 
elements. Along the centre of the electrode, the magnetic exchange energy contribution prohibits 
a variation of the magnetization distribution in this regime. Therefore, sensitive areas can only 
be found along the boundary.  

In detail, elliptical sensor elements show high response along the whole surface due to its 
lateral dimensions; particles are always close to a certain geometry edge. Therefore, the 
maximum signal overall is comparatively high in the case of small distance detections (Figure 
5.19). Rectangular geometries show instead only high sensitivity along the short boundary 
segments, Figure 5.20(c). This behaviour originates from the interplay between demagnetization 
energy (favouring a magnetization orientation along the x-axis) and the stray field coupling to 
the bottom layer (leading to a C- or S-state).  This is already apparent from the equilibrium state 
where high curvature of the magnetic components along the short boundaries can be found. 
These areas can be switched with very low switching field into an orientation antiparallel to the 
magnetic alignment within the bottom electrode. As we see in Figure 5.22, the maximum 
absolute change is smaller than the corresponding value for the elliptical geometry as fewer 
boundaries contribute to the sensor response. However, due to small switching energies, 
rectangular sensor geometries enable particle detection at much higher distances. According to 
Figure 5.20(d), the values at the grid nodes do not vary strongly for the high distance case. 
Therefore, a space resolutive detection is no longer possible but the setup provides information if 
a magnetic particle is near. 

We may extend this approach by the 
introduction of sensor layouts with higher 
geometric complexity. An example is the 
star-shaped setup (Figure 5.21). Similar to 
the situation discussed above, we find 
strong responses along boundary segments 
where the orientation of the magnetization 
is not antiparallel to the alignment within 
the bottom layer. Due to the geometrical 
features, the ∆TMR-map shows numerous 
details which should enable a very high 
spatial resolution. Furthermore, the relative 
sensitive area is larger when compared to 
the rectangular setting. However, due to 
strong geometric anisotropies, these 
properties cannot be maintained at long 
distances. 
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5.4 Number resolutive magnetic detection 
 
Depending on the application, rather than an estimation of the particle position, it might be 
necessary to obtain information on the number of particles that are placed on the sensor surface. 
Employing a magnetoresistive sensor with a sensor response independent in respect to the 
particle position, it is already well established by the group of S. Sun (e.g. [WShe08] or 
[WShe08b]) that the sensor response is linearly connected to the number of particles in detection 
range. 

In order to meet the requirement of a position-independent response, the particle size should 
be far smaller than the sensor dimensions. For out discussion, we choose the same setup as 
discussed in section 5.3 (compare Figure 5.8). In the experiments that were carried out by C. 
Albon [CAlb09], 14 nm Co-nanoparticles were placed by a dropping procedure on top of the 
sensor. A typical experimental situation is shown in Figure 5.23. We shall briefly summarize the 
experimental observations: If we employ again the relative change ∆TMR, the measured range 
can be divided into three different regimes: 

 
1) Very low coverage: With the setup described above it was possible to detect 15 

dispersed nanoparticles. Below this threshold, the obtained signal is below the detection 
threshold of the device as the sensor response is dominated by noise. 

 
2) Dispersed particles: No hysteresis can be found in the measured signal. The distance 

between particles is large enough that their coupling strength may be omitted. 
 

3) Interaction regime: Due to high surface coverage, the average distance between 
adjacent particles is small; dipolar coupling (see chapter 4) becomes important for the 
magnetic state of the particles. A hysteresis can be found showing a coercivity which 
coincides with the coercitive field of the particles. 

 
The three regimes can be found in Figure 5.24. 

It is already well established [SWan08] that the sensor response is linearly connected to the 
number of particles in detection range if particle-particle interactions can be omitted and if all 
positions contribute in the same way. Since simple models calculating only the magnetic field 

Figure 5.23: Experimental setup for the multi-particle 
detection. 14 nm Co-particles are place by a dropping 
procedure on top of the sensor surface. (a) Hysteresis 
behaviour of the particles (from AGM measurements) 
and (b) sensor properties. 

Figure 5.24: ∆TMR in dependency of the sensor 
coverage strong by magnetic nanoparticles. The 
measurements can be divided in three regimes. For 
high particle coverage strong dipolar coupling can be 
observed leading to a hysteresis in the obtained sensor 
signal (inlet). 
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along the sensor surface and retrieving the TMR-effect by field integration lead to a qualitative 
agreement with experimental situations for very simple systems, this can be generalized. Non-
interacting magnetic particles contribute linearly, with the contribution weighted by the single 
particle effect.  

