
Universität Bielefeld

Technische Fakultät
Bioinformatics Resource Facility
Center for Biotechnology (CeBiTec)

BRIDGE

A Bioinformatics Software Platform for the
Integration of heterogeneous Data

from Genomic Explorations

Zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften der Universität Bielefeld vorgelegte

Dissertation

von

Alexander Goesmann

March 11, 2004

ii

Contents

1. Motivation and overview 3
1.1. Motivation . 3
1.2. Organization of the text . 7

2. State of the art in genome research 9
2.1. Genomics . 11

2.1.1. Genome sequence analysis . 11
2.1.2. Finding genes – region prediction 13
2.1.3. Prediction of functions . 14
2.1.4. Genome annotation. 16

2.2. Transcriptomics . 18
2.2.1. DNA array technology 18
2.2.2. Analysis of expression data. 22

2.3. Proteomics . 24
2.3.1. A short introduction . 24

2.4. Metabolic pathways . 25
2.4.1. Enzymes . 26
2.4.2. Metabolic pathways . 28

3. Existing systems 31
3.1. Genome annotation systems. 31

3.1.1. Comparison of existing tools . 32
3.1.2. GenDB-1 . 33

iii

Contents

3.2. Microarray analysis . 35
3.2.1. Storage and analysis of expression data 36
3.2.2. MIAME and MAGE-ML . 37

3.3. Databases and visualizations for metabolic pathways 39
3.3.1. Boehringer Mannheim wall charts. 40
3.3.2. KEGG . 41
3.3.3. EcoCyc/MetaCyc . 42
3.3.4. The MPW/EMP or WIT database 43
3.3.5. Biocatalysis/Biodegradation database (UM-BBD) 44
3.3.6. BioPath . 45
3.3.7. PathDB . 46
3.3.8. PathFinder . 46

3.4. Functional classification . .. 46
3.4.1. Monica Riley categories . 47
3.4.2. TIGR roles . 47
3.4.3. The hierarchy of EMBL features 47
3.4.4. EC-numbers . 48
3.4.5. Gene Ontology . 49
3.4.6. COGs . .. 50
3.4.7. Other classification schemes .. 51

3.5. Integrating approaches . 51
3.5.1. BioMOBY . 52
3.5.2. MyGRID . 52
3.5.3. Discovery Net . 52
3.5.4. SRS . 53
3.5.5. SEMEDA . 53
3.5.6. ISYS . 54
3.5.7. DAVID . 55
3.5.8. GeneData product series 55

3.6. Conclusions . 56

4. Specification analysis 57
4.1. From functional genomics towards systems biology 57
4.2. Data types and sources . 59
4.3. Users and developers . 61
4.4. Data management . 62

5. Choice of core technologies 65
5.1. Existing systems revisited . 65
5.2. Relational object-oriented modeling . 66
5.3. Interaction and communication . 68

iv

Contents

5.4. CORBA . 68
5.5. Comparison of existing approaches . 69

6. System design 73
6.1. Specialized components for separate scopes 73
6.2. Three-tier components .. 75
6.3. Integration . 76

7. Specialized components 81
7.1. GenDB-2.0 . 81

7.1.1. Data model design . 82
7.1.2. General overview . 84
7.1.3. Integration of tools . 85
7.1.4. Data navigation metaphors .. 88
7.1.5. Plug-in architecture . 88
7.1.6. Wizards . 88
7.1.7. Annotation 89
7.1.8. Data import and export 90
7.1.9. Interfaces. 90
7.1.10. Annotation pipeline. 100

7.2. EMMA . 105
7.2.1. Design overview . 106
7.2.2. MicroLIMS . 107
7.2.3. EMMA-DB . 107
7.2.4. Data import/export. 109
7.2.5. Image analysis . 110
7.2.6. Filtering, normalization, and calibration. 110
7.2.7. Testing for differentially expressed genes. 111
7.2.8. Cluster analysis . 111
7.2.9. User interfaces .. 112

7.3. GOPArc . 118
7.3.1. Metabolic pathways . 119
7.3.2. Functional categories . 122

8. Implementation 125
8.1. Project-Management . 126

8.1.1. Design goals and specification . 126
8.1.2. Specifications for the GPMS . 128
8.1.3. Implementation . 129
8.1.4. Class descriptions . 129
8.1.5. Interfaces. 133

v

Contents

8.1.6. Administering users . 137
8.1.7. Accessing the data .. 137

8.2. BRIDGE . 139
8.2.1. Extension of O2DBI . 139
8.2.2. BridgeFunc . 143

8.3. BRIDGE GUI . 147
8.3.1. StatusWidget . 148
8.3.2. MenuCreator . 150
8.3.3. ContextMenuInterface . 150
8.3.4. PopoutBook . 151
8.3.5. ConfigurationInterface . 152
8.3.6. ConfigurationDialog . 153
8.3.7. Communication interfaces . .. 154
8.3.8. Putting it all together. 155
8.3.9. InterfaceCreator . .. 156

9. Applications 159
9.1. Finding gene clusters . 159
9.2. Annotation ofMycoplasma mycoides subsp. mycoides SC. 163
9.3. Annotation ofBdellovibrio bacteriovorus 165
9.4. Analysis of 5 microbial genomes . 167
9.5. Postgenome analysis . 170

9.5.1. Genome comparison ofC. glutamicumandS. coelicolor 170
9.5.2. Expression analysis ofS. meliloti 171
9.5.3. Integrated microarray analysis . 172

10.Summary 177
10.1. Summary of this work . 177

11.Discussion 181
11.1. Results . 181
11.2. Outlook . 182

A. Selected topics of the source code 185
A.1. Role and right definitions for GenDB-2.0 185
A.2. API of the ApplicationFrame . 189
A.3. A sample script and project initialization. 193
A.4. The GenDB-2.0 tool and job concept . 195

A.4.1. A sample tool . 195
A.4.2. Computing tools –runtool.pl 196
A.4.3. The GENDB::Job class definition. 199

vi

Contents

A.4.4. TheJobSubmitter wizard. 201
A.4.5. Submitting jobs –submit_job.pl 203
A.4.6. The Sun Grid Engine API (Codine.pm) 203

A.5. BRIDGE modules. 206
A.5.1. BridgeFunc . 206
A.5.2. BridgeFunc::Projects . 210
A.5.3. BridgeFunc::Namespaces .. 211
A.5.4. BridgeFunc::AppFrames . 212
A.5.5. StatusWidget . 213
A.5.6. MenuCreator . 216
A.5.7. ContextMenuInterface . 217
A.5.8. PopoutBook . .. 217
A.5.9. ConfigurationInterface . 220
A.5.10. ConfigurationDialog . 223
A.5.11. InterfaceCreator . 224

A.6. Description of “Common” modules. 230

B. Installation of the software 233
B.1. System requirements . 233
B.2. License . 234

Bibliography 235

vii

Contents

viii

List of Figures

1.1. The “Genomes to Life” project. 4

2.1. Life’s complexity pyramid. 10
2.2. The hierarchical sequencing approach. 12
2.3. Whole genome shotgun sequencing. 12
2.4. Prediction of functional regions. 14
2.5. A traditional genome annotation pipeline. 17
2.6. SRS search result forhomoserine dehydrogenase 17
2.7. Overview of the basic principle of microarray technology.. 19
2.8. Flowchart of a typical microarray experiment. 20
2.9. Identification of proteins via mass spectrometry. 25

3.1. Screenshot of the GenDB-1 Gtk graphical user interface.. 34
3.2. Screenshot of the ImaGene image analysis software. 37
3.3. Excerpt of the Boehringer Mannheim wall charts.. 40
3.4. Diagram of the KEGG Lysine biosynthesis pathway forC. glutamicum. . . 41
3.5. Partial L-Methionine pathway displayed by the EcoCyc system. 42
3.6. Visualization of a pathway from the Biocatalysis/Biodegradation database. . 44
3.7. The maltose-fructose pathway displayed by the BioPath system. 45
3.8. Schematic dependencies diagram of the GO database. 49
3.9. Screenshot of the AmiGO browser. 51

4.1. Knowledge generation in systems biology. 58

ix

List of Figures

4.2. High throughput methods for the analysis of uncharacterized genes. 59
4.3. Data integration is hard. 60
4.4. A typical access procedure. .. 63
4.5. Different roles of a user. 64

5.1. Designer of the O2DBI-II system. . .. 67
5.2. Overview of the O2DBI-II system. . .. 67

6.1. Design of the BRIDGE system. 74
6.2. Three-tier architecture of a single component in the BRIDGE system. . . . 77
6.3. Design of the BRIDGE system. 78
6.4. Extended three-tier architecture of the BRIDGE system. 79

7.1. The core data model of GenDB in UML. 82
7.2. The hierarchy of regions implemented in GenDB-2.0. 83
7.3. Overview of the GenDB system. 84
7.4. The GenDB-2.0 tool concept. 86
7.5. The tool configuration wizard in GenDB-2.0. 87
7.6. The region editor in GenDB-2.0. 89
7.7. The main window of GenDB-2.0. 91
7.8. The GenDB-2 ObservationView. 92
7.9. The CircularPlot of GenDB-2.0. 93
7.10. The LinearPlot of GenDB-2.0. 94
7.11. The Virtual 2D Gel of GenDB-2.0. . .. 94
7.12. The gene report in GenDB-2.0. 95
7.13. Main window of the GenDB-2.0 web frontend. 96
7.14. The report of the GenDB-2.0 web frontend. 97
7.15. KEGG viewer of the GenDB-2.0 web frontend. 97
7.16. GO browser integrated into the GenDB-2.0 web frontend. 98
7.17. The COG viewer of the GenDB-2.0 web frontend. 99
7.18. The multiple annotation web interface.. 100
7.19. A sample pipeline implemented with GenDB-2.0. 101
7.20. The annotation dialog of the GenDB web frontend.. 103
7.21. The design of the EMMA system. 106
7.22. Screenshot of the MicroLIMS web interface. 108
7.23. Core components of the EMMA system. 109
7.24. The library interface of the EMMA Gtk GUI. 112
7.25. The visualization of spotting plates. .. 113
7.26. Visualization of slide layouts.. 113
7.27. The experiment editor. 114
7.28. Visualization of a measurement. 115

x

List of Figures

7.29. The import wizard of the EMMA system. 115
7.30. Visualization of measurements. 116
7.31. Scatterplot in the EMMA web frontend. 117
7.32. Normalization preview in the web frontend. 117
7.33. A t-list result displayed in the EMMA web frontend. 118
7.34. KEGG browser of the GOPArc system. 119
7.35. The KEGG-Search interface.. 120
7.36. The Gtk PathFinder interface.. 121
7.37. Gtk GO browser of the GOPArc system. 122
7.38. The COG browser. 123

8.1. UML design of the GPMS. 128
8.2. Database schema of the Project Management System. 130
8.3. Graphical user interface for the GPMS. 136
8.4. Web frontend for the GPMS. 136
8.5. DifferentRolesof aUser for severalProjects. 137
8.6. Controlled data access via theProject-Management System. 138
8.7. Application of the BRIDGE layer. 139
8.8. A standard graphical user interface.. 148
8.9. Screenshot of a context sensitive menu. 151
8.10. Screenshot of a PopoutBook widget.. 152
8.11. Screenshot of a ConfigurationDialog. 153
8.12. The “GENDB2EMMA” communication interface.. 154
8.13. Illustration of the main BRIDGE-GUI.. 155
8.14. A sample GUI created by theInterfaceCreator. 158

9.1. A cluster of 4 genes. 163
9.2. Circular plot ofMycoplasma mycoides subsp. mycoides SC. 164
9.3. Life cycle ofBdellovibrio bacteriovorus. 165
9.4. Circular plot ofBdellovibrio bacteriovorus HD100. 166
9.5. Methionine pathway forC. glutamicumandS. coelicolor. 171
9.6. Expression analysis ofSinorhizobium meliloti. 172
9.7. Integrating EMMA and GenDB. 174
9.8. Scatterplot displaying functional categories. 175

10.1. Timeline for my PhD thesis. 179

11.1. Polished vs. unpolished sequence. .. 182
11.2. The VIPER study project. 183

xi

List of Figures

xii

List of Tables

2.1. The six main classifications for enzymes. 27

3.1. URLs of the most prominent genome annotation systems.. 32
3.2. URLs for microarray analysis software. 36
3.3. URLs of metabolic databases. 39
3.4. The original main functional categories as described by Monica Riley. . . . 48
3.5. URLs of selected GO browsers. 50
3.6. Available components for the ISYS system. 54
3.7. Available products of GeneData. . .. 55

5.1. Comparison of existing systems. 70

8.1. Available scripts for manipulating the GPMS. 135
8.2. Additional table for linking Unique IDs to O2DBI-II objects.. 142

9.1. Genome projects of the Bielefeld network. 167

xiii

List of Tables

xiv

Acknowledgements

This PhD thesis was carried out from June 2000 until March 2004 at the Center for Genome
Research at Bielefeld University. The work was funded by a scholarship of the NRW
Graduiertenkolleg Bioinformatik from October 2000 until September 2001. Since October
2001 I was employed in the BMB+F network for “Genome Research on Bacteria Relevant
for Agriculture, Environment and Biotechnology”. This work would not have been possible
without the extensive support of many people.

First of all, I would like to thank Prof. Dr. Robert Giegerich and Prof. Dr. Alfred Pühler for
giving me the opportunity to work in this exciting area of research. Furthermore, I wish to
thank Dr. Folker Meyer and Dr. Jörn Kalinowski for their scientific guidance.

Special thanks to all people of the bioinformatics group at the Center for Genome Research
(now CeBiTec Bioinformatics Resource Facility) for their excellent cooperation and team
work. I very much appreciate your personal commitment.

I am also especially grateful to Daniela Bartels, Torsten Kasch, Jörn Clausen, Dr. Olaf Kaiser,
Peter Serocka, and many other people for numerous corrections and improvements of the
text.

Ganz besonders herzlich möchte ich mich an dieser Stelle aber auch bei meinen Eltern für die
vielfältige Unterstützung während meines Studiums und während der Promotion bedanken.

Nicht zuletzt gilt mein ganz persönlicher Dank an dieser Stelle meiner Partnerin Anke für
ihr Verständnis und die unermüdliche Unterstützung während der Promotion.

1

List of Tables

2

CHAPTER 1

Motivation and overview

The flood of data acquired from the increasing number of publicly available genomes leads to
new demands for bioinformatics software. With the growing amount of information resulting
from high-throughput experiments, new questions arise that often focus on the comparison
of genes, genomes, and their expression profiles. Inferring new knowledge by combining
different kinds of “post genomics” data necessitates the development of new approaches that
allow the integration of variable data sources into a flexible framework.

1.1. Motivation

Today, roughly 50–60% of all genes in a newly sequenced bacterial genome can be classi-
fied automatically based on sequence similarity [FES00]. Afunctional annotationcan be
assigned by using well established tools like BLAST [AMS+97], HMMer [Edd98], Inter-
Pro [AAB+01], and many others. For the remaining 40–50% it is still a laborious task to
identify their function. These new genes encoding some special features of the organism
are often among the most interesting ones for scientific progress or commercial purposes.
Hence, it should always be worthwhile to spend some time (and money) for their detailed
analysis.

The advent of high-throughput sequencing techniques (approximately 1–2 Mbp per day and
sequencer) has decreased the time needed to obtain the complete genomic DNA sequence

3

1. Motivation and overview

of an organism by several orders of magnitude. In particular, the analysis of prokaryotic
genomes which are smaller and simpler than those of eukaryotes has become a standard
task for many research groups and already lead to numerous inventions and novel scientific
results. While the first years of genomic explorations concentrated on the analysis of single
genes, the focus is now changing towards identifying the remaining genes of so far unknown
functions and towards unraveling relationships between genes and their regulation at growing
levels of complexity [BH02]. New techniques developed in the past few years allow the
simultaneous measurement of all mRNAs or proteins in a cell which is essential for the
identification of complex interactions and co-regulated genes. These information can then
be used to construct gene regulatory networks and model metabolic pathways.

As an example, ambitious programs like the “Genomes to Life” project [FJT+03], funded by
the US Department of Energy1 with $103 million for five years, show that today the analysis
of a genome involves many areas of genomics and post-genomics research.

Figure 1.1.: Overview of the “Genomes to Life” project (GTL) funded by the US Department
of Energy. All research in this program is focused on the identification and ana-
lysis of genes, protein machines, and regulatory networks in complex biological
systems and microbial communities.

The goals described for such programs (see figure 1.1) clarify that sophisticated data repos-
itories are the essential basis for all further research towards understanding complex biolo-

1http://doegenomestolife.org/

4

1.1. Motivation

gical systems. While the amount of data from high-throughput experiments increases ex-
ponentially, reliable and well structured storage of strongly connected information becomes
a task of top priority. Each experiment itself may of course help to gain new insights but
more complex relationships and regulatory networks will only be understood if the results of
various experiments are combined, and analyzed together.

The huge amounts of data aquired from such experiments can only be handled with intensive
bioinformatics support that has to provide an adequate infrastructure for storing and analyz-
ing these data. For a detailed scientific analysis, quite individual questions are more often
than not in the focus of the researchers interest. Thus, bioinformatics has to deliver tools as
well as hardware and software solutions for answering such questions. This also includes
the development of software toolkits that allow the implementation of special algorithms for
specific tasks. As an example, it should be possible to implement typical workflows (e.g. for
identifying co-regulated gene clusters that belong to a specific pathway) as described in al-
gorithm 1 in a very simple and abstract manner (see next page).

This simple workflow already involves quite a few different data types and data sources:
the information about genes that encode special enzymes acting in a selected pathway is
coupled with expression data. The location of genes and their functional classification is
used to identify co-regulated gene clusters.

The increasing number of applications of high-throughput methods for the simultaneous
analysis of hundreds or thousands of genes in a single experiment leads to the demand for
software solutions that allow the flexible integration of heterogeneous data types and data
sources into an extensible platform. Such a system should not only be able to cope with high
dimensional data but also provide different (meta-) views on the data that therefore have
to be cross-linked. Furthermore, the software envisioned here should support higher level
query and programming languages which allow a customizable exploration of different data
sources. Instead of navigating through different databases and repositories by clicking on
hyperlinks, the data could then be explored automatically according to individual require-
ments.

Although there are many software packages available that can be used for the analysis of data
from one of the research domains described above (see chapter 3 for details about existing
systems), there is no open source system known to the author that features the complete
integration of different data sourcesand their corresponding applications.

The BRIDGE system (BioinformaticsResource for theIntegration of heterogeneousData
from GenomicExplorations) presented here describes a concept for the integration of he-
terogeneous data into a common framework. The implemented system includes a higher-
level programming environment and it provides a comfortable and easy to learn interface
for writing individual scripts in order to explore the flood of data. Thus, exactly tailored
programs or specific algorithms can be implemented for data mining and visualization.

Finally, some sample applications illustrate the usability of this approach as a platform for
systems biology.

5

1. Motivation and overview

Algorithm 1 A typical example for a simple workflow in pseudo code. The sample code
shown here implements a simplified approach for finding clusters or operons of co-regulated
genes.
Require: name of pathway and expression experiment

for all genes in given experimentdo
if gene is significantly up regulatedthen

if gene is already annotatedthen
get the annotation
get the gene name and gene product
get the functional category
get the EC number

else
get the amino acid sequence of the gene
get the best 10 homologous sequences from SwissProt
search for EC number in annotation of each homolog

end if
if an EC number was found in the annotation or one of the homologsthen

if EC number is in given pathwaythen
store gene in listL

end if
end if

end if
end for
for all genes in listL do

get the start and stop position
evaluate the distance of the genes
if distance < 10000 bpthen

put gene into cluster / operon
end if

end for

6

1.2. Organization of the text

1.2. Organization of the text

Chapter 2 reviews some fundamental knowledge about genomics, transcriptomics, and me-
tabolic pathways as important areas of research for genome analysis.

In chapter 3 we describe a number of existing systems that represent state-of-the-art appli-
cations in the field of genome research. Furthermore, we present some recently developed
approaches for the integration of heterogeneous data.

Chapter 4 focusses on a detailed specification analysis as a basis for the design of a new
platform for systems biology.

In chapter 5 we discuss existing tools that meet some of the requirements and evaluate solu-
tions for building a platform with respect to special requirements for data integration.

Based on conclusions derived from the previous chapters, chapter 6 illustrates the general
design of the BRIDGE system.

Chapter 7 describes three components for building the platform. Parts of the GenDB and
EMMA chapters were derived from [MGM+03] and [DGB+03].

Chapter 8 explains the implementation of aGeneral Project-Management Systemand we
present detailed solutions for integrating the specialized components into a platform for sys-
tems biology. Parts of the BRIDGE chapter were adapted from [GLR+03].

Chapter 9 presents a number of successful applications of the BRIDGE architecture for the
analysis of microbial genomes. Parts of these results were already described in [DGB+03]
and [GLR+03]

Chapter 10 summarizes the basic aspects of this work. We evaluate and discuss the sys-
tem presented here with respect to the obtained results and compare it to other approaches.
Finally, we illustrate some ideas for further development and future directions.

The appendix contains selected topics of the source code and details about the implementa-
tion of special components.

7

1. Motivation and overview

8

CHAPTER 2

State of the art in genome research

In the past 20 years, genome research has become an important domain for the study of
organisms which includes genome mapping, sequencing, and functional analysis. Biologists
and other researchers are trying to understand the global regulatory mechanisms behind the
transcription of genes into mRNA and their translation into protein sequences. Thereby,
the function of proteins, interactions between them, and their role in complex biochemical
networks is of major interest. The frequently used suffix-omicshas become a common term
that denotes the study of the entire set of something:

• genomics: study of all genes

• transcriptomics: study of all mRNA transcripts

• proteomics: study of all proteins

• metabolomics: study of all (“non polymeric”) metabolites in a cell

While genomics is often regarded as the study of more or less static properties of a genome,
transcriptomics, proteomics, and metabolomics research analyzes dynamic features of an or-
ganism. The changing focus from static to dynamic analyses characterizes thepost genomics
aera with its somewhat misleading name. Since gene function experiments can be performed
on a genome-wide scale, the termfunctional genomicscan be defined as “the study of genes,

9

2. State of the art in genome research

their resulting proteins, and the role played by the proteins” in biochemical processes.1 As
an example, such analyses can be focused towards identifying the key mechanisms for the
production of certain amino-acids or towards understanding the function of disease related
genes. For unraveling such complex processes in detail, only a combined analysis at the
sequence, mRNA, protein, and metabolite level is likely to reveal the true nature of such
mechanisms. This is also reflected in figure 2.1 that illustrates life’s complexity.

Figure 2.1.: Life’s complexity pyramid: based on simple principles, genetic information is
stored and translated into small functional units such as proteins and metabo-
lites. These are the main building blocks that form functional modules that con-
sist of regulatory motifs or metabolic pathways. On top of these units, large
scale organizations implement the characteristic features of an organism. While
the universality of certain modules increases from the bottom to the top, the or-
ganism specificity is mostly conserved in the DNA sequence and the encoded
genes [OB02].

Although the basic principle for storing genetic information is quite simple, evolution has
borne complex functional modules and well-structured large-scale organizations. While the
precise repertoire of components – genes, proteins, metabolites – is unique to each organ-
ism, the key properties of larger functional modules are shared across most species (organism
specificity vs. universality). To complete the list of definitions,structural genomicsis de-

1http://www.hyperdictionary.com/

10

2.1. Genomics

fined as the analysis of DNA and protein structures whilesystems biologydescribes the study
of complex biological systems and biochemical networks.2

The following sections briefly introduce the most relevant topics of functional genomics as
an essential basis for the development of a software platform for systems biology. After de-
scribing the basic principles of genome sequence analysis and microarray-technology, some
fundamental concepts concerning the analysis of metabolic pathways are explained.

2.1. Genomics

After James D. Watson and Francis H. C. Crick described the structure of the DNA helix in
1953 [WC53], the basic mechanisms of DNA replication and recombination, protein synthe-
sis, and gene expression were rapidly unravelled. Technological advances like the invention
of the polymerase chain reaction (PCR) [SGS+88] and automated DNA sequencing methods
[SNC77, SSK+86] have progressed to the point that today the entire genomic sequence of
any organism can be obtained in a snatch. As of this writing, the GOLD database3 reports
more than 900 organisms, including completely sequenced genomes and genomes for which
sequencing is in progress. For more than 800 genomes the (partial) sequence is already
available in the NCBI databases4.

2.1.1. Genome sequence analysis

All efforts for a complete analysis of almost every genome start by reading the DNA se-
quence of the whole organism. Ideally, the complete correct order of the four base pairs
A, T, G, and C has to be determined before any further research can be initiated (i.e. the
complete and correct DNA sequence is vital for a correct gene prediction based on charac-
teristic DNA features, [FEN+02]). Nowadays, whole genome sequencing is either done by a
hierarchical (map based) sequencing approach (see figure 2.2) or by whole genome shotgun
sequencing (see figure 2.3) [FF97, Gre01, KBB+03a].

While the hierarchical approach first splits up the genomic DNA into a set of clones which
have to be ordered based on their overlapping ends along the minimal tiling path, the shotgun
approach simply cuts the whole genome into a large number of small fragments which are
then sequenced and re-assembled.

2http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer2001/glossary.shtml
3http://www.genomesonline.org/
4http://www.ncbi.nlm.nih.gov/About/tools/index.html

11

2. State of the art in genome research

Genomic DNA

Determine minimal tiling path

Create clones

ACGATCGATCGATCGTAATTTATAGCATGCTAGCTACTGACGGGCTAGCAATCGACAGTGACTGT

Shotgun

Sequencing

Genomic Sequence

Shotgun

Sequencingand Assembly

Figure 2.2.: The hierachical sequencing strategy first splits the genome into pieces of ap-
proximately 40 to 200 kb. These pieces are then cloned intolarge insert li-
braries (e.g. BACs, YACs, cosmids, fosmids). From the huge number of insert
clones aminimal tiling path is created, selecting a subset of clones that cover
the genome with minimal overlap between the individual clones. Since a map
of clones is used, this approach is sometimes referred to asmap based shotgun.
The individual clones are sequenced using a shotgun approach for each one.

ACGATCGATCGATCGTAATTTATAGCATGCTAGCTACTGACGGGCTTTTACGGCGTTAGATATATATCGATCGATCGATGCTATATAGCGTGACTGATCGTAGCTGTAGCTAGCTGTAGCTAGCT

Genomic Sequence

Genomic DNA

Shotgun

Assembly

Sequencing

Figure 2.3.: For whole genome shotgun sequencing, the genome is split into a multitude of
fragments of approximately 1 to 12 kB (shotgun phase). The resulting fragments
are then cloned into sequencing vectors and transformed in bacterial cells (usu-
ally E. coli). The so-called vectors are small replicons that include a “multiple
cloning site” where the fragments can be inserted. The fragment is thus flanked
by the well known sequence of the vector and this sequence can be used to define
a sequencing primer. This primer binds to the DNA of the vector. Two primers
are used, yielding two sequences per “insert”, aforward and areversesequence.
Then the resulting DNA sequences can be assembled. Using overlaps between
the individual sequences, an attempt is made to determine the genomic sequence
from the sets of fragments.

12

2.1. Genomics

Especially the whole genome shotgun approach depends on efficient assembling algorithms
and requires considerable hard- and software support. In general, minimizing the manual ef-
fort for the shotgun approach by automated high-throughput sequencing pipelines has greatly
decreased the cost for whole genome sequencing projects [FEN+02]. After the sequencing
and assembly phase, the obtained genomic sequence (usually a small number of contigs) has
to be finished by closing the gaps between the contigs. Furthermore, the genome has to be
polished in order to improve the quality of the consensus sequence. Finally, the complete
genomic DNA sequence is ideally obtained in a single large contig as a basis for all further
research. Although the completion of the sequencing phase in a genome project is always an
important step towards understanding the genome and the basic genetic principles behind,
the DNA sequence is actually just the starting point for large scale downstream analysis.

2.1.2. Finding genes – region prediction

The first step towards a detailed analysis of the DNA sequence in any genome is the iden-
tification of potentially functional regions like protein coding sequences (CDS) and other
functional non-coding genes like transfer RNAs (tRNAs), ribosomal RNA genes (rRNAs),
ribosomal binding sites (RBS), etc. Thereby, the prediction of such regions can be con-
sidered the most important task leading to the development of various approaches for gene
prediction.

Due to their coding potential, the protein coding sequences in a bacterial genome typically
exhibit certain, characteristic sequence properties which distinguish them from non-coding
Open Reading Frames (ORFs) in the sequence. An additional useful property for gene iden-
tification is sequence homology of a potential coding region to genes of other organisms.Ab
initio or intrinsic gene-finders exclusively use the statistical analysis of sequence properties
(e.g. Hidden Markov Models) to distinguish real protein coding CDSs from ORFs. Examples
for theseab initio gene-finders in prokaryotic sequence data are e.g. Glimmer (Gene Loca-
tor and Interpolated Context Modeller) [DHK+99] or ZCURVE [GOZ03]. Programs like
Critica (Coding Region Identification Tool Invoking Comparative Analysis) [BO99] and Or-
pheus [FMMG98] which additionally use homology-based information for gene prediction
are also calledextrinsicgene-finders.

For the prediction of other non–coding regions of interest such as tRNAs, rRNAs, signal pep-
tides, etc. a number of tools exist at different levels of quality (tRNAscan-SE [LE97], SignalP
[NEBH97], helix-turn-helix [BB90], TMHMM [SvHK98], etc.). Some of the obtained pre-
dictions are also strongly related to functional assignments for the identified regions so that
it is not always possible to clearly distinguish the prediction of region and function.

An objective evaluation of the predictive accuracy of different gene-finders is difficult since
an experimentally verified annotation for all genes of a bacterial genome does not yet ex-
ist (even forE. coli, only a few hundred genes have been verified experimentally by now).

13

2. State of the art in genome research

Promotor tRNA Terminator RBS CDS CDS

Regions

Sequence

Identify functional regions

T T

Figure 2.4.: Prediction of functional regions. Protein coding sequences (CDS) as well as
other functional non–coding genes (tRNAs, rRNAs, promotors, terminators,
etc.) can be identified by analyzing characteristic sequence properties.

Therefore, the current state-of-the-art is the comparison with available genome annotation
data, which more or less reflects the manual annotation work of human experts. The reli-
ability of these kinds of annotations varies, however, and depends heavily on the methods
used and the manual effort involved in the annotation process. Furthermore, the state of
the experimental knowledge concerning the respective organism differs quite a lot and thus
reflects a certain degree of reliability for a given annotation. Nevertheless, the success of
one or another gene prediction strategy can be evaluated to some degree by comparing the
number of predicted genes to the number of genes found in an existing annotation and by
calculating the selectivity and sensitivity for the gene numbers obtained.

2.1.3. Prediction of functions

After identifying the regions of interest in the genomic sequence, researchers find themselves
confronted with the challenging task of assigning potential functions and biological mean-
ing to more or less unimposing parts in the genomic sequence. Since the cost and manual
effort for detailed wet lab experiments on each of these regions would clearly exceed the
resources of every genome project, bioinformatics tools have been implemented that allow
an automated prediction of potential gene functions.

Many of these tools rely on different strategies that compare unknown sequences to DNA
or protein sequences that have already been determined by researchers in the past 20 years.
Almost all of them have been deposited in a number of so-calledsequence databases(from
a computer scientist’s point of view these are merely data collections). The most current list
of these sequence repositories can be found either in the first issue of NAR (Nucleic Acid
Research) each year or on the web via one of the different sequence retrieval servers (e.g. via
the SRS server athttp://srs.ebi.ac.uk/)5.

5See section 3.5.4 for details about the SRS system.

14

2.1. Genomics

While we can easily query these sequence databases for a gene with a specific name, the
naming of genes is by no means consistent and each gene may have several names. So one
reason for doing database searches based on sequence similarity is the chaotic state of the
sequence databases.

The most important reason for performing similarity searches is the determination of putative
functions for newly sequenced stretches of DNA. By comparing the new sequences to the
databases of “well known” sequences and their “annotations”, we can derive a putative gene
function.

If we find a database “match” for a new sequence, we can assume that the function of our
new sequence may in fact be related to that of our match. This is based on a dictum by Carl
Woese [Woe87] who stated that:

• Two proteins of identical function will have a similar protein structure, because protein
structure determines the protein function.

• Two proteins of similar structure will have similar amino acid sequences.

• Two similar amino acid sequences will have some degree of DNA sequence similarity.

• Thus from a similar DNA or amino acid function a similar protein function might be
inferred.

Although this is true for many proteins, it should be clearly stated that even small changes in
the DNA sequence can render the gene product useless or completely change its function. In
contrast to similarity in function, the termhomologyindicates a genetic relationship based
on correspondence or relation in the type of a structure (here in the DNA or amino-acid
sequence itself).

Unfortunately, a “match” in a DNA or protein database needs to be interpreted; the uniniti-
ated may mistake a chance hit (the databases are very large) with a meaningful “match”.

Prominent and commonly applied tools like BLAST [AMS+97] or FASTA [Pea90, PL88]
compare the DNA or amino-acid query sequence with huge databases of collected already
known sequences by computing alignments. The results of these tools are supposed to re-
flect the degree of similarity between two genes in different organisms thus following the
thesis that the same (or similar) gene function should have an (almost) identical underlying
genomic sequence. Although these comparisons often reveal the homology among evolu-
tionary related organisms, the results have to be interpreted carefully since they can only be
as reliable as the database entry itself.6

6This refers to the fact that many database entries contain unsupervised and error prone data (e.g. GenBank
[BKML +02]).

15

2. State of the art in genome research

Other tools like Pfam [BBC+02], Blocks [HGPH00, HHP99], iPSORT [BTM+02], and
PROSITE [FPB+02] are based on (manually) curated motif or domain databases that allow
the classification of proteins based on hidden markov models and other techniques. Recently
developed tools like InterPro [AAB+01] also combine the results of several other applica-
tions thus trying to compute more reliable and quite exact predictions that classify partial
genomic sequences.

2.1.4. Genome annotation

Annotation is generally thought to possess best quality when performed by a human ex-
pert. The large amounts of data which have to be evaluated in any whole-genome annotation
project, however, have led to the (partial) automation of the procedure. Hence, software
assistance for computation, storage, retrieval, and analysis of relevant data has become es-
sential for the success of any genome project. Genome annotation can be done automatically
(e.g. by using the “best Blast hit”) or manually. The latter is supposed to possess a higher
quality but on the other hand takes much more time. However, to be sure about the “real
biological function”, each annotation of a gene would have to be confirmed by wet lab ex-
periments.

Figure 2.5 shows the flowchart of an often employed genome annotation pipeline also dis-
playing the interactions and dependencies between the single steps: e.g. a correct gene pre-
diction depends heavily on the quality of the genomic sequence. Vice versa questionable
predictions of regions can help to identify sequencing errors (e.g. frameshifts) that require
further improvement of the sequence itself in some positions.

Another important aspect for the success of any genome annotation project is the use of a
consistent nomenclature when assigning gene names. Comparing just a few existing genome
annotations shows that there is no commonly used systematic naming scheme: for example,
the genes coding for the enzymehomoserine dehydrogenaseare named completely differ-
ent in the corresponding SwissProt annotations forE. coli (THRAor THRA1or THRA2or
B0002), B. subtilis (HOM or TDM), andS. cerevisiae(HOM6 or YJR139Cor J2132) as
illustrated in figure 2.6.

They can only be identified as the same encoded enzyme because each database entry is ad-
ditionally mapped onto the same enzyme classification numberEC 1.1.1.3(see section 2.4.1
for further details on enzyme nomenclature). This does not only prevent simple comparisons
between different organisms but also complicates the identification of genes with the same
or similar function. Using a standardized vocabulary like the Gene Ontologies (see sec-
tion 3.4.5) might therefore be one of the most fruitful efforts towards a unified standard for
genome annotations.

16

2.1. Genomics

TTCGATGCC...GTTAAGC TTCGATGCC...GTTAAGC TTCGATGCC...GTTAAGC

Region Observation Annotation

TTCGATGCC...GTTAAGC

Sequence

1 2 3

4

5 6

Gene XYZ

Figure 2.5.: Traditional flowchart of a genome annotation pipeline. The process of genome
annotation can be defined as assigning a meaning to sequence data that would
otherwise be almost devoid of information. By identifying regions of interest
and defining putative functions for those areas, the genome can be understood
and further research may be initiated. Since genome annotation is a dynamic
process, the arrows indicate different mutual influences between the different
steps. For example, the region prediction (1), the computation of observations
(5), and the annotation (4) depend on the quality of the sequence (because of
frameshifts etc.). On the other hand, “surprising” observations (2) or inconsis-
tencies that were discovered during the annotation (6) may require updates of
the region prediction. Changes of a region will thus produce new observations
which have to be considered carefully for a novel annotation (3).

Figure 2.6.: Searching for ahomoserine dehydrogenasein the SwissProt database using the
SRS system results in a number of hits for various organisms. The hits shown
here illustrate that for only three organisms 9 different gene names were as-
signed. 17

2. State of the art in genome research

2.2. Transcriptomics

A number of array-based technologies have been developed over the last years that allow
the simultaneous measurements of thousands of interactions between mRNA-derived target
molecules and genome-derived probes. As a high-throughput technique, microarray exper-
iments are rapidly producing enormous amounts of raw and derived data never before en-
countered by biologists. These data sets consist of measured data, laboratory protocols, and
experimental settings. A major challenge is the efficient storage and analysis of such large
scale data sets associated with an enduring demand for good bioinformatics solutions, in
particular for the (automated) evaluation of the results.

2.2.1. DNA array technology

The principle of microarray technology (see figure 2.7) is based on the differential expression
of regulated genes that can be observed by simultaneously measuring the level of mRNA
gene products of living cells. They allow the measurement of mRNA-abundance in cells for
thousands of genes in parallel [SSDB95, DIB97, DBC+99].

In its simplest sense, a DNA array is defined as an orderly arrangement of tens to hundreds
of thousands of unique DNA molecules (probes) of known sequence [BH02]. These DNA
probes can be either synthesized on a rigid surface (usually glass) or pre-synthesized probes
(oligonucleotides or PCR products) can be attached to the array platform (usually glass or
nylon membranes). The most widely used microarray flavors are the commercial Affymetrix
GeneChipTM technology described in [FRH+93] and two-color cDNA microarrays devel-
oped by Pat Brown [SSDB95]. Since the latter (less expensive) method is applied at the
Bielefeld Center for Genome Research, the first approach is not considered any further here.
The following descriptions also focus on the production and evaluation of glass based mi-
croarrays but nevertheless most of the applied techniques are as well suited for the analysis
of filters like nylon membranes.

As illustrated in figure 2.7, the basic experimental strategy in a cDNA microarray experiment
is to purify RNA from two different sample materials grown under different conditions. One
condition is often called “control” and the other “treatment”. More generally, the source
material can arise from virtually any two different conditions or tissues. After extracting
the mRNA from two strains or from different tissues or experimental conditions, the probe
mRNA is transcribed into DNA by reverse transcription and thereby labeled with two fluo-
rescent dyes respectively. Both dyes are then mixed and dispensed over the prepared slides
with the single stranded target DNA molecules that can finally hybridize with the comple-
mentary probes. The intensity of the fluorescent molecules measured for the two channels
by laser scanning thus reveals the amount of expressed mRNA in the original cells.

18

2.2. Transcriptomics

Figure 2.7.: In principle, each microarray experiment starts with a purification of RNA from
two different sample materials grown under different conditions (1 & 2). The
cDNA-probes are then created by reverse transcription of the RNA and labeled
with two fluorophores (3). Afterwards, both probes are mixed and simultane-
ously hybridized to the microarray (4). During hybridization, the labeled tran-
scripts bind to their corresponding reporter molecules in the spots. The array
is scanned subsequently by a microarray scanner (5) that detects the fluorescent
dyes and creates one digital image for each dye (6).

Since most microarray techniques are very sensitive and prone to changes in the environment
(e.g. temperature, humidity, pressure), severalreplica are normally spotted for each gene
in order to facilitate a sound statistical evaluation. These may either betechnical replica
e.g. obtained by spotting the same material several times onto different positions orbiologi-
cal replica that were produced e.g. by using different biological source materials to generate
the hybridization probes.

19

2. State of the art in genome research

Data acquisition

High-throughput microarray experiments produce large amounts of measured data and nu-
merous results of further analysis steps. But also the production of the glass slides involves a
number of steps where different types of data have to be stored carefully to ensure a correct
evaluation of the results. A typical flowchart of microarray experiments can be divided into
six production steps as displayed in figure 2.8.

DNA

Layout

Library

Scanner−Results

Figure 2.8.: A unique piece of DNA for each gene that should be represented on the mi-
croarray is typically stored in a set of microtiter plates calledlibrary. In most
cases a working copy is produced from the original library. This may also in-
clude rearrangements (e.g. from 96 well plates to 384 well plates). A resulting
set ofspotting platesis typically used to define alayout for a series of slides,
i.e. the order of the spots printed by a spotting robot during the microarray pro-
duction process. Finally, the obtained scanner results have to be mapped onto
the original library data, i.e. the genes.

20

2.2. Transcriptomics

All steps during the production of microarrays depend on detailed information, but they also
generate new data that is more often than not stored in flat files.

As an initial step, a library of oligonucleotides, PCR products, or expressed sequence tags
(ESTs) has to be created that contains the information about 96 or 384 well plates and their
contents:

Plate X Y ProteinID CloneID Description
NMHY-1 A 1 3159924 1616520 ug99a01.r1 Soares mous
NMHY-1 A 2 3159925 1616522 Rattus norvegicus
NMHY-1 B 1 3159958 1616568 ug99e01.r1 Soares mous
NMHY-1 B 2 1616570
NMHY-1 A 3 3159926 1616524 Rattus norvegicus
NMHY-1 A 4 3159927 1616526 ug99a04.r1 Soares mous
NMHY-1 B 3 1616572
NMHY-1 B 4 3159959 1616574 ug99e04.r1 Soares mous
NMHY-1 A 5 1616528
...

A layout file that can be obtained from most spotting robots contains the essential mapping
table that describes the absolute spot coordinates on a slide and its corresponding content in
terms of plate coordinates:

Plate #,Plate ID,Well #,Well Col,Well Row,Probe,Replica #,Pin #,SlideAbsX,SlideAbsY
1,AutoGen1,A1,1,1,,0,1,5.500,40.000
1,AutoGen1,A3,3,1,,0,1,5.875,40.000
1,AutoGen1,A5,5,1,,0,1,6.250,40.000
1,AutoGen1,A7,7,1,,0,1,6.625,40.000
1,AutoGen1,A9,9,1,,0,1,7.000,40.000
1,AutoGen1,A11,11,1,,0,1,7.375,40.000
...

Finally, all scanner results (including the measured spot positions), their background, and
intensity values and various other results are obtained in tab separated lists or as spreadsheet
tables.

ATF 1.0
4 9
"Type=GenePix results 1.3"
"PixelSize=10"
"Creator=AIM 1.2 mkatzer mussorgsky 24. August 2001"
"FileName=/vol/biochips/share/olaf/olaf1cy3_80_2.Tif

/vol/biochips/share/olaf/olaf1cy5_80_2.Tif"
"Block" "Column" "Row" "X" "Y" "Ratio Means" "Ratio SD" "Ratio of Medians"
1 1 1 626 584 0.9706 0.15094 0.58327
1 2 1 1002 562 1.1142 0.46408 0.83645
1 3 1 1381 568 1.002 0.066656 1.5403
1 4 1 1761 572 1.1797 0.054528 1.2084
1 5 1 2131 569 1.0027 0.050338 0.85335
1 6 1 2506 565 0.96684 0.076259 0.95631
...

21

2. State of the art in genome research

In addition to the data described above, laboratory protocols have to be stored in order to
guarantee reproducible microarray results. Comprehensive laboratory protocols are applied
at all stages of the experiment. Since the data obtained is not self explanatory, missing or
incomplete experimental descriptions and parameter setups can render an experiment al-
most impossible to reproduce or even interpret. Complete recipes and descriptions of RNA-
purification, labeling, washing, and hybridization can be created and managed using a spe-
cialized laboratory inventory management system (LIMS). This data has to be linked to
measured data from the analysis of the microarrays.

It becomes clear that only widely accepted standards and data exchange formats will al-
low the compatibility and comparison of different DNA array formats, platforms, and tools.
Therefore, an efficient data management is essential thus ensuring the reproducibility of any
experiment and supporting the evaluation of the measured results with exchangeable meth-
ods. Additional prerequisites that have to be fulfilled for high-throughput transcriptomics
are the availability of high quality measurements, exact spot information, and automated
methods for the identification and analysis of expression data.

At present, the cDNA-microarray technology is well established and routine pipelines can
be set up [Bow99]. Because of the massive parallelism of microarray experiments they
are often called high-throughput experiments [BH02]. Due to the large number of genes
typically represented on microarrays these are still expensive and quite often there are only
few replica spots available on each slide to support the large number of hypotheses that could
be generated.

2.2.2. Analysis of expression data

Once a DNA array experiment has been designed and performed, the data must be extracted
and analyzed. The identification of similarities and differences in gene expression at varying
levels and the exploration of distinctive features between two samples depends on thorough
data analysis techniques due to the high dimensional characteristics of microarray experi-
ments.

Experimental data from microarrays have several properties which distinguish them from
other biological datasets that measure RNA abundance like for example real-time quanti-
tative PCR [GHW96, HSLW96]. Microarray data is highly prone to variation. A number
of sources of systematic and non-systematic variation raises the need for normalization and
calibration [KKB03, CAM+99]. Whenever datasets from multiple microarrays have to be
compared, normalization is required in order to correct such systematic errors. Robust meth-
ods for the analysis of the datasets are needed and have to be performed with respect to the
often restricted number of replica available.

22

2.2. Transcriptomics

Spot detection

As a first step for the analysis of expression data, all spots that are normally arranged in
grids have to be detected on the microarray. Therefore, a number of image analysis pro-
grams provide a semi-automatic spot detection where the user has to roughly adjust a grid
before the spots can be located. After manually adjusting the spot positions, their size, and
sometimes also their shape, the intensity values are computed for each dye and the back-
ground. Finally, another manual inspection of the results can be useful to check the spot
detection. Thereby, weak or wrongly detected spots can be marked (flagged) and excluded
from all further analysis.

Normalization

Before the differential gene expression profiles between two conditions can be obtained for
a microarray experiment, it has to be ascertained that the data sets are comparable. Different
normalization methods have been developed in the recent past that account for the system-
atic experimental and biological variations described above. Basically, these methods try to
adjust the following variables:

• number of cells in the sample

• total RNA isolation efficiency

• mRNA isolation and labeling efficiency

• hybridization efficiency

• signal measurement sensitivity

• amount of spotted material

• saturation

• “bleaching”

The methods applied for these purposes employ a global or slide-based scaling approach,
control-based methods (e.g. reference RNA or housekeeping genes) and pin-dependent nor-
malization (for print-tip groups); but all of them have their drawbacks and advantages. More
sophisticated methods perform normalization based on local regression (e.g.lowess()func-
tion [YDLSa]).

23

2. State of the art in genome research

Statistical analysis and other approaches

Although many data analysis techniques have been applied to DNA array data, the field is
still evolving and the methods have not yet reached a level of maturity [Zha99]. Gene ex-
pression array data can be analyzed on the level of single genes, multiple genes (in terms
of common functionalities, interactions, co-regulation, etc.), and on the level of protein net-
works. The methods applied so far are ranging from simple-minded fold approaches or
filters up to probabilistic Bayesian models and supervised or unsupervised clustering strate-
gies. Among numerous statistical methods the well known Students’ t-test [DYCS00] is the
most frequently used approach to identify significant differentially expressed genes. Other
data analysis techniques include self-organizing-maps (SOM) [Koh97], k-means cluster-
ing [YHR01], hierarchical clustering [ESBB98], and variants of principal component analy-
sis (PCA) [Jol86]. Although many of these approaches are well suited for detailed analysis
of microarray data, it is important to notice that the quality and reliability of the obtained
results depend heavily on the design of the experiment (e.g. number of biological or physical
replica). All evaluation of DNA array data always has to take into account the biological
context and the experimental setup and therefore it is essential to preserve these information.

Since this work is focused on data integration, these and other approaches for the analysis of
microarray data are not discussed in detail.

2.3. Proteomics

During the last few years the high-throughput analysis of all proteins of a cell (the proteome)
has become more and more important. In this section a very short description of the pro-
teomics approach is presented.

2.3.1. A short introduction

In general, proteomics tries to identify all proteins in an organism, tissue, or cell at a par-
ticular time. The often highly dynamic behavior of proteins can be measured by common
techniques such as two-dimensional sodiumdodecylsulfate polyacrylamide gel electrophore-
sis (2D SDS-PAGE) for protein separation and mass spectrometry (MS) which is used for
protein identification. Mass spectra obtained for a spot on a 2D gel are then analyzed by
various bioinformatics tools in order to identify the protein as illustrated in figure 2.9.

24

2.4. Metabolic pathways

Figure 2.9.: After separating the proteins of a cell they can be analyzed using mass spec-
trometry. Therefore, the proteins are digested with specific agents that cut the
protein sequence-specifically thus producing smaller peptides. The spots on a
gel can then be identified by comparing their mass spectra with a database of all
proteins of an organism.

Since this work is focused on the analysis of genome and transcriptome data, the proteomics
approach is not explained in more detail here. The interested reader can find a review and an
introduction into proteomics in [GH02], an overview about existing techniques and systems
is also given in [WRB+03].

2.4. Metabolic pathways

The advent of large scale high-throughput methodologies such as microarray and proteome
analysis encourages researchers more than ever to gain insight into cellular networks of
growing complexity. One major step towards understanding biological systems as a whole
is the detailed analysis of enzymes and metabolic pathways. Most of the details described in
this section were adapted from [Str91, Leh85, KR97].

25

2. State of the art in genome research

2.4.1. Enzymes

Enzymes act as catalysts in every biological system. Microorganisms, plants, and animals
control their vital metabolisms quickly, well directed and efficiently by using enzymatic re-
actions. With the noted exception of some small RNA molecules (ribozymes) the major
part of all reactions in a cell is being influenced by proteins [Leh85]. Enzymes catalyze the
chemical reactions in a cell which can be denoted together as the intermediary metabolism.
The activity of most enzymes is highly specific for a certain substrate and their efficiency
surpasses any synthetic catalyst (biochemical reactions can be accelerated up to 1012 times).
Chemical enzymatic transformations take place in aqueous solution inside a cell under mod-
erate temperature and pH conditions. By catalyzing sequences of reactions, enzymes can
build or destroy metabolites, store energy in chemical compounds, or combine simple or-
ganic compounds to macro molecules. The activity of enzymes can be regulated by different
mechanisms and is often controlled by the concentration of synthesized end products (feed-
back inhibition).

Enzymes likelactate-dehydrogenaseor malate-dehydrogenasethat can be found in a vari-
ety of molecular forms (iso-enzymes) are often adapted to specific tissues and can differ in
their catalytic activity. Iso-enzymes play an important role in cell differentiation and for the
development of various tissues.

Co-enzymescan be modified temporarily during an enzymatic reaction and revert back again
into their original state. They are not specific for a single enzymatic reaction and can there-
fore interact with a number of enzymes. Co-enzymes can be separated into soluble co-
enzymes and prosthetic groups depending on the type of the catalytic reaction.

Since all enzymes are temperature-sensitive proteins that are subject to denaturation and in-
activation, the synthesis of required enzymes is vital for each cell to guarantee a continuous
metabolism. Additional control of the catalytic activity can be accomplished by increas-
ing or inhibiting the synthesis of specific enzymes dependent on the respective metabolic
conditions.

Nomenclature and classification of enzymes

Enzymes can be classified into six main classes (see table 2.1) according to the recommen-
dations of the NC-IUBMB7 and it is important to note that each class specifies the type of
reactions, not the structures of the proteins that catalyze them. Every sufficiently charac-
terized enzyme is also described by a four-digit EC-number such asEC A.B.C.D where
the prefix EC is an abbreviation forEnzyme Commissionand each capital letter represents a
number specifying the catalytic reaction as follows:

7Nomenclature Committee of the International Union of Biochemistry and Molecular Biology

26

2.4. Metabolic pathways

• A denotes one of six main class (see table 2.1 for more details).

• B defines the chemical structures that are changed by the enzymatic reaction.

• C separates different kinds of co-substrates and therefore defines the properties of an
enzyme.

• D is a serial number characterizing enzymes in more detail if they could not be sepa-
rated by only assigning the first three groups.8

The systematic name of an enzyme consists of three parts (substrate, type of catalyzed re-
action, and suffix “ase”) but most enzymes also have additional shorter and more common
trivial names. The systematic naming scheme emphasizes the directed role of a catalyst thus
explaining different EC-numbers for the forward and reverse reaction. At the time being
(November 2003) more than 3700 enzymes have been classified by the enzyme commision.
Considering the estimated number of about 25000 natural enzymes [Kin81] it becomes clear
that only a very small portion of all enzymes is well known today.

Enzyme classification Explanation
1 Oxidoreductases catalyzing oxido-reductions

2 Transferases transferring a group from one compound to another compound

3 Hydrolases catalyzing the hydrolysis of various bonds

4 Lyases cleaving C-C, C-O, C-N and other bonds by other means than by hydrolysis or oxidation

5 Isomerases catalyzing either racemization or epimerization of a centre of chirality

6 Ligases catalyzing the joining of two molecules with concomitant hydrolysis of the diphosphate

bond in ATP or a similar triphosphate

Table 2.1.: The enzyme comission is responsible for grouping all enzymes into the six main
classes and their sub groups.

Enzymatic modes of action in vivo and in vitro

In any living organism the concentration and activity of an enzyme is adjusted according to
the physiological circumstances in a cell. This means that certain conditions highly influence
the efficiency, speed, and direction of an enzymatic reaction. In contrast to this,in vitro
analysis can only model some limited extracts of all enzymatic features at an improper level
of detail. This is also due to the fact that enzymatic activity is often measured for constant
enzyme concentrations and substrate saturation which is rarely the casein vivo.

As a basic principle, enzymatic reactions are reversible which means that the catalytic reac-
tion describes the conversion from a substrate to a product and vice versa. In case of equal

8Enzymes from different organisms that catalyze an identical reaction may have the same EC-number although
they do not share the same kinetics due to differences in their primary structure.

27

2. State of the art in genome research

enzyme efficiency for both directions, the reaction is denotedreversibleand otherwise called
directed. Due to this fact many visualizations of metabolic pathways use edges with either
one or two arrows to connect the chemical compounds thus reflecting this correlation.

2.4.2. Metabolic pathways

One of the most outstanding characteristic features of any living organism is the ability to
assimilate and convert energy from the environment. Together with other substances, this
energy can be used for mechanical work or to build complex structures of living cells. For
most of these processes, enzymes play an important role and thus the termmetabolismcan be
described as the combination of all enzymatic reactions as a whole. Basically all metabolic
procedures can be divided into the production of chemical energy (e.g. storage as ATP) and
its utilization (e.g. for the synthesis of cellular components or active transport).
In general, four specific functions of metabolism can be distinguished:

1. extraction of chemical energy out of organic nutrients or sunlight

2. conversion of nutrients from the environment into basic modules or pre-stages of
macro-molecular components in a cell

3. assembly of these components to proteins, nucleic acids, lipids, polysaccharides and
other cellular components

4. production and degradation of biomolecules for specific functions in a cell

Although the intermediary metabolism contains hundreds of different enzymatic reactions,
at least the main metabolic pathways are organized in a quite simple manner and show only
little differences in most organisms [Leh85].

Catabolism and anabolism

All metabolic activity that can be separated intocatabolismandanabolismpasses a sequence
of several enzymatic reactions via a number of intermediary products (metabolites). The
catabolism comprises all energy releasing processes where nutritive molecules (e.g. lipids,
proteins) are transformed into smaller and simpler end products (e.g. lactic acid, acetic acid).
Anabolism (orbiosynthesis) can be described as the synthetic energy consuming phase where
small and simple building blocks are combined to relatively high molecular components.
Both catabolic and anabolic processes take place at the same time although they may be lo-
cated in different compartments inside a cell. They can also be influenced independently by

28

2.4. Metabolic pathways

different enzymes allowing most flexible adaptations of specific metabolic pathways. In con-
clusion, almost all reactions are connected with each other since numerous cascades of reac-
tions can be build by combining substrate-product relationships. Additionally, the metabolic
activity is influenced by protein-protein interactions and metabolite channeling.

The energy cycle in cells

Since all aspects of cellular metabolism are subject to the principle of maximal efficiency,
the extend of degradative reactions is not determined by the concentration of available “fuel”
but by the momentary demand for energy so that the required amount of ATP is always
guaranteed. Metabolic pathways can be regulated by three different mechanisms:

1. The fastest and easiest method is the adaptation via specific, allosteric, or adjustable
enzymes.

2. Enzyme concentrations inside a cell can regulate the rates of degradation and biosyn-
thesis.

3. In higher level organisms, specific metabolic activities can be inhibited or stimulated
by hormones or via neural pulses.

Measuring metabolic activity

The exploration of metabolic pathways deals with the analysis of the chemical stoichiometry
and regulatory mechanisms that control each reaction step. Therefore, three main methods
can be applied:

1. Cell-free systems:
Cell-free preparations extracted from cells or tissues can be used to measure the accu-
mulation of specific metabolic intermediary products after inhibiting or in-activating
particular enzymes. Determining the chemical structure of these products can finally
help to identify and isolate the corresponding enzymes ideally leading to a complete
in vitro reconstruction of the metabolic pathway.

2. Genetic defects in metabolisms of auxotrophic mutants:
Another approach is the production of (viable) genetic mutant strains that cannot syn-
thesize specific enzymes. In this case, an accumulation or excretion of the defect en-
zyme’s substrate or the absence of its product can be measured. Auxotrophic mutants
can be used to analyze catabolic as well as anabolic metabolism.

29

2. State of the art in genome research

3. Radioactively labeled compounds:
Using isotopes of an element for radioactive labeling of specific metabolites is another
successfully applied method for the analysis of metabolic pathways. Such marked
molecules can be used to determine the speed of the enzymatic reactions or to verify
a postulated chain of reactionsin vitro. This method has also been applied to discover
that molecular components in cells and tissues are subject to ametabolic turnover
which means that all compounds reside in asteady statewhere the speed of the syn-
thesis and degradation are balanced.

30

CHAPTER 3

Existing systems

This chapter briefly describes numerous existing systems for the annotation and functional
analysis of (microbial) genomes. Subsequently, an overview of tools for the storage and
analysis of microarray expression data and various approaches for the visualization of meta-
bolic pathways are presented. Furthermore, different schemes for the functional classifica-
tion of genes are explained. Afterwards, some recently developed approaches for the inte-
gration of heterogeneous data are described. Conclusions learned from the analysis of the
existing systems are summarized in the last section of this chapter as a basis for the design
of a novel approach described later in section 5.1.

For lack of space, only some outstanding features of the most important systems can be
outlined here.

3.1. Genome annotation systems

The vast amount of data which has to be evaluated in any whole-genome annotation project
require a (partial) automation of the procedure. Most genome annotation systems developed
to date perform automated gene prediction using one of the standard gene prediction tools,
function prediction based on different tool results, automatic annotation, and sometimes even
a more detailed genome comparison with other already annotated organisms.

31

3. Existing systems

3.1.1. Comparison of existing tools

As illustrated in table 3.1, a number of genome annotation systems intended for the analysis
of prokaryotic and eukaryotic organisms have been designed and presented in the last few
years.

Software URL
MAGPIE http://www.visualgenomics.ca/
GeneQuiz http://jura.ebi.ac.uk:8765/ext-genequiz/
Pedant http://pedant.gsf.de/
ERGO http://wit.integratedgenomics.com/IGwit/
PedantPro http://www.biomax.de/products/f_prod_Ped.html
Phylosopher http://www.genedata.com/products.php
BioScout http://www.lionbioscience.com/bioscout/
WIT http://wit.mcs.anl.gov/WIT2/
Artemis http://www.sanger.ac.uk/Software/Artemis/
DAS http://www.biodas.org/
Manatee http://manatee.sourceforge.net/
GenDB-1 http://gendb.genetik.uni-bielefeld.de/

Table 3.1.: URLs of the most prominent genome annotation systems. Commercial products
are listed as well as open source systems like Manatee or GenDB. As a major
drawback, most of these systems do not provide a well structured interface for
programmers.

The first generation of genome annotation systems was released in 1996 and consisted of
MAGPIE [GS96], GeneQuiz [ABL+99], and Pedant [FAH+01]. These focused primarily
on generating human readable HTML documents based on tables and sometimes in-line
graphics. A number of good ideas originated from this first generation of genome annotation
systems and made their way into today’s systems. Examples are the intuitive visualizations
or the splitting of results by significance levels to enable comparison of different tools by
MAGPIE.

Since then, a second generation of mostly commercial genome annotation systems has been
published, including ERGO (Integrated Genomics, Inc.) [OLW+03], Pedant-Pro (successor
to Pedant, Biomax Informatics AG), Phylosopher (Gene Data, Inc.), BioScout (successor
to GeneQuiz, Lion AG), WIT [OLP+02], and the open source system Artemis [RPC+00].
In particular, MAGPIE, Artemis, and Phylosopher contain extensive visualizations. ERGO
also includes multiple genome comparison based annotation strategies. With the exception
of Artemis, all systems provide an automatic annotation feature. In general, all systems

32

3.1. Genome annotation systems

except ERGO use a variant of “best blast hit” as their fixed, built-in annotation strategy.
Only MAGPIE, Artemis, and the newer versions of Pedant allow the integration of expert
knowledge through manual annotation. In contrast to most of the other tools, the recently
published system Manatee is focused on different annotation strategies that employ and as-
sign functional categories like the Gene Ontology (see section 3.4.5). Another completely
different concept for annotating a genome was introduced by the Distributed Annotation Sys-
tem (DAS) [DJD+01] which provides a concept for a decentralized client/server architecture
and data exchange via XML data streams.

The substantial commercial interest in the area of genome annotation has led to a situation
where, with the noted exception of Artemis, no genome annotation system was in the public
domain for a very long time. Therefore, only the source code of Artemis was available for
further analysis by the research community. Even in-depth technical information about com-
mercial systems, such as details about the annotation strategy implemented are very hard to
obtain. This lack of access is a major hurdle when trying to evaluate these complex systems.
Together with the omission of well defined APIs, this prevents the extension of existing sys-
tems and is counter-productive for science in this area of research: the best experts in the
field have no medium to contribute their experience to the cooperative evolution of better
and better annotation systems. Furthermore, none of the systems has a modular architecture
that allows a flexible extension at different levels which is essential for the integration of
experimental and other higher level data (e.g. transcriptomics or proteomics results).

3.1.2. GenDB-1

The need for a well designed and documented open source genome annotation system led
to the development of GenDB at the Center for Genome Research, Bielefeld University.
GenDB is a flexible and easily extensible system and was first published (version 1.0) in the
PhD thesis of Folker Meyer [Mey01]. GenDB-1 was successfully employed for the annota-
tion of more than a dozen novel microbial genomes in world-wide projects. Nevertheless, the
system had several drawbacks and limitations that hindered its application and integration.

System overview

The open source genome annotation system GenDB-1 is based on a relational database
management system. Contig sequences can be imported and after predicting the coding
sequences (CDS), a number of standard bioinformatics tools like BLAST, Pfam, InterPro
etc. can be run on these regions as a basis for the functional (manual) annotation. By storing
only a minimal required subset of each tool result (e.g. only a short description and a com-
puted score) and recomputing the complete result (e.g. an alignment) on demand, the storage
requirements can be reduced enormously.

33

3. Existing systems

The software has an object-oriented application programmers interface (API) implemented
in Perl [Per] which has been partially generated automatically with O2DBI [Cla02]. The
latter creates an object-relational mapping onto SQL tables. GenDB-1 has a web frontend
and a Gtk [MKM] user interface (see figure 3.1) that creates dynamic visualizations and can
be used for annotating genes based on the computed tool results.

Figure 3.1.: Screenshot of the GenDB-1 Gtk graphical user interface. The observations com-
puted by different bioinformatics tools are listed for a selected region and the
dynamically recomputed BLAST alignment is displayed for one of them.

The system features the concept of wizards which are software agents that automate complex
repetitive tasks (e.g. ORF editor, frame-shift correction, contig update, etc.). In addition to
a search interface, the software can generate statistical plots and includes a virtual 2D gel.
The data contained in GenDB can be exported into widely used output formats like FASTA,
EMBL, GFF (genome feature format1), and others. An integrated pathway module supports
the analysis and visualization of annotated enzymes based on the KEGG [KG00] metabolic
pathways and the PathFinder [GHM+02] software.

1http://www.sanger.ac.uk/Software/formats/GFF

34

3.2. Microarray analysis

Limitations of GenDB-1

In GenDB-1, the only built-in types of regions are contigs, supercontigs, and ORFs that can
be handled by the GenDB system. Although an EMBL feature can be assigned to each ORF
for further classification, it is clear that the lack of comprehensively defined region types
is a major hurdle when trying to completely describe all features of a genome (promotors,
tRNAs, rRNA operons, repeats, IS elements, etc.). Since all kinds of tools and their obser-
vations are represented in single database tables, storing individual tool settings or results is
uncomfortable and complicated. For example, all tools have to use thescore field of the
fact table to store their (numerical) result that can be a floating point value (e.g. for SignalP)
or an expectation value (e.g. for BLAST). Additionally, the configuration and computation
of different bioinformatics tools is quite complicated and is therefore only a task for expe-
rienced users. Since GenDB was designed as an open platform for further extension and
is continuously developed, the restriction to a Perl API as the only programmers interface
is another important disadvantage that limits using the software. The system has almost no
project or user management support and thus provides only inadequate access control (only
annotatorsare distinguished from other users).

Using a dedicated database backend, an API, and separate frontends, the GenDB architecture
itself has been modularized sufficiently for the purpose of genome annotation. Compared to
other systems that do not provide such a layered architecture, GenDB seems to be best suited
as a core module for handling all issues involved in the annotation of whole genomes. Never-
theless, the system is missing a general concept for the integration of additional components
(e.g. for transcriptome or proteome data analysis). Instead, a module for visualizing and
browsing metabolic pathways was integrated directly into the Gtk frontend. It is clear that –
in particular due to the high expectations based on promising results from high-throughput
experiments – the availability of all features just mentioned is vital for the future success of
any genome annotation system.

3.2. Microarray analysis

The properties mentioned in section 2.2 impose new challenges for the storage and evalua-
tion of large scale microarray data and demand for well designed systems that support robust,
efficient and reliable bioinformatics methods. As the analysis of microarray data is a con-
stantly evolving field and new algorithms are permanently being published, such a system
should provide flexible mechanisms to exchange or add such methods.

35

3. Existing systems

3.2.1. Storage and analysis of expression data

At present, there already exists a variety of commercial and non-commercial software ap-
plications that aim at the analysis of microarray data and the list given in table 3.2 is by no
means complete.

Software URL
ImaGene http://www.biodiscovery.com/imagene.asp
GeneSight http://www.biodiscovery.com/genesight.asp
J-Express Pro http://www.molmine.com/
J-Express http://www.ii.uib.no/~bjarted/jexpress/
Cluster http://rana.lbl.gov/EisenSoftware.htm
GeneX-Lite http://www.ncgr.org/genex/
QuantArray http://lifesciences.perkinelmer.com/
Base http://base.thep.lu.se/
maxd http://www.bioinf.man.ac.uk/microarray/maxd/
Nomad http://ucsf-nomad.sourceforge.net/

Table 3.2.: URLs for microarray analysis software. Some of the systems listed above focus
on the image acquisition and simple analysis while others provide comprehensive
collections of methods for the evaluation of the measured spot intensities.

In the commercial segment, there are for example ImaGene and GeneSight from Biodis-
covery and J-Express Pro from Molmine. The predecessor of J-Express Pro named J-
Express [DJ01] is available free of charge. Other examples of software that is at least licensed
free of charge to academics is Eisen’s well known Cluster software [ESBB98], GeneX-Lite
(the successor version of GeneX), Base [STVC+02], maxd, and Nomad.

While ImaGene (see figure 3.2) is mainly an image analysis tool with very restricted data
analysis capabilities, GeneSight, J-Express (Pro) and Cluster focus on the analysis of mea-
sured expression data and methods like clustering and visualizations for the computed re-
sults.

All these tools operate on flat files for data input and output and a plain file with the measured
data has to be imported each time. The systems mentioned above neither support a common
shared data repository nor do they provide structured storage of microarray data and ex-
perimental setups. The omission of well defined and open interfaces of most commercial
systems is also a major hurdle when trying to integrate user defined new methods.

36

3.2. Microarray analysis

Figure 3.2.: Screenshot of the ImaGene image analysis software. After loading the scanned
images, grids have to be arranged that roughly fit onto the spotted slide layout
before the spot detection can be started.

In contrast to this, the open source systems GeneX, Base, maxd, and Nomad have been
designed as platforms that feature most aspects of microarray data storage and analysis. They
use a relational database management system (RDBMS) as their storage backend and provide
web frontends or graphical user interfaces (GUIs) to the data. All of these tools provide data
normalization and data analysis techniques. While Base and Nomad provide a web-based
user interface, maxd and GeneX consist of several applications for data upload and analysis.
The major drawback of these systems is that they do not provide a structured interface that
allows a bidirectional data exchange between different applications. In addition to that, the
extension of most systems is often impossible since no API is available. Thus, advanced
features like the integration with genome annotation systems cannot be easily implemented
except by simple hyperlinks.