In order to understand the coupling phenomena observed in the experiments and shown in 
Figure 5.24, we apply the layer model introduced in section 5.1 and combine it with the 
interacting particle calculations discussed in chapter 4. Therefore, we introduce a monolayer of 
magnetic nanoparticles on top of the sensor. We assume particles to be assembled in a two-
dimensional hexagonal particle lattice, as shown in Figure 5.25. To change the degree of 
coverage, the distance between neighbouring particles is varied. Particles are placed at a height 
zpart = 62 nm + particle radius, according to the layer stack employed for the experimental 
realization. The saturation magnetization of the particles is set to the bulk value of Co. The 
results of the calculations are shown in Figure 5.26. For low coverage, we find a linear 
dependency between ∆TMR and the degree of coverage. Furthermore, we find a coupling 
strength that is sufficiently small to be overcome by thermal contributions. The findings 
correspond to the free particle case, i.e. the first and the second regime referring to the 
experimental findings. The response increases linearly with the number of particles. For high 
coverage (> 6 ⋅ 10-4 nanoparticles per nm2) saturation similar to the experimental findings can be 
observed. In this regime, the calculated signal shows hysteresis (Figure 5.26, inlet). 

Qualitatively, the numerical calculations fit the experimental findings very well. The sensor 
response is linear in respect to the number of particles as long as dispersed particles are 
considered, i.e. the dipolar coupling strength is sufficiently low. In this range, the sensor is 
therefore suitable for applications seeking number sensitive detection. Additionally, in 
correspondence to the experimental data, our approach introducing a dipole-dipole coupling 
between particles, leads to a saturation of the measured signal for high coverage and an 
additional hysteresis within the sensor response. We may therefore conclude that the 
experimental observations are a direct proof for the dipolar coupling between magnetic 
nanoparticles. 

However, if we compare the actual numbers, we find deviations that may be attributed to 
different causes: the saturation magnetization for the particles might be too high. Generally, 
particle values differ from bulk values. Additionally, fast oxidation of particles leads to a smaller 
value in the experiments [PChe07], [IEnn08]. Furthermore, the sample preparation does not 

Figure 5.25: Situation in the theoretical model. 
Particles are placed at nodes of a hexagonal grid with 
side length a. In contrast to the maps discussed in the 
preliminary sections, all grid positions are occupied at 
the same time. Calculations are carried out for 
different grid parameters, i.e. different surface 
coverage. 

Figure 5.26: Calculated ∆TMR-values for different 
sensor coverage. The inlet shows the hysteresis of the 
particles lattice for a high degree of coverage of the 
sensor surface. 

a 
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ensure a single layer of particles on top of the sensor which was the assumption employed by the 
theoretical model. Moreover, the experimental data find hysteresis within the signal already 
along the linear area. The reason for this can be found in the very high spatial ordering that was 
assumed for theoretical modelling. In the same way as particles dissolved in a liquid cluster 
when brought into an external magnetic field (compare section 4.5, 4.6.1), particles agglomerate 
under the forces exerted towards each other. In other words, in the experiments a higher degree 
of coverage corresponds to a higher probability of clusters in the experiments. 
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5.5 Conclusion and Outlook 
 
In this chapter, we have developed a model for the simulation of a magnetoresistive sensor, 
based on the Landau-Lifshitz equation. We decomposed the complete equation system by using 
a three-dimensional approach for the calculation of the layer stray field and recast the calculation 
of the magnetization into a two-dimensional frame employing different projection mappings. 
The proposed model is capable to find well-known solution of micromagnetic problems and 
well-suited for the calculations of small thin film systems below an area of 1 µm2 in which stray 
field coupling between neighbouring layers is the main driving force of the system. 
 

In section 5.3, we tested our approach by comparing numerical data with experimental 
findings on elliptical double-layer TMR-sensors consisting of two ferromagnetic CoFeB-
electrodes and could report a very strong agreement (section 5.3.1). Deviations could be 
explained by topological features in the experimental setup. Since theoretical and experimental 
data matched very well, we could apply our model to obtain guidelines for the construction of 
sensor arrays. If we assume a particle that does not change its position during the detection 
process, we have shown that the distance along the sensor plane between particle and the centre 
of the sensor can be estimated up to an error smaller than 0.2 µm in a region of a diameter of 1.2 
µm around the ellipse with semiaxes of 200 and 50 nm. The measuring idea can easily be 
extended to the determination of the spatial coordinates of the particle. It was also found that 
high knowledge of the regarded system is necessary for high resolution. In detail, we found a 
rotation of the TMR-symmetry to the coordinate axes due to layer coupling via the layer stray 
fields which cannot be omitted on the size scale of sensors investigated here. It is further 
possible to adjust the measurement resolution by the strength of the applied external field. In 
general, high fields enable a high spatial resolution but only along a small visibility field. This 
observation can help to adjust the setup to different measuring tasks: If the question is to decide 
whether there is a particle at all somewhere in the range of the sensor, small fields should be 
applied. If additional information on its position are required, the measuring field needs to be 
increased. The limit for maximum applied fields is given by the ending of the linear response 
range. 