3.2.2. MIAME and MAGE-ML

Since microarray experiments do not only produce large amounts of data but also require a
number of experimental steps and procedures that should be protocolled consistently, stan-
dards for exchanging and storing this information have to be defined. The MIAME (Mini-

37

3. Existing systems

mum Information About a Microarray Experiment) format [BHQ+01] has been defined by
the MGED (Microarray Gene Expression Data) Society as a standard for microarray data
annotation and exchange. The goal of this standard is to outline the minimum information
required to interpret unambiguously and potentially reproduce and verify an array based
gene expression monitoring experiment. Although details for particular experiments may be
different, MIAME aims to define the core that is common to most experiments.

A major objective of MIAME is to guide the development of microarray databases and data
management software. While MIAME is not a formal specification, but a set of guide-
lines, the MAGE [MGEb] format has been developed as a standard microarray data model
and exchange format. MAGE is able to capture information specified by MIAME and re-
cently became an Adopted Specification of the OMG standards group2. Many organizations,
including Agilent, Affymetrix, and Iobion, have contributed ideas to MAGE. Although MI-
AME concentrates on the content of the information and should not be confused with a data
format, it also tries to provide a conceptual structure for microarray experiment descriptions
as a basis for the MAGE format. The MAGE group aims to provide a standard for the
representation of microarray expression data that should facilitate the exchange of microar-
ray information between different data systems. Currently, this is done through the OMG
(Object Management Group) by the establishment of a data exchange model (MAGE-OM:
Microarray Gene Expression-Object Model) and a data exchange format (see MAGE-ML,
Microarray Gene Expression-Markup Language3 for the full specification and for the Doc-
ument Type Definition (DTD)4) for microarray expression experiments. MAGE-OM has
been modelled using the Unified Modelling Language (UML) and MAGE-ML has been im-
plemented using XML (eXtensible Markup Language). The additional MAGEstk (or MAGE
Software Toolkit) is a collection of packages that act as converters between MAGE-OM and
MAGE-ML under various programming platforms.

Microarray Gene Expression Markup Language (MAGE-ML) is a language designed to de-
scribe and communicate information about microarray based experiments. MAGE-ML can
describe microarray designs, microarray manufacturing information, microarray experiment
setup and execution information, gene expression data and data analysis results. Since the
structure of MAGE-ML is not simple, user-friendly tools are currently being developed that
support the creation of MAGE-ML documents.

For reasons of simplicity and readability, related classes are grouped together into packages
(Experiment, Bioassay, ArrayDesign, DesignElement, Biomaterial, BioAssayData, Quan-
titationType, Array, Bioevent, Protocol, AuditAndSecurity, Description, and HigherLevel-
Analysis) since the complete MAGE-OM is quite too large to be represented on a single
diagram.

2http://www.mged.org/mage
3http://cgi.omg.org/cgi-bin/doc?lifesci/01-10-01
4http://cgi.omg.org/cgi-bin/doc?lifesci/01-11-02

38

3.3. Databases and visualizations for metabolic pathways

3.3. Databases and visualizations for metabolic pathways

Pathway databases are widely used to store and model the biochemical relationships of more
or less well-known metabolic pathways. Currently, more than a 10 databases exist that of-
fer information about biochemical pathways, metabolic reactions, enzymes, and the genes
encoding such functions at different levels of detail and complexity.

Database URL
Biochemical Pathways http://www.expasy.org/cgi-bin/search-biochem-index/
KEGG http://www.genome.ad.jp/kegg/kegg.html
EcoCyc http://biocyc.org/ecocyc/
MetaCyc http://biocyc.org/metacyc/
WIT http://wit.mcs.anl.gov/WIT2/
Biocatalysis/Biodegradation http://umbbd.ahc.umn.edu/index.html
BioPath http://biopath.fmi.uni-passau.de/index.html
PathDB http://www.ncgr.org/pathdb/
PathFinder http://pathfinder.genetik.uni-bielefeld.de/
ENZYME http://www.expasy.ch/sprot/enzyme.html
BRENDA http://www.brenda.uni-koeln.de/

Table 3.3.: Some URLs of metabolic databases. While KEGG provides manually drawn
general pathways, systems like EcoCyc or BioPath incorporate dynamic visual-
izations.

Some of the databases described in table 3.3 focus on static (manually drawn) representa-
tions (e.g. KEGG) whereas other systems support dynamic visualizations based on graph
drawing algorithms (e.g. BioPath [FPR+02], PathFinder [GHM+02]). In addition to gen-
eral ressources (e.g. KEGG), various organism specific databases like EcoCyc [KRS+00]
concentrate on the metabolism of selected species. In addition to the pathway databases
described above, the ENZYME [Bai00] and BRENDA [SSS95] databases contain detailed
information about characterized enzymatic reactions. Both databases support a mapping
onto the EC number classification and contain comprehensive descriptions of the catalyzed
reactions and involved chemical compounds (e.g. substrate, product, cofactors). Additional
links to sequence databases like SwissProt provide useful information about annotated genes
encoding such enzymes.

39

3. Existing systems

3.3.1. Boehringer Mannheim wall charts

The Boehringer Mannheim wall charts have been published as the first comprehensive archive
of metabolic information ([Mic99] and [Mic92]). The online version (see URL for Biochem-
ical Pathways) also provides zoomable views and clickable image maps with links to the
ENZYME database.

Figure 3.3.: Excerpt of the Boehringer Mannheim wall charts. These manually drawn maps
were originally published in a book and as posters. Recently, they were also
made available online as interactive pathways charts.

The Boehringer wall charts represent very detailed and colorful views onto the metabolic
pathways, including the chemical formula of many compounds (see figure 3.3). Subways of
a pathway that are only represented in specific organisms are highlighted as well as special
disease related enzymes. The complexity of the displayed information and the level of detail
is a major drawback that complicates using these charts, especially for unexperienced users.

40

3.3. Databases and visualizations for metabolic pathways

3.3.2. KEGG

The KEGG database [KG00] (Kyoto Encyclopedia of Genes and Genomes) contains more
than 100 different metabolic pathways derived from literature (sources:Metabolic Maps
[Nis97], Boehringer wall charts[Mic92], Enzyme Handbook[SSS95]). A single master-
pathway thus represents a consensus of the known pathways from different organisms. Fig-
ure 3.4 shows an image of the KEGG Lysine biosynthesis pathway that contains less details
in contrast to the Boehringer wall charts.

Figure 3.4.: Diagram of the KEGG Lysine biosynthesis pathway forC. glutamicum. All
enzymes of a pathway that were annotated in the selected genome are indicated
by green boxes.

Organism specific metabolic routes are displayed by highlighting the encoded enzymes in
a masterpathway which simplifies the recognition of implemented subways. KEGG also
links enzymes and compounds to databases with additional information and correlates each
enzyme with other genomes it appears in. The main disadvantage of the KEGG metabolic
pathways is the static nature of the manually drawn images that makes it difficult to further
analyze the metabolism of any organism.

41

3. Existing systems

3.3.3. EcoCyc/MetaCyc

EcoCyc [KRS+00] is a bioinformatics database that describes the genome and the biochem-
ical machinery ofE. coli. The long-term goal of the project is to describe the molecular
catalog of theE. coli cell as well as the functions of each of its molecular parts to facilitate
a system-level understanding ofE. coli. EcoCyc is an electronic reference source forE. coli
biologists and for biologists who work with related microorganisms. Scientists can use the
Pathway/Genome Navigator user interface within EcoCyc to visualize the layout of genes
within theE. coli chromosome, of an individual biochemical reaction, or of a complete bio-
chemical pathway (with compound structures displayed). The navigation capabilities of the
software allow a user to move from a display of an enzyme to a display of a reaction that
the enzyme catalyzes, or to the gene that encodes the enzyme (see figure 3.5). The interface
also supports a variety of queries, such as generating a display of the map positions of all
genes that code for enzymes within a given biochemical pathway. As well as being used
as a reference source to look up individual facts, EcoCyc supports computational studies of
the metabolism, such as design of novel biochemical pathways for biotechnology, studies of
the evolution of metabolic pathways, and simulation of metabolic pathways. EcoCyc is also
used for computer-based education in biochemistry.

Figure 3.5.: Partial biosynthesis pathway for L-Methionine as displayed by the EcoCyc sys-
tem. The user can zoom in and out thus choosing the desired level of detail and
complexity.

42

3.3. Databases and visualizations for metabolic pathways

In contrast to the EcoCyc database, the MetaCyc metabolic pathway database contains path-
ways from over 150 different organisms. MetaCyc describes metabolic pathways, reactions,
enzymes, and substrate compounds. The MetaCyc data was gathered from a variety of liter-
ature and online sources and contains citations to the source of each pathway. MetaCyc is a
collaborative project between SRI International, the Carnegie Institution, and Stanford Uni-
versity. MetaCyc employs the same database schema as the EcoCyc database. The pathways
within MetaCyc are annotated at different levels of detail. Some pathways include objects
for each enzyme in the pathway, and the pathway and enzyme include extensive commentary
and literature citations. Other pathways consist of a sequence of reactions only, with more
details to be added in a future version. Unlike EcoCyc, MetaCyc does not provide genomic
data. Both systems use the Pathway Tools for data retrieval and visualization. Originally,
MetaCyc was initialized with all metabolic pathways of EcoCyc but many additional path-
ways were then added to the database. The majority of the pathways within MetaCyc are
from micro-organisms. Each MetaCyc pathway has a slot (attribute) called “species distri-
bution” that lists the one or more species in which the experimental literature reports that
this pathway has been observed. The fact that a given species is not listed in the species
distribution of a pathway does not necessarily imply that the pathway is not present in that
species, but only that no report of its presence has yet been found in the literature. Meta-
Cyc contains all enzyme-catalyzed reactions that have been assigned EC numbers by the
Nomenclature Committee of the International Union of Biochemistry and Molecular Biol-
ogy (NC-IUBMB). In addition to that, MetaCyc also contains over 400 enzyme-catalyzed
reactions that have not yet been assigned an EC number.

3.3.4. The MPW/EMP or WIT database

The Enzymes and Metabolic Pathways database (EMP) [Kar98] contains information about
enzymes and their occurrence in metabolic pathways derived from literature. The Metabolic
Pathways Database (MPW) [SGMS98] has been derived from the EMP system and is the ba-
sis for the reconstruction of metabolic pathways implemented in the WIT system [OLP+02].
The WIT (What Is There) system has been designed to support comparative analysis of
sequenced genomes and to generate metabolic reconstructions based on chromosomal se-
quences and metabolic modules from the EMP/MPW family of databases. This system
contains data derived from about 40 completed or nearly completed genomes. Sequence
homologies, various ORF-clustering algorithms, relative gene positions on the chromosome,
and placement of gene products in metabolic pathways (metabolic reconstruction) can be
used for the assignment of gene functions and for the development of overviews of genomes
within WIT. The integration of a large number of phylogenetically diverse genomes in WIT
facilitates the understanding of the physiology of different organisms.

43

3. Existing systems

3.3.5. Biocatalysis/Biodegradation database (UM-BBD)

The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) provides
curated information on microbial catabolism and related biotransformations, primarily for
environmental pollutants. It contains data on microbial biocatalytic reactions and biodegra-
dation pathways for primarily xenobiotic, chemical compounds. The goal of the UM-BBD
is to provide information on microbial enzyme-catalyzed reactions that are important for
biotechnology. Currently, it consists of over 130 metabolic pathways, 800 reactions, 750
compounds, and 500 enzymes. In the past two years, it has increased its breadth to include
more examples of microbial metabolism of metals and metalloids. Furthermore, the types
of information the database includes were expanded to contain microbial biotransformations
of and binding interactions with many chemical elements. It has also increased the number
of ways in which this data can be accessed (mined). Structure-based searching was added
for exact matches, similarity, or substructures. Analysis of UM-BBD reactions has lead to a
prototype of a guided pathway prediction system. Guided prediction means that the user is
shown all possible biotransformations (see figure 3.6) at each step and guides the process to
its conclusion. Mining the UM-BBD’s data provides a unique view into how the microbial
world recycles organic functional groups.[EHKW03]

Figure 3.6.: Visualization of a pathway from the Biocatalysis/Biodegradation database. In
contrast to other systems, the UM-BBD concentrates on the detailed analysis of
chemical reactions and on the prediction of novel pathways.

44

3.3. Databases and visualizations for metabolic pathways

3.3.6. BioPath

The BioPath project was motivated by the Boehringer Mannheim wall charts in order to gen-
erate dynamic views to specific problems. The system was also designed to keep pace with
the enormous expansion of the scientific knowledge in biochemistry. BioPath is a platform
for a convenient electronic access to the biochemical knowledge. It provides information
from different views and in distinct levels of detail (see figure 3.7). The dynamically cre-
ated visualizations are based on graph drawing algorithms and support specialized layout
algorithms for open and closed circles. As an additional feature, the system tries to layout a
pathway preserving the mental map, e.g. small changes of the data imply only small changes
of the displayed path.

Figure 3.7.: Visualization of the maltose-fructose pathway as provided by the BioPath sys-
tem. This project was especially focused on optimizing the layout and visual-
ization of dynamically drawn pathway maps.

BioPath provides powerful search mechanisms for substances and reaction networks and
allows comparisons of reaction networks. It gives access to different types of information
on enzymes, reactions, and metabolism and automatically computes visual representations

45

3. Existing systems

of complex reaction nets. BioPath is easy to use and can be updated and extended. Current
activities are the improvement and adaptation of the major components of BioPath. Since
the BioPath system has been bought by the LION Bioscience AG, it is no longer available to
the public free of charge.

3.3.7. PathDB

PathDB (unpublished) is both a data repository and a system for building, visualizing, and
comparing cellular networks. PathDB version 2 is based on an abstract approach such that
modelling of data is not only restricted to metabolism but also supports signal cascade data,
gene regulatory data, protein-protein interaction data, and protein-small molecule binding
data. New user defined pathways can be added to the system and visualized with a Path-
wayViewer. PathDB features the possibility to merge different networks together and to
view them as one network. In addition to the metabolic data, the system contains the Gene
Ontology database and a query interface. PathDB can be integrated with the ISYS environ-
ment5 (see also section 3.5.6) and the maxdView gene expression visualization component6

can be used as a plug-in to synchronize clusters from gene expression data with the Path-
wayViewer. The software is available free for non-commercial use as a client or complete
server installation.

3.3.8. PathFinder

PathFinder[GHM+02] is a tool for the dynamic visualization of metabolic pathways based
on annotation data. Pathways are represented as directed acyclic graphs, graph layout algo-
rithms accomplish the dynamic drawing and visualization of the metabolic maps. A more
detailed analysis of the input data on the level of biochemical pathways helps to identify
genes and detect improper parts of annotations. As an RDBMS based Internet application
PathFinderreads a list of EC-numbers or a given annotation in EMBL- or Genbank-format
and dynamically generates pathway graphs.

3.4. Functional classification

As outlined in section 2.1.4, a simple comparison of different organisms is often quite diffi-
cult to obtain without consistent naming conventions being used for the (an)notation of genes
and their products. Additionally, the lack of unique gene identifiers does not only compli-
cate cross-linking of different experimental results but also makes it almost impossible to

5http://www.ncgr.org/isys/
6http://www.bioinf.man.ac.uk/microarray/resources.html

46

3.4. Functional classification

integrate inhomogeneous data from different sources (e.g. to correlate genome annotations
and expression profiles). A number of functional classification schemes that have been de-
veloped in the past few years are presented here showing different approaches that try to find
a remedy for the above mentioned problems.

Various schemes exist that can be used for the functional classification of genes and their
protein products. Most of these categories consist of simple lists that define categories
and describe their functionality. With the exception of COG [TNG+01] and Gene Ontol-
ogy [The00] classifications it is also difficult to assign such categories automatically. The
following sections describe the classification via Gene Ontologies and other categories in
more detail. In particular, the concept of defining Gene Ontologies for the assignment of
functions seems to represent the most sophisticated approach developed to date.

3.4.1. Monica Riley categories

The first extensive functional classification scheme (see table 3.4) for gene products was de-
vised in 1993 by Monica Riley [Ril93] to catalogue the 1171Escherichia coligenes known at
that time. This was some 4 years before the complete genome forE. coli, currently estimated
to have approximately 4,300 genes, was sequenced and annotated with the slightly modified
functional categories of Fred Blattner [BPB+97]. Several updated versions of the classifica-
tion scheme have been published and can be found for example in GenProtEC [Ril98] and
EcoCyc [KRS+00].

3.4.2. TIGR roles

The Institute for Genomic Research (TIGR7) maintains a fairly extensive list of human and
many other organism nomenclatures. In addition to unique accession numbers for each
database entry (e.g. genes, ESTs), the institute has also established a set of standard cate-
gories (TIGR roles) adapted from the Monica Riley categories that can be used for functional
assignments.

3.4.3. The hierarchy of EMBL features

The GenBank8, EMBL9, and DDBJ10 nucleic acid sequence databanks use tables of sites
and features to describe the roles and locations of higher order sequence domains and ele-
ments within the genome of an organism. In February, 1986, GenBank and EMBL began a

7http://www.tigr.org/
8http://www.ncbi.nlm.nih.gov/
9http://www.ebi.ac.uk/embl/

10http://www.ddbj.nig.ac.jp/

47

3. Existing systems

Amino acid biosynthesis
Purines, pyrimidines, nucleosides, and nucleotides
Fatty acid and phospholipid metabolism
Biosynthesis of cofactors, prosthetic groups, and carriers
Central intermediary metabolism
Energy metabolism
Transport and binding proteins
DNA metabolism
Transcription
Translation
Regulatory functions
Cell envelope
Cellular processes
Other categories
Hypothetical

Table 3.4.: The original main functional categories as described by Monica Riley. These
roles were initially created and adapted for the annotation ofE. coli.

collaborative effort (joined by DDBJ in 1987) to devise a common feature table format and
common standards for annotation practice11. The overall goal of the feature table design is to
provide an extensive vocabulary for describing features in a flexible framework. The hierar-
chical structure contains features to describe e.g. biological functions, interactions, different
effects on sequences, repeats, and structural information and allows the three databases to
exchange data on a daily basis.

3.4.4. EC-numbers

As already outlined in section 2.4.1, the Nomenclature Committee of the International Union
of Biochemistry and Molecular Biology (IUBMB12) maintains a catalog of known enzymes
and their functions. Enzyme nomenclature is based on the reactions that are catalyzed, and
not the genes that make up the enzymes, or the protein structure of those enzymes [KKB03].
As a consequence this naming scheme is not accurate for the description of genes in par-
ticular because even some enzymes may consist of several subunits. Enzyme databases are
available online and can be searched using for example the Expert Protein Analysis System
(EXPASY13) or the Kyoto Encyclopedia of Genes and Genomes (KEGG14).

11http://www.ebi.ac.uk/embl/Documentation/FT_definitions/feature_table.html
12http://www.chem.qmul.ac.uk/iubmb/
13http:ca.expasy.org/enzyme/
14http://www.genome.ad.jp/kegg/

48

3.4. Functional classification

3.4.5. Gene Ontology

The Gene Ontology classification scheme [The00] has been developed by the Gene On-
tology Consortium as “a gold standard for the unification of systematic biology” (Michael
Ashburner, ISMB 2002). It provides a dynamic controlled vocabulary that can be applied to
all organisms. The three organizing principles separate all assignments into molecular func-
tion, biological process, and cellular component. Related characterizations can be expressed
in terms of isa andpart-of relationships. All Gene Ontology data is represented as a di-
rected acyclic graph (DAG) and each term is exactly defined and described by a GO number,
textual explanations, and references from the literature (e.g. homoserine dehydrogenase is
represented by the GO accession number GO:0004412 and is exactly defined as “catalysis
of the reaction: L-homoserine + NADP+ = L-aspartate 4-semialdehyde + NADPH + H+”).

All GO terms and their relationships are represented by the graph and stored in a relational
database as displayed in figure 3.8. Monthly releases of the GO database are available either
as an XML file or as a MySQL database dump15.

In addition to the GO terms itself, the database contains mappings to SwissProt, EC numbers,
EGAD, GenProtEC (Monica Riley), TIGR roles, InterPro, and MIPS Funcat.

Figure 3.8.: Schematic dependencies diagram of the GO database. Beyond the GO terms
themselves, gene products, sequences, species information, and other related
data are stored in the database.

15http://www.godatabase.org/dev/database/
49

3. Existing systems

GO-Browsers

Several GO browsers with different features have been developed to access the data and
search for GO terms. Table 3.5 summarizes the most prominent tools available for browsing
the Gene Ontologies.

Browser URL
AmiGO http://www.godatabase.org/cgi-bin/go.cgi
MGI GO http://www.informatics.jax.org/searches/GO_form.shtml
QuickGO http://www.ebi.ac.uk/ego/
EP GO http://ep.ebi.ac.uk/EP/GO
GoFish http://llama.med.harvard.edu/~berriz/GoFishWelcome.html
GenNav http://etbsun2.nlm.nih.gov:8000/perl/gennav.pl

Table 3.5.: URLs of selected GO browsers. A complete list of available browsers can be
found on the homepage of the Gene Ontology project.

The GO database

Most of the browsers described above are web-based frontends (see figure 3.9) with a fixed
functionality. Although these web frontends are comfortable enough for many purposes, the
integration capabilities of such browsers are quite limited.

3.4.6. COGs

The database of Clusters of Orthologous Groups of proteins (COGs) [TNG+01] was de-
lineated by comparing protein sequences encoded in 43 complete genomes, representing
30 major phylogenetic lineages. Each COG consists of individual proteins or groups of
orthologs from at least 3 lineages and thus corresponds to an ancient conserved domain.
The COG categories can be assigned automatically to unclassified genes by blasting against
a FASTA database of prokaryotic or eukaryotic sequences with already assigned groups.
The COGs database can serve as a platform for functional annotation of newly sequenced
genomes and for studies on genome evolution. To facilitate functional studies, the COGs
have been classified into 17 broad functional categories, including a class for which only a
general functional prediction, usually that of biochemical activity, was feasible and a class
of uncharacterized COGs. Additionally, some of the COGs with known functions are orga-
nized to represent specific cellular systems and biochemical pathways. The database is ac-
companied by the COGNITOR program, which assigns new proteins, typically from newly
sequenced genomes, to pre-existing COGs.

50

3.5. Integrating approaches

Figure 3.9.: This screenshot of the AmiGO browser illustrates how the GO categories can be
explored. By clicking on one of the entries, further information can be obtained
about the selected category.

3.4.7. Other classification schemes

Several other classification schemes like InterPro numbers or SwissProt keywords exist but
since the Gene Ontologies provide a mapping to these categories, they are not discussed
in more detail here. In addition to the classification schemes mentioned above, a number
of (sometimes even manually curated) databases exist like LocusLink16, GenBank17, Uni-
Gene18, IMAGE19, and others which have implemented their own nomenclature with specific
sets of identifiers and descriptors.

3.5. Integrating approaches

Several systems have been designed so far that focus on a more general approach for the
integration of heterogeneous data into a common platform for systems biology. Although
there are many products that advertise solutions for a complete integration of all kinds of
data from functional genomics – also due to the immense commercial interest in this field of
research – most of them have some major drawbacks and do not keep their promises.

16http://www.ncbi.nlm.nih.gov/locuslink/
17http://www.ncbi.nlm.nih.gov/
18http://www.ncbi.nlm.nih.gov/UniGene/
19http://image.llnl.gov/

51

3. Existing systems

3.5.1. BioMOBY

BioMOBY [WL02] is an ongoing Open Source research project which aims to generate
an architecture for the discovery and distribution of decentralized biological data sources
through web services. A central registry (MOBY Central) holds the input and output object
types of all registered services, the URLs for these services, and their service types. Struc-
tured data (so called MOBY objects) are passed between client and server in a lightweight
XML format using SOAP20. These objects may also contain an optional Cross-Reference In-
formation Block (CRIB) for providing cross-references to other data objects. Additionally,
BioMOBY features the concept of data retrieval workflows that can be constructed based
on the given input/output types of different services. In comparison to other approaches,
BioMOBY is focused on a minimalistic model for data discovery and transport instead of
standardisation or representation.

3.5.2. MyGRID

Similar to BioMOBY, the MyGRID project [SRG03] aims to exploit Grid technology (for
distributing large scale computations) and provides high level services for bioinformatics
data and application integration. In addition to nearly identical ideas for data discovery
and service execution methodologies, MyGRID is more focused on the inclusion of bench-
scientist’s tools such as workflows including automated notification and updates, person-
alised data repositories, and provenance management similar to lab books.

3.5.3. Discovery Net

The Discovery Net system [RKO+03] is another middleware that allows service developers
to integrate tools based on existing and emerging Grid standards such as web services. It was
primarily designed to create reusable workflows, data flow processes, or pipelines that can
be composed based on the integrated tools and deployed as new services. Therefore, a pro-
cess is described using the XML-based Discovery Process Markup Language (DPML). The
modular architecture of the Discovery Net system currently provides six service components:

• A Component Servicemanages the integration of different components and services
into the system.

• TheExecution Servicedistributes the execution of jobs.

• A Data Access and Storage Servicewas designed to aid common data access tasks.

20http://www.w3.org/TR/soap12-part1/

52

3.5. Integrating approaches

• The Computational Serviceintegrates computational services directly into the core
Discovery Net system.

• An Info Grid Serviceprovides a standard query interface for heterogeneous databases.

• TheUser Defined Servicedescribes new services that were added using standard in-
terfaces provided by theComputational Service.

Furthermore, the system features aDiscovery Net APIfor programmatic access to all services
andDiscovery Net Clientsthat provide users with graphical interfaces for constructing their
knowledge discovery workflows.

3.5.4. SRS

The Sequence Retrieval System(SRS, [EA93]) developed by LION Bioscience AG is an
integration system for data retrieval and sequence analysis applications. It is a web-based
gateway to most of the important databases in the field of molecular biology (GenBank,
SwissProt, PIR, etc.). SRS provides a unified interface for querying more than 150 databases
that are grouped into specialized sections. It is a keyword-based system and thus limited to
free text descriptions that are indexed for faster searching. Recent versions of the SRS system
also support virtual databases that can be set up for easily querying the major releases and
the incremental update versions of a database in a single step. Furthermore, XML databases
like InterPro, the GO database, MEDLINE, and metabolic pathway databases are integrated
into the system and user friendly views for these data can be generated as HTML pages.
Among other features, SRS provides a quick search and user defined bookmarks.

3.5.5. SEMEDA

The Semantic MetadatabaseSEMEDA[KSK02] was designed as a three-tiered application
for “intelligent” semantic integration and querying of federated databases. The system fea-
tures the following three main components: theMARGBenchmodule provides SQL access
to integrated databases by database federation, while the ontology based semantic meta-
database (SEMEDA) stores information that can be accessed by an ontology based query
interface (SEMEDA-query). Therefore, ontologically structured information from different
data sources can be integrated based on a set of common database attributes. Available
ontologies and knowledge sources can be imported automatically, but it is also possible to
manually curate the database. Furthermore, the system can derive relationships by exploring
the incorporated data.

53

3. Existing systems

3.5.6. ISYS

ISYS [SFT+01], the integrated system from NCGR21 has been developed as a dynamic and
flexible platform for the integration of bioinformatics software tools and databases. ISYS
offers a component-based architecture that enables scientists to “plug and play” with tools
of interest. These tools may be developed separately and evolve independently and they may
include a group’s own databases and analytical programs as well as those available publicly
or for a fee.

In addition, ISYS allows web-based resources to be integrated with programs running on the
scientist’s desktop. The ISYS DynamicDiscovery technology creates an exploratory envi-
ronment in which scientists can navigate freely among registered components. DynamicDis-
covery helps to guide the user by suggesting appropriate registered components to process
selected data objects. Furthermore, ISYS supports visual synchronization among compo-
nents which helps each one to complement the others.

ISYS is written in Java for platform independence and is supported on Windows and Solaris
platforms. It is also available without a Java Virtual Machine for Linux and other types of
UNIX. ISYS is highly customizable for the needs of individual scientists and organizations.
The current version of the system contains eight components summarized in table 3.6.

Component Description
Sequence Viewer Graphical viewer for sequence annotation.

Similarity Search Launcher Graphical interface to configure and compute BLAST batch analysis.

Similarity Search Browser Customizable graphical browser for the results of a similarity search.

Table Viewer Generalized component for displaying data in tabular form.

Entrez server proxy. A proxy to the NCBI’s Entrez data retrieval system.

ORF-to-gene mapper ISYS Service Provider that maps between ORF and gene names for yeast.

maxdView Full-featured and highly-customizable gene expression viewer.

BDGP GO Browser Graphical browser for the database of the Gene Ontology Consortium

Table 3.6.: Available components for the ISYS system. All modules can be used interactively
in order to explore genome or transcriptome data on a basic level.

Although the ISYS system features a generic approach for the integration of individual com-
ponents, it does not include full featured systems (e.g. a complete genome annotation system
or a platform for efficient storage and analysis of microarray data). ISYS is more a collec-
tion of small “plug-ins” than a comprehensive architecture that appears as a single highly
customizable platform. It also lacks a project management unit, an API for the extension by
other programmers, and a consistent graphical user interface.
21http://www.ncgr.org/isys

54

3.5. Integrating approaches

3.5.7. DAVID

DAVID [DJSH+03] is a Database for Annotation, Visualization, and Integrated Discovery
that provides some data-mining tools which systematically combine functionally descriptive
data with intuitive graphical displays. The system features an annotation tool, GoCharts,
KeggCharts, and domain charts for visualizing weekly updated lists of genes for several
genomes, e.g. human, mouse, rat, or fly. Expression data from Affymetrix experiments can
be mapped onto the pathways or functional categories and hyperlinks to related data sources
(e.g. Unigene, LocusLink, RefSeq, Gene symbol) provide additional information. DAVID
collects information from different sources and imports these data into its own database. The
system is neither a complete application for genome annotation nor does it provide an API
for programmers.

3.5.8. GeneData product series

The GeneData22 product series is outlined here as one example for commercial bioinfor-
matics applications. GeneData advertizes a knowledge management system that allows in-
tegrating information from various technologies and provides comprehensive insight into
organisms, disease mechanisms, and drug actions. The GeneData products listed in table 3.7
cover the most important aspects in functional genomics data analysis.

Product Description
Phylosopher Genome analysis and gene function prediction.

Expressionist Analysis of gene expression data.

Impressionist Analysis of protein expression data.

Metabolist Analysis of metabolic data.

Screener High-throughput screening data analysis and compound profiling.

Table 3.7.: Available products of GeneData. The company offers separate packages for
genome annotation, transcriptome, proteome, and metabolome data analysis.

Since all programs are commercial products, the source code is not available free of charge
to academics for evaluation and/or further extension. All GeneData systems also lack a
well-designed infrastructure or common interface for the integration of other third party
components. Furthermore, it is unclear whether the products can only share some of their
data sources or if they can also be integrated in a single graphical user frontend that allows
direct interaction between different components.

22http://www.genedata.com/

55

3. Existing systems

3.6. Conclusions

As described in the previous sections, several special purpose systems exist for the analysis
of genome and transcriptome data and for the visualization of metabolic pathways. In gen-
eral, most of these systems lack a consistent internal data representation and well-defined
extensible APIs for accessing and manipulating the data. Furthermore, the ommission of
a common and standardized interface complicates the integration of such systems into a
common framework for comprehensive data exploration. Those systems that already inte-
grate different types of data are often restricted to a specific scope of applications. Most of
them cannot be used as a full featured data analysis pipeline since higher level input formats
(e.g. XML files) are required.

56

CHAPTER 4

Specification analysis

The existing systems described so far all have their limitations and drawbacks. While the
focus of all research in the field of molecular genetics is moving from single gene ana-
lysis towards large scale whole genome explorations on the transcriptome, proteome, and
metabolome level, new demands for bioinformatics software arise. In this chapter some of
the high expectations that are imposed on such new systems will be identified and translated
into more concrete specifications from the bioinformatician’s perspective.

4.1. From functional genomics towards systems biology

All novel technological developments in the field of functional genomics are currently di-
rected towards analyzing complex interactions by a bottom-up approach. Employed high-
throughput techniques such as transcriptomics or proteomics produce a flood of experimental
data and many other details about separate biological components that have to be stored sys-
tematically as a basis for the challenging task of gaining insight into the complex function
of an organism as a whole. Thus, genome research is trying to reduce life into more simple
components for detailed analysis (high-throughput reductionism) [Kat03].

However, the discovery and exact chemical definition of all components in a living system
does not mean that we will understand how it works. Therefore, systems biology gener-
ates knowledge from the components of a complex biological system by incorporating the

57

4. Specification analysis

following types of analyses as defined by [IGH01]:

• System Structure Identification (pathways & networks)

• System Behavior Analyses (dynamics of the system)

• System Control (change variables to control other variables, apply control theory on
the system)

• System Design (design biological systems based on components).

Knowledge about single components concerning their structure, regulation, control, adap-
tation, robustness, redundancy, or evolution has to be combined in order to understand the
global principles, interactions, and the dynamics of a living system. Systems biology deals
with enzymes that form pathways, their control, and interaction with other macromolecules,
and with control mechanisms that keep these structures functioning from generation to gen-
eration. Finally, this also includes the creation of sophisticated (mathematical) models and
the (a priori) simulation ofin silico experiments that can then be verified byin vitro or in
vivo experiments as displayed in figure 4.1.

NEW KNOWLEDGE

Hypothesis

New

(Simulation)

Data
New

Experiment
IN−VITRO−/IN−VIVO

Mathematical
Model

ExperimentIN−SILICO−

Data

Biological
Phenomenon

Functions and Interactions

Experimental Data
Knowledge about Structures,

Figure 4.1.: The dynamic process of new knowledge generation in systems biology. Based
on mathematical models that can be derived from experimental data, hypotheses
are generated and verified, discarded, or enhanced byin silico, in vitro, and in
vivo experiments (adapted from [Bun02]).

58

4.2. Data types and sources

From a more practical point of view this means that a platform for systems biology should
support arbitrary complex queries that are not limited to a certain scope but allow finding
distinctive features in complex data structures.

4.2. Data types and sources

As already outlined in the introduction (see chapter 2), today researchers are confronted
with a variety of methods for the analysis of genes and genomes. The application of high-
throughput techniques such as microarray experiments and mass spectrometry produces a
wealth of information that has to be evaluated and interpreted. As shown in figure 4.2,
different analyses can be based on other preliminary results but on the other hand, their
outcomings have to be compared and related to the original data.

Transcriptomics

5 6

3

4

21

Genomics

Gene XYZ

MetabolomicsProteomics

TTCGATGCC...GTTAAGC

Figure 4.2.: Genomics, transcriptomics, proteomics, and metabolomics provide high
throughput methods for the analysis of uncharacterized genes. The arrows in-
dicate the mutual influence of results from different experiments: for example,
the arrows 1, 4, and 5 indicate that the obtained experimental results reflect the
set of genes that were predicted and annotated for the genome under investiga-
tion. Inconsistent results (e.g. additional spots on a 2D gel, missing enzymes)
may indicate errors in the original genome annotation and thus require correc-
tions or updates. On the other hand, comparing different experimental results as
indicated by the arrows 2, 3, and 6 can support or invalidate previously stated
hypotheses.

Furthermore, storing the experimental setups and laboratory protocols is also essential to
guarantee the reproducibility and reliability of the obtained results from often complex work-
flows. The data acquired thereby ranges from unstructured flat files or ASCII tables to XML
documents and high resolution images. For all of these data, well structured persistent stor-
age is needed that also keeps track of cross-references to other related data sources. It would
also be quite advantageous to have a central component that contains a unique instance of

59

4. Specification analysis

each analyzed piece of sequence or gene that can be referenced and linked to different ex-
periments where it is involved. Such a system should also be able to store already known
facts, observations obtained from experiments, annotations, and all other available informa-
tion about it. Since many experiments contain sensitive (e.g. unpublished proprietary) data,
access has to be restricted in order to prevent unauthorized access or even loss of results.

Figure 4.3.: Data integration is hard: Related information has to be combined but at the same
time different points of view onto the same data are required to reveal certain
aspects of interest. In this example, the interest of the user might be focused on
the combined analysis of expression ratios and functionally related genes.

Besides the task of integrating such heterogeneous data types and sources, it is also important
to be aware of different points of view that users have in their mind when they analyze the
data. Depending on the type and on the stage of an experiment, the focus may change and
require other visualizations. For example, a microarray experiment might first involve some
visual inspection of spots and their replicates on a slide to ensure a desired level of quality,
but for a further evaluation it would be more interesting to see significantly up or down
regulated genes in a circular plot of the whole genome with a color code for the functional
categories of the affected genes (see figure 4.3). Both views are focused on different aspects
or types of experimental results and therefore they require their own analysis methods and
sometimes customizable specialized visualizations.

60

4.3. Users and developers

4.3. Users and developers

Other aspects that have to be considered for any larger software project are the needs of
individual users of the system. Obviously, for both users and developers, it is important
that any software system is easy to install and to maintain. But there are quite a few other
important aspects that have to be considered carefully.

From auser’s perspective, the usability of any system plays the key role. Optimized and
highly customizable applications should not only provide “nice” graphics and inspire the
user with various graphical user frontends. Above all, it is still the homogeneous and con-
sistent usage of widely accepted graphical elements such as menus and buttons that should
allow an intuitive exploration of the application’s functionality. These demands can be ful-
filled by simply using a common look and feel for all graphical user interfaces (GUI) that are
related to each other. Applications that provide access to large data sets should also support
searching for special features as well as the identification of common properties among re-
lated items. In addition to this, further insight into complex data structures can be achieved
by presenting standardized (meta-) views onto heterogeneous data (e.g. by mapping genome
and expression data onto metabolic pathways).

From adeveloper’spoint of view, the key feature is often the extensibility of an existing
system. A surprising lesson learned from the analysis of the existing systems is the lack
of consistent internal data representation. However, an internal data representation using a
well defined data model is the prerequisite needed to provide an application programmer’s
interface (API) for any larger software system. Ideally, such an API allows the implemen-
tation of human readable code that can be derived easily from more abstract descriptions of
algorithms, e.g. written in pseudo code as illustrated in section 1.1. On the other hand, a
modular system should be open for further modifications and improvements thus allowing
other researchers to integrate their own ideas and extensions without rewriting large parts
of the software. The successful extension of any open source product can be supported by
providing a well defined and documented API but it is also inevitable to ensure the stability
of (well tested) software by a central release management. Further, it is important to notice
that the availability of operating system and programming language independent interfaces
is another desirable feature which is often underestimated.

For the integration of heterogeneous data from functional genomics into a platform for sys-
tems biology, such a system should not only support single directed pipelines but feedback-
loops that can help to create enriched genome annotations. The central design concept that
can be applied for complex systems is the use of exchangeable specialized components. Nev-
ertheless, such a module should be able to be executed as a stand-alone application as well as
a plug-in for a completely integrated solution (e.g. execute stand-alone genome annotation
system or combine it with a system for microarray analysis).

61

4. Specification analysis

Last but not least, a sophisticated system should also be compliant to standard data formats
and support common input and output data formats to allow data exchange and ensure the
compatibility with other tools.

4.4. Data management

In many areas of research modern software applications have to deal with huge amounts of
information that are frequently collected from high-throughput experiments. This data has
to be stored in well structured repositories (e.g. database management systems) that provide
efficient automated access for all further downstream analysis of the obtained results. Fur-
ther, new knowledge generated by higher level data evaluation has to be stored consistently
and needs to be cross-linked to the original information. Since all research projects often
produce highly confidential results, it is also important that essential parts of the data can
be protected from unauthorized access. Obviously, increasing numbers of projects require
extensive administration of project related data sources, users, and their individual privileges
for accessing the information. A central component for managing projects and users is nec-
essary to address these issues and to provide a systematic approach that helps to keep an
overview across all projects.

In times of rapidly increasing demands for high performance computing methods and in-
creasing storage requirements, a majority of software applications has to store and access
external data sources. For example, a number of software systems is currently developed
at the Center for Genome Research, Bielefeld University, helping to organize the flood of
genomic and post-genomic data. Obviously, all information that is acquired from wet lab
experiments or from manual analysis of the obtained results requires persistent storage and
reliable backup capabilities in order to ensure data-integrity.

While several relational or object-oriented database management systems like MySQL,1

PostgreSQL,2 DB2,3 or Oracle4 already provide well-suited and stable solutions for stor-
ing and maintaining large datasets, there are still some additional issues that have to be
addressed for real world applications. Figure 4.4 illustrates a typical access procedure that is
implemented in many software systems.

1http://www.mysql.com/
2http://www.postgresql.org/
3http://www.ibm.com/software/data/db2/
4http://www.oracle.com/

62

4.4. Data management

RetrieveSelect
Data

connect

Project

check

Login

UserUser User

ConnectionAuthentication Communication

Project
Data

Source

Project
Data

Source

Project
Data

Source

Figure 4.4.: A typical access procedure requires an initial authentication of the user. After
logging in, a dataset can be selected and the connection to the corresponding
data source is established. Finally, the requested information is presented to the
user.

Basically, the initial step for accessing data requires a connection to a database management
system. Connections can be established by command-line interfaces or graphical user front-
ends via an API. Although most systems provide different comfortable ways for accessing
their data, details of the access protocol and maybe even the type of the data source (e.g. flat
file or RDBMS) should be hidden from the user by a frontend application, e.g. a web inter-
face. In general, it is also important to provide transparent and consistent access to all data
within the same scope (e.g. all information that has been acquired in a transcriptome project).
This also includes the use of standard access routines that should be available independently
of the chosen storage method. This data and all related information can be collected and
organized in projects. Once a user has established the connection to a data source, the level
of access is often defined by special permissions or privileges. While some database systems
allow very fine grained access control, the administration of such permissions is usually a
laborious task for the maintainers of the data repository. Often, additional work is required
in cases where it is desirable to restrict access to specific users for projects containing sen-
sitive data. In such cases, different roles can be identified that manifest the level of access
by assigning appropriate privileges. On the other hand, an individual user can thus act in
various roles for different projects (e.g. with read only access as a guest user or read/write
permissions as a developer) as illustrated in figure 4.5.

63

4. Specification analysis

Project A

Project B

Project C

Guest

Chief

Developer

Figure 4.5.: For different projects a user can act in various roles. Guest access may only
include very few privileges while acting as a software developer would require
almost complete control over all data.

Obviously, it is desirable to keep the administration overhead as small as possible; the main-
tainers of (large) database management systems should be supported with an easy-to-use
interface that helps to keep an overview of all users and the projects they are involved in.
Such a system could also provide some kind of user management interface that allows main-
tainers of a project to grant dedicated access to (parts of) the information to specific users
without involving a database administrator.

In addition to the data itself, almost every modern application stores a number of individual
settings per user. In this case, a project management system should just as well be utilized
for storing these settings separately for each project, independently of the frontend that is
employed by the user (e.g. web frontend or GUI). Extending the scope of organizing data in
separate projects, applications often refer to related data from different sources. Therefore,
it is essential to provide a simple means for accessing and linking these information. Again,
these references should be hidden from the user but they should allow asking questions
across different data sources. Thus the application has to know where to find the requested
information and how to access it.

64

CHAPTER 5

Choice of core technologies

Since most requirements described in the previous chapter are not unique for the develop-
ment of applications in the field of functional genomics or bioinformatics, there are already
a number of existing solutions for such problems. In general, for the developer of any soft-
ware system it is always a good advice to use widespread, stable, and ready-to-use production
systems. In the following sections some existing general approaches and concepts will be
presented that can be employed to fulfil the requirements described in the previous chapter.

5.1. Existing systems revisited

The increasing number of applications of high-throughput methods for the simultaneous
analysis of hundreds or thousands of genes in a single experiment leads to the demand for
solutions that allow the flexible integration of heterogeneous data types and data sources
into an extensible platform for systems biology. Such a system should not only be able to
cope with high dimensional data but also provide different (meta) views on the data that
therefore has to be cross-linked. Although there are many software packages available that
can be used for the analysis of data from one of the research areas described in chapter 2
(e.g. MAGPIE by [GS96], ERGO by [OLW+03], Artemis by [RPC+00] and PEDANT by
[FAH+01] for genome annotation or J-Express by [DJ01] and BASE by [STVC+02] for
microarray analysis), there is no open source system known to the author that features the

65

5. Choice of core technologies

complete integration of different data sourcesand their corresponding frontend applications.
While recently developed systems such as BioMOBY [WL02], Discovery Net [RKO+03],
or MyGrid [SRG03] focus on providing decentralized web services, other approaches like
SEMEDA [KSK02] try to attack the problem of integrating heterogeneous data sources by an
ontology based semantic metadatabase. On the other hand, the component-based approach
of the ISYS [SFT+01] software tries to solve the problem of heterogeneity by implementing
specialized client side user interfaces that can communicate with each other. Nevertheless, all
systems developed so far lack capabilities for initially accessing objects located on a remote
server, then using their already implemented functionality, and finally also modifying them
directly. Therefore, we are envisioning a platform for systems biology that not only supports
the integration and visualization of decentralized heterogeneous data but also allows the
direct manipulation of objects using a sophisticated access control policy.

5.2. Relational object-oriented modeling

One of the key features of many applied (bioinformatics) systems such as laboratory inven-
tory management systems (LIMS) is the ability to provide persistent storage mechanisms.
Laboratory protocols, data acquired from complex experiments, the results of automatic and
manual analysis, and increasing loads of other data sources (e.g. experimental setups and pa-
rameters) have to be stored efficiently. Only well structured data repositories can guarantee
easy and efficient access for a long time. As a consequence, these considerations may finally
include the necessity to provide (public) access to the data.

Efficient persistent storage and comfortable access to large datasets can be achieved by
employing relational or object-oriented database management systems like MySQL, DB2,
PostgreSQL, Oracle, and others. The design of well structured data models as a basis for the
implementation of documented and easy-to-use application programmer’s interfaces (APIs)
can be supported by using UML (Unified Modeling Language1) for the definition of entities
and their relationships.

Therefore, the O2DBI-II system [Lin02] (see Figure 5.2) was developed that allows the
mapping of Perl objects to relational tables. All classes and their attributes can be defined
using the comfortable O2DBI-II Designer (see figure 5.1). The resulting data schema is
then stored in an XML [BPSMM00] file. Based on the data structures defined with the
Designer, a library of Perl classes with Perl and C++ client-server bindings can be generated
automatically. It is also possible to convert object descriptions from the UML (XMI) format
into the O2DBI-II XML format.

1http://www.omg.org/uml/

66

5.2. Relational object-oriented modeling

Figure 5.1.: The O2DBI-II Designer can be used to develop the data model. Classes and
their attributes can be defined via the graphical user interface. It is also possible
to add database indices and extensible comments for each class.

contig => Ref on Contig

RDBMS
methods
autogenerated

additional
methods

resize()

CLASS DEFINITIONS (XML)

Region::Contig => {

sequence => TEXT
length => INT

O2DBI−SERVER
start stop name ...

Designer
O2DBI

UML
(XMI)

Perl Client

GUI

C++ Client

...

2500100 dnaA ...
............

...

...

APIRegion::CDS => {

start => INT
stop => INT

}

create()

delete()

name()

annotate()

sequence()

}

=> CHARname

Table Region::CDS

Figure 5.2.: Class declarations are created with the O2DBI-II designer or can be converted
from UML descriptions. Based on the class hierarchy described in XML,
O2DBI-II maps Perl objects to relational tables, generating both SQL tables and
Perl server modules. O2DBI-II also generates Perl and C++ client code that can
be used to implement remote access mechanisms.

67

5. Choice of core technologies

All objects are stored in a relational database (e.g. MySQL or PostgreSQL) and Perl as
well as C++ source code is generated that implements standard methods (create, delete, init,
get/set etc.) to access the objects. These automatically generated object methods are stored in
a Perl O2DBI-II server module. Extension of the object functionality is possible in separate
Perl modules. All accesses to the data of a specific database via O2DBI-II methods are
managed by a special O2DBI-II master module. As stated above, the auto-generated classes
and the manually added methods form the API.

5.3. Interaction and communication

With the open-source O2DBI-II toolkit, data can be stored efficiently and at the same time
the system provides an API that allows easy access to all information and individual exten-
sions of the auto-generated classes. Consequently, using an object-oriented approach for the
design of all data structures (e.g. by creating class hierarchies and employing inheritance)
allows a rapid development and enhances the modularity and usability of all components.
But nevertheless, additional mechanisms are needed that allow the interaction and commu-
nication between different components. For example, the user might request experimental
transcriptomics data for a selected gene while she/he is assigning functional classifications
in a genome annotation system. In this case, immediate interaction, response, and maybe
also some kind of visualization is needed to provide the user with the requested information.
Since user interfaces that allow the integration of different data sources are highly dynamic,
customizable views and dynamic visualizations are needed that exactly represent the desired
information. It is also important that the different integrated graphical user frontends pro-
vide a common look and feel where the user can easily find what she/he is looking for. For
standard applications, the various existing GUI toolkits (Tk, Gtk, Swing, Qt) support differ-
ent mechanisms (either callbacks or signals and slots) that allow the interaction of graphical
elements (widgets).

For the exchange of different types of data, the widespread application of XML has shown
its usefulness as a well suited format since all parsing of the data structure can be done
automatically. For remote data exchange, commonly used protocols such as XML-RPC
or SOAP can be used that are platform independent and thus available for almost every
operating system.

5.4. CORBA

CORBA (Common Object Request Broker Architecture2) is a complete, complex communi-
cation structure built to become an industry standard, capable of networked, cross-platform,

2http://www.omg.org

68

5.5. Comparison of existing approaches

reliable communication between any applications that subscribe to the standard. Because
of its functionality, completeness, availability, and robust C++ bindings, CORBA has ruled
out many other approaches in this field but at the same time it has several limitations that
confirmed the decision to implement other solutions:

• Especially for simple interactions, CORBA involves too much overhead for the re-
quirements of direct communication between different graphical user interfaces.

• The dynamic character of a plug-in architecture is not supported sufficiently by the
static nature of CORBA.

• Compilation of a CORBA-enabled code base can be very time-consuming and re-
source demanding.

• It would be difficult to convince (sometimes unexperienced) developers of small ap-
plications that they have to read and understand thousand-page manuals before they
can integrate their own components and enable interprocess communication. There-
fore, the simplicity provided by the (partially automatically generated) consistent and
easy-to-use O2DBI-II-APIs is superior and supports the cooperative development of
open-source software.

The discussion of all aspects mentioned above resulted in the conclusion that this communi-
cations technology would incorporate too much work and administrative overhead compared
to the gained benefits. Thus, the (still possible) implementation of a CORBA layer for the
interprocess communication was rejected for the current development of the platform.

5.5. Comparison of existing approaches

Although most of the systems presented so far were developed for completely different
scopes and tasks, an evaluation of useful components for a further system design requires
a comparison of the existing approaches. Because of their diversity, a comparison is per-
formed for the following criteria:

• Number of features:
This aspect tries to rate the completeness of an application concerning its usability
for standard tasks in functional genomics such as annotating a genome or analyzing
microarray data.

• Programmer friendliness:
The programmer friendliness of an application can be evaluated by looking at the avail-
able interfaces for programmer’s (APIs) and their documentation. In contrast to those

69

5. Choice of core technologies

aspects that are important for the frontend users, the availability of good APIs allows
an easy adaption of a system and the implementation of special individual solutions.

• Extensibility:
This criteria is used for evaluating the extensibility and modularity of a system. The
rating depends on the availability of concepts for adding new components to an exist-
ing system.

• Access policy:
Since most researchers are concerned about sharing their private unpublished data (cer-
tainly for good reasons), a system should support well defined access control mecha-
nisms that implement a sophisticated policy in order to prevent unauthorized access.
Thus the availability and quality of such features is also evaluated for all systems.

Each approach was then analyzed based on its description or publication (see also sec-
tion 3.5). The results evaluated for each criteria are listed in table 5.1 where each of the
existing systems was scored (++ denotes a very positive aspect,+ a positive aspect,o a
neutral aspect,- a negative, and-- a very negative aspect).

System features progr. friendly extensible access policy
BioMoby -- + ++ o

MyGrid -- + ++ o

Discovery Net o o o -

SEMEDA o -- -- o

ISYS + o + --

O2DBI-II -- ++ ++ o

CORBA -- + + o

David + - - -

Table 5.1.: Comparison of existing approaches and evaluation of their usability as building
blocks for a platform for systems biology.

For example, BioMoby, MyGrid, and O2DBI-II were positively evaluated for their modu-
larity and extensibility. On the other hand, systems like BioMoby, MyGrid, O2DBI-II, and
CORBA were rated negatively for the obvious lack of features concerning their usability for
standard tasks in functional genomics. As illustrated in table 5.1, none of the existing sys-
tems obtained a top ranking for all of the evaluated criteria, but nevertheless there are many
useful approaches and good ideas that could be adapted from one or another system. Espe-
cially some concepts of the ISYS system could be adapted for the development of a platform
for systems biology. From a programmer’s perspective, the O2DBI-II system seems to be

70

5.5. Comparison of existing approaches

the best choice for implementing the core functionality since it is easier to learn and main-
tain than CORBA. Summarizing the evaluation of this table, it can be stated that all of these
systems lack some full featured functionality for standard tasks in functional genomics since
they focus on more abstract data integration. Furthermore, these systems provide only a
limited access control if any so that unpublished data cannot be treated in a protected and
confidential way.

71

5. Choice of core technologies

72

CHAPTER 6

System design

Based on the specifications described in chapter 4 and with respect to the already existing
solutions, a general concept has been designed for the implementation of aBioinformatics
Resource for theIntegration of heterogeneousData fromGenomicExplorations (BRIDGE).
The system has been developed as a common and extensible framework that is flexible
enough and well suited to serve as a platform for systems biology.

6.1. Specialized components for separate scopes

Concerning the variability of the different data sources, it is clear that the design of exactly
tailored data models for separate scopes is the most important prerequisite as a basis for all
further development.

If no such scopes are clearly defined and separated from each other, the different data types
and sources get mixed up. References between corresponding data sets or experiments get
confused and end up in chaotic collections of unusable descriptions. In some cases, impor-
tant information may finally disappear uncontrollably and vanish in a “deep black hole”.

Although separating data from different types of experiments is not that difficult during and
right after their creation (e.g. transcriptomics and proteomics experiments are hardly ever
performed by the same facility), it is more important than ever to uniquely identify them and

73

6. System design

describe a convenient level of detail when different results are combined afterwards in order
to derive new hypotheses. Since all areas of research in the field of functional genomics
require at least some profound knowledge about the experimental design and sophisticated
methods for the analysis of obtained data, the BRIDGE system is based on a concept that
features the implementation of specialized components for separate scopes as displayed in
figure 6.1.

Q
ue

st
io

ns
/E

xp
er

im
en

ts

Q
ue

st
io

ns
/E

xp
er

im
en

ts

Q
ue

st
io

ns
/E

xp
er

im
en

tsGenDB

BioMake

Q
ue

st
io

ns
/E

xp
er

im
en

ts

TranscriptomicsGenomics Proteomics Metabolomics

D
at

a
F

lo
w

N
ew

 In
si

gh
t/K

no
w

le
dg

e

GOPArc

MicroLims

ProDBEMMA

Systems Biology

ProDB−Lims ???

BRIDGE

Figure 6.1.: A separate scope can be defined for the fields of genomics, transcriptomics, pro-
teomics, and for the analysis of metabolic pathways. Special LIMS components
can be used for storing the details about experiments. All modules are integrated
into a common platform for systems biology via the BRIDGE layer. New knowl-
edge and insights into more complex relationships can be derived by querying
the different components and by combining the results obtained.

Since this work is focused on the integration of genome and transcriptome data in the context
of metabolic pathways, only the required modules for these scopes will be described in detail
in the next chapter:

• Genomics module: a central repository that stores all kinds of sequence data and serves
as a major annotation facility. Enriched annotations can be created by linking different
experimental results in this component and it should be possible to show a summary
of all available information about a single gene as a kind of a gene report. Therefore
this module should be able to collect recently available information from all related
sources (e.g. from transcriptomics or proteomics experiments).

74

6.2. Three-tier components

• Transcriptomics module: this module stores the complete experimental setup and pa-
rameters (as a LIMS) but also provide standard algorithms for normalization, filters,
and data analysis (e.g. t-test, SOM, clustering). Additional user friendly visualizations
should facilitate an easy exploration of the data obtained.

• Pathway module: such a module stores an internal representation of metabolic path-
ways and it should provide adequate visualizations that allow mapping of (multi-
dimensional) data onto the pathway maps. For further detailed data analysis, this
component should support the creation and visualization of individual implementa-
tions for specific metabolic routes. Data acquired from future metabolite analyses
could also be stored in a separate LIMS component.

We are currently also developing other modules that might be useful and could be integrated
into the BRIDGE system via the same mechanisms:

• Proteomics module: this component will store experiment conditions, setups, and pa-
rameters of proteomics experiments similar to the transcriptomics module. Further
extensions are required for the analysis of 2D gel images and their corresponding
peaklists, and for the large scale high-throughput identification of expressed proteins.

• Genome comparison module: such a module could perform genome comparison on
different levels (e.g. sequences, genes, protein families, regulatory regions, pathways)
and provide user friendly views on the computed data.

• Gene regulation module: a special component for the analysis of co-regulated genes
and regulatory networks could be used to identify gene clusters and operons.

Another important additional requirement that has to be met by all components is their ability
to be run as stand-alone applications. This allows an independent development of separate
components and supports an easy replacement of individual modules.

6.2. Three-tier components

All of the specialized components described in the previous section have been designed
following the classical standard three-tier architecture approach that is widely used when
an effective distributed client/server design is needed. While hiding the complexity of dis-
tributed processing from the user, this architecture provides (when compared to the two-tier)
increased performance, flexibility, maintainability, reusability, and scalability. For detailed
information on three-tier architectures see [Sch95] and [Eck95].

75

6. System design

This means that three-tier components have a “client-server architecture in which the user
interface, functional process logic (’business rules’) and data storage and access are de-
veloped and maintained as independent modules”.1 “A three tier distributed client/server
architecture includes a user system interface top tier where user services (such as session,
text input, dialog, and display management) reside”.2

The middle tier provides process management services (such as process development, pro-
cess enactment, process monitoring, and process resourcing) that are shared by multiple
applications.

The bottom tier provides database management functionality and is dedicated to data and file
services that can be optimized without using any proprietary database management system
languages. The data management component ensures that the data is consistent throughout
the distributed environment by using features such as data locking and replication. It should
be noted that connectivity between tiers can be altered dynamically depending upon the
user’s request for data and services.

Apart from the usual advantages of modular software with well defined interfaces, the three-
tier architecture is intended to allow any of the three tiers to be upgraded or replaced in-
dependently as requirements or technology evolves. For example, upgrading the storage
backend or changing the database management system (e.g. from MySQL to PostgreSQL)
would only affect the O2DBI-II backend code. Typically, the user interface runs on a desktop
PC or workstation and uses a standard graphical user interface; functional process logic may
consist of one or more separate modules running on a workstation or application server, and
an RDBMS on a database server or mainframe contains the data storage logic.

The classical three-tier architecture is illustrated in figure 6.2 including the design process
as it is currently realized with the O2DBI-II system. After designing a complete module
using UML, the O2DBI-II Designer can be used for optimizing the storage backend data
model. The O2DBI-II Code Generator finally generates the object-relational mapping (stan-
dard methods for routine access) and a data handler specific for the employed storage back-
end. The main functional process logic is implemented in the class extensions. Different
user interfaces (e.g. Gtk GUI, web frontend) on top of the business classes are provided for
modifying and visualizing the stored data.

6.3. Integration

While the specialized components described in the previous section could be used as stand-
alone applications in their specific scopes, the integration into a bioinformatics resource of
heterogeneous data also needs a systematic approach that allows connecting two or more

1http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?three-tier
2http://www.sei.cmu.edu/str/descriptions/threetier.html

76

6.3. Integration

components for data exchange. Especially in this context, data exchange is not just meant
to be accessing external data and displaying it. Instead, a comprehensive data integration
infrastructure should include direct access and communication with external data objects
that are referenced by other internal data structures.

GUI WEB

XML XMI UML
O2DBI

Code
Generator

O2DBI

Designer

(middle tier)

(top tier)

(bottom tier)

Data stored in RDBMS

(auto−generated methods)
Object relational mapping

Design process

Frontend

Semantic
layer

Backend

class extensions
(additional methods)

data handler (generated)

Figure 6.2.: Each component of the BRIDGE system has been designed as a three-tier mod-
ule: a backend is responsible for storing all data, while the main functionality
is implemented in the business classes of the middle tier. Different user inter-
faces are then based on the functional process logic and focus on data visualiza-
tion. The design process is based on comprehensive UML modelling, routine
access to the storage backend and parts of the semantic layer are automatically
generated by the O2DBI-II system. Dashed lines represent potentially differ-
ent hardware units (e.g. workstations or servers) that were used for the physical
implementation of a module.

To explain this behavior we consider the following example:

Let:

• objA be an O2DBI-II object of class A,

• objB be another O2DBI-II object of class B that has another data source and thus
another O2DBI-II master thanobjA, and

• class A has an attributerefB that contains external references to objects of class B

then

77

6. System design

• should a statement likeobjA→refB(objB) write an external reference toobjB in form
of some unique identifier into the data representation ofobjA and

• the statementobjA→refB() should return the object represented by the referencing
identifier in objA. The returned object is then equivalent toobjB and it belongs in
particular to another O2DBI-II master thanobjA.

It is clear that the major advantage of this approach is the availability of full featured ob-
jects that provide access to their complete functionality. Once a referenced object has been
initialized automatically from a reference, all methods are accessible that even allow the di-
rect manipulation of the object properties. Certainly, this also includes the automated and
specific visualization of an object by standard routines that are provided by the object itself
(e.g. each referenceable object could implement a methodshowor display).

Figure 6.3.: Design of the BRIDGE system: a central module (BRIDGE) organizes different
specialized components while the project management system controls all data
access. For loading a component and for establishing a connection to a data
source, the BRIDGE layer communicates with the project management in order
to locate the data source and for checking the access privileges.

Nevertheless, for realizing the functionality described above, a general controlling mecha-
nism is required for initializing the referenced objects from the proper project or data source.
As displayed in figure 6.3, a project management system could be used as a comprehen-
sive master or control unit to organize separate projects and maintain relationships between

78

6.3. Integration

them. Furthermore, this project management system could be helpful for the administra-
tion of users that have different levels of access to project-related data (e.g. by assigning the
required SQL privileges).

By encapsulating all data access aspects in a separate layer, the complete backend for stor-
ing the information can be implemented regardless of the graphical user frontends or other
client APIs. All direct interactions are then left to the BRIDGE layer that has to provide
standardized mechanisms for data exchange and communication.

Figure 6.4 illustrates a modified three-tier architecture with the optional BRIDGE layer on
top of the O2DBI-II business classes. This module is responsible for resolving references to
external objects. Access for individual users to different projects is controlled by a project
management system that stores all required information for connecting to a project and for
retrieving requested objects.

(additional methods)

Access Control(top tier)

Frontend

Semantic

(auto−generated methods)
object relational mapping

data stored in RDBMS

Layer

System

(middle tier)

Backend

(bottom tier)

Management
Project

class extensions

BRIDGE

web services

GUI WEB

data handler (generated)

Figure 6.4.: In addition to the standard three-tier architecture, we have introduced a separate
BRIDGE layer for connecting different data sources. All access to data sources
stored in the backends is controlled via a project management system.

Another future extension that is already shown here is an additional layer that provides access
to more and more widely used web services. Such a module on top of the BRIDGE layer can
be used to integrate the data of each specialized component into almost any other application
that features an interface for such web services.

79

6. System design

80

CHAPTER 7

Specialized components

Currently, three specialized components have been developed in collaborative projects that
can be “plugged” into the BRIDGE system: GenDB [MGM+03], EMMA [DGB+03], and
GOPArc (unpublished). Instead of running each component as a separate tool, they can be
integrated into a common platform via the BRIDGE where the modules can communicate
directly with each other (see chapter 8). In the following sections these specialized modules
are described in more detail.

7.1. GenDB-2.0

GenDB [MGM+03] is an open source genome annotation system for prokaryotic genomes.
Hierarchical regions (e.g. contigs, CDSs, ESTs), observations on these regions (e.g. BLAST
results), and manual or human annotations are stored in a relational database and form the
three main building blocks of the system. Beyond various navigation metaphors (contig view,
circular and linear plot, virtual 2D gel, etc.), GenDB also offers different export facilities
(e.g. GenBank, EMBL). The GenDB system can be used as a repository for many different
kinds of sequences and since all regions stored in the database have a unique identifier, other
systems can easily link their information to a region by referring to this identifier.

GenDB-2.0 has been developed based on the GenDB-1 system as described by F. Meyer in
his PhD thesis [Mey01]. The substantial extensions of the data model required a major re-

81

7. Specialized components

design of the complete software, including the replacement of the O2DBI-I database backend
by the improved O2DBI-II system. At the same time, widely used general purpose functions
such as methods for parsing a FASTA file or writing an EMBL file, etc. were sourced out
into separate “common” modules (see appendix A.6) in order to increase their reusability in
other projects.

7.1.1. Data model design

Similar to its predecessor, GenDB-2 is based on a data model with three core types of objects.
Regionsdescribe arbitrary (sub-) sequences. A region can be related to a parent region,
e.g. a CDS is part of a contig.Observationscorrespond to information computed by various
tools (e.g. BLAST or InterPro) for those regions.Annotations store the interpretation of a
(human) annotator. They describe regions based on the evidence stored in the observations.
Figure 7.1 shows the relationships between the different core objects. As can be seen, there
is a clear distinction between the results from various bioinformatics tools (observations)
and their interpretation (annotations) which was implemented in the data model. While this
data model seems very generic, it represents a hierarchy of classes, including the complete
EMBL feature set for prokaryotes with several extensions (see figure 7.2).

1

*

*
*

*

1 1

1 ObservationAnnotation
refers to

Region

describes refers to

is part of

Figure 7.1.: The core data model of GenDB in UML. Only the three central classes are
shown, the classes actually represent a hierarchy of specialized objects, e.g. a
BLAST observation object and an InterPro observation object.

82

7.1. GenDB-2.0

Repeat_Unit

IS_Element

TC

EST

BAC_Read

Shotgun_Read

Contig

mRNA

rRNA

tRNA

Terminator

Rep_Origin

RBS

Enhancer

Attenuator

Promotor

PolyA_Signal

Protein_Bind

TATA_Signal

GC_Signal

Region

Operon

Gene

CDS

Regulon

Group

Source

CDS_Feature

Domain

TMH

Signal_Peptide

Modification_Site

HTH_Motif

Transit_Peptide

Mature_Peptide

Motif

Signal

Transcript

Primer_Bind

PCR_Product

Partial_Region

Repeat_Region

CAAT_Signal

Figure 7.2.: The hierarchy of regions implemented in GenDB-2.0.

83

7. Specialized components

There are additional classes (e.g. tools and annotators) that complement the three core classes.
Since data access is implemented via the objects described above, the classes in GenDB
themselves form the API. This object-oriented approach makes code maintenance easy and
also the data and methods in the system accessible to other programs. At the same time,
these classes provide a means to extend the GenDB system. Although GenDB is currently
limited to analyzing prokaryotic genomes, it would only require small extensions in the data
model and the integration of other gene prediction tools to support the analysis of eukaryotic
genomes.

7.1.2. General overview

Figure 7.3 illustrates the architecture of the GenDB system with the main building blocks.

Graphical
User

Interface

C
lient S

ide
S

erver S
ide

Database

SQL

User
Interface

Web

Backend
O2DBI−II

Sequence
Databases

(BLAST,

SRS

Bioinfo−

BioPerl

...)

BioGrid

InterPro

Tools

API

Perl

C++ Client
API

Perl Client

Server
API

Figure 7.3.: On the server side all data that is stored in a relational database management
system can be accessed using the O2DBI-II modules. The Perl server API is ba-
sically used for the integration of sequence databases and bioinformatics tools.
On the client side, different user frontends are implemented that access the sys-
tem via a Perl or C++ client API.

84

7.1. GenDB-2.0

The complexity of the system encourages using an object-oriented approach not only in
designing (see figure 7.1) but also in implementing the system. Therefore, the enhanced
O2DBI-II system was used to map Perl objects automatically to relational tables. The
GenDB objects are mapped onto tables via O2DBI-II and stored in a relational database
(here MySQL) as described in section 5.2. All access to the data via a Perl client or server
API, or via a C++ client interface is managed again by the O2DBI-II module.

On the client side, user interfaces have been implemented that use the functionality of these
APIs. On the server side, sequence databases can be accessed via the SRS system or via
the BioPerl interfaces. Computation-intensive tools like BLAST or InterPro can be managed
and scheduled via a BioGrid as described below (e.g. Sun GridEngine1).

Currently, the developers’ version of GenDB-2.0 which is maintained via CVS2, comprises
more than 200 modules and more than 50,000 lines of Perl source code, not including more
than 20 common modules that have been implemented for a number of general purpose tasks
(e.g. for translating or reversing a DNA sequence, see appendix A.6).

7.1.3. Integration of tools

One major improvement of the GenDB system in comparison to the first version, is the mod-
ular concept for the integration of bioinformatics tools (e.g. BLAST). GenDB allows the in-
corporation of arbitrary programs for different kinds of bioinformatics analysis. According to
the system design, each of these programs is integrated as aTool(e.g.Tool::Function::Blast),
which creates observations for a specific kind of region. A job that can be submitted to the
scheduling system thus contains the information about a valid tool and region combination
as illustrated in figure 7.4.

For most tools, GenDB-2.0 also features simple automatic annotators that can be activated.
They are started upon completion of a tool run and create automatic annotations employing
a simple “best hit” strategy based on the observations created by the tool run.