Since the assembly of sensors in sensor arrays can only increase the detection capabilities 
within the sensor plane, a different approach needs to be pursued to obtain a high detection range 
along the perpendicular axis. We have shown that adjusting the sensor shape may lead to 
enhanced detection properties of tunnel magnetoresisive sensors. Introducing soft magnetic areas 
along boundary segments may significantly lower the limits of what can still be detected. 
Therefore, the proposed strategies show guidelines for designing new sensor layouts to detect 
also single magnetic nanoparticles or to enhance the detection capability for continuous flow 
detections. 

In the final section, the influence of a large number of particles on the sensor was 
investigated. Similar to results of other groups, simulations predict a linear increase of the sensor 
response in respect to the number of particles deposited on the sensor surface. In this regime, a 
number sensitive detection would be possible as long as particles do not agglomerate. In 
accordance to the experimental observations, no further signal increase can be found above a 
certain coverage value. Instead, particles couple via their dipolar stray field which entails a 
hysteresis in the measured sensor signal. Therefore, by comparing experimental observations and 
theoretical calculations, we were able to prove that the experimental findings are a direct 
observation of the dipolar particle coupling.  
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As a final remark we may point out, that the results of this chapter indicate that it might not 
be possible to design sensors that can maintain all measuring tasks, i.e. (a) have a high space 
resolution, (b) are number sensitive and (c) may detect particles with a high distance to the 
sensor. In this chapter, we have given an example of a sensor on the nanoscale for all three 
individual tasks. However, we have also seen that the sensor properties are hard to combine: (a) 
and (b) exclude each other since a high space resolution requires the sensor to be on the same 
size scale as or smaller than the object to detect/analyze whereas in number sensitive detections 
the sensor should be large in respect to the particles. We realized (c) by introducing areas along 
the sensor which are magnetically very sensitive and may thus be easily switched. As we have 
seen, this switching behaviour allows for a high detection range, but not for a high space 
resolution.  
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Chapter 6 

 

A MrBead-summary 
 
 
 
 
 

 
At this point, we have basically solved all the questions that were raised in the introduction. We 
have theoretically designed a microfluidic lab-on-a-chip device which can handle all the 
procedures necessary for the specific detection and were able to experimentally prove its 
functionality. The experimental setup for the ramp segment developed by several MrBead-
partners is shown in Figure 6.1. The MrBead-project has proceeded and reached the stage of 
prototype development. Patencies on several of the strategies developed have been claimed on 
the international level and also companies interested in the final product have been found. 
However, whether a final product will be commercially available in several years is yet unclear. 
Though the conception seems to work, still a lot of difficulties in the manufacturing processes 
have to be overcome concerning e.g. electric contacts, leakproof channel setups etc. As was 
already mentioned in the introduction, when the project was started in 2006, also Philipps 
worked on a similar approach. A final product is now available; however, the detection is no 
longer done by magnetoresistive sensors. To my knowledge, it was difficulties in the 
manufacturing process that led to a change of strategies. Therefore, it will be interesting to see, 
how the MrBead-approach will (or will not) continue within the next years. 

However, I think in the framework of this project, we have learnt a lot about the ideas and 
challenges of microfluidic lab-on-a-chip systems. I am aware of the fact that many, many more 
parameters can be changed and discussed in respect to every component introduced in this thesis 
and there are most probably still a large amount of optimization strategies. In my opinion, 
though, we have increased the knowledge and the understanding of several important processes. 
This is especially the case in regard to how to design magnetoresistive sensors/sensor arrays on 
the nanoscale as well as for the uncoupling of the particle flux from the hydrodynamic flow by 
directly employing the dipolar particle-particle interaction. At this point, I am very sure that both 
topics will be refined in the near future and lead to the development of new applications/designs 
in the field of µTAS-devices. 
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Figure 6.1: Microfluidic ramp structure with sensor array. The carrier (1) has 
been created by the University of Bielefeld after a design developed by I-Sys 
[ISys]. The employed sensor array (2) was designed and created by Sensitec 
[Sensitec]. The microfluidic structure (3) was designed by the University of 
Bielefeld (section 2.4) and produced by Reiner [Reiner], inlets have been 
placed by I-Sys. The configuration of the whole setup was realized by the 
University of Bielefeld, and was mainly carried out by D. Akemeier. 

1 

2 

3 



 

 103 

Appendix 
 

A.1 COMSOL Multiphysics
TM

 
 

All calculations presented in this work have been carried out with COMSOL MultiphysicsTM 
which is a commercially available finite element package by COMSOL GmBH [Com]. The 
package solves time dependent systems which can be written in the form 

 

 
2

2
0 , , , ( , )TU U

L U t N U t
t t

 ∂ ∂
= − Λ 

∂ ∂ 
      (A.1) 

 0 ( , )M U t=  
 

denoting by U the solution vector, L the residual vector, Λ the Lagrange multiplier, N the 
Jacobian for the constraints and M the constraint residual vector. For an exact definition of all 
components, refer to [COMSOL]. 

Before solving the equation system, the applied algorithm eliminates the Lagrange multipliers 
Λ, in case of linear, time independent constraints M, these are also eliminated. Otherwise, they 
remain and the original system becomes a differential-algebraic system (DAE). Such a system is 
solved by the DAE-solver DASPK [DASPK] developed by Linda Petzold, University of 
California, Santa Barbara. The DASPK-solver bases on the DASSL-code [DASSL] which 
employs a backward differential formula of variable step size and order for the solution of the 
system. The applied numerical integration scheme is implicit which makes it necessary to solve a 
non-linear equation system in every time step. This is done by Newton-Iteration where the 
resulting system can be solved by various COMSOL MultiphysicsTM-solver (see below). The 
linearization of the above system (A.1) is given by 
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For the solution of the linear system, different direct and indirect solvers are possible. In the 

framework of this work, we mainly used the UMFPACK-solver which is usually applied for 
large, sparse system matrices. COMSOL Multiphysics employs UMFPACK 4.2 by Timothy A. 
Davis [UMFPACK]. The system matrix is decomposed by a direct LU-decomposition via the 
unsymmetric-pattern multifrontal-method [TDav97,99]. 
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COMSOL MultiphysicsTM provides a graphical user interface to ease the model setup. 
However, for the systems discussed in this work, a script language was used (either MatLab or 
the no longer available COMSOL Script) since the direct implementation is not possible due to 
the large amount of characters. We will give a short example of how weak equations need to be 
entered via weak form modelling. Therefore, we consider the Poisson problem 

 
 magφ∆ = ∇M    on Ω1

 

 mag 0φ∆ =    on Ω2      (A.3) 
 mag 0φ∇ =    on ∂Ω2 

 
with Ω1 a circle of radius 0.2, Ω2 a circle of radius 1 and ˆ=M y . This is the two-dimensional 
counter part of the homogeneously magnetized sphere on a finite domain. The weak formulation 
is given by 
 

 mag, 0dxψ φ
Ω

− 〈∇ ∇ − 〉 =∫ M   1
0 ( )Hψ∀ ∈ Ω  on Ω1 

and mag, 0dxψ φ
Ω

− 〈∇ ∇ 〉 =∫    1
0 ( )Hψ∀ ∈ Ω  on Ω2 

 
For the solution process, a so-called fem-structure needs to be created, containing all the 

information on the model: 
  
appl.mode.class='FlPDEW';  % Choice of application mode (weak)  

appl.dim={'phi' 'phi_t'};  % Setting of dependent variables (phi) 

appl.shape={'shlag(2,''phi'')'}; % Setting of test functions (2nd order  

Lagrange) 

appl.equ.weak={'-phix*test(phix)-phiy*test(phiy)'; ... 

'-(-phix-Mx)*test(phix)-(phiy-My)*test(phiy)'}; 

     % Equations for different domain types 

appl.equ.dweak='0';   % Time dependent contribution 

appl.equ.ind=[1 2];   % Assigning equations to domains 

appl.bnd.constr='-phi';   % Setting of boundary conditions 

  (phi=0) 

appl.bnd.ind=ones(1,8);   % Assigning conditions to boundaries 

fem.appl{1}=appl; 

fem.geom=geomcsg({circ2(1),circ2(0.2)}); 

      % Definition of geometry 

geomplot(fem);    % View geometry (Figure A.2(a)) 

fem=multiphysics(fem);   % Initializing PDE-system 

fem.mesh=meshinit(fem);   % Initializing mesh 

meshplot(fem);    % View mesh (Figure A.2(b)) 

fem.xmesh=meshextend(fem);  % Initializing of finite elements 

fem.sol=femlin(fem);   % Solving the model 

postplot(fem,'tridata','phi','arrowdata',{'phix' 'phiy'}) 

       % View solution (Figure A.2(c)) 

 

 

Figure A.1: Model creation by COMSOL MultiphysicsTM. (a) Model geometry, (b) finite element mesh, 
(c) solution of the problem. The colour code indicates the behaviour of φ, the arrows point in the direction 
of the gradient of φ. 
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A.2 Magnetic point-particle under an external force 
 
A small magnetic particle of radius R, mass m and magnetic moment partm  suspended in a liquid 
feels two different types of forces: a drag contribution due to the velocity difference between the 
velocity v of the particle and the velocity u of the liquid and external forces, summarized in extF . 
Newton’s second law applied on this system reads 

 

 mag drag mag 6 ( )
d

m R
dt

πη= + = + −
v

F F F u v      (A.4) 

 
if we assume a creeping flow problem ( 1)Re� . A solution of the homogenenous system is 
given by 
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with an integration constant C. Varying the constant, we obtain for the inhomogeneous case 
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Though the velocity profile u is time-independent in the creeping flow regime, an implicit time 
dependence is introduced by the particle position r(t). Therefore, we have ( ( )) ( )t t= =u u r u  and 
(A.5) cannot be readily integrated in respect to time. Instead, it is 
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If we further assume a non-moving particle for 0t = , we find 0 0=C  and therefore obtain for 
the particle velocity v 
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           (A.6) 
 