For an automated large scale computation of various bioinformatics tools, a scalable frame-
work was developed and implemented which allows a batch submission of thousands of
Jobs in a very simple manner. Therefore, the following steps have to be performed (see
appendix A.4 for further details):

1. The desiredJobshave to be created, e.g. for region or function prediction by using the
JobSubmitter Wizard. This can be done quite easily with thesubmit_job.plscript or via
the graphical user interface. For all valid region and tool combinations as defined by
the user, the requestedJobswill be created and stored in the GenDB project database.
Initially, these newJobswill then have the statusPENDING.

1http://www.sun.com/gridware
2Concurrent Versions System

85

7. Specialized components

Annotations

Observations

Job

ToolRegion

Figure 7.4.: The tool concept in GenDB-2.0. Jobs contain the information about valid
tool/region combinations. Executing a tool on a given region thus creates ob-
servations for that region and in some cases also automatic annotations.

2. Before thesubmit_job.plscript finishes, it calls thesubmitmethod of theJobSubmitter
Wizard. Thus, all previously createdJobswill be registered as aJob Array in the
Scheduler::Codineusing theScheduler::Codine–>freezemethod. Finally, the array of
all Jobsis submitted by callingScheduler::Codine–>thaw. All Jobsshould now have
the statusSUBMITTEDand a queue ofJobsshould appear in the status report of the
Sun GridEngine’sqstat output.

3. In the previous step, eachJobwas submitted to the scheduler by adding the command
line for each singleJobcomputation to the list ofJobs. Actually, the scriptruntool.pl
is called for eachJob with the corresponding arguments such asruntool.pl -p
<projectname> -j <jobid> [-a] .

4. When such a command line is executed by one of the compute hosts, the scriptrun-
tool.pl tries to initialize theJobobject for the given id and project name. Since aJob
contains the information about a specific region and a single tool that should be com-
puted for that region, this script can now execute therun method that has to be defined
for each tool. Such arun method normally starts a bioinformatics tool (e.g. BLAST,
Pfam, InterPro) for the given region and stores some observations for the results ob-
tained. During this computation the status of the currentJob is RUNNING. If the
option -a was specified an automatic annotation will be started upon successful com-
putation of the tool. These are only very simple automatic annotations since they are
based on the results of a single tool and region combination. Whenever the compu-
tation itself or the automatic annotation fails, the status of aJob is set toFAILED,
otherwise the status isFINISHEDand the computation is complete.

86

7.1. GenDB-2.0

The inclusion of new tools in GenDB is very easy, with the most time-consuming step typi-
cally being the implementation of a parser for the result files. For the prediction of regions,
such as coding sequences (CDS) or tRNAs, GLIMMER, CRITICA, and tRNAscan-SE have
been integrated into the system.

Homology searches on DNA or amino acid level in arbitrary sequence databases can be
done using the BLAST program suite. In addition to using HMMer for motif searches,
we also search the BLOCKS and InterPro databases to classify sequence data based on a
combination of different kinds of motif search tools. A number of additional tools have been
integrated for the characterization of certain features of coding sequences, such as TMHMM
for the prediction ofα-helical transmembrane regions, SignalP for signal peptide prediction,
or CoBias [MKPM04] for analyzing trends in codon usage.

Since all tools have to be defined separately for each project, a tool configuration wizard was
implemented to support this task (see figure 7.5).

Figure 7.5.: The tool configuration wizard in GenDB-2.0. In this example, a BLAST tool can
be configured for blasting against a special database (e.g. PSI-BLAST vs. the
SwissProt database). Additionally, an automatic annotator can be activated
which automatically annotates a function based on a simple cut-off strategy that
can be combined with a check for a regular expression.

87

7. Specialized components

Whereas some tools only return a numeric score and/or an E-value as a result, other tools like
BLAST or HMMer additionally provide more detailed information, such as an alignment.

Although the complete tool results are available to the annotator, only a minimum data subset
is stored in form of observations. Based on this subset, the complete tool result record can be
recomputed on demand. Storing only a minimal subset of data reduces the storage demands
by two orders of magnitude when compared to the traditional “store everything” approach.
Our performance measurements have shown this also to be more time efficient than data
retrieval from a disk subsystem for any realistic genome project (see also [Mey01]).

7.1.4. Data navigation metaphors

The design of the GenDB systems allows the projection of data from any component or plug-
in onto all views (see also figures 7.7, 7.9, or 7.12). This allows the user to navigate through
the genome with a wide variety of synchronized views. Sequence information is displayed at
the level of contigs but also for each sub-region. For each region, a report can be generated
that summarizes all properties (e.g. start, stop, length), available observations, and the latest
annotation. Additionally, specialized views like the circular or linear plot or the virtual 2D
gel complement the navigation metaphors.

7.1.5. Plug-in architecture

As all data in the system is accessible, almost any task can be performed by a plug-in, defined
as a tool that operates on the GenDB data structures. While the core GenDB system provides
a mechanism for manual annotation, two automatic annotation plug-ins perform automatic
assignment of regions (e.g. genes) and/or functional annotations for those regions. Another
plug-in can be used to colorize all kinds of regions in a user defined scheme that has to be
given a list with start and stop positions and a color. A similar plug-in can be used to create
additional circles in the circular genome plot.

7.1.6. Wizards

Repetitive tasks like updating the position of every downstream gene after a frame-shift
correction are performed by “wizards”. These are software agents, modeling repetitive tasks
and/or tasks that require complex and synchronized changes to different data objects.

88

7.1. GenDB-2.0

Figure 7.6.: The CDS-start correction wizard. The evidence (observations) computed for
these regions and alternative predicted regions are presented to the user.

All actions performed using wizards are modeled as annotations. Currently, wizards are im-
plemented for frame-shift and sequence data correction, CDS-start correction and reloading
(updating) of contig sequences, and for comfortably submitting multiple jobs (e.g. com-
putation of all tools for all regions or only selected tool/region combinations, refer to ap-
pendix A.4 for furhter details).

7.1.7. Annotation

As already mentioned, the GenDB data model features a strict separation of tool results (ob-
servations) and their interpretation (annotation). This confers a great amount of flexibility
and enables researchers to freely define their application-specific annotation strategies. The
GenDB system supports both manual annotation as well as the application of automated
annotation strategies. For manual annotation, the user interface provides a “one-click” in-
frastructure; for automatic annotation the API can be used.

The core GenDB system offers simple automatic annotation functions which allow the ap-
plication of user-defined “best tool result” strategies. In addition to this, a GenDB-Annotate
plug-in for more complex annotation strategies based on the integration of an expert system
is currently under development. There, the user can define a set of rules to be used for auto-
matic annotation of regions or assignment of function to those regions. Due to the consistent
internal data representation, all GenDB objects can be accessed directly by an expert sys-

89

7. Specialized components

tem. While currently implementing a new annotation strategy entails writing program code,
we are in the process of establishing a graphical editor (with XML export capabilities) for
editing of annotation rules and a processor for computing annotations based on these rules.

For annotation projects, the linear contig with its list of genes often is only a starting point.
The knowledge about metabolic pathways and the enzymes contained in them is connected
to the data in GenDB via the GOPArc (Gene Ontology and Pathway Architecture) module
(see section 7.3).

7.1.8. Data import and export

An important step for any genome analysis project is the availability of good import and
export facilities in the genome annotation system. Currently, the GenDB system allows
data import/export from/to GenBank, EMBL, and FASTA format files; an additional export
format is GFF. A user configurable linear or circular whole genome view (see figures 7.9
and 7.10) which can be exported as a PNG or Scalable Vector Graphics (SVG) file comple-
ments the export formats. For each gene annotated with GenDB, the gene report can be also
be generated in the printable PostScript format.

7.1.9. Interfaces

There are various comfortable ways of accessing the system: an API, graphical user inter-
faces, and a new C++ client-server interface. The more widely used frontend is a Gtk-Perl3

based graphical user interface (GUI) that offers access to the data in the system by a variety
of navigation metaphors (see figures on the following pages). Since not all users have access
to a platform with Perl/Gtk, a web interface is also provided. The latter offers a somewhat
restricted functionality with respect to the GUI. But due to its HTML standard compliance,
the web interface provides access to GenDB for a wide range of platforms.

As stated above, the GenDB classes form the applications programmers interface (API).
Documentation of each class and object property or method is available on the GenDB web
site. The relative simplicity of the object model together with the documentation have led
more than 30 research groups to use GenDB as a platform for their work. The web site has
some sample scripts that show the functionality of the GenDB API. Using this interface,
programmers are able to extract or manipulate the GenDB data objects. For example, this
allows the user to write simple Perl scripts that compute the molecular weight for every
protein in a given genome and generate a table (see also section A.3).

In addition to the Perl API, O2DBI-II supports a client-server programmer’s interface. This
will not only allow non-Perl platforms to connect to the GenDB system, but also clients to
run on remote machines.

3http://www.gtkperl.org/

90

7.1. GenDB-2.0

The GenDB-2.0 Gtk GUI The following screenshots show some selected interfaces of
the graphical user interface implemented with Gtk.

Figure 7.7.: The main window of GenDB-2.0 can be used for navigating through a contig
that can be selected from the list at the left. Available regions and observations
for such regions are displayed and all properties of a selected region can be
shown. The absolute positions of selected regions (e.g. from a pathway) can be
highlighted on the complete contig and a separate area at the bottom of the main
window shows the current range of the sequence.

As illustrated in figure 7.7, a tree-view at the left side of the main window displays the
contigs that have been imported. In addition to the length,GC content, and other standard
information, a statistical overview shows among other data the number of CDS regions for
each different status (e.g. putative or annotated CDS). The contig view on top of the right
side displays all kinds of sub-regions and observations that predict those regions. Each type
of region can be assigned a color and the user can select for each type whether it should
be shown and have an arrow or not. Moving the mouse over a region opens a window that
zooms into the region and shows the best observation of each tool. A small navigation bar
below the region area can be used to quickly jump to the next region with a specific status or
to a given position.

91

7. Specialized components

Another important element is the variable information frame below the navigation bar: here,
the user can view a list of regions, a plotting interface (e.g.GC content, GC skew, or frame
plot), or a sheet with all available information about a selected region. The contig overview
in the middle displays all contigs. The current contig is enlarged and a sliding window can
be used to move along the sequence. The sequence window at the bottom shows the DNA
and amino-acid sequence with all sub-regions.

Figure 7.8.: The completely customizable ObservationView in GenDB-2.0 displays the re-
sults of bioinformatics tools that were computed for a selected region. This
sortable list only shows some common attributes like the start, stop, description,
etc. The complete result appears in a popup window that opens when the user
moves the mouse over an observation.

The graphical user interface for the display of tool results is depicted in figure 7.8. Upon
selection of a certain region, all available tool results for this region are visualized in a
completely customizable list. The GenDB system uses different levels that are helpful for
classifying and comparing the observations of different tools. Each level has a configurable
color. While the sortable list contains only the most important information, a popup window
shows the complete tool result. The complete original results of most tools (e.g. all BLAST
alignments) are not stored in the database in order to save space. They can be recomputed
on demand and presented to the user immediately. More information about the underlying

92

7.1. GenDB-2.0

database record is available by a cross-link to the corresponding sequence databases with the
SRS system. The observations can also be used for a “one-click” annotation so that essential
information like EC numbers or gene names are directly extracted from an observation and
written into the corresponding fields of the annotation dialog.

The circular and linear plot (see figures 7.9 and 7.10) can be used to create highly cus-
tomizable whole genome graphics. All regions are displayed according to the selected color
scheme (type of region, status region, status function) but it is also possible to import a user
defined scheme. In the circular plot, additional circles (e.g. for all tRNAs or for genes of
a specific function) can be displayed by importing a list of start and stop positions for the
regions on a new circle. The current version features aGC contentand aGC skewplot and
allows setting text labels at arbitrary positions. The plot can be saved to different image
formats, including the SVG format.

Figure 7.9.: The integrated CircularPlot of GenDB-2.0 displays all coding sequences of a
contig and other optional circles that can be imported. TheGC contentand the
GC skewcan be plotted optionally.

93

7. Specialized components

Figure 7.10.: The customizable linear plot of GenDB-2.0 can be used to visualize parts of
the genome or even a complete contig. The plot can be scaled to user defined
sizes in order to print out a whole genome on a poster or on postcard.

The linear plot displayed in figure 7.10 can be used to create printable images of selected
genes or posters of whole genomes. All regions can be colored according to their status or in
a user defined fashion. Optionally, the gene names or the original names of the regions can
be displayed as well.

Figure 7.11.: The Virtual 2D Gel of GenDB-2.0 can be used to visualize all proteins of a
contig according to their isoelectric point and molecular weight. Spots can be
selected and the user can navigate to a region that corresponds to a spot.

94

7.1. GenDB-2.0

Figure 7.11 shows a virtual 2D gel plotted with the theoretical values of the iso-electric
point and the molecular weight computed for each CDS. Upon selection of a spot, the cor-
responding region is highlighted in the main window. The size of each spot can be adjusted
depending on special predictions for the expected expression ratio (e.g. by using CoBias).
It is also possible to select and display only those spots that have a signal peptide and/or a
transmembrane helix and/or a helix-turn-helix motif.

Figure 7.12.: The gene report in GenDB-2.0 shows all available information for a selected
region in a printable format. It also displays the selected CDS and its surround-
ing regions as well as the best of observation of each bioinformatics tool that
was computed for this region.

The new gene report of GenDB-2.0 displays a printable sheet with all available information
about a selected CDS. As shown in figure 7.12, all CDS values (name, start, stop, length,
etc.), the latest annotation region, the latest annotation function, and a zoomed image of the
region are presented. The report also shows the best observation of each tool that has been
computed for the current region.

95

7. Specialized components

The GenDB-2.0 web frontend In addition to the Gtk interface, GenDB-2.0 has a com-
pletely redesigned web frontend that can be used to annotate a genome with many researchers
from different locations simultaneously.

Figure 7.13.: The main window of the web frontend in GenDB-2.0 can be used for navigat-
ing through a contig sequence. A popup window shows more details about a
selected region, buttons in the lower right corner provide access to more context
specific functions.

The main window of the GenDB-2.0 web interface looks quite similar to the Gtk GUI. For
performance reasons, we did not include a sequence browser in the main window, but a sep-
arate window can be opened for viewing the DNA and amino-acid sequence. Three different
navigation metaphors (COG, GO, and KEGG) can be opened via the “Classification” menu
on top of this window. Since the right mouse button is already reserved for special popup
menus of the web browser, we decided to emulate a context sensitive right mouse button
popup menu in the lower right corner of the main window. Moving the mouse over one of
the regions opens a popup window with the most important features of that region (e.g. name,
length, gene name, gene product, EC number). The quick navigation bar in the middle of
this window can be used to navigate to a specific position in the current contig.

96

7.1. GenDB-2.0

The gene report displayed in figure 7.14 shows all available data about a selected CDS on
a printable one page sheet. Standard properties of a CDS (e.g. start, stop, length) are listed
as well as the latest annotation of the region and the latest annotation of the function. A
graphical overview shows the best tool results and the neighbouring regions.

Figure 7.14.: The report of the web frontend in GenDB-2.0 shows all available information
about a CDS. The surrounding of the selected region and the best observation of
each tool is displayed together with the latest annotations in a printable format.

Figure 7.15.: The KEGG viewer for navigating the KEGG metabolic pathways has been in-
tegrated into the GenDB-2.0 web frontend. Different colors highlight auto-
matic/manual annotated enzymes and those that can be found in the observa-
tions.

97

7. Specialized components

Figure 7.16.: The Gene Ontology browser of the web frontend in GenDB-2.0. The user
can search for all regions that belong to a GO category and select them for
visualization or annotation.

The GenDB-2.0 web frontend directly integrates three additional navigation metaphors of the
GOPArc system (see section 7.3) for browsing or annotating a genome based on the KEGG
metabolic pathways, Gene Ontologies (GO), or Clusters of Orthologous Genes (COG). The
KEGG browser (see figure 7.15) can be used to visualize a metabolic pathway of the KEGG
database with those enzymes that were found in an observation (blue), automatically anno-
tated (green), or manually annotated (red). The user can then navigate to a selected set of
genes for these enzymes and also annotate them. Each enzyme is linked to the ENZYME
database and the COMPOUND entries can be accessed by clicking on the chemical sub-
strates.

As illustrated in figure 7.16, the Gene Ontologies can be used to search for regions that
were annotated (automatically: green, manually: red) with a GO number. It is also possible

98

7.1. GenDB-2.0

to search in the observations (blue) for likely candidate genes that were annotated with a
selected GO category. Identified regions can then be displayed or annotated.

The same navigation has also been implemented in the COG viewer (see figure 7.17) for
browsing the Clusters of Orthologous Genes (COG).

Figure 7.17.: The COG viewer of the GenDB-2.0 web frontend.

For each region that was found by searching the genome via one of the navigation metaphors,
different actions are provided: the region can be annotated, displayed in the report, or the
observations for a selected region can be listed. It is also possible to select several regions by
activating the corresponding checkboxes. These are then highlighted in the quick navigation
bar of the main window. All checked regions can be annotated simultaneously using theMul-
tiple Annotatorthat is displayed in figure 7.18. This interface can be used to annotate several
genes consistently in a “one-click” manner. The user can select the number of observations
that are displayed for each region. In the next step, a single observation can be chosen that
will be used to annotate the region (e.g. the system will try to extract a gene name, gene

99

7. Specialized components

product, EC number, and a description from the selected observation). Other observations
from the list can be added to the annotation as supporting evidence. After submitting the
selected regions for annotation, the remaining regions (if any) will appear again for further
analysis and final annotation. At the left side of the window the user can also find some
information about the status of each region and in some cases a warning will be displayed
that indicates potential paralogous genes.

Figure 7.18.: A multiple annotation interface has been implemented for the web frontend in
GenDB-2.0 that can be used to annotate a group of genes simultaneously.

7.1.10. Annotation pipeline

The GenDB-2.0 system features all steps for the analysis and annotation of bacterial genomes
starting from the raw contig sequence. Figure 7.19 shows an example for a genome anno-
tation pipeline that has been implemented with GenDB. Upon import of the raw sequence
data, a parent region object describing the genome sequence is created. Following this step,
user-defined tools for the prediction of different kinds of regions, such as coding sequences
(CDS) or tRNA-encoding genes can be run. The output of these tools is stored as obser-
vations which refer to the parent region object. Based on these observations, an annotator,

100

7.1. GenDB-2.0

human or machine, performs a “region annotation”. This means confirming or rejecting the
results of gene prediction tools by creating region objects like CDSs or tRNAs. The anno-
tations form a complete protocol of all “region annotation” events. Following the creation
of different kinds of regions, additional tools such as BLAST, HMMer, or CoBias can be
run creating information related to their potential function. Each of these tools can have its
own automatic annotator that creates a very simple annotation based solely on the results of
a single tool run. After computing a number of standard tools, a more sophisticated auto-
matic annotation can be accomplished by combining the results of different tools. Finally,
a manual “function annotation” step can be performed by an annotator in which a putative
function is assigned to these regions by an interpretation of the observations (see below).

Region

Observation
Region

Region

Sequence

Tool

Annotator

Tool

Observation
Function

Annotator

Annotation

Annotation
Assign
biological
functions
to
regions

child regions
like
CDS,

sequence,
Import

parent region
create

Create

etc.
promotor

Figure 7.19.: This standard sample pipeline implemented with GenDB-2.0 starts with an im-
port of a contig sequence. Afterwards, regions are predicted and created by
a regional annotation (Annotation::Region). A biological function for these
regions can then be assigned by computing different bioinformatics tools that
often generate large numbers of observations. Based on these results an auto-
matic or manual functional annotation (Annotation::Function) can be assigned.

The current Gtk version of the GenDB system features a graphical interface (Annotation
Pipeline Wizard) for the configuration of different individual pipelines. The user can choose
one or more steps (Import, Edit Sequence, Region Prediction, and Function Prediction)
which are then combined to a separate pipeline. After some initial configuration, the pipeline

101

7. Specialized components

is submitted as a special job and the corresponding steps are executed in the specified order
without any further user interaction. Using these pipelines allows a very comfortable auto-
mated annotation and increases the productivity in large-scale genome annotation projects.

Nevertheless, it is still a laborious task to manually check the predicted regions and their
function assignments. Both GenDB frontends therefore provide almost identical wizards for
editing the start of a gene (see figure 7.6) and annotation interfaces that allow recording a
comprehensive set of information about each region. Since the final manual annotation of a
genome is not only the most time consuming step but also the most erroneous task, exactly
defined roles for annotating a gene are essential in order to prevent inconsistent entries.
The Annotation Dialogdisplayed in figure 7.20 and its available entry fields are therefore
described in more detail below:

• Header
The arrow buttons can be used to jump to the previous or next region.

• Annotation List
The list of previously created annotations at the left side of the annotation-dialog
shows the annotations for the function of a gene at the top and the annotations for
the creation or modification of a region at the bottom. The latest annotation is printed
in bold font, the selected annotation is highlighted.

• Add new
The annotation is stored by clicking on this button.

• Accept
A click on this button will automatically set the region status to finished and the func-
tion status to annotated. The button can be used for a “one-click” annotation, e.g. when
the automatic annotation was almost perfect and needs no more corrections.

• Close
To cancel an annotation press Close.

• Region Status
The state of a region can be set by selecting a new status from the list.

• Function Status
The state for the functional assignment of a region can be assigned by selecting a new
status from the list.

• Date
Date when the annotation has been created.

• Annotator
Name of a person or tool that created the annotation.

102

7.1. GenDB-2.0

Figure 7.20.: This screenshot of the annotation dialog of the GenDB-2.0 web frontend shows
the latest automatic annotation. On the left side, the user can see the history
of already existing annotations. For annotating a gene, a number of fields have
to be filled out and a status can be set. All genes can be classified using the
automatically assigned COG categories and Gene Ontology numbers. As a
special feature of GenDB-2.0, observations can be stored with an annotation as
supporting evidence.

103

7. Specialized components

• Gene Name
A gene name should only be assigned to regions with high quality evidence from the
observations. Usually, gene names are have four characters with a capital last letter,
e.g.dnaA.

• GO-Numbers
The list of GO-Numbers displays Gene Ontology numbers that were assigned to a
region. Detailed information about each number can be obtained by clicking on the
number itself in the GO-Info list at the right.

• EC-Number
An EC-Number (Enzyme Commission) can be assigned in this field for enzymes,
e.g. 1.2.3.4.

• Gene Product
The gene product of a coding sequence (CDS) can be entered here as detailed as pos-
sible. If an annotator is unsure about a gene product, it is also possible to select one of
the default gene products from the list of predefined gene products below.

• Description
The description field of an annotation contains a number of fields that should be set:

– Plain Text
This is the place where annotators should add a detailed description of the CDS.
The function of the gene should be explained and how this has been derived,
e.g. identified by sequence similarity. Alternative gene names or gene products
that may be important can also be added here. All information that is collected
here will be exported into the EMBL file for submission to a public database.
Thus any unnecessary details should be written as a comment (see below).

– Experimental
This check-box can be used to indicate experimental evidence for the annotation,
e.g. wet lab experiments. During export, this value becomes the evidence field in
the EMBL file.

– COG Number
The COG Number field can be used to assign a functional classification from
the Clusters of Orthologous Genes. In most cases, the COG category is added
automatically and should not be changed. Another category can be chosen by
pressing on the “Get” button and selecting a category from the tree view that
appears in a new window.

– COG Funccat ID
This field contains the one letter code assigned to the main category of the se-
lected COG Number.

104

7.2. EMMA

– COG Funccat Description
This field contains the description for the main COG category.

– Function
Other functional category terms (e.g. from TIGR roles, Monica Riley categories,
or GO) can be entered here if there is no exactly matching term in the COG
list. In most cases this will be the same function as the COG assignment. The
function assigned in this field will be exported into the EMBL file as a function
entry. Thus an annotator should always try to assign a function.

– Confidence
The confidence field can be used to describe the confidence that you have in your
annotation. A level can be selected from the list.

• Comment
This is the right place to add everything else that annotators have in mind about a CDS.
Simple notes that might be useful for an annotator or others can be stored in this field.
Everything that shouldnot appear in the final annotation submitted as an EMBL file
can be written here; the content of the comment field will not be exported.

• Observations
The list of observations contains references to observations (e.g. BLAST results) that
have been used to derive an annotation. These are used as supporting evidence and by
clicking on one of them the observation will be redisplayed in the Observation-List.
Observations can be deleted from this list by clicking on the small button next to each
observation in the list when an observation does not support the annotation. Other
additional observations can be added by selecting them from the list at the right.

• Links
Supplementary hyper-links can be added to an annotation by entering them in the list
at the right, e.g. a URL to medline.

7.2. EMMA

Since none of the existing systems fulfilled all requirements stated in section 3.2, the EMMA
system [DGB+03] was developed as an open source platform for the storage and efficient
analysis of microarray data.

The EMMA software can be used to store all kinds of transcriptome data. Experimental
setups, slide layouts, information about spot contents (e.g. EST libraries), and the measured
spot intensities are stored in a relational database and can be accessed using an O2DBI API
or a graphical interface (web or Gtk frontend). In addition to image analysis and editing fa-
cilities, the system also incorporates a number of algorithms for the normalization (e.g. print-

105

7. Specialized components

tip and lowess regression) and analysis of expression data (simple statistics, t-test, k-means
clustering, self organizing maps). The results of these analyses (e.g. tables of differentially
expressed genes) can be linked directly to regions in a GenDB database.

7.2.1. Design overview

The EMMA platform has been designed to cover all aspects of microarray data acquisition
and analysis. The general structure of a microarray experiment encourages using a modular
concept for the implementation of separate specialized components. Figure 7.21 displays
the main tasks that are involved in microarray experiments and how they are realized in the
EMMA platform. All required components of the system are open source and available for
standard UNIX/Linux systems.

Images

Images Slides

AIM

data
Genomic

Content
information

information
Layout

EMMA−DB

MicroLIMS−DB

Image analysis Pre−processing Data analysis Visualization
t−testNormalization
clustering

Scatterplot
QQ−plot

ExperimentalLaboratory
protocols setups

Measurement

Figure 7.21.: The design of the EMMA-platform: the platform consists of the two databases
EMMA-DB and MicroLIMS-DB as central data repositories which store data
from many sources. Data concerning experimental design and protocols can
be uploaded and filed with MicroLIMS at any time they arise in the lab (lower
part of the figure). Highly customizable pipelines are provided by EMMA for
the subsequent analysis of measured data (top part). Scanned images can be
automatically loaded from MicroLIMS and inserted into such a pipeline.

The system is based on a central data repository (consisting of MicroLIMS and EMMA-
DB) for storing all experiment related (laboratory) information and those data sources that

106

7.2. EMMA

are intimately connected with the measured data and results obtained from further analysis.
Experimental setups, parameters, employed methods or procedures, and the images obtained
by scanning a microarray are described in the MicroLIMS system and can be referenced by
experiments stored in the EMMA database. The details about the major components of the
EMMA platform are described in the following sections.

7.2.2. MicroLIMS

MicroLIMS has been developed as an integral building block of the EMMA-platform. It re-
lies on a separate database and can be used independently. As a LIMS server it can manage
all kinds of laboratory specific meta data that is acquired during a microarray experiment.
MicroLIMS captures the whole laboratory work flow of RNA-purification, probe labeling,
hybridization, and scanning protocols (see Fig. 7.22). It also allows uploading and down-
loading of images from the microarray scanner and of raw data files from image analysis
software. MicroLIMS has a web-based user interface which provides data upload via a stan-
dard web browser installed on a laboratory PC. The protocol data stored in MicroLIMS and
the measured data from each slide are linked via the EMMA platform in such a way that a
report of the experimental setup can be displayed for each slide.

7.2.3. EMMA-DB

The EMMA-DB component represents the core module of the EMMA platform. All mea-
sured and computed data derived from the analysis of microarray experiments are stored in
a relational database (e.g. MySQL or PostgreSQL). The database schema was specified in
UML compliant to the MIAME (Minimum Information About a Microarray Experiment)
recommendations [MGEa] and implemented with the O2DBI-II tool.

Together with user defined extensions and custom class methods, the automatically generated
modules form an object-oriented API layer (see figure 7.23) that handles all access to the data
stored in the database.

107

7. Specialized components

Figure 7.22.: The MicroLIMS web interface. The user can upload protocol specific data and
images at every stage of a microarray experiment: RNA purification, labeling
of the probes, hybridization, and scanning.

108

7.2. EMMA

O2DBI

SQL

interface
MicroLIMS

GenePix

Importer

QuantArray

ImaGene

RAIM

R interfaceAIM interface

object−oriented API layer

frontend
Web

GUI
Gtk

Figure 7.23.: Overview of the architecture of the EMMA-DB core components: the central
object-oriented API layer serves as an bidirectional interface for the modules,
which provide the functionality of the EMMA platform (e.g. web frontend,
GUI and import wizards). The API layer relies on O2DBI-II which implements
an abstraction layer to a relational database on the left. Additional components
like the MicroLIMS system or the R packages are connected to the main layer
via specialized communication interfaces plotted as triangles, while the exter-
nal applications are depicted by grey rectangles. Circles denote user interfaces
and arrows represent the directionality of communication (uni- or bidirectional)
between components.

The EMMA-DB core has been implemented in Perl but since O2DBI-II features the imple-
mentation of a client server architecture, all data can also be accessed via a C++ client or an
XML-based remote procedure call (XML-RPC) interface which allows for the communica-
tion of arbitrary O2DBI-II applications via the Internet. EMMA uses MySQL by default but
can be configured to use another DBMS if required.

7.2.4. Data import/export

EMMA is capable of importing a variety of data files in different formats from other soft-
ware. EMMA can currently import EMBL and FASTA files and is compatible to all widely
used image analysis tools as well as general spreadsheet files.

109

7. Specialized components

7.2.5. Image analysis

There are already some systems for analyzing images from laser scanners. We have com-
pletely embedded the AIM software [KKSed] into the analysis pipeline. AIM is capable
of automatic spot detection with little or no user interaction. You can import the scanned
images uploaded to MicroLIMS, start automatic spot detection and adjust spot and grid po-
sitions from within the user interface. After adjusting spots and grids, intensity values can
be recomputed automatically.

The output of other software installed on a stand-alone PC can also be imported. EMMA
currently supports output files from ImaGene, GenePix, and QuantArray. Other formats
can be added as they are available. All computation in the EMMA-platform is carried out
using the open source statistics system R [IG96]. R already provides hundreds of efficient
operations essential for statistic analysis and visualization.

7.2.6. Filtering, normalization, and calibration

Data from microarray experiments often suffers from a variety of systematic deviations like
different hybridization conditions, dye efficiencies, scanner settings, and bleaching effects.
These effects can distort the distribution of the data. To illustrate this, a dye-shift experiment
was carried out using microarrays with 3568 ORF-specific DNA fragments ofCorynebac-
terium glutamicum[HBB+03]. In this experiment, RNA from one condition is labeled with
both dyes and hybridized to a microarray. In theory, one would expect the data to exactly
follow the main diagonal, but often the data distribution is found to be skewed as a result of
systematic effects.

To remove spots that mainly contribute to experimental noise, filtering of the data is the first
step in the analysis pipeline. EMMA provides filters based on spot intensities and standard
deviation specifying either threshold values or percentiles. Removing the spots belonging to
the lowestx percent of the overall intensity is a widely used method.

The R-package “sma”4 provides different methods for normalization including median signal
normalization and normalization based on local regression [YDLSb]. Normalization can be
computed for the whole set of spots or the user can define an arbitrary set of spots as a
reference.

All available methods of the sma package compute two values for each spot: The log-ratio
M = log2(R/G)− c(A) and the log-overall intensityA = log2(

√
RG), whereR andG de-

note intensities of the red and green channels, respectively, andc(A) denotes the intensity
dependent normalization function.

4http://cran.r-project.org/

110

7.2. EMMA

Variance stabilization is an alternative to applying logarithmic transformation by computing
M andA-values. Application of variance stabilization calibrates the measured data such that
the variance of the derived dataset is constant over the whole range of intensities. Therefore,
differential expression of highly expressed genes can be directly compared to genes showing
low levels of expression. [HvHS+02]

7.2.7. Testing for differentially expressed genes

One main task in analyzing microarray experiments is to find significantly up or down reg-
ulated genes. cDNA microarrays cannot measure gene expression directly but indirectly by
relative transcript abundance. Abundance could also be due to technical or other biological
reasons (e.g. transcript stability), but for the sake of shortness we will call genes found to
have a high ratio of transcript abundance “differentially expressed”.

The simplest approach to find such genes is to define ann-fold threshold of the calculated
meanM-values over the replicates. Then-fold-approach can be improved by taking the
variability of the data into account. We have decided to use Student’s t-test provided by R to
assess the significance of differential expression. This test can be used to compare one or two
groups of replicate microarrays. The grouping of replicate arrays increases the number of
replicates for each gene and thereby the reliability of the test. By default, unequal variances
between the samples are assumed in the two sample case and the Welch modification to the
degrees of freedom is used.

The t-test assigns a valuet to each gene which can be used to rank differentially expressed
genes. Additionally, a confidence indicatorp is computed for each gene. The t-test assumes
that the samples are normally distributed. Thus we have recently added the Wilcoxon rank
sum statistic in case normal distribution is not guaranteed.

There are as well different methods for computing adjustedp-values like Bonferroni’s,
Holm’s, and Hochberg’s methods as well as the method of [WY93] (see also [DYCS02]).

As a result of the test, EMMA displays a comprehensive list of genes containing some statis-
tics for each gene which can be exported. Another option for visualization of the results of
the t-test is to output a quantile-quantile plot of the t-values as used by [DYCS02].

7.2.8. Cluster analysis

Often microarray experiments are designed as multi conditional experiments like observing
changes of expression over multiple points in time or under different doses of a drug. A well
known example is found in [SSZ+98]. These experiments result in expression profiles for
each gene.

111

7. Specialized components

Apart from the ability to store such expression profiles in the database and to associate ex-
perimental factors with each slide, EMMA also supports cluster analysis (often only called
clustering). Cluster analysis is a means for grouping genes having similar expression pro-
files. Many clustering algorithms have been developed and implemented. We have inte-
grated some of the most widely used clustering algorithms for expression analysis using
R-packages: k-means clustering [Mac67], hierarchical clustering [Mur85], SOMs [Koh97]
as well as the PAM, CLARA and FANNY algorithms introduced by [KR90].

Additionally, we have implemented a parallel version of the PAM algorithm (called “Pa-
PAM”) in C++ and integrated it into the development version of EMMA. PaPAM utilizes
multiprocessor computers to speed up cluster analysis.

7.2.9. User interfaces

EMMA is equipped with both a web-based frontend and a Gtk-based graphical user interface
(GUI). The GUI is designed for local installations of EMMA on small laptop computers up
to large scale servers. It features the design concept of wizards, which are a means to easily
enter many parameters for data import or computation.

As displayed in figure 7.24, EMMA can be used to store and manage library data, e.g. the
information about 96 or 384 well micro-titer plates and their content.

Figure 7.24.: The library interface of the EMMA Gtk GUI provides access to physical library
data. A selected microtiter plate which is stored in the refrigerator is visualized
as a grid of circles and the user can access the content of each well by clicking
on a circle.

112

7.2. EMMA

Since a slide is mostly not prepared by using the original library plates, EMMA also features
the concept of storing spotting plates that were used for the spotting robot. TheSpottingPlate
interface shown in figure 7.25 thus displays for a selected spot the corresponding well and
its content from the original library.

Figure 7.25.: The visualization of spotting plates can be used to organize and reproduce rear-
rangements of different microtiter plates. Spotting plates that were temporarily
created and only used for printing a microarray can be stored and the mapping
to the original plates can be visualized by clicking on a well.

Figure 7.26.: The visualization of different layouts that were used for printing sets of slides
is essential for mapping the spots on a slide to their corresponding positions
in microtiter plates. This assignment thus contains the information about the
positions (including replicates) of a gene on a slide.

113

7. Specialized components

The physical layout employed for spotting a series of slides is managed and visualized using
theSlideLayoutinterface of EMMA displayed in figure 7.26. Upon selection of a grid on a
slide, the spots are enlarged and the user can check the content of each spotted dot.

The design of a microarray experiment can be described and modified using theExperi-
mentEditordisplayed in figure 7.27. Among the most important properties for each experi-
ment, slide groups can be defined that were employed for an experiment.

Figure 7.27.: The experiment editor is used for creating and managing microarray experi-
ments. The user has to enter all available information about the experimental
design and the slides that were used.

The MeasurementBrowsershown in figure 7.28 features the visualization of scanned im-
ages. Upon selection of a spot two separate images for both channels are displayed and the
measured values are listed.

All data import is supported by a comfortable and easy-to-useImportWizardas illustrated
in figure 7.29. It features enhanced import facilities for predefined and arbitrary file types
including a preview mode that allows the user to check the result in advance.

114

7.2. EMMA

Figure 7.28.: Measurements that were created using an image analysis software can be im-
ported and visualized. Slide images can be inspected and by clicking on a spot,
both channels and the measured values are displayed.

Figure 7.29.: EMMA provides a comfortable import wizard for uploading many different
kinds of data. The parser can be adjusted for reading different file types and
features a number of options for customizing the importer.

115

7. Specialized components

The web interface allows remote access to a server installation of EMMA. It provides the full
functionality of the program while enabling remote users to access shared data on a central
server. For using the web interface via the Internet only a standard web browser is required.
The screenshots below show selected interfaces of the EMMA web frontend.

As illustrated in figure 7.30, the user can view the imported slides and zoom into each grid.
The spot coordinates (slide, grid, row, column) and measured intensities (intensity, back-
ground, standard deviation, and background standard deviation for both channels) can be
displayed by clicking on a spot. Furthermore, the computed A and M values and the status
of the spot (defect/control) are listed.

Figure 7.30.: The visualization of slides and measured spot intensities is also available in the
web frontend. By clicking on a spot, the measured intensities are displayed.

The EMMA web frontend features an easy-to-use wizard for creating arbitrary scatter plots
(see figure 7.31). After selecting a dataset and the parameters for the plot (e.g. type of
plotted values, x/y axis), an interactive plot is generated that can be used to navigate through
the spots.

116

7.2. EMMA

Figure 7.31.: A sample scatterplot created with the EMMA web frontend. Such plots can
be created for different data sets and parameters. By clicking on a spot, the
corresponding data (experiment, intensities, layout, etc.) are displayed.

Different methods for normalization can be applied to the measured microarray data. Before
storing the normalized values, a preview of the results can be displayed for the available
normalization methods as illustrated in figure 7.32.

Figure 7.32.: A preview of normalization results shows how systematic errors can be cor-
rected by different methods. For the sample data shown above a median,
lowess, print-tip lowess, and scaled print-tip lowess normalization was per-
formed and compared to the none normalized data.

117

7. Specialized components

The EMMA web frontend currently provides data analysis by employing Student’s t-test.
Figure 7.33 shows a sortable list resulting from such a test.

Figure 7.33.: A t-list result displayed in the EMMA web frontend shows significantly up or
down regulated genes. This list can be sorted according to different settings
and exported into a flat file.

Comprehensive online documentation and online help is also available with both interfaces to
guide the user through the setup and operation of the software and through setting parameters
of analysis.

7.3. GOPArc

GOPArc (Gene Ontology and Pathway Architecture, unpublished) has been designed as a
combined architecture for the analysis and visualization of Gene Ontologies, functional clas-
sifications and pathway data. The current prototype implementation contains a GO and COG
browser, a KEGG pathway browser, a search interface, and the PathFinder system. Different
types of data (e.g. annotated genes, expression profiles, etc.) can be mapped onto the path-
ways and functional categories thus representing meta views and additional information (see
sample applications in chapter 9).

118

7.3. GOPArc

7.3.1. Metabolic pathways

The implementation of a component for the analysis and visualization of metabolic path-
ways was based on the PathFinder system and extends its functionality in several ways. The
complete set of the KEGG metabolic pathways is now imported into the database described
in [GHM+02] as directed graphs. For navigating the KEGG maps, a completely redesigned
Gtk interface (see figure 7.34) was implemented that allows an interactive use.

Figure 7.34.: The KEGG browser can be used for visualizing the KEGG metabolic path-
ways. The interactive maps provide links to the enzyme and compound
databases. Pathways can also be analyzed by using the search functionality
of the PathFinder system which has been integrated.

Each rectangle containing an EC number can be colorized in a user defined way, e.g. marking
the annotated enzymes of an organism is possible. Expression levels can be visualized as
boxes surrounding an EC number and an additional plot can be opened for zooming and
displaying the exact ratios.

Furthermore, a search interface was implemented that allows browsing the database and
searching for pathways, nodes, edges, enzymes, and compounds as illustrated in figure 7.35.

119

7. Specialized components

Figure 7.35.: The KEGG-Search interface can be used to browse the database and search
for specific elements, e.g. special enzymes or chemical compounds. Search
results are always linked to their corresponding data and chemical reactions
are displayed in detail. For most of the compounds an image of the structural
formula is also available.

The KEGG-Search interface also displays the chemical formula of compounds and provides
extensive hyperlinks to related data.

For the PathFinder system we have implemented a separate graphical user interface shown in
figure 7.36 which now uses the graph drawing software GraphViz5 instead of xvcg [San95]
for dynamically visualizing a metabolic pathway.

5http://www.research.att.com/sw/tools/graphviz/

120

7.3. GOPArc

Figure 7.36.: The PathFinder interface provides dynamically generated interactive maps for
the KEGG metabolic pathways. Since all visualization is based on graph draw-
ing algorithms, arbitrary pathways that are stored as a graph can be displayed
in addition to the KEGG maps.

Furthermore, the displayed maps were enriched with interactive navigation facilities and
extended by enhanced visualizations.

Both the KEGG and the PathFinder browser provide the functionality for analyzing chunks
and subways in a pathway. Therefore, the user has to select a starting node and an end node
by clicking on a compound in the pathway map. Chunks and subways are thus computed on
demand and finally highlighted in the selected pathway.

121

7. Specialized components

7.3.2. Functional categories

For the analysis of functional categories the publicly available GO database (see also sec-
tion 3.4.5) was imported into the existing pathway database and the database schema was
translated into an O2DBI description for generating the API modules. These modules were
then extended by additional special purpose functions. The graphical user interface dis-
played in figure 7.37 features a tree-view for navigating the GO categories, TIGR roles, or
the GenProt classification.

Figure 7.37.: The GO browser features a tree-view for navigating different functional cate-
gories. Since the Gene Ontologies are represented as a DAG, a single node can
have several parent nodes which in such case are displayed in a separate list.

Upon selection of an item in the tree, additional information about the category is listed at
the top and potential cross-references (mappings) to other categories are displayed. As a
sample application, this interface can be integrated into the GenDB system and the user can
be provided with a list of candidate genes for a selected category.

A similar functionality was also implemented for browsing the COG categories (see sec-
tion 3.4.6) as illustrated in figure 7.38. Here, the user can select an entry and obtain all genes
that may belong to that category.

122

7.3. GOPArc

Figure 7.38.: The COG browser can be used for navigating the clusters of orthologous
groups. Upon selection of a specific category, additional descriptions are dis-
played (e.g. function description, main groups) and all regions that belong to
the selected category are listed.

Such a list can thus serve as a starting point for the annotation of genes specific for a selected
category. Once all corresponding regions of a chosen functional category have been extracted
and visualized, the user can simply navigate to such a selected region and e.g. display it in
the main window of the GenDB system.

123

7. Specialized components

124

CHAPTER 8

Implementation

Based on all prerequisites mentioned so far, the BRIDGE system has been developed as a
BioinformaticsResource for theIntegration of heterogeneousData fromGenomicExplo-
rations. The BRIDGE system itself has been designed as a general framework that allows
incorporating different components for special tasks (e.g. a genome annotation component
or an expression data analysis module).

Perl has been selected as the primary implementation language since it allows using a mul-
titude of well-tested existing Perl modules from the BioPerl project. The widespread use of
Perl in bioinformatics thus enables many researchers to use the BRIDGE system as a plat-
form for their implementation of further genome analysis pipelines. To be able to offer an
API to the outside world, the system requires a persistent storage layer. A relational storage
backend (here MySQL) was selected, which provides a fast, reliable, and well tested storage
subsystem.

The development of all integrated components was always driven by the postulation that
each module should also be applicable as a stand-alone tool. Due to this versatility and
extensibility, the system is beginning to show its usability as an open platform for systems
biology that is ready for tomorrow’s research tasks.

The following chapters describe the most important features for each implemented compo-
nent of the BRIDGE system.

125

8. Implementation

8.1. Project-Management

Due to the BRIDGE system architecture described in section 6, we are now facing a situa-
tion where we have well-designed and full-featured systems for special purpose tasks (e.g. a
genome annotation system for sequence analysis and a plug-in for the visualization of met-
abolic pathways) but none of the components “is aware of” each other. Hence we have to
provide a means of control and a mechanism to connect two or more of these systems. There-
fore we have implemented aGeneral Project-Management System(GPMS) that organizes
all data into projects. For example, a GenDB project is created for the sequence analysis and
annotation of a genome with the GenDB software package or an EMMA project is set up for
the microarray experiments. The integration of several such projects can then be achieved by
defining so calledmeta projectsthat contain all required components (e.g. GenDB, EMMA,
and GOPArc or two GenDB projects for genome comparison). In addition to the individual
projects, the GPMS also stores information about all users that participate in a project. In
order to gain access to a project’s data, a user has to become a member of the project. As
illustrated in figure 8.5, each member has a well defined role (e.g. “Annotator”) that is further
associated with different rights (e.g “is allowed to annotate”, “can edit sequence”). These
rights are then translated into SQL privileges (e.g. for read or write access) and automatically
enforced by the RDBMS when a user tries to access theDataSourcesof a project.

8.1.1. Design goals and specification

In this section, the concept for aGeneral Project-Management Systemis described and the
basic elements are explained. The system design was modeled using the Unified Modeling
Language (UML).

Basic definitions for the General Project-Management System

For the design of theGeneral Project-Management System, specific elements can be identi-
fied that represent real world objects or reflect the relationships between individual compo-
nents involved in a project. These core objects are defined below in order to clarify their use
in the following sections.

User A User simply represents an individual person that has at least a name, an account,
and an e-mail address.

Project A Project indentifies a specific scope for research or ongoing work, e.g. aProject
can be defined for the annotation of a newly sequenced bacterial genome. In most cases a

126

8.1. Project-Management

Project is defined for and related to a special software application, e.g. a genome annotation
system.

Member A User has to become aMemberof a Project for accessing theProject’s data.
Thus, aProjecthas a number of associatedUsersand eachUser “knows” about theProjects
she/he is involved in.

Role The level of access to aProject’s data can be specified by assigning well-defined
Rolesto eachMember. A Rolethus represents a set of access privileges or permissions (see
DB_Privilegesbelow).

Right Since most database management systems use their own access control mechanisms,
access is not granted directly based on these privileges. TheGeneral Project-Management
Systemtherefore features the definition ofRights as free text descriptions that reflect a
specific task for which a certain level of data access is required (e.g.basic access or
annotate).

Project_Class Since all data access control should follow the same rules for everyProject
of the same application type,RolesandRightsare not defined for an individualProject but
for aProject_Class. For example, theProject_ClassGenDB uses theRolesguest, annotator,
maintainer, developer, and chief for all genome annotation projects (see section A.1).

DB_Privileges DB_Privilegesrepresent privileges that are used by a specific RDBMS for
controlling access to individual databases. Thus allRightshave to be mapped onto appropri-
ateDB_Privileges.

DataSource A DataSourcedescribes a storage backend forProject related data that is
located on aHost(e.g. a database server). This can be either a database (DB) stored on a DB
server machine or anApplicationServerthat provides data e.g. via web services. ADB can
be further specified by the type of the database management system (DBMS_Type).

DataSource_Type A specialDataSource_Typecan be used to determine the specific type
of aDataSource. TheDataSource_Typecontains information about the internal structures of
a DataSource(e.g. tables of a database) and thus allDB_Privilegesrefer to a corresponding
DataSource_Type.

127

8. Implementation

8.1.2. Specification of the General Project-Management System

Based on the definitions described so far, we have designed aGeneral Project-Management
Systemthat organizes application specific data intoProjects. We have also integrated the
administration ofUsersand modeled the relationship ofUsersto ProjectsasRoles. Figure
8.1 illustrates the central components of the GPMS and their relationships in UML.

Figure 8.1.: The UML description of theGeneral Project-Management Systemillustrates the
role of each implemented class. AUser has to become aMemberof a Project
in order to gain access to theProject’s DataSources. All access is controlled by
specialRightswhich are associated with individualRoles. EachRight is realized
by database specific privileges.

User andProject are the two core objects. EachProject specifies a separate well-defined
scope that is uniquely identified by its name. DifferentDataSourcesthat should be accessed
in such aProjectare referenced by aProjectwhich allows severalProjectsto share the same
DataSources. In addition to individualProjects, aMetaProjectcan be used to group several
Project instances to form a newProject in order to correlate their data.

As another central component,Usersare modeled in a very simple manner: They can be
identified by their unique login name or e-mail address and are thus organized as separate
objects. Their individualRolesin singleProjectsare defined by associating aUser, aProject,
and aRolein a Memberobject. In order to simplify the assignment ofRoles, an additional
class (Project_Class) has been included that can be used to groupProjectsof the same type
(these are normally used by the same type of application). ThusRolesare only defined once
for eachProject_Classand not individually for eachProject. A Role is further associated

128

8.1. Project-Management

with a list of Rightsthat specify the level of access aUser with this Rolehas for aProject.
EachRight is defined by a comprehensive name which explains its semantics. It is associated
with a list of DB_Privilegesand thus mapped onto specific database privileges (e.g.select
privilege in SQL). As an example, more than 30 different GenDB projects are currently
maintained together by a singleProject_Classin order to organize all data accesses in a
consistent way.

8.1.3. Implementation

This chapter outlines the details of the implementation of theGeneral Project-Management
System. The data model for the relational database is described and the attributes of each
class are explained. Sample descriptions for the definition ofRolesandRightscomplement
this section by illustrating the implementation of fine-grained access control.

Database schema for the General Project-Management System

TheProject-Management Systemwas developed as an object-oriented application based on
the data model described in the previous section. Since the GPMS requires a persistent
storage backend the O2DBI-II system was used for the implementation.MySQLis currently
used as the database backend but other relational database management systems can be used
as they are supported by the O2DBI-II software. Figure 8.2 displays the current database
schema for the GPMS database (GPMSDB) as it has been generated by O2DBI-II.

8.1.4. Class descriptions

The following sections briefly describe the relevant classes of the data schema (see fig-
ure 8.2). The five core classesProject, User, Member, Role, andDataSourceare comple-
mented by several simple classes that store additional information.

Project Projectsare the central components of the GPMSDB. They connect all relevant
classes. Projects have a unique name, an additional description, special configurations
(e.g. global project settings), and a list ofDataSources. EachProject belongs to a spe-
cific Project_Classthat is described in the following paragraph. The general classProject
has been extended by several subclasses that can be used to model individual properties and
features of special types ofProjects(e.g. aProject::GENDBdefines an additional genetic
code).

Project_Class A Project_ClassarrangesProjectsof the same type into groups. Addition-
ally, a Project_Classdetermines the availableRolesandRightsfor the individualProjects.

129

8. Implementation

Figure 8.2.: The database schema of theGeneral Project-Management System. Pink lines
mark references between two classes and red lines show inherited class relation-
ships.

130

8.1. Project-Management

HenceRolesandRightsdo not have to be defined for everyProject but only once for all
Projectsof the sameProject_Class. This approach reduces the complexity of the system
and the required work when administeringProjects. Furthermore, a concise representation
of all Project related data is achieved and a consistent use ofRolesand their corresponding
permissions can be ensured. AProject_Classhas a name and a description. Optionally, an
instance of aProject_Classcan be associated with a configuration file that specifies standard
configuration parameters.

User Basic user data is stored inUserobjects. EachUserobject has to provide a name, a
login, and an e-mail address. A special flag can be set to determine whether theUser is an
internal or external user (e.g. to allow access only via web frontends running on a specific
host).

Member A User has to become aMemberof a Project in order to gain access to a
Project’sdata. Therefore, aMemberobject relates aUser to aProject. EachMemberis also
assigned aRolethat defines the level of access for thatProject (see description ofRole be-
low). Individual configuration items for aProjectcan be stored in the User_Project_Configs.

Role EachMemberof aProjecthas a specificRolethat determines the level of access and
the User’s permissions for thatProject. For example, access can be granted on a very low
level with read-only permissions or with complete access to all data, even with the right to
delete everything. Therefore,Roleshave a list ofRightsthat further define such privileges.
It is important to note thatRolesare defined for aProject_Class, not for each singleProject.
An additional “extern” flag can be used to allow setting thisRolevia the web frontend by
external project managers. The “script” attribute can be used to store some code that is
automatically executed for newly createdMemberswith this Role.

Rights Rightsdetermine the permissions of aMemberfor a specificProject. Rightsare
associated with database privileges. If aUser is added to aProject as aMember, all the
privileges determined by theRightsof the correspondingRolewill be granted to theUser.
Rightsare defined for aProject_Class, not for a singleProject. This approach does not only
simplify the maintenance ofProjects, it also ensures a consistent use ofRolesfor all Users
that have access toProjectsof a specificProject_Class.

DB_Privileges DB_Privileges refer to aRight and represent the DBMS-specific access
privileges. They are always defined for a specificDataSource_Type(see below).

131

8. Implementation

DataSource Applications often need to access and to store persistent external data. These
are provided as aDataSourcewhich is attached to aProject. DataSourcesare characterized
by a name, a description, aHost, and aDataSource_Type. The class “DataSource” has been
extended by two special types of data-sources, a database (DB) and a so calledApplication
Server(see description ofDataSource::ApplicationServerbelow).

Host Information about the host of a typicalDataSourceare stored inHostobjects. Each
Hosthas a name, a port, and a description.

DataSource_Type TheDataSource_Typedetermines the specific type of aDataSource.
For databases, theDataSource_Typecan also contain a reference to a file that defines the
database schema so that a newly created database can be initialized with all table structures
automatically after creation. AProjectmay only haveoneDB andoneApplicationServerof
eachDataSource_Typeso that the connection to the correctDataSourcecan be established
automatically.

DataSource::ApplicationServer An ApplicationServer is a genericDataSourcethat
can provide data for an application. The class inherits all attributes of theDataSourceclass
and has an additional url and a socket. It is important to note that aProject may only have
oneApplicationServer of eachDataSource_Type(see description ofDataSource_Type).

DataSource::DB This class represents all kinds of databases and extends theDataSource
class. In addition to all inherited attributes of theDataSourceclass, aDataSource::DBis
described by aDBMS_Typeand aDB_API_Type. It is important to note that aProject
may only haveone DataSource::DBof each individualDataSource_Type(see description
of DataSource_Type).

DBMS_Type TheDBMS_Typedescribes the database management system that is used to
store the databases (e.g.MySQL). A DBMS_Typehas a name and a version number.

DB_API_Type TheDB_API_Typeis a special class that can be used to define anAPI for
accessing a database (DataSource::DB). For our purposes this is in most cases an O2DBI-I
or an O2DBI-II interface.

Project::Meta Project::Metais a genericProjectsubclass that combines several arbitrary
Projectsto a newProject. A meta-Projectprovides a list of member-Projectsand inherits all
the attributes ofProject.

132

8.1. Project-Management

Project::GPMS Project::GPMSis a special subclass ofProjectsthat can be used to refer
to otherGeneral Project-Management Systems.

Project::GENDB Project::GENDBis a special subclass forProjectsthat use the GenDB
system for the annotation of microbial genomes.

Project::EMMA Project::EMMA is a special subclass for microarrayProjectsusing the
EMMA software.

Project::ProDB Project::ProDB is a special subclass for proteomicsProjectsusing the
ProDB software [WRB+03].

Project::BIOMAKE The Project::BIOMAKE class provides additional features for us-
ing the BIOMAKE software that can be employed for the automatic analysis of ESTs and
sequencing reads.

Other software can be integrated into the GPMS by simply implementing a new subclass that
contains the necessary code for initializing a connection to the corresponding data source.
For all O2DBI-II projects, the default methods of the parent class can be used.

8.1.5. Interfaces

In this section different ways for accessing and using theGeneral Project-Management
Systemare described. In addition to the API that allows programmers to directly manip-
ulate all objects stored in the database, a number of scripts for maintaining the system and a
Gtk graphical user interface for the management ofUsersandProject Membersare provided.
A simplified web frontend was also implemented that supports a restricted user management
for “external” maintainers ofProjects. Thereby, project leaders of other research groups
(here: those who are not located at Bielefeld University) can maintain the list ofUsersthat
should have access to specificProjects.

GPMS scripts

TheGeneral Project-Management Systemscripts provide a flexible way for configuring and
maintainingProjectsand theirMembers. Recurrent or frequent tasks can be automated by
combining several scripts according to the individual needs of GPMS administrators. All
scripts listed in table 8.1 can be used to initially set up the system and for maintaining
projects, users, and their memberships.

133

8. Implementation

The scripts listed in table 8.1 are executed using the wrapper scriptgpms which sets the
installation specific environment variables. Executing this script without parameters will list
all available scripts and print a usage message. As an example, a new user is added via the
following commandline:

gpms add_user -l juser -f ’Joe User’ -e Joe.User@CeBiTec.Uni-Bielefeld.DE

A new user can be added by specifying a login name, a full name and an optional e-mail
address.

Using an Application_Frame

In addition to the standard classes of theGeneral Project-Management Systemdescribed in
section 8.1.4, a general framework was implemented that simplifies the necessary steps for
accessing a project’s data. Such anApplication_Frameuses the GPMS for accessing the
DataSourcesof a Project and it also provides a number of useful methods that are often
needed by the end applications. A detailed description of these methods can be found in
appendix A.2.

adding datasets
name description
add_host add a newHost to the GPMS
add_datasource_type register a newDataSourceto the GPMS
add_db_api_type register a newAPI_Typeto the GPMS
add_dbms_type create aDBMS_Typein the GPMS
add_db create a newDatabasein the GPMS
add_project_class create a newProjectClassin the GPMS
add_project create a newProject in the GPMS
add_datasource2project add aDataSourceto aProject
add_project_config add configurations to aProject
add_role read and store theRoledefinitions for aProjectClass
add_rights parse aRightdefinition-file and store it in the GPMS
add_user register a newUser in the GPMS
add_member add an existingUseras a newMemberto aProject
add_meta_project create a newMetaProjectin the GPMS
add_project2meta_project add aProject to aMetaProject

deleting data
name description
del_host remove aHost from the GPMS
del_datasource_type delete aDataSource_Typefrom the GPMS
del_datasource remove aDataSourcefrom the GPMS
del_db_api_type delete aDB_API_Typefrom the GPMS
del_dbms_type remove aDBMS_Typefrom the GPMS

134

8.1. Project-Management

del_project_class delete aProjectClassfrom the GPMS
del_project delete aProject from the GPMS
del_project_config remove configurations from aProject
del_role remove roles from aProjectClass
del_rights delete rights from aProjectClass
del_user remove aUserfrom the GPMS
del_member remove aUserfrom aProject

other scripts
name description
change_member_role change theRoleof an existingMember
export_members print a list of allMembers of aProjector

all Members of all Projects of aProjectClassto a file
rem_datasource_from_project remove aDataSourcefrom aProject
rem_project_from_meta_projectremove aProject from aMetaProject
list_project_members print a list of allMembersof a Project
list_projects print a list of allProjects andRolesavailable for theProject
list_user_projects display a list of allProjectsthat can be accessed by aUser
list_extern_user print list of all externUsers
gui start the graphical user interface to maintain the GPMS

Table 8.1.: All currently implemented scripts for manipulating the GPMS. Executing a script with-
out parameters will print a detailed description and a complete list of available options.
Most of the scripts for adding and deleting data require special database permissions, e.g.
CREATE, DROP, GRANT privileges in MySQL.

Graphical user interfaces for maintaining the GPMS

In addition to the scripts theGeneral Project-Management Systemcan be maintained via a
graphical user interface implemented in Perl Gtk (see figure 8.3).

The tree-view on the left displays allMembersof a selectedProjectsorted by theRolesthat
were defined for the correspondingProject_Class. Another subtree shows theRightsthat
have been defined for eachRole. The tree also contains a list of allUsersthat are registered
in the GPMS. NewUsersandMemberscan be added via a simple input form.

Figure 8.4 shows four screenshots of different operations that can be performed with the web
frontend. AllMembersof a Projectcan be listed, newUsersandMemberscan be added, or
existingMemberscan be removed from aProject. It is also possible to change theRoleof
an existingMember. For reasons of security, only thoseRolescan be assigned that do not
include administrative privileges and are therefore marked asextern.

135

8. Implementation

Figure 8.3.: The Gtk frontend of theGeneral Project-Management Systemcan be used to
maintainUsersandProjectsand provides an immediate overview.

Figure 8.4.: The web frontend of theGeneral Project-Management Systemcan be used to
manageUsersandProjects.

136

8.1. Project-Management

8.1.6. Administering users

For the implementation of the BRIDGE system, theGeneral Project-Management System
was used to manageUsersandProjects. In order to gain access to a project’s data, a user has
to become aMemberof theProject. As illustrated in figure 8.5, eachMemberhas a well de-
finedRole(e.g. “Annotator”) that is further associated with differentRights(e.g. “is allowed
to annotate”, “can edit sequence”). TheseRightsare then translated into SQL privileges
(e.g. for read or write access) and granted to theMember.

ProDB

GenDB EMMA

GOPArc

Admin

Developer Guest

Annotator

Figure 8.5.: DifferentRolesof a User for severalProjects. For example, theUser can be
an “Annotator” for a GenDBProject and therefore has – beyond basic access
privileges – theRight to create new annotations.

8.1.7. Accessing the data

Using theProject-Management Systemalso allows to hide theDataSourcefrom theUser:
only theGeneral Project-Management Systemknows where to find the right database of a
GenDBProject that is needed by the application (see figure 8.6). TheProject itself con-
tains the information about the correspondingDataSourceand can establish the connection.
Neither the user nor the graphical frontend of the application needs to know where the data
originates from.

137

8. Implementation

EMMA

GenDB

GOPArcGPMS

EMMA

Database

GenDB

Database

GOPArc

Database

Figure 8.6.: All data access is controlled by theProject-Management System. The appli-
cation does not need to know theDataSourcesof a Project since theGeneral
Project-Management Systemstores all information needed to establish connec-
tions (e.g. to relational database management systems).

In addition to the purposes just mentioned, the GPMS stores individual settings and configu-
rations forProjectsand theirMembers(e.g. settings for colors, etc.). TheProject-Manage-
ment Systemalso includes a module for the session management of web-based frontends
that can be used to prevent uncontrolled access to confidential project data.

138

8.2. BRIDGE

8.2. BRIDGE

This section describes the implementation of the BRIDGE layer. Instead of simply linking
different data sources, the BRIDGE system provides direct access to remote objects. This
approach also allows the implementation of individual algorithms that can be derived directly
from pseudo code descriptions.

8.2.1. Extension of O2DBI

As already shown in figure 6.4, BRIDGE was designed as a separate layer on top of the
O2DBI-II server classes. In addition to all O2DBI-II server methods (auto-generated and
manually added methods), the BRIDGE layer provides the auxiliary functionality that is
necessary for retrieving “external” objects that are referenced in an initially loaded project.
As an example, this mechanism is illustrated in figure 8.7 where anEMMA::Spotobject
references aGenDB::CDSregion.

xpos = <int>
cds = <URI>

name = <char(50)>
desc = <text>

GenDB: CDSEMMA: Spot

project database
S. meliloti

project database
S. meliloti

$spot−>cds()

API
O2DBI Server

API
O2DBI Server

BRIDGE

EMMA GenDB

Figure 8.7.: A sample application of the BRIDGE layer: aCDSregion object referenced by
aSpotis initialized upon request and returned to the application.

For providing this functionality, this layer needs to communicate with an instance of the
General Project-Management Systemthat “knows” other projects which contain external
objects referenced by the original project data.

139

8. Implementation

The implementation of this layer required the definition of unique identifiers and some exten-
sions of the O2DBI-II system: first of all, objects that should be referenced require aUnique
ID for identifying them. This number has to be unique for the datasource (e.g. a MySQL
database, see also section 8.5) that stores the objects. For obtaining theseUnique IDs, the
O2DBI-II system provides an additional method

get_new_uniqueID()

that generates a new randomUnique ID. For the current implementation, random numbers
were selected as they are superior to incremental ids and offer more safety: inadvertent
misinterpretation of objects can be avoided by picking random numbers from a sufficiently
large space (e.g. 264). While especially small incremental ids would reappear in any other
datasource that stores at least as much objects as the original datasource, the attempt to access
an object with a wrong random number will generate an error in (almost) all cases.

Classes with objects that can be referenced have an additional flag (Ext_Referenceable)
for specifying this property and they are calledexternal referenceable. Setting this flag also
implies that the default O2DBI-II constructor method

$class->create(args...)

automatically assigns aUnique ID after successfully creating a new object. Therefore, the
class has an auxiliary private method

$class->_create_with_unique_id(uniqueID, args...)

that sets theUnique ID. Using the standard constructor method thus ensures that eachex-
ternal referenceableobject obtains a validUnique ID. In addition to this, these classes lack
the standard getter/setter method for directly reading or writing theUnique ID. The missing
setter method for this special attribute thus guarantees that an object keeps itsUnique IDfor-
ever once it has been assigned in the constructor.1 Instead of a public getter method, objects
of these classes have a private method

$obj->_get_unique_id()

for reading theUnique ID. Another new generic method

$master->fetchby_unique_id(uniqueID)

is also provided by the O2DBI-II for retrieving an object for a givenUnique ID. Usually,
this method is not used directly since the functionality for retrieving “external” objects is
encapsulated by the BRIDGE layer (explained later in this chapter).

On the other hand, the O2DBI-II system has been extended by a new common attribute
typeExt_Reference (external reference) that usually contains a reference to an “external

1In some cases where additionalUnique IDsmust be assigned for already existing objects (e.g. because the
database has been used for some time withoutUnique IDs), these identifiers can only be added by special
scripts that directly manipulate the database

140

8.2. BRIDGE

object”. It can be used for referencing objects of otherexternal referenceableclasses that
already have aUnique ID. This attribute contains a URI (Uniform Resource Identifier) for
directly accessing the referenced object that is defined as follows:

• Syntax:
o2xr://<namespace>/<projectname>/<datasourcetype>?uid=<uid>
where:

• o2xr is the name of this schema, similar tohttp or mailto . o2xr is an abbreviation
for O2DBI eXternal Reference.

• namespacedenotes an (worldwide unique) instance of a project management (GPMS).
Since we do not want to establish a global registration service for all available in-
stances of the GPMS, we cannot guarantee the uniqueness of the namespace. But
using for example the name of an institute where theGeneral Project-Management
Systemis installed would ensure a “sufficient uniqueness” (see example below). Nev-
ertheless, it would not be a big problem to resolve such potential conflicts by either
changing the name of one instance or by adding a special rule for resolving such con-
flicts (see implementation of wildcard mechanisms below).

• projectnameis the name of a project managed by the GPMS given in the namespace.

• datasourcetypespecifies the type of the datasource that belongs to the project. Since
each project can have several datasources (but only a single datasource of each type
that has been defined in the GPMS), both, the project name and the datasourcetype are
required in the URI.

• uid denotes the type of theUnique ID (a kind of argument type). Potential other
Unique IDsthat may be added in future versions can thus be identified by using another
type.

• The<uid> finally contains theUnique ID for identifying an individual object.

• For example, the complete URI of a GenDB object stored in a database at the Center
for Biotechnology (CeBiTec), Bielefeld University could have the following format:
o2xr://CeBiTec.Uni-Bielefeld.DE/GenDB_Demo/GENDB?uid=12345

Theseo2xr URIs were specified according to RFC23962 where the special characters; /
? : @ & = + $ are reserved as separators while the symbols- _ . ! ~ * ’ ()
can be used in addition to letters and numbers. On the other hand, the characters{ } | \
^ [] ‘ should not be used at all or only as quoted characters. As an extension to

2http://www.ietf.org/rfc.html

141

8. Implementation

directly resolving theo2xr URIs, a configurable locator can be used to map the pair of
(<namespace>, <datasourcetype>) onto a real GPMS instance and a real datasoure type.
This mechanism also allows wildcards such as

• (*, <datasourcetype>) → (GPMS instance, datasource type) and

• (<namespace>, *) → ((GPMS instance, *).

For several matching patterns, additional rules have to be defined for resolving the URI
(e.g. by defining the order).

It is clear that the external reference attribute is never allowed as a mandatory attribute in the
default constructor of any object since the URI is not neccessarily defined for all objects that
belong to a class with an external reference.

On the practical side, these URIs link to uniquely identified O2DBI-II objects stored in a
datasource of a project managed by aGeneral Project-Management System. For implement-
ing the retrieval mechanism, the O2DBI-II system was extended by an additional table that
associates aUnique IDwith its corresponding internal O2DBI-II object:

O2XR

_id object_id unique_id _object_class
1 1 95876632 GENDB::DB::Region::Source::Contig
2 2 83482798 GENDB::DB::Region::CDS
...

Table 8.2.: Additional O2DBI-II table for linkingUnique IDsto O2DBI-II objects in each
database. Since a data model (and the implemented classes) can change over
time, the corresponding class of a referenced object isnot stored in the URI but
in the database where uids are associated with O2DBI-II objects.

The class type of a referenced object is also stored in a separate column (_object_class)
for obtaining an object of the correct type. If the data model changes (e.g. when the class
hierarchy is modified) only this column has to be updated but the URIs remain valid for
the referenced object. This table has a unique index on column unique_id for retrieving an
object and a combined unique index on column object_id and _object_class for retrieving the
Unique ID. Upon deletion of an object, the entry in the O2XR table remains but the object is
marked as deleted by setting the object_id field toNULL.