This is the general solution of (A.4). However, if we take a look on the values of different 
material parameters, we find 8(10 m)R

−=O  and 20(10 kg)m
−=O . Together with a viscosity of 

about 3(10 Pa s)η −=O , we have 106 / (10 )R mπη =O  and, therefore, the exponential function is 
close to the Kronecker δ-distribution 
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F
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Inertia effects may thus be omitted. 
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A.3 Derivation of the Brown equation 
 
For the sake of completeness and to provide some reference material to everybody trying to 
extend the weak forms by another term not discussed in this thesis, we will explain how the 
individual energy contributions need to be varied in respect to the magnetization distribution. 
Similar to the “normal” derivative, the variational derivative is the linear change of a functional I 
in respect to a slight variation of the argument. In principle, this means we investigate the 
difference ( ) ( )I f I f fδ− +  with an arbitrary argument f and variation fδ . If it possible to 
expand this expression in a power series of fδ , we might write 
 

 2 332
1( ) ( ) ( ) ( ) ...

2 6

aa
I f I f f a f f fδ δ δ δ− + = + + +     (A.7) 

 
The linear change is apparently given by the coefficient function a1. Therefore, we try to 
calculate this function by expanding ( )I f fδ+  in powers of fδ . According to chapter 3, the 
total energy under the constraint of ˆ| | 1=m is given by 
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As the easiest case, we will begin our discussion with the Zeeman-energy. The effective 
functional may be written in the form 
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According to definition (A.7), the variational derivative is given by the integrand of the second 
term. Similar results are obtained for the remaining magnetization components. Therefore, we 
may write 
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The equilibrium state is given by the distribution which minimizes I. Again, similar to scalar 
functions, a necessary criterion for a local minimum is that the “first derivative” equals zero. 
Therefore, we have for j, k ∈ {x, y, z} 
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The last equation may readily be written in the form extˆ 0ijk j ,km Hε =  or 
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In a similar way, we may write for the exchange energy 
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Therefore, the integrals expanded over the magnetic volume and the surface of the magnetic 

material lead to domain contributions as well as a boundary condition which are given by 
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respectively. Analogously to the case of Zeeman-energy, (A.10) may be rewritten in the form 
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For the anisotropy energy, we will restrict our analysis to the uniaxial case only. Therefore, 

we may write 
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with ê  the easy axis. Similar to the cases considered above, we have 
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Finally, the demagnetization field is to be varied. The potential φmag needs to varied under the 

constraint of φmag satisfying the Poisson equation magφ∆ = ∇M . A second Lagrange multiplier λϕ  
is introduced in order to ensure this. The functional for the demagnetization energy may thus be 
written in the form 
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Unfortunately, (A.14) cannot be readily reformulated in the form demagˆ × = 0m H  since the 
demagnetization field introduces additional degrees of freedom. Therefore, the variation of φmag 
needs to be considered. Since this is similar to the cases above, we will only report that the 
resulting equation may be readily employed to obtain the corresponding formula. Combining all 
contribution, this finally leads to 
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Figure A.2: Graphical user interface of COMSOL plug-in PADIMA 
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A.4 A short introduction to PADIMA 
 
COMSOL MultiphysicsTM provides a graphical user interface for the setup of the model. 
However, the systems discussed here, usually consist of several thousands of characters, a direct 
initialization of the problem is therefore very elaborate. In the framework of this thesis, the GUI-
based plug-in PADIMA was developed to ease the setup and also automatically apply some 
algorithms for meshing, preconditioning etc. Since COMSOL also provides many predefined 
physics settings a further development of this tool by implementing further influences (external 
stress, coupling to spin currents, influence of temperature etc.) should be rather easy in the near 
future. 

The graphical user interfaces aims to make the plug-in applicable to everybody not having 
worked with COMSOL MultiphysicsTM before and allows an easy calculation of micromagnetic 
thin film systems under the influence of external (particle-)perturbations. Since I have written 
neither an instruction manual nor an easy to understand documentation of the code itself, this 
paragraph should give a short introduction for everybody who is interested in similar questions 
as investigated in this work. In general, all parameters (except the field values for the hysteresis 
analysis) should be given in SI-units, however, the units to be entered are also always given next 
to the corresponding text fields.  

The interface is shown in Figure A.2. The setup of a model is done in three steps: A particle 

properties definition, B layer properties definition, and C solving and postprocessing. Figure 
A.2 shows the particle-panel. Geometrical properties of the particle assembly are defined in 
panel (1). Different ways of definition are possible: (a) regular, (b) random, and (c) dynamic 
(compare Figure A.3). 
 

(a) regular: particles are arranged in a regular assembly of Nx Columns, Ny Rows and Nz 
Layers whereas Nh holes or empty positions are randomly distributed on the grid. For 
the definition of the particle radius different choices are possible: 

− exact: a fixed value 
− between: random values between the specified bounds 
− log-normal: log-normal distribution with specified expectation value and 

standard deviation 
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Figure A.3: Different possibilities for the particle setup: (a) regular, (b) random, and (c) dynamic.  

a b c 

As a default setting, the z-position of the assembly is chosen so that the “lowest” 
geometry point coincides with z = 0. This value may be changed to z = offset by defining 
an additional z-offset value. 
The grid type of the particle assembly may be chosen from cubic-, tetragonal-, 
rhombic-, hexagonal-, trigonal-, monoclinic-, and triclinic-symmetries. Additionally, 
the centre-type can be set to simple-, base-, body- or face-centred. The necessary 
geometry parameters (size lengths and angles of unit cells) can be specified in the text 
fields below. The ‘3D-minimze’-operation creates the cell of a minimal volume with the 
defined symmetry; in particular, it does not affect the angle settings. The perfect lattice 
may be disturbed by adding an additional displacement δ : Each particle position is 
shifted by a random value in [0, ]δ  into a random direction. If the ‘Avoid particle 

sensor intersection’-checkbox is enabled, all particles are situated at z ≥ 0. 
  

(b) random: particles are placed randomly. The choice for every component and the particle 
radius may be specified individually. For the components, different choices are possible: 

 

− vector value: a single component is given by either a scalar (all particles have 
the same value) or a vector with a length that equals the number of particles.  

− between: a single component is chosen randomly between the specified bounds. 
− on sphere: all components are equally randomly distributed along a sphere of 

defined radius and centre. For the notation of the centre vector use either [x y z] 
or simply x y z with x, y, z the centre coordinates. 

 

The radius options are given by: 
 

− vector value: either a scalar (all particles have the same radius) or a vector with 
a length that equals the number of particles. 

− between: random values between the specified bounds. 
− log-normal: log-normal distribution with specified expectation value and 

standard deviation. 
 

To specify either a certain component of the radius settings, lock the corresponding 
Change-button and Add the specified number of particles. If the Add-button is pressed 
again, additional particles are added to the configuration, the actual total number is 
shown below the Reset-button which deletes the particle definitions. The algorithms 
applied for the random creation generate non-overlapping particles. If the chosen 
settings do not allow for the specified number of particles (e.g. place 100 particles of 1 
µm on 5 × 5 µm-square), the process is aborted and returns a smaller configuration that 
satisfies the input parameters. 
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(c) dynamic: define moving particles for (macro-)time-dependent systems. The motion type 
may be chosen from: 

 

− linear motion: particles travel linearly between defined positions 
− in velocity field: particles travel according to a given velocity field 
− from Plug-in: particle motion is calculated via an external Plug-in (in the current 

version only the Plug-in PAINCA has been implemented which may be 
employed for the calculation of the motion of particles in an external rotating 
magnetic field, compare also section 4.6.1) 

 

Additional Brownian motion may be added via the Temperature T. 
 
After the definition of the geometry settings, the particle Magnetism (2) needs to be defined. 
This is done in three steps (a) magnetism, (b) dynamics, and (c) perturbations. 
 

(d) magnetism: The initial state, the magnetization initials, can be chosen from different 
possibilities borrowed from standard micromagnetic solutions: 

 

− random: orientations are distributed equally randomly on the unit sphere surface 
− S-state: orientations are ordered in an S-state 
− C-state: orientations are ordered in a C-state 
− vortex-state: orientations are ordered in a vortex-state 
− alternating: adjacent particles have antiparallel alignment 
− current solution: apply a previous solution as the new initial configuration 

 

Alternatively, the ‘along axis’-setting aligns all moments in the direction specified. Axis 
length does not need to be normalized. Magnetic properties are defined in the Magnetic 

parameters panel. The saturation magnetization can be set to either an exact value or 
between two specified bounds. For time-dependent problems, the dimensionless 
damping constant α (compare section 3.5) needs to be specified. The default value is set 
to α = 1 to obtain fast convergence according to section 4.4. It is also possible to 
introduce different particle species. Therefore, set the material parameters and add this 
type via the ‘+’-button. A certain species may be removed again by marking it in the 
listbox and activating the ‘–’-button. The weighting of individual species is controlled 
via the distribution-panel. Either add particle with a certain weighting in a random 
way, or choose a smooth option: 
 

− right / left / top / bottom: gradual decay from the chosen side to the opposite one 
− centre: gradual decay from the centre to the outside 
− rows / columns: position species along certain rows or columns only (only 

available for regular configurations) 
 

Figure A.4: Setup of the particle magnetism by defining (a) magnetism, (b) dynamics, and (c) perturbations.  

d e f 
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(e) dynamics: define the dynamic behaviour of the magnetic particle moments. Four 
different options are available: fixed values (particles remain in their initial state), 
parallel to external field (particles will perfectly align to an external field), 
superparamagnetic particles (similar to before, but the saturation depends according to 
the Langevin-formalism from the temperature T), and interacting dipoles (particles 
interact dynamically according to the system of ODEs introduced in section 4.3). 
Considering interacting dipoles, additional options may be adjusted: 

 

− Interaction cutoff: a measure of what particles interact with each other. In the 
default setting, it is set to five times the average particle radius. 