142

8.2. BRIDGE

8.2.2. BridgeFunc

The functionality of the BRIDGE layer itself is currently implemented in a single basic Perl
class (BridgeFunc) that extends the standard functionality of the O2DBI-II server classes.
For reasons of convenience and modularity, this core module is accompanied by three sub-
classes which provide a number of useful methods for managingProjects, Namespaces, and
Application_Frames:

• BridgeFunc::AppFrames
This class can be used for managingApplication_Framesin the BridgeFunclayer.
Each specific data source (here, aProjectManagement::DataSourceas used by the
General Project-Management System) is normally accessed by a single specific sub-
class of anApplication_Frame, i.e. a GenDB data source is accessed by using its
correspondingApplication_Frame::GENDB. This module keeps track of the associ-
ations betweenApplication_Frameclasses and their corresponding data sources. It
also processes the O2DBI-II master modules and overwrites the attribute handlers for
classes that contain external references by modifying the Perl symbol table. The API
is described in appendix A.5.4.

• BridgeFunc::Namespaces
This module can be used to handle differentNamespaces. Each individualNamespace
is normally associated with an unique instance of a GPMS installation. Data from
externalProjectswhich have their own local GPMS can be accessed by registering the
correspondingNamespaceand itsApplication_Frame::GPMS. Access to external data
sources may require separate authorization or at least a guest account.Projectscan be
added or removed and aNamespacecan be queried forProjectsvia different methods
(see appendix A.5.3 for further details).

• BridgeFunc::Projects
This class is used to handleProjectsthat are managed by aGeneral Project-Manage-
ment System. In thisBridgeFunccontext aProject is defined as a subclass ofProject-
Management::Project. Basically, this class is used byBridgeFunc::Namespacesas a
helper module for managing theProjectsof a Namespace. Projectscan be added or
removed and it is possible to retrieve aProject object for a given name orApplica-
tion_Frame. The complete API of this class can be found in appendix A.5.2.

In addition to all standard and manually added methods of the O2DBI-II server that can be
used in exactly the same way as when using them without a BRIDGE layer,BridgeFunc
provides the following methods:

• new()
This default constructor method initializes a new BRIDGE layer object.

143

8. Implementation

• register_AppFrame(<namespace>, <Application_Frame>)
An Application_Frameobject contains information about the user, the O2DBI mas-
ter objects and some other current configurations (see documentation of theGeneral
Project-Management Systemfor more details). Upon manual creation of anApplica-
tion_Frame, it can be registered in the BRIDGE layer thus providing the connection
to a project’s data source.

• register_AppFrame_Type(<Application_Frame_Type>, <DataSource_Type>)
Each available GPMS data source is accessed by an individualApplication_Frame.
Since theBridgeFunclayer does not have anya priori knowledge about requested data
sources and their correspondingApplication_Framesthe Application_Frame_Types
that are required by an application have to be registered initially.

• remove_AppFrame(<namespace>, <projectname>)
This method simply removes an already registeredApplication_Frame.

• get_AppFrame(<namespace>, <projectname>)
An Application_Frameobject is returned for a givennamespaceandprojectname. If
no suchApplication_Frameexists, the BRIDGE system will try to initialize an apro-
priateApplication_Frameusing its current settings.

• get_namespace_project([<Application_Frame>, <O2DBI-II master>]) This method
returns thenamespaceand theprojectnamefor a registeredApplication_Frameor an
O2DBI-II master.

• get_Object(<URI>)
This method tries to resolve a givenURI and, if possible, the corresponding object is
initialized and returned.

• get_URI($object)
Vice versa this method tries to return the complete corresponding URI for a given
object.

The methods for retrieving an object and for getting the URI for an object are added as
code references to the O2DBI-II master module for providing this special functionality. But
before any external objects can be accessed, the references (URIs) have to be stored. This
can be done in a very simple way as illustrated by the following example:

...

use BridgeFunc;
use GPMS::Application_Frame::GPMS;
use GPMS::Application_Frame::EMMA;
use GPMS::Application_Frame::GENDB;

144

8.2. BRIDGE

...

some variables that have to be defined
my ($user, $password, $gendb_project_name, $emma_project_name) = ();

my $gpms = GPMS::Application_Frame::GPMS->new($user, $password);

die "Unable to contact GPMS!" unless (ref $gpms);

my $gendb_AppFrame = GPMS::Application_Frame::GENDB->new($user,
$password,
$gpms->gpms_master);

$gendb_AppFrame->project($gendb_project_name);

my $emma_AppFrame = GPMS::Application_Frame::EMMA->new($user,
$password,
$gpms->gpms_master);

$emma_AppFrame->project($emma_project_name);

my $bridgefunc = BridgeFunc->new($gpms, ’cebitec.uni-bielefeld.de’);
$bridgefunc->register_AppFrame(’cebitec.uni-bielefeld.de’, $gendb_AppFrame);
$bridgefunc->register_AppFrame(’cebitec.uni-bielefeld.de’, $emma_AppFrame);

print ’Fetching CDS... ’;
my $genes;
foreach my $cds (@{$gendb_AppFrame->application_master->Region->CDS->fetchall}) {

$genes->{$cds->name} = $cds;
}
print "Done!\n";

foreach my $seq (@{$emma_AppFrame->application_master->Sequence->fetchall}) {
if (defined ($cds->{$seq->name})) {

print ’Linking sequence ’.$seq->name."\n";
$seq->GenDB_Region($genes->{$seq->name});

}
else {

print ’Skipping sequence ’.$seq->name."\n";
}

}

In a more abstract manner, the procedure implemented above can be described as follows: in
the first step the connection to a local GPMS is established and the correspondingApplica-
tion_Frameis initialized. Afterwards, theApplication_Framesfor a GenDB and EMMA
project are created. Whenever anApplication_Frameis registered to the newly created
BridgeFunc layer, the getter/setter methods for external reference attributes are overwritten
by methods of the BridgeFunc layer. Calling a setter method like

$seq->GenDB_Region(...)

for an attribute (here GenDB_Region) that contains an external reference with the external
referenced object as its argument thus executes

BridgeFunc->get_URI()

and stores the obtained URI string in the database.

145

8. Implementation

Finally, a sample script application that illustrates the usability of the BRIDGE system is
shown in the following source code:

...

use BridgeFunc;

use GPMS::Application_Frame::EMMA;
use GPMS::Application_Frame::GENDB;
use GPMS::Application_Frame::GPMS;

...

some variables that have to be defined
my ($user, $password, $emma_project_name) = ();

initialize a connection to the local Project Management System
my $gpms_appframe = GPMS::Application_Frame::GPMS->new($user, $password);

die "Unable to contact GPMS!" unless (ref $gpms_appframe);

initialize an Application_Frame for the current project
my $emma_appframe = GPMS::Application_Frame::EMMA->new($user,

$password,
$gpms_appframe->gpms_master);

try to initialize a project for the given name
$emma_appframe->project($emma_project_name);

initialize the BRIDGE layer
my $bridgefunc = BridgeFunc->new($gpms_appframe, ’cebitec.uni-bielefeld.de’);

register the Application_Frames for the local namespace
$bridgefunc->register_AppFrame(’cebitec.uni-bielefeld.de’, $emma_appframe);
$bridgefunc->register_AppFrame_Type(’GPMS::Application_Frame::GENDB’,

’GENDB::DB’);

loop through all EMMA sequences and check if there is a reference to a GenDB region
foreach my $seq (@{$emma_appframe->application_master->Sequence->fetchall}) {

my $region = $seq->GenDB_Region;
if (ref $region) {

print ’Sequence ’.$seq->name().’ is linked to CDS ’.$region->name().’\n’;

my $annotation = $region->latest_annotation->function();
check if we have a latest annotation and a CDS
if (ref $annotation && $region->isa(’GENDB::DB::Region::CDS’) {

print ’Gene name: ’.$annotation->name()
.’Gene product: ’.$annotation->geneproduct()
.’EC: ’.$annotation->EC_number();

}
}
else {

print ’Sequence ’.$seq->name.’ is not linked to a GenDB region.\n’;
}

}

146

8.3. BRIDGE GUI

In this example, only theApplication_Framesfor theGeneral Project-Management System
and the EMMA project are initialized. Instead of registering anApplication_Framefor
GenDB, the correspondingApplication_Frame_Typefor GenDB projects is registered. Call-
ing

$seq->GenDB_Region()

thus reads the URI but instead of returning a string, the overloaded method

get_object()

of the BridgeFunc layer is executed and the corresponding object is initialized and returned.

As another useful extension, a versioning system has been introduced for the O2DBI-II
server classes and the corresponding database. Since the use of external references increases
the danger of inconsistencies between different O2DBI-II versions, this feature can help to
detect and handle such conflicts.

8.3. BRIDGE GUI

The design of the BRIDGE platform encourages using a plug-in architecture for the inte-
gration of specialized components into a common graphical user frontend. Similar to many
modern applications, these plug-ins can be embedded into a main standard graphical user
interface that provides more general functionality. It is common for modern graphical user
interfaces to have widely used features such as menus for accessing different functions, a
status bar where messages are displayed, a progress bar to indicate running processes, in-
terfaces for changing user settings (options), and of course some kind of a help sytem for
assisting the user (see figure 8.8 for an example).

Normally, menus, bars, options, etc. are globally defined and implemented in the toplevel
window of an application. But for a plug-in architecture, a more flexible approach is re-
quired. The main application framework also has to provide a concept and mechanisms for
the integration and communication of its embedded specialized components. For instance,
a plug-in should be able to indicate that a task is in progress and thus it may be useful to
inform the user and all other modules of the application about this task. This could also be
indicated by globally changing the shape of the cursor until the task is finished. Since the
user should always be able to abort time-consuming actions in order to regain full control
over the application, a specialCancelbutton could be provided for interrupting such tasks.

147

8. Implementation

Figure 8.8.: This screenshot of a standard Gtk GUI shows some common features of mod-
ern graphical user interfaces: a menu bar with different menus, a status bar, a
progress bar, and access to a help system.

In order to facilitate the implementation of this functionality, a common framework was
developed which provides a number of specialized Gtk widgets. All modules described in
the following sections are not part of one or another specialized component (e.g. GenDB or
EMMA) since they provide more general features. Instead, they are maintained indepen-
dently so that they can be used as well by other applications that are not part of the BRIDGE
system.

8.3.1. StatusWidget

The StatusWidgetwas designed as a basic container for all user interfaces that require the
functionality described above. Since aStatusWidgetis a subclass of a Gtk::VBox, derived
widgets of this class can be nested and packed into each other. By registering a subwidget,
all nestedStatusWidgetsinherit the same signals3 which can then be connected to a uniform
callback (usually a simple subroutine) in the main application. For example, a global status
bar and a progress bar that are provided by the main application can be employed by all
StatusWidgets. Signals that are emitted by a nestedStatusWidgetare passed back through
all parentStatusWidgetsuntil they are received by a toplevel widget which handles that

3Seehttp://www.gtk.org/for details about signals and callbacks.

148

8.3. BRIDGE GUI

signal. Thus, aStatusWidgetknows nothing about its current context, it simply emits one
of its signals and the main application has to provide the desired behavior. The current
implementation of theStatusWidgetprovides the following signals:

• message – send a message, e.g. for putting a text onto the status bar

• init_progress – initialize a time consuming process, e.g. initialize the progress bar

• update_progress – update the status of the current process

• end_progress – stop the current process, e.g. stop progress bar and reset it

• change_cursor – request a change of the cursor for all windows of the application

These signals are inherited by all instances of aStatusWidgetand emitted recursively until
they are caught by the toplevel window. In addition to this, theStatusWidgethas a special
method for interrupting lengthy processes that were initiated by theinit progresssignal.
Before updating the progress bar, it is checked whether the user has requested to cancel the
current process. Additional signals for derived widgets can be defined by adding them in a
special Gtk subroutine:

sub GTK_CLASS_INIT {
my ($class) = @_;

define some additional individual signals
my %signals = (’region_selected’ => [’first’, ’void’, ’gint’],

’scrolled’ => [’first’, ’void’, ’gint’, ’gint’],
’region_marked’ => [’first’, ’void’, ’gint’, ’gint’, ’GtkString’]);

add the signals
$class->add_signals(%signals);

}

In addition to such signals, a subclass ofStatusWidgetcan also provide its own menus and
menu items which are then displayed in the menu bar of the main window:

sub get_menu {
my ($self) = @_;

define the menu entries
my @menu = ({’path’ => "/Options/Show tooltips",

’type’ => ’<ToggleItem>’,
’accelerator’ => ’<Control>t’,
’callback’ => sub { $self->_toggle_tooltips($_[0]->active) }

});

get the menus for all child widgets of the main StatusWidget
my @child_menus = $self->SUPER::get_menu;

149

8. Implementation

add them to the menu
push(@menu, @child_menus);

return @menu;
}

Furthermore, tooltips can be added to each single widget of aStatusWidgetthat get their
help messages from a special help repository of the application. All available methods of a
StatusWidgetcan be found in appendix A.5.5.

8.3.2. MenuCreator

The classMenuCreatorwas implemented to facilitate a more flexible and dynamic use of Gtk
menu bars. In general, Gtk provides two different ways for constructing menu bars, either
by creating the menu bar, menus, and all menu items via their standard constructor methods
or by simply describing aGtk::ItemFactory(seeget_menu method above). Thus the latter
method provides an ideal way for describing individual components of a menu bar in their
corresponding separate components instead of defining the complete menu bar statically in
a global main window. Since a standard Gtk menu bar cannot be modified after its creation
using theGtk::ItemFactory, theMenuCreatorwas implemented to provide this functionality.
It simply reconstructs the menu bar for a givenGtk::ItemFactorydescription including all
accelerators (shortcuts for special functions like CTRL-S), removes the old menu bar, and
replaces it by the newly constructed menu bar. See appendix A.5.6 for a complete description
of the API for the classMenuCreator.

8.3.3. ContextMenuInterface

TheContextMenuInterfacehas been developed as a framework for building context sensitive
menus which adapt their menu items according to the object that they were opened for (see
figure 8.9). AContextMenuInterfaceis a simple interface that provides some basic func-
tionality for these special types of menus. All modules derived from this interface have to
implement the method_open_menu .

150

8.3. BRIDGE GUI

Figure 8.9.: Context sensitive menus can be opened by clicking with the right mouse but-
ton onto objects such as regions, observations, etc. in the GenDB frontend. In
this example, the GOPArc module has also registered some additional external
methods that are now available via the menu items at the bottom of the context
menu that was opened for one of the regions.

In addition to those methods in the menu that are provided directly in the module that created
the object, other “external” modules can add more menu items depending on the context
(i.e. object) that was selected by the user (see also section 8.3.8). The API for theCon-
textMenuInterfacecan be found in appendix A.5.7.

8.3.4. PopoutBook

A special widget that was introduced for the implementation of the BRIDGE system is the
PopoutBook. It is an extended version of the standardGtk::Notebooksince all pages con-
tained in this notebook can be “popped-out” into separate windows by clicking on an arrow
button on top of each folder (see figure 8.10). Closing such a window will thus reintegrate
the page into its parent notebook.

151

8. Implementation

Figure 8.10.: A PopoutBook widget can be can switched out of the notebook in order to be
displayed in a new separate window. Closing the window will put the widget
back into the PopoutBook.

Using this kind of widget for complex applications allows a most flexible layout of fre-
quently used GUI elements that are well suited to the individual needs of a user and the tasks
that have to be performed. For easy navigation through the pages of a notebook, a special
optional menu showing all available pages can be opened by clicking on a folder. Detailed
information about all methods of aPopoutBookare in appendix A.5.8.

8.3.5. ConfigurationInterface

In most graphical user applications, the user can change a number of settings which are
also stored after closing the GUI. A reasonable approach for larger applications is to group
these configurations into sections that correspond to specific parts of the frontend so that the
user can easily understand which features will be affected upon changes in the configuration.
Furthermore, each plug-in component should be able to register its own configuration section
and integrate it into a common configuration dialog.

The ConfigurationInterfaceprovides a general framework for implementing configuration
frontends. It can be used to define GUI widgets for editing configurable attributes. Widgets
for configurable attributes are observed so that changes are registered and returned. Changes
are also propagated to allStatusWidgetsthat are registered for aConfigurationInterfaceso
that the affected elements in a GUI can be updated according to the new settings. The API
for the classConfigurationInterfaceis described in appendix A.5.9.

152

8.3. BRIDGE GUI

8.3.6. ConfigurationDialog

TheConfigurationDialogis a simple dialog window for managingConfigurationInterfaces.
EachConfiguratioInterfaceis packed into a separate page of aGtk::Notebookas illustrated
in figure 8.11.

Figure 8.11.: This screenshot of the GenDBConfigurationDialogshows theConfigura-
tionInterfacethat can be used to change a number of settings for the visual-
ization of all kinds of regions. OtherConfigurationInterfacescan be accessed
by clicking on the notebook pages or via a popup menu that contains all avail-
able configuration sections. AllConfigurationInterfacesshare the same buttons
for accepting or discarding new settings.

When the user modifies the settings of a configurable attribute, theConfigurationDialogis
informed about these changes in the currentConfigurationInterface(a single page or section
of the notebook). After accepting a new configuration, the settings are stored and propagated
to all registeredStatusWidgetsof a ConfigurationInterfacewhere they can be applied to
all affected GUI elements. All methods for the classConfigurationDialogcan be found in
appendix A.5.10.

153

8. Implementation

8.3.7. Communication interfaces

While theGeneral Project-Management Systemcan be used to control all data access and
allows to define a meta project that consists of several (different) subprojects, there is still the
need for some methods that connect distinct projects and allow integrated data access among
different components (e.g. display a CDS in GenDB that corresponds to a spot selected in
EMMA). This problem has been solved by creating so called “Communication Interfaces”
that connect two components.

GenDB2EMMA

Content_2_Region

CDS_2_SPOT

EMMAGenDB
emit signal:

callback:

callback:

Communication Interface

Component A Component B

emit signal:

highlight_spots

content_selectedshow_region

CDS_selected

1a

1b

2b

2a

Figure 8.12.: Communication between different BRIDGE components. As an example, the
“GENDB2EMMA” interface connects a signal (“CDS_selected”, 1a) of the
GenDB system with a callback (“highlight_spots”, 1b) in EMMA: spots on
a slide that correspond to annotated CDS regions will be highlighted upon se-
lection of a region in GenDB. In the reverse direction, a region is displayed in
GenDB when the user selects an entry of the sequence library in EMMA (2a
and 2b).

As displayed in figure 8.12, such a module always connects two classes (e.g. GenDB and
EMMA or two GenDB components) by receiving signals from a sender and redirecting a
request to callbacks in the corresponding component. Technically, theseCommunication
Interfacesare implemented asContextMenuInterfacesthat add some external menu items
to object specific popup menus. These modules implement the methodget_menu that
returns menu definitions asGtk::ItemFactoryobjects which are then added dynamically to
the standard menus. This approach is also flexible enough for more complex operations that
allow, for example, to open a window in the KEGG browser that displays some expression
profile of the EMMA system. Furthermore, each module can add its own entries into the
menus of the menu bar in the main application (here: the main BRIDGE frontend).

154

8.3. BRIDGE GUI

8.3.8. Putting it all together

The main BRIDGE application has been implemented as a framework that can load one or
more of the specialized components dynamically. Figure 8.13 illustrates how the different
BRIDGE-GUI modules are integrated into this framework.

GenDB2EMMA

get_menu()

BRIDGE−GUI::get_menu()

BRIDGE−MainWidget::get_menu()

GenDB−MainWidget EMMA−MainWidget

Communication Interface

ContigWidget

ObservationWidget

* *

*

*

GENDB::GUI::ContextMenuInterface::_open_menu()

get_menu()

MeasurementWidget

LibraryWidget *
*

=> create context menu:=> create context menu:

: Common::GUI::StatusWidget* : call & get Menu Item Factory : is implemented in

CODEREF CODEREF

*

implemented in implemented in

GenDB−MainWidget−>open_menu() EMMA−MainWidget−>open_menu()

Common::GUI::ContextMenuInterface

EMMA::GUI::ContextMenuInterface::_open_menu()

Common::GUI::ContextMenuInterface

Figure 8.13.: The BRIDGE application basically contains a special BRIDGEStatusWidget
that loads all other sub modules. The menu bar is constructed recursively by
retrievingGtk::ItemFactoriesfrom each loaded component. Dynamic context
menu interfaces are constructed with entries from theMainWidgetsand exter-
nal methods added by theCommunicationInterfaces.

The functionality of the different modules and the different initialization steps can be de-
scribed as follows:

• The main program initializes the application and after selecting a project, the required
components are loaded dynamically. The system will also try to establish all requested
database connections and register the correspondingApplication_Frames.

• All loaded components (e.g. one or moreGenDB-MainWidgetsor EMMA-MainWid-
gets) are integrated into theBRIDGE-MainWidget.

155

8. Implementation

• The main menu bar is constructed by calling theget_menu method. This method
call is propagated recursively through allStatusWidgets. Thereby, eachStatusWidget
can add its own menus which have to be defined using theGtk::ItemFactory.

• Depending on the loaded components, differentCommunicationInterfacesare initial-
ized and loaded as well and the static methodadd_extern_menu_creator is
executed in order to register additional menus which are implemented in each loaded
CommunicationInterface. This is done by adding a simple code reference which refers
to a subroutine that constructs external menus.

• Whenever the user requests a context sensitive menu (e.g. by clicking on a specific
object with the right mouse button), the correspondingContextMenuis constructed.
This is done by calling theopen_menumethod of a widget that has been derived from
the super classCommon::GUI::ContextMenuInterface(e.g. theGenDB-MainWidget).

• Since theopen_menu method is only implemented in theCommon::GUI::Context-
MenuInterfacemodule, this method call is propagated to this common module and
only executed there.

• Theopen_menu method of theCommon::GUI::ContextMenuInterfacecalls the meth-
od _open_menu implemented in the individual context menu interfaces (e.g. in the
GENDB::GUI::ContextMenuInterface). Similar to theget_menu calls, these meth-
ods return aGtk::ItemFactory.

• Finally, theCommon::GUI::ContextMenuInterfaceexecutes all external code refer-
ences that were added when theCommunicationInterfaceswere loaded. These code
references refer to subroutines implemented in individualCommunicationInterfaces
that return an addtionalGtk::ItemFactorydepending on the type of the current object.

8.3.9. InterfaceCreator

In addition to the core modules for the BRIDGE GUI, theInterfaceCreatorprovides a sim-
plified API for rapid prototyping of graphical user interfaces. It can be used to quickly
implement simple applications and it ensures a consistent creation of homogeneous dialogs
that share the same look & feel. Besides standard widgets like buttons, text entries, and lists,
it features more complex interfaces such as a file, font, or color selection dialog. By simply
defining a hash of widget elements, the complete user interface can be constructed and vi-
sualized without knowing the details of widget arrangements in Gtk. User input values and
results can be obtained by simply calling the methodget_result . The following example
shows the hash definition for some simple widgets:

156

8.3. BRIDGE GUI

use Gtk;
use GUI::InterfaceCreator;

init Gtk;

my $description = [
{

type => ’string’,
name => ’Password:’,
default => ’mypass’,
input_type => 0,
max => 10,
editable => 1

},
{

type => ’float’,
name => ’Float:’,
default => 1.2345,
min => -1.1111,
max => 1.9999,
digits => 4

},
{

type => ’file’,
name => ’File:’,
default => $ENV{HOME}."/file.txt"

},
{

type => ’separator’,
name => ’separator’

},
{

type => ’text’,
name => ’Text:’,
default => "A multi-line\ntext entry!",
font => "-bitstream-courier-*-r-*-*-*-*-*-*-*-*-*-*",
width => 400,
height => 100

}
];

my $InterfaceCreator = new GUI::InterfaceCreator;
my $widget = $InterfaceCreator->make_interface($description);

my $window = new Gtk::Window(’toplevel’);
$window->add($widget);

$window->show_all;

Gtk->main_iteration while ($window->visible);

my $result = $InterfaceCreator->get_result;

...

Gtk->exit(0);

157

8. Implementation

Executing this small script creates a window containing the widgets described above as
shown in figure 8.14.

Figure 8.14.: This screenshot shows a simple dialog that was created using theInterfaceCre-
ator.

After closing such a dialog, all current values of each widget are stored in a hash that is
returned by calling theget_result method (the label or the name of the widget has to be
used as the key). The complete API of theInterfaceCreatorcan be found in appendix A.5.11.

158

CHAPTER 9

Applications

In this chapter selected topics and some successful applications of the developed tools will
be described. The first section illustrates a simple script that uses the BRIDGE platform for
finding gene clusters. During the last three years, the GenDB system has been employed
as the primary resource for the functional analysis and annotation in a number of genome
projects. Therefore, a special automatic annotator was developed that allows reliable and
reproducible high-quality function assignments. Recently, the projection of microarray data
onto metabolic pathways and gene ontologies has shown some promising results that are
shown in the last sections of this chapter.

9.1. Finding gene clusters

In order to illustrate the simplicity and usefulness of the developed BRIDGE platform, the
sample algorithm described in chapter 1 as a pseudocode example (see algorithm 1) was
implemented as a small Perl script (here slightly simplified version without looking at 10
best homologous sequences). The code shows only one simple solution for finding clusters
of co-regulated genes by looking at the expression ratios obtained from a microarray exper-
iment. In this case, genes are considered to be co-regulated whenever their gene product is
an enzyme that is involved in a given pathway. Furthermore, genes are only clustered if they
are located on the same strand in a given maximal distance. With some basic knowledge and

159

9. Applications

experience using the APIs of the GenDB, EMMA, and GOPArc systems, the implementation
of this script can be done within a few minutes.

#!/usr/bin/env perl

use BridgeFunc;

use GPMS::Application_Frame::EMMA;
use GPMS::Application_Frame::GENDB;
use GPMS::Application_Frame::GPMS;

use go::Pathway;
use go::Enzyme;

use IO::Handle;
use Getopt::Std;
#
this is necessary if the script is started via rsh(1)
otherwise you won’t see any output until the first <RETURN>
#
STDOUT->autoflush(1);

our ($opt_u, $opt_p, $opt_e, $opt_x, $opt_m);

getopts(’u:p:e:x:m:’);

my $user = $opt_u;
my $password = $opt_p;
my $emma_project_name = $opt_e;
my $experiment_name = $opt_x;
my $pathway_name = $opt_m;

my $maxGeneDist = 10000;
my $cluster_ctr = 1;

initialize a connection to the local Project Management System
my $gpms_appframe = GPMS::Application_Frame::GPMS->new($user, $password);

die "Unable to contact GPMS!" unless (ref $gpms_appframe);

initialize an Application_Frame for the current project
my $emmaAppFrame = GPMS::Application_Frame::EMMA->new($user,

$password,
$gpms_appframe->gpms_master);

try to initialize a project for the given name
$emmaAppFrame->project($emma_project_name);

initialize the BRIDGE layer
my $bridgefunc = BridgeFunc->new($gpms_appframe, ’cebitec.uni-bielefeld.de’);

register the Application_Frames for the local namespace
$bridgefunc->register_AppFrame(’cebitec.uni-bielefeld.de’, $emmaAppFrame);
$bridgefunc->register_AppFrame_Type(’GPMS::Application_Frame::GENDB’,

’GENDB::DB’);

160

9.1. Finding gene clusters

my $emmaMaster = $emmaAppFrame->application_master();

print "Initializing experiment...\n";
my $experiment = $emmaMaster->Experiment->init_identifier($experiment_name);
if (!ref $experiment) {

print STDERR "Error: Could not initialize experiment for given experiment name!\n";
exit 0;

}

print "Initializing pathway...\n";
my $pathway = go::Pathway->init_name($pathway_name);
if (!ref $pathway) {

print STDERR "Error: Could not initialize pathway for given pathway name!\n";
exit 0;

}

fetch all Quantitations for the given experiment
print "Fetching quantitations...\n";
my $quantitations = $experiment->fetchall_Quantitations();

print "Please wait while searching for regulated enzymes...\n";
my @genes = ();
foreach my $q (@$quantitations) {

my $ratio = ($q->ch2i - $q->ch2bg) / ($q->ch1i - $q->ch1bg);
if ($ratio > 2) {

push(@spots, $q->spot);

my $content = $q->spot->Well->content;
if (ref $content && $content->isa("EMMA::DB::Content::Sequence")) {

my $region = $content->sequence->GenDB_Region;
if (ref $region) {

my $annotation = $region->latest_annotation_function();
check if we have a latest annotation and a CDS
if (ref $annotation && $region->isa("GENDB::DB::Region::CDS")) {

if ($annotation->EC_Number() ne "") {
if(go::Enzyme->check_pathway_for_ec_number($annotation->EC_Number(),

$pathway_name)) {
push(@genes, $region);

}
}

}
}

}
}

}

print "Checking for clusters in $pathway_name...\n\n";
my $currentPos = 0;
my $currentStrand = 0;
my @ClusterGenes;
foreach my $g (sort {$a->start <=> $b->start} @genes) {

next if $currentPos == $g->start();
if ($g->strand() eq $currentStrand) {

161

9. Applications

if ($g->start - $currentPos < $maxGeneDist) {
push(@ClusterGenes, $g);

}
else {

&print_genes(\@ClusterGenes);
@ClusterGenes = ($g);

}
}
else {

&print_genes(\@ClusterGenes);
$currentStrand = $g->strand();
@ClusterGenes = ($g);

}
$currentPos = $g->start;

}

##
subroutine for pretty printing of identified clusters in a pathway
##
sub print_genes {

my ($genes_ref) = @_;

my @genes = @$genes_ref;
if ($#genes >= 1) {

my $separator = " -> ";
$separator = " <- " if $genes[0]->strand() eq "-";
my $cgs = join($separator, map($_->name.

" ".
$_->latest_annotation_function->name.
" (".
$_->latest_annotation_function->EC_Number.
")",
@genes));

print "Cluster $cluster_ctr:\n$cgs\n\n";
$cluster_ctr++;

}
}

Running this script for a given experiment and pathway produces a simple list of predicted
gene clusters. For example, this algorithm was applied for a microarray experiment per-
formed forC. glutamicum. A search for gene clusters in the phenylalanine, tyrosine, and
tryptophan biosynthesis produced the following output:

Cluster 1:
cg0503 aroD (4.2.1.10) -> cg0504 aroE (1.1.1.25)

Cluster 2:
cg1129 aroF (4.1.2.15) -> cg1134 pabAB (4.1.3.-)

Cluster 3:
cg1574 pheS (6.1.1.20) -> cg1575 pheT (6.1.1.20)

162

9.2. Annotation ofMycoplasma mycoides subsp. mycoides SC

Cluster 4:
cg1827 aroB (4.6.1.3) <- cg1828 aroK (2.7.1.71) <- cg1829 aroC (4.6.1.4)

<- cg1835 aroE3 (1.1.1.25)

Figure 9.1 depicts a linear plot of GenDB-2 for the largest predicted cluster.

Figure 9.1.: A cluster of 4 genes involved in the phenylalanine, tyrosine, and tryptophan
biosynthesis was found to be significantly up-regulated in the sample experi-
ment.

9.2. Annotation of Mycoplasma mycoides subsp. mycoides SC

The genome ofMycoplasma mycoides subsp. mycoides SC(MmymySC) has been sequenced
by the group of Joakim Westberg at the Swedish Royal Institute of Technology in Stock-
holm to facilitate studies regarding the organism’s cell function and the disease it causes.
MmymySC1 is the etiological agent of contagious bovine pleuropneumonia (CBPP), a highly
contagious respiratory disease in cattle and buffalo. MmymySC has a circular genome of
1,213,174 bp in size and a very lowGC contentof 27%. Similar to other mycoplasma, the
genetic code 4(start codons TTA, TTG, CTG for leucine, ATG for methionine, ATT, ATC,
ATA for isoleucine, and GTG for valine and TAG and TAA as stop codons) is applied in-
stead of the standardgenetic code 11used for most prokaryotes. The annotation phase of
the genome project was intensively accompanied by the Bioinformatics group at the Cen-
ter for Genome Research in Bielefeld (installation of GenDB on a laptop for J. Westberg,
computation of facts, update of contigs and recomputation of facts, implementation of sev-
eral special purpose scripts, web frontend for published genome, etc.). The annotation with
GenDB revealed that the genome of MmymySC contains a large number of long repetitive
sequences (IS elements). The complete sequence of the assembled genome contains 1,060
putative genes (as predicted by Glimmer). For the final annotation and publication of this
genome, the BRIDGE system was used to categorize all genes according to their functional
classification.

1http://www.biotech.kth.se/molbio/key_achievements/mycoplasma.html

163

9. Applications

Figure 9.2.: Circular genome plot ofMycoplasma mycoides subsp. mycoides SCcreated with
GenDB-2.0. Outer concentric circle: genome positions in bases, where position
one is the first base of thednaAgene. Second and third concentric circle: the
predicted genes on the leading and lagging strand. Fourth concentric circle:
IS-elements. Fifth concentric circle: tRNA and rRNA genes. Sixth concentric
circle: the capsule biosynthesis clusters, the hydrogen peroxide biosynthesis
cluster, and the genes encoding variable surface proteins. Innermost concentric
circle: theGC skew(G-C / G+C) plot.

A circular genome plot of the genome – created with GenDB-2.0 as displayed in figure 9.2
– shows all genes characterized into their functional categories. Therefore, a first prototype
of the BRIDGE system was implemented for connecting a GenDB and GOPArc module.
The original manual annotation created with GenDB-1 provided the functional classification
which was then imported into a GenDB-2 project. Different colors were assigned to each

164

9.3. Annotation ofBdellovibrio bacteriovorus

category (here: Monica Riley categories) using the GOPArc module, afterwards the plot was
created using the newly integrated circular plot feature of GenDB-2.0. Finally, the genome
was published in Genome Research [WPH+04] and submitted to EMBL/GenBank/DDBJ
under the accession number BX293980.

9.3. Annotation of Bdellovibrio bacteriovorus

In another cooperation with the Max-Planck-Institute for Developmental Biology in Tuebin-
gen, the genome of the predatory bacteriaBdellovibrio bacteriovorus HD100was annotated
with GenDB-2.0 in order to analyze its life cycle. The analysis of theBdellovibrio bacte-
riovorus genome revealed a size of 3,782,950 bp which is fairly large with respect to the
cell dimensions (0.2 to 0.5µm wide and 0.5 to 2.5µm long). 3584 proteins were predicted
for the complete sequence with an average GC content of 50.7%. As a predatory bacteria,
Bdellovibrio bacteriovorusattaches specifically to certain other bacteria in order to invade
them and consume the host cell from the inside. As illustrated in figure 9.3,Bdellovibriocan
grow and develop in the periplasm of its prey utilizing the amino acids and other nutrients of
the host cell for its own life cycle.