− Uniaxial anisotropy: an additional uniaxial anisotropy with anisotropy constant 
K1 is added. The direction may be set to random (along the unit sphere), along 

axis (set a specific direction for all particles), normal to (random in a specified 
plane), and from solution (use a solution for the new anisotropy settings). 

− Ferromagnetic coupling: add additional coupling terms, leading to a parallel 
alignment of adjacent moments (in contrast to the dipole coupling), which may 
be compared to the exchange contribution for ferromagnetic materials. 

− Include perturbations: add external perturbations (see (f)) 
− Periodic boundaries: impose periodic conditions in certain space directions 
 

(f) perturbations: the perturbations-tab allows to add additional local influences to the 
system, e.g. a short but strong electromagnetic pulse along a small region and analyze 
how such a perturbation is damped or travels through the system. Three different 
methods may be applied: ‘Particles with fixed values’ allows for a fixation of the 
magnetization direction of certain magnetic moments. The position vector contains the 
labels of the particles which can be found in the graphical output after the geometry is 
generated. ‘Rotating around z-axis’ enforce moments to rotate around the z-axis with a 
given frequency. If the method ‘Electromagnetic pulse onto’ is chosen, an external 
field is applied to certain particles of the given durations at given time points. All 
methods may be applied simultaneously, if interferences are found, the priority goes 
from top to bottom. 

 
Before the geometry can be created the shape of an eventual sensor needs to be specified (3). 
Here different possibilities are given. Rectangular elements of given width/height, ellipses 
with length of A-/B-semiaxis, regular polygons with a specified number of edges and a certain 
outer radius, as well as star-shaped geometries which need to be specified by their inner and 

outer radius, their peak number and a rotation angle. If a two-dimensional geometry has been 
created in the local folder, it can be loaded to the GUI by the custom option. The name of the 
geometry variable simply needs to be entered in the from: NAME. 

The geometry/magnetism creation panel (4) offers options to create and manipulate the 
system geometry. Operating the ‘Create geometry’-button creates the geometry, particles and 
sensor, if the corresponding checkboxes are marked. For the particle setup, it may be chosen 
between random- or regular-settings. Operating the ‘Set magnetics’-button writes the equations 
for the particles’ magnetization. The ‘Modify geometry’-button allows to change several details 
of an existing geometry: 

 

− magnetic particles: change particles only 
− sensor shape: change sensor only 
− offset: change particle positions in respect to the sensor 
− rescale: rescale the geometry by a given factor 
− surrounding sphere: change the radius of the surrounding sphere for the (layer) 

stray field calculation 
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Press Reset to delete all geometry settings. The warning-panel (5) returns warnings if several 
input parameters are unreadable. Information on the particle geometry and the magnetization 
settings can be found in the graphical output (6). The main plot shows the particle geometry, the 
small top plot the species settings and the lower one the magnetization configuration. The plots 
(7) show the relative ordering of particles and sensor, the sensor itself and the sensor together 
with the surrounding sphere. 

The magnetic layers are configured in the tab Sensor Magnetics (B). A certain Number of 

layers (magnetic + non-magnetic) needs to be specified (8). The code behind the text box refers 
to the magnetism settings, m = magnetic, n = non-magnetic, properties may be configured below 
(9). Each individual layer may be adjusted in the ‘Layer settings’-tab by choosing it from the 
dropbox, the labelling counts from top to bottom. A layer may either be magnetic or non-

magnetic. Every magnetic layer can additionally be free (only those contribute to the DOFs) or 
fixed creating a stray field in the surrounding area. Its orientation may be set via the initial 
configuration (see below). The layer is specified by its parameters thickness, saturation 

magnetization, exchange constant, and damping constant. If no material parameters are at 
hand, choose a material from the material library. Magnetocrystalline anisotropy may be added 
by the ‘Crystal structure’-settings. Different choices are available: amorph, uniaxial (1

st
), 

uniaxial (2
nd

), cubic general, cubic [100], cubic [110], cubic [111], cubic/uniaxial, 
cubic/conical, orthorhombic which require a certain amount of material parameters. Axis 
directions do not need to be entered in a normalized form. The Magnetization initials may be 
set to either an S-state, a C-state, a vortex state or the current solution or the homogeneous 
configuration along axis. Changes are made permanent by operating the ‘Apply’-button or 
suspended by pushing the ‘Reset’-button. 

Coupling energies are attributed to the non-magnetic interlayers (h). Choose the Interlayer 

number and apply different coupling phenomena: 
 

− RKKY-coupling: the coupling strength is calculated according the thickness of 
the interlayer and the layer material chosen from the ‘Interlayer material’-
library. 

B 

8 

9 
10 

11 

Figure A.5: Layer setup  

g 
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− Néel/Orange-Peel-coupling: the coupling strength is calculated according to 
section 5.1 evaluating the interlayer thickness as well as the wave length λλλλ and 
the amplitude h. 

− Offset: in order to integrate coupling without any physical reasons, bilinear and 
biquadratic coupling coefficients may be entered directly. 

 
Changes are made permanent by operating the ‘Apply’-button or suspended by pushing the 
‘Reset’-button. 
 
Remark: If the layer number is reduced, the settings of suspended layers are still saved and will 
return if the layer number is increased again. 
 

In order to retrieve the stack setup, operate the Apply-button in the ‘Sensor magnetics’-
frame. The Reset-button restores the default values. The mesh menu (10) may be used to 
customize the finite element mesh. Use the automatic-option to obtain a mesh generated to 
ensure sufficient resolution. If the resulting number of DOFs is too high, it may be necessary to 
use a custom-mesh which allows for the individual definition of the mesh in each layer. The 
Task-mesh-option meshes two-dimensional and three-dimensional geometry at the same time. If 
they need to be meshed individually, use the 2D- and 3D-mesh-option. The meshing results are 
displayed in the plots (11). 
 

The Solving/Postprocessing-tab provides different tasks and visualization options. Before 
the actual solving, the external magnetic field needs to be specified in the External field 

settings (12). The number of choices depends on the solver task, in principle though, the 
following settings are available: 

 

- no external field: set Hext = 0 
- constant field: set T

ext x y z( , , )H H H H=  
- alternating field: the external field points parallel/antiparallel to a certain direction and 

changes linearly with a specified frequency 
- rotating around z-axis: an initial field vector of arbitrary direction rotates around the z-

axis with a specified frequency 

12 

13 

14 

15 

C 

Figure A.6: Solving and 
postprocessing tab.  
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Highlight the ‘particle dynamics’ and the ‘layer dynamics’-checkbox in the Solver settings 

(13) to include the respective component into the DOFs. If either of them has been specified but 
is not solved for, the behaviour is given by the fixed initial values. Different solver tasks may be 
employed 
 

- static: find a static solution of the system 
- magnetic map: calculate a system properties along a discrete set of parameters. In case 

of magnetic sensors, the option MR-map is available which calculates TMR-map 
(compare chapter 5) along a specified grid [Xlist, Ylist, z] with a specified probe 
particle. High frequency maps may be calculated for systems of interacting dipoles. The 
application mode calculates the response frequency spectra for a certain input 
frequency/frequency-list flist. 

- micro dynamics: the time-dependent behaviour of a magnetic system for the time points 
tlist is analyzed solving Landau-Lifshitz Gilbert equation. 

- macro dynamics: the time-dependent behaviour of a magnetic system for the time points 
tlist is analyzed solving the static equation of micromagnetics at each time point. This 
approach originates from the idea that all micro-processes are always finished on the 
macroscale. At each (macro-)time point the system is in a thermal equilibrium (due to 
the separation of time scale, compare section 2.1). 

- hysteresis: calculates the equilibrium for a set of field values. The equilibrium state of 
the n-th step is always the initial guess of the (n + 1)-th step. Additionally to only 
consider a single direction, an angle range may be defined. The parametric solver is 
expanded over two parameters. 

- parametric: consider the same system with different material parameters and solve for a 
parameter list plist. 

 

The Solve-operation solves the specified task, whereas the fem-structure may be obtained by 
operating the ‘FEM-structure’-button. Additionally, one may Batch jobs and add them to a 
solving queue. The ‘Solve queue’-command solves collected tasks. As it turns out, 
homogeneous magnetization distributions are not consistent initial values for the systems. In 
order to initialize the solving 
process, a preconditioning method 
as shown in Figure A.7 is 
employed. For the definition of the 
Φ-functions, see section 5.1. The 
obtained consistent values may 
afterwards be employed for 
calculations. If a stationary solution 
needs to be found, a second 
preconditioning step is applied. The 
model is solved by time-dependent 
solvers for several steps in order to 
obtain a good initial guess. 

The postprocessing-panel (14) 
allows for a number of different 
visualization techniques which are 
all displayed in the plots (15). 
 
 
 
 

φmag mi 

initial 

φmag mi 

Solve in 
3D-frame 

Identity mapping 
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Figure A.7: Schematic representation of the solver sequence to 
find consistent initial values. The potential φmag and the 
magnetization distributions are treated as linearly coupled which is 
no solution but leads to a good initial guess for all DOFs. 
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