Figure 9.3.:Bdellovibrio bacteriovorushas a quite fascinating life cycle: Once it has collided
with a prey cell and verified its suitability for invasionBdellovibriostarts to enter
the host. After navigating into the periplasmic space between the outer and inner
membrane of the prey cellBdellovibriobegins to consume the host cell from the
inside by degrading all kinds of biopolymers. When all resources of the prey are
exhausted, the bacteria septates and finally, an odd number of progeny cells is
released by dissolving the remaining prey cell. (Adapted from [RJR+04])

165

9. Applications

All predicted coding sequences were analyzed automatically with GenDB-2.0 and more than
2 million observations were computed and stored in the project database. Afterwards, an
initial automatic annotation was created based on different tool results (BLAST vs. EMBL,
SwissProt and KEGG, HMM searches vs. the TIGRFAM and Pfam databases, InterPro, etc.).
Functional categories were derived by blasting each CDS against the COG database and by
evaluating the results with the GOPArc module (see figure 9.4). Finally, the automatically
assigned functions were verified by a manual annotation.

Figure 9.4.: The circular genome plot ofBdellovibrio bacteriovorus HD100was created us-
ing GenDB-2.0 and GOPArc via BRIDGE. Outer concentric circle: genome
positions in bases, where position one is the first base of thednaAgene. Sec-
ond and third concentric circle: the predicted genes on the leading and lagging
strand colored by COG category. Fourth concentric circle: rRNA genes. Fifth
concentric circle: the GC content. Innermost circle: theGC skew(G-C / G+C)
plot.

As described in more detail in the corresponding Science publication [RJR+04], the auto-
matic and manual annnotation revealed thatBdellovibrio lacks the biosynthesis pathways for

166

9.4. Analysis of 5 microbial genomes

some essential amino acids. Instead, it utilizes the chemical compounds of its prey which
is indicated by a large number and broad range of transport systems. Furthermore, a huge
contingent of lytic enzymes (numbering over 200 genes) was found which is essential for
invading the host cell, degrading biopolymers, and for finally dissolving the prey cell. Fu-
ture anti-microbial strategies aim at usingBdellovibrioas a “living antibiotic” since it is not
capable of infecting eukaryotic cells.

9.4. Analysis of 5 microbial genomes

On June 1st 2001, the BMB+F funded network forGenome Research on Bacteria Relevant
for Agriculture, Environment and Biotechnology2 settled at Bielefeld University started its
work with the main goal to develop this new research field and to contribute important re-
sults to biotechnology. Since one major goal of the network’s research was to establish the
nucleotide sequences of six bacterial genomes (37 Megabases in total, see table 9.1), the
GenDB system was chosen as the platform for the annotation and all further downstream
analysis of these genomes.

Bacterium Genome size (Mb)
Azoarcussp. ∼ 4.6
Clavibacter michiganensissubsp. michiganensis∼ 3.5
Xanthomonas campestrispv. campestris ∼ 5.5
Xanthomonas campestrispv. vesicatoria ∼ 5.5
Alcanivorax borkumensis ∼ 3.2
Sorangium cellulosum ∼ 12.2
Streptomycescosmids ∼ 2.1
Total ∼ 35

Table 9.1.: Genome projects of the Bielefeld network forGenome Research on Bacteria Rel-
evant for Agriculture, Environment and Biotechnology. Altogether, the network
is working on the assembly and annotation of more than 35 million basepairs,
i.e. approximately 35,000 genes.

The network comprises the areas “Agriculture”, “Environment”, and “Biotechnology”. For
the area “Agriculture”, the endophyteAzoarcussp. is analyzed as a nitrogen fixing bacte-
ria and compared toSinorhizobium melilotiand Bradyrhizobium japonicumthat are both
capable of fixing nitrogen in symbiotic root nodules. Understanding and exploiting this
potential by comparative genomics is the key objective in order to reduce nitrogen fertil-
ization of crops such as rice or soybeans by biological nitrogen fixation. Furthermore, the

2http://www.GenoMik.Uni-Bielefeld.DE/

167

9. Applications

plant-pathogenic bacteriaClavibacter michiganensissubsp. michiganensis,Xanthomonas
campestrispv. campestris, andXanthomonas campestrispv. vesicatoria are in the center
of the network’s interest since these organisms are responsible for worldwide multi-billion
dollar crop yield losses each year. The information gathered in these genome projects is sup-
posed to contribute to the design of environmentally-friendly agrochemicals for controlling
these pests.

Within the area “Environment”,Alcanivorax borkumensishas been sequenced since this
organism has a special feature in that it uses crude mineral oil as its sole source for carbon
and energy. There is hope that the elucidation of its metabolic potential will make a major
contribution towards the design of strains capable for cleaning-up oil contaminated sites.

In the area “Biotechnology”, the myxobacteriumSorangium cellulosumis analyzed because
of its capability to produce low-molecular weight compounds such as chivosazoles and et-
nangiens with remarkable biological activities (secondary metabolites). In addition to the
functional analyis of more than 10,000 expected genes, the identification of new drug can-
didates with anticancer, antibacterial, fungicidal, or immune-modulating effects is a major
goal in this project. Furthermore, the DNA sequence of cosmids that carry biosynthetic gene
clusters ofStreptomycesis analyzed in order to identify new antibiotic synthesis pathways.

While the annotation of theA. borkumensisgenome is already finished,AzoarcusandX. cam-
pestrispv. vesicatoria are currently being annotated. At the time of this writing, the se-
quences ofC. michiganensisandS. cellulosumare polished in order to obtain a high quality
sequence of the genome.

Since the manual annotation is a very time-consuming work for the analysis of a genome,
a specialized meta annotator (Metanor) was implemented that automatically assigns a gene
function based on a sophisticated combination of different tool results:

• BLAST2p vs. KEGG
Since the KEGG database represents a resource of all annotated genomes that are
stored in a unified and consistent way, the functional descriptions of the genes con-
tained therein can be used to identify a gene name, gene product, and an EC number
for enzymes. Therefore, each CDS is blasted against all genes of the organisms con-
tained in KEGG on the amino acid level.Metanorcan be configured to use then best
hits vs. the KEGG database in order to find the most frequently assigned gene name,
gene product, and EC number.

• BLAST2p vs. nearest neighbor
When the genome under investigation is closely related to another genome that was
already annotated,Metanor can be configured to use the annotation of the latter for
the function assignment. Therefore, all predicted genes are blasted on the amino acid
level vs. all genes of the nearest neighbor genome. The gene name, gene product, and
the description of the annotated homologous CDS are used, if the level of the best

168

9.4. Analysis of 5 microbial genomes

observation is better than a specified threshold, e.g. better than level 3. Previously
assigned gene names or gene products derived from KEGG are overwritten.

• PSI-BLAST SwissProt
The SwissProt database represents a manually curated high-quality repository of com-
prehensively annotated amino acid sequences. Thus, the information of this database
can be used for accurate and highly specific function assignments. Therefore, PSI-
BLAST is used to identify the most specific homologous entry in SwissProt. Again,
this hit is only used if it is better than a specified threshold; the description of the
hit is then added to the description of the annotation.Metanor also tries to extract
the detailed functional description that is often available for SwissProt entries. Based
on the level of the best SwissProt hit, a confidence level (1 – 6) is assigned ranging
from “High confidence in function and specificity” via “Specificity unclear”, “Func-
tion unclear”, “Family membership”, and “Conserved hypothetical protein” down to
“Hypothetical protein”.

• InterPro
In the third step of the automatic annotation,Metanor extracts a unique list of GO
numbers from the best InterPro observation. These GO numbers and their correspond-
ing descriptions are added to the annotation.

• PSI-BLAST COG
Similar to the SwissProt hit, the best observation computed by a PSI-BLAST run
vs. the COG database is used for the annotation if the level is above the specified
threshold. This hit is used to assign a functional classification (a COG number, a COG
category, and a COG category ID) to each CDS. If no hit was found above the given
threshold, the default COG category (COG0000) for an unclassfied protein is used.

• TIGRFAM
The HMM TIGRFAM database is used to find specific domains or motifs that charac-
terize a CDS. The description of the best hit is added to the description of the annota-
tion. If none of the other tools used so far produced a significant observation above the
specified threshold, this tool can be used to identify at least some motif that probably
contains hints about the function of a CDS. If the previously assigned confidence level
was worse than level 4 (“Family membership”), a significant hit vs. the TIGRFAM
database is used to assign the latter level, otherwise the previous level is kept.

In general, all observations used byMetanorfor the automatic annotation are added to a list
of observations stored with the annotation as supporting evidence. By looking at this list,
a manual annotator or scientist can always understand how the automatic annotation was
derived. Before writing a new annotation, the maximal level of all observations is checked.

169

9. Applications

If a minimal required level was specified for the currentMetanorrun, the extracted informa-
tion is only stored if the maximal level exceeds the minimal level. Otherwise, only a default
annotation is created with most fields remaining empty and the CDS is described as a “hypo-
thetical protein predicted by Glimmer/Critica”. For reasons of convenience,Metanorcan be
configured to delete or keep oldMetanorannotations and it can be selected whether the latest
annotation function should be set. The latter feature is especially useful, if manual annota-
tions should be kept as the current annotation that is presented to the user and e.g. exported
to an EMBL file.

As an example,Metanorwas able to annotate more than 90% percent of allA. borkumensis
genes in a way that the human annotators could simply confirm the automatic result or just
needed to modify only a few details. In particular, such automatic annotation strategies will
be very useful for the annotation of the largest bacterial genome known to date,Sorangium
cellulosum, which is supposed to have about 10,000 genes.

9.5. Postgenome analysis

In addition to the genome projects described above, the Bielefeld Center for Genome Re-
search is also focused on postgenome analyses, i.e. transcriptomics and proteomics. The
following sections illustrate two examples for successful applications of the BRIDGE plat-
form in this area of research.

9.5.1. Genome comparison of Corynebacterium glutamicum and
Streptomyces coelicolor

The manual annotation ofC. glutamicumwas started in 2001 using the GenDB-1 system.
Thus, a special script was implemented for migrating a GenDB-1 project to GenDB-2.0.
The final annotation of the genome was recently published in [KBB+03b] and submitted to
EMBL/GenBank/DDBJ.

For the methionine biosynthesis and other metabolic pathways, the BRIDGE system was
used as a tool for genome comparison. For example, two GenDB projects were created
(for C. glutamicum[THM+02] andS. coelicolor[BCCT+02]) and all annotated enzymes
were mapped automatically via their corresponding EC numbers onto the KEGG metabolic
pathways in the GOPArc system.

170

9.5. Postgenome analysis

Figure 9.5.: The methionine biosynthesis pathway as derived from the annotations stored in
the GenDB system. EC numbers shown in yellow have been found forC. glu-
tamicum, enzymes show in blue have been annotated forS. coelicolorand EC
numbers displayed in green were found in both genomes.

In figure 9.5 one can see immediately that (starting from the top) the first steps of the
L-methionine biosynthesis forS. coelicolordiffer completely from those of the closely
related organismC. glutamicum[RPK03]. Experimental results have already shown that
S. coelicoloris prototrophic for L-methionine, thus leading to the conclusion thatS. coeli-
color may produce L-homocysteine from L-cysteine and L-homoserine. The integration of
different specialized components (here two GenDB modules and the GOPArc browser) into
a common interface showed its usability for a comparative analysis of metabolic pathways
in two related organisms.

9.5.2. Expression analysis of Sinorhizobium meliloti

As a second example, a GenDB, EMMA, and GOPArc project were integrated for the ex-
pression analysis ofS. meliloti [GFL+01]. Significantly up or down regulated genes that
were identified using the t-test statistics wizard in EMMA were mapped onto the annotated
genes and the KEGG metabolic pathways.

171

9. Applications

Figure 9.6.: Expression analysis ofSinorhizobium melilotion the level of metabolic path-
ways. Yellow rectangles mark the annotated enzymes of the thiamin biosynthe-
sis pathway and green or red boxes highlight positive and negative expression
ratios (normalized M values) respectively that were calculated with the EMMA
module (see small screen-shot of t-test result list). Red CDS regions displayed in
the GenDB system above the list indicate down regulated genes. The annotated
genes of the thiamin biosynthesis pathway are marked on the selected megaplas-
mid pSymB and genethiE (annotated with EC number 2.5.1.3) is therefore high-
lighted in blue.

As displayed in figure 9.6, the three highlighted genes with annotated EC numbers of the
thiamin biosynthesis pathway are spread over the megaplasmid pSymB [FWW+01]. The
last one of these genes (SMb20618, thiE) is a member of a cluster of four genes (thiC, thiO,
thiG, andthiE) that have been annotated as putative thiamin biosynthesis proteins. The cor-
responding microarray analysis of gene expression under phosphate limitation in the wild
type strain has shown that all four clustered genes are significantly down regulated between
1.2 and 1.6 fold (mean of normalized logarithmic M values) thus meeting the expectations
[KB03]. In this example, the integrated approach supported by the BRIDGE system has sim-
plified the evaluation of expression data and facilitated the analysis of regulatory networks.

9.5.3. Integrated microarray analysis

After implementing the software, a testing and evaluation phase was set up. More than 20
test slides were hybridized and analyzed with EMMA. In doing this we found that the system
is easy to use. The design concept also holds as EMMA has proven to be easy to extend by

172

9.5. Postgenome analysis

R-packages. For example, variance stabilization was published during the testing phase and
could be immediately integrated into the system.

EMMA was tested and is running stable under three different UNIX/LINUX variants (Solaris
8/9, SuSE Linux 7.2/8.1, and FreeBSD 4.5). Because of the multi-platform capabilities of
Perl, EMMA should be easily portable to other operating systems.

The MicroLIMS system provides comfortable and reliable upload facilities for experimental
setups and protocols. Its ability to provide a centralized resource for laboratory protocols has
proven to be superior to decentralized storage using word processors or paper based forms.

The successful testing of the platform did encourage us to apply the platform in three inter-
national projects.

Within the European Union project MEDICAGO3, comprehensiveMedicago truncatula
Mt6k root interaction transcriptome (Mt6k-RIT) microarrays representing approximately
5,700 genes were hybridized against probes from symbiotic root interactions and evalu-
ated using EMMA [Küs03]. That way, more than 300 genes significantly upregulated in
mature root nodules and more than 100 genes significantly upregulated in endomycorrhiza
were identified. These sets of genes contain numerous nodule-specific and mycorrhiza-
upregulated genes that are well-known from the literature [WPK03].

In another project, Sm6k microarrays containing approximately 6,200 unique open read-
ing frames fromSinorhizobium melilotiwhere produced [RTK+03]. Sample arrays were
hybridized with cDNA-probes from cells grown under microaerobic conditions versus aer-
obic conditions. Differentially expressed genes identified with EMMA were mapped onto
replicons and functional categories. This way, a majority of genes overexpressed under mi-
croaerobic conditions were found to be located on the pSymA plasmid which is known to
contain numerous genes specific to nitrogen and oxygen metabolism [BFJ+01]. Also, a large
proportion of regulated genes were assigned to functional class I (Becker, A., personal com-
munication) which is specific for small molecule metabolism like nitrogen metabolism and
electron transport [GFL+01].

In the Corynebacterium glutamicumproject [KBB+03b]4 which is conducted by the Cen-
ter for Genome Research two types of microarrays with different layouts were made: the
CG05kPCR microarray carries approximately 500 unique open reading frames with 72 repli-
cates each and the Cg4kPCR whole genome microarray covering approximately 93% of the
genome with four replicates per gene. Within more than 40 experiments, EMMA was used
to store and analyze datasets resulting from hybridizations [HBB+03].

Altogether, in these projects hundreds of microarrays made from prokaryotes and eukaryotes
were hybridized and analyzed with EMMA. Six different microarray layouts were imported
into EMMA from robotic spotter files. These microarrays comprise small test slides as well
as large scale microarrays with up to 8,000 genes and 24,000 spots. The microarray images
were analyzed using AIM and ImaGene and the raw data was imported into EMMA.

3http://medicago.toulouse.inra.fr/
4http://www.Genetik.Uni-Bielefeld.DE/Genetik/coryne/coryne.eng.html

173

9. Applications

Before applying normalization, the data from each microarray was inspected by using scat-
terplots and a normalization preview. After applying normalization,M vs. A scatterplots of
the data were generated and lists of candidate genes for differential expression were obtained
by applying the t-test. Filtering was applied by removing spots with low intensity values from
the result. Afterwards, the results were compared with already existing annotations stored in
EMMA and in GenDB.

The EMMA system can run as a stand-alone application, but its effectiveness can be in-
creased by the integration with other systems, e.g. GenDB and ProDB [WRB+03] as dis-
played in figure 9.7. The current level of integration with other software is accomplished by
using the BRIDGE system.

Figure 9.7.: Integration of EMMA and GenDB via BRIDGE: a spot on a slide has been
selected in EMMA while GenDB provides additional annotation information
about the content of the spot (in this case a CDS). GenDB displays the CDS
position in its contig view.

The content of a spot (e.g. oligonucleotide, PCR product, EST) or the result of a statistical
test or cluster analysis may be linked directly to a region stored in the GenDB genome

174

9.5. Postgenome analysis

Figure 9.8.: Three scatterplots of experimental data created with EMMA’s R-plotting device,
each representing a distinct stage of analysis. In this experiment, three Mt6k-
RIT arrays [Küs03] were hybridized against labeled probes from mature root
nodules and uninfected roots (total RNA and hybridization data were provided
by Pascal Gamas, INRA-CNRS Toulouse, France and Helge Küster, Center for
Genome Research, Bielefeld University, Germany). The top-left plot contains
a scatterplot of raw intensities for each spot and the top-right graphic shows an
M vs. A plot of all slides after lowess normalization. The third plot shows an
M vs. A plot for each gene. Differentially expressed genes identified by the t-test
are mapped on Monica Riley categories. Annotation information can be added
to points of interest interactively.

175

9. Applications

annotation system that provides extensive information about its annotated function. Selecting
a spot will then show the corresponding region in the contig view or display a report with
detailed information in the GenDB frontend.

Integrating EMMA with the GOPArc system allows further analysis of microarray data based
on functional categories (e.g. COG, Monica Riley) or metabolic pathways. Scatterplots of
microarray data can be generated according to the functional classification of the correspond-
ing genes (see figure 9.8).

176

CHAPTER 10

Summary

This chapter intends to summarize the most important aspects of this work. A graphical
overview of the timeline of this work is presented that shows the different steps for the
development of the BRIDGE system.

10.1. Summary of this work

In this PhD thesis, the BRIDGE system was developed as a framework for the integration
of specialized components for separate scopes. Due to the modular architecture and system
design, five modules were implemented:

• GenDB-2.0:
Based on GenDB-1, a more complex data model that now contains a number of sub-
classes for arbitrary genomic regions such as CDS, RBS, tRNAs, Operons, etc. was
designed. In addition to that, a more flexible tool concept was realized. Individual
bioinformatics tools are now implemented as separate classes that can also have a
special class for the observations they generate. Furthermore, all tools are integrated
into a grid framework for a quite comfortable scheduling of jobs using the Sun Grid
Engine. Last but not least, the new version of GenDB provides a well designed web
frontend that can be used for a distributed annotation of genomes.

177

10. Summary

• EMMA-1.1:
Since there was no open source transcriptomics platform that fulfilled our require-
ments, the EMMA system was developed. The current version provides the most
important features for the analysis of microarray data.

• GOPArc-1.0:
The GOPArc system was implemented as a prototype for a module that supports the
analysis and visualization of metabolic pathways based on the ideas developed in the
PathFinder system. GOPArc also provides tools for the analysis of functional cate-
gories in genomic data.

• GPMS:
The General Project-Management Systemis one of the key components that is re-
quired for the integration of heterogeneous data from different data sources and projects.
It is essential for the administration of users and allows the realization of accurate and
individual access policies.

• BRIDGE:
The original BRIDGE system basically consists of two core components that were
developed for the integration of heterogeneous data into a common framework. The
BridgeFunclayer provides the functionality for accessing and initializing external or
remote objects which can be especially useful for programmers working with different
data sources. For a comfortable usability, a framework of GUI modules was imple-
mented that facilitates the integration of specialized components into an interactive
and highly customizable user frontend.

A well structured and extensible platform for systems biology was developed by incorporat-
ing a set of full featured specialized components. The implemented graphical user frontends
already support a number of features that directly link different types of data (e.g. map ex-
pression data onto metabolic pathways). In addition to the graphical user frontends, the
BRIDGE system can be used to implement individual algorithms for analyzing the data in
an easy and intuitive way. The BRIDGE system allows to answer questions like “Show me
all genes of pathway A that are 2-fold up-regulated in experiment B, have an unusual GC
content and ...” by using the higher level programming environment provided by the O2DBI
server classes and theBridgeFunclayer. Abstract pseudo code descriptions for special tasks
can be translated almost directly into executable and human readable programs.

Finally, the usefulness and utility of this approach was shown for various sample applica-
tions.

178

10.1. Summary of this work

To conclude this chapter, the most important milestones of this work are illustrated in fig-
ure 10.1.

2001 2002 20032000

PathFinder

EMMA

GenDB−1.0

PathFinder

EMMA

GOPArc

GenDB−2.0

GenDB

EMMA

BRIDGE

(study project)

(Bioinformatics)

(NAR)

(J. Biotech.)

(J. Biotech.)

(diploma thesis, M. Dondrup)

(diploma thesis)

Figure 10.1.: Starting in spring of 2000 with my diploma thesis about the PathFinder system,
the BRIDGE system was developed in several steps. Finally, GenDB, EMMA,
and the BRIDGE system were accepted for publication.

Starting after my diploma thesis, most of the initial work was directed towards establishing
a first stable version of the GenDB genome annotation system that incorporated the original
PathFinder software. The development of the EMMA system was initiated by a study project
managed by myself and Michael Dondrup continued this project by evaluating and imple-
menting a variety of methods for the analysis of microarray data in his diploma thesis that
was also conducted on my personal advice. The publication of the PathFinder software was
followed by the development of a GOPArc prototype that enhanced the PathFinder system in
several ways. At the same time a completely redesigned version of GenDB was implemented
and finally published in NAR. Recently, the EMMA system and the BRIDGE architecture
were accepted for publication in a Special Issue of the Journal of Biotechnology.

179

10. Summary

180

CHAPTER 11

Discussion

In the following chapter, the results of this PhD thesis are analyzed critically and some
aspects are discussed that might be improved by further work on the system. Finally, a short
outlook is presented, illustrating some ideas for an ongoing development towards a platform
for systems biology.

11.1. Results

Although many questions can be answered with the BRIDGE system, there are still some
challenging open questions and problems waiting for solutions. Beyond the apparent re-
quest to share and unify these concepts of data integration, there is still an enduring need for
widely accepted standard data formats. In my opinion, there is hope that the idea of provid-
ing open source software as a common resource helps to concentrate efforts and allows other
researchers to integrate their own ideas, thus preventing the reinvention of the wheel in many
areas. Only the design of the GenDB software currently restricts the use of the BRIDGE sys-
tem to prokaryotes but the next generation of GenDB is already designed for supporting the
analysis of eukaryotic organisms. The architecture of the BRIDGE platform currently fea-
tures the inclusion of additional components or interfaces asa) an O2DBI application that
directly integrates into the BRIDGE layer,b) a commonly used web service andc) a sepa-
rate graphical user interface compliant to our specialized components. In particular, further
extension and integration of web services will be a major task for future developments.

181

11. Discussion

11.2. Outlook

The usefulness and applicability of the currently implemented BRIDGE platform was il-
lustrated in chapter 9. Nevertheless, there are still some things left that could be done to
improve the system and to enhance it. Future extensions and further development of this
software could be directed towards incorporating additional specialized components for de-
tailed genome comparison with various navigation metaphors and for the analysis of regula-
tory mechanisms that allow users to create a comprehensive repository of enriched genome
annotations. This includes the extension of the GenDB system for the analysis of eukary-
otic organisms, a re-implementation of the GOPArc prototype, a component for the analysis
of proteome data, novel modules for comprehensive genome comparison, and also for the
prediction or analysis of operon structures. Furthermore, it might be worthwhile to employ
other more enhanced toolkits like Java Beans or the Qt toolkit instead of Perl-Gtk for all
further development.

Another issue that will remain important for all further analysis is the necessity to ensure a
certain quality of the obtained raw data. For instance, the quality of a contig sequence matters
quite a lot for all further downstream sequence analysis and genome research: as displayed in
figure 11.1, a polished DNA sequence significantly improves the gene prediction and reduces
the number of false positives.

Figure 11.1.: Sequence quality matters a lot for all further downstream analysis. The upper
part shows a screenshot of the GenDB main window displaying the results of
a first gene prediction after finishing the shotgun sequencing phase. The lower
part displays the same region after polishing the contig, the contradictory CDS
prediction in the middle was resolved automatically by recomputing the gene
prediction and another small CDS was no longer predicted as a real gene.

182

11.2. Outlook

While several new standards and approaches for the integration of heterogeneous data are
currently under development, it is clear that widely used stable data exchange mechanisms
should be incorporated into the BRIDGE system once they are established. Additionally, the
versatility of this software could be enhanced by implementing a generic query interface that
provides interactive exploration of complex heterogeneous data structures.

Recently, an ongoing study project (VIPER) was initiated which aims at providing different
views for genome comparison. A viewer for bi-directional best BLAST hits (see figure 11.2),
an MGA frontend for multiple genome alignments, and a module for comparison based on
domains and motifs (Pfam) are currently under development using Qt for the development
of all graphical user interfaces.

Figure 11.2.: Visualization of bi-directional BLAST hits using the Qt frontend of the VIPER
project.

Last but not least, a vision for the ongoing development of this platform in the future could
be directed towards aGenomic Desktop Environment - GDE, that incorporates most of the
currently available bioinformatics tools and applications (e.g. EMBOSS) as an integrative
modular platform for the comprehensive analysis and simulation of complex biological sys-
tems.

183

11. Discussion

184

APPENDIX A

Selected topics of the source code

The following sections contain more details about the most important topics that were im-
plemented in this work. Instead of pure source code examples the APIs of some modules
are listed in order to increase the readability of the some modules presented here. All Perl
modules contain some inline documentation in POD (Plain Old Documentation) format that
can be extracted automatically and converted into different other formats (e.g. HTML, LATEX,
or man pages).

A.1. Role and right definitions for GenDB-2.0

This section describes theRolesandRightsas they were defined for the genome annotation
system GenDB-2.0 which extensively uses different roles for a sophisticated access control.

###################################
ROLES defined for GenDB-2.0
###################################

PROJECT_CLASS GENDB

user with read only permissions and almost completely restricted access
ROLE Guest

RIGHT basic_access

185

A. Selected topics of the source code

user who is allowed to write annotations and recompute the observations
for a single region
ROLE Annotator

RIGHT basic_access
RIGHT annotate
RIGHT export_region_data
RIGHT recompute

(external) user who is allowed to do most of the necessary tasks for
maintaining a project (e.g. import/export/edit/delete contig sequences,
add tools and submit all jobs for their computation)
this role should be used if several persons have to edit the sequence,
e.g. to correct frameshifts
ROLE Maintainer

RIGHT basic_access
RIGHT recompute
RIGHT submit_jobs
RIGHT contig_import_export
RIGHT edit_sequence
RIGHT add_tools
RIGHT export_region_data
RIGHT delete_contig
RIGHT annotate
RIGHT region_prediction

user who is responsible for the database and for the solution of bugs and problems
can do almost everything and also MODIFY THE DATABASE (e.g. alter table)
ROLE Developer

RIGHT contig_import_export
RIGHT region_prediction
RIGHT submit_jobs
RIGHT recompute
RIGHT edit_sequence
RIGHT add_tools
RIGHT export_region_data
RIGHT delete_contig
RIGHT configure_project
RIGHT basic_access
RIGHT annotate
RIGHT modify_db

user who is responsible for the project and who can do everything except
modifying the database (e.g. configure the project)
has to add Maintainers, Annotators and Guests but cannot grant all rights
that are needed by Developers
ROLE Chief

RIGHT annotate
RIGHT add_user
RIGHT contig_import_export
RIGHT region_prediction
RIGHT submit_jobs
RIGHT recompute
RIGHT edit_sequence
RIGHT add_tools
RIGHT export_region_data
RIGHT delete_contig
RIGHT configure_project
RIGHT basic_access

186

A.1. Role and right definitions for GenDB-2.0

####################################
RIGHTS defined for GenDB-2.0
####################################

PROJECT_CLASS GENDB

RIGHT basic_access
DS_TYPE GENDB

DB select
DS_TYPE GPMSDB

DB select
TABLE sessions delete update insert
TABLE sessions_not_permanent delete update insert
TABLE sessions_permanent delete update insert
TABLE Member_User_Project_Configs update delete insert
TABLE Member_User_Project_Configs_hash_value update delete insert
TABLE ProjectManagement_counters update

RIGHT annotate
DS_TYPE GENDB

DB insert update

RIGHT export_region_data

RIGHT recompute
DS_TYPE GENDB

DB delete update insert

RIGHT submit_jobs
DS_TYPE GENDB

DB insert update delete

RIGHT contig_import_export
DS_TYPE GENDB

DB insert update delete

may only be granted to user if user has the right to annotate
RIGHT edit_sequence

DS_TYPE GENDB
DB update insert

RIGHT add_tools
DS_TYPE GENDB

DB insert update

RIGHT delete_contig
DS_TYPE GENDB

DB delete

RIGHT region_prediction
DS_TYPE GENDB

DB insert update delete

RIGHT configure_project
DS_TYPE GENDB

DB insert update delete

187

A. Selected topics of the source code

RIGHT modify_db
DS_TYPE GENDB

DB insert update delete alter index create drop references

RIGHT add_user
DS_TYPE GENDB

DB grant insert update delete
DS_TYPE GPMSDB

DB grant insert update delete

188

A.2. API of the ApplicationFrame

A.2. API of the ApplicationFrame

The following description of a generalApplication_Framewas directly included from the
documentation of the Perl module.

Description
An Application_Frame provides a general easy-to-use framework
for the General Project Management System (GPMS). It should
be used for all O2DBI connections based on the GPMS (see
documentation of O2DBI-II by B. Linke for further
details about master objects etc.).

Concepts
An Application_Frame acts as a container for all GPMS data
that are required by an application for connecting to an
O2DBI database. It provides access to:

o a ProjectManagement master object
o an application master object
o a ProjectManagement::Project object
o a ProjectManagement::User object
o a ProjectManagement::Member object
o the users password
o user specific configurations for a Project

For using the Application_Frame a subclass has to be created
that contains an application specific _init_application
method, that provides the application master (see the
documentation of _init_application for more details). The
Application_Frame was initially introduced for some
bioinformatics applications developed at the Center for Genome
Research, Bielefeld University. But it may be used as well
with every other GPMS based application.

Methods
o new($login, $passwd [,$gpms_master] [,$errh])

Constructor, used for creating a new
GPMS::Application_Frame object that provides the O2DBI-II
master objects and all GPMS data relevant for the
application. $errh is an optional error handler method,
which is executed if an error occurs. As an argument
$errh receives a string containing the error message.
When $errh is specified it will be executed everytime
a method of the object is called and an error occurs.
The optional argument $gpms_master is a
ProjectManagement master object. It may be used when
several Application_Frame objects are supposed to share
the same GPMS master.

o errh([$errh])
Method used to get/set the error handler method. $errh
is a reference on a subroutine that is executed if an
error occurs. The only argument that is returned is the
error message string.

o login
This method returns the login name of an user that was
specified in the constructor method.

189

A. Selected topics of the source code

o passwd
The users password is required for establishing the
connection to a database. Therefore the password is
provided by this method.

o gpms_master([$master])
This method can be used to get/set the O2DBI-II master
object for the GPMS.

o application_master([$master])
Get/set the O2DBI-II master object specific for the
application or hash of O2DBI-II master objects if a
project uses more than one database.

o user
Use this method to get the ProjectManagement::User
object.

o project([$project])
This method can be used to get/set the project.
$project can be a ProjectManagement::Project object or
simply the name of a project.

o get_available_projects($type)
This method returns an array reference of all usable
projects for the specified user. The type can be used
to specify a subclass of ProjectManagement::Project
(e.g. ProjectManagement::Project::GENDB).

o user_name
Get the full name of the current user.

o user_email
Get the email address of the current user.

o error
Default error method that can be used to get/set an
error message if an error occured.

o _init_application($project)
This method has to be overloaded when a new subclass is
created. The derived method can implement project
specific initializations. It should always return an
application master or a reference on a hash of
application masters if a project uses more than one
database. Since the Application_Frame is only
applicable for projects using the second generation of
the O2DBI tool, other applications that use the old
version by J. Clausen have to return 1 for successful
connections or 0 if an error occured. The $project
argument specifies a ProjectManagement::Project for
which the Application_Frame should be initialized.

o project_name
Get the name of the project the Application_Frame
was created for.

190

A.2. API of the ApplicationFrame

o project_description
Get the description of the currently used project.

o member([$member])
Use this method to get/set the current member.

o right($right_name)
This method returns the value for a given project right
for the current user. Use this method to check the
individual permissions (rights).

o rights
This method returns a reference on a hash of all
project rights defined for the current user.

o projectDB_by_datasource_type_name($datasource_type_name)
Use this method to retrieve the database of a project
for a specified datasource_type.

o project_dbs
This method returns a reference on an array of all
databases in the current project.

o project_datasources
Use this method to retrieve a reference on an array of
all available datasources for the current project.

o user_project_config([$config])
Use this method to get/set the complete project
configurations for the current member of a project.
$config is a hash of hash containing the configuration
parameters and values for different configuration
sections.

o destroy
Delete the Application_Frame object and clean up
everything.

Deriving a sub-class of an Application_Frame
For using the Application_Frame a subclass has to be cre-
ated that contains an application specific "_init_applica-
tion" method. This method has to provide the application
master (see the documentation for _init_application for
more details). The Application_Frame was initially intro-
duced for some bioinformatics applications developed at
the Center for Genome Research, Bielefeld University, but
it may be used as well with every other application that
uses the GPMS.

You can easily adopt the Application_Frame for your own
systems by deriving a sub-class and overloading a number
of methods:

o _init_application($project, $options)
This method initializes the application specific
database modules. The default implementation is geared
towards an O2DBI-II generated database interface with
a MySQL backend. The derived method can implement pro-

191

A. Selected topics of the source code

ject specific initializations. It should always return
an application master or a reference on a hash of
application masters if a project uses more than one
database. Since the Application_Frame was basically
developed for projects using the second generation of
the O2DBI tool, other applications have to return 1
for successful connections or 0 if an error occured
(e.g. projects using the old version of O2DBI by J.
Clausen). "_init_application" is executed when the
method project() is executed for setting a project.
The $project argument specifies a ProjectManage-
ment::Project for which the Application_Frame should
be initialized. The argument $options may be any
options.

o master_class()
This method returns the name of the O2DBI-II master
class that should handle an application. The name is
used in the default implementation of "_init_applica-
tion" to create the backend and master objects.

o db_type()
The GPMS datasource type that can be handled by the
Application_Frame.

Both methods, "master_class()" and "db_type()" are used by
the BridgeFunc layer to resolve external references. The
derived classes also have to care for loading all neces-
sary modules, e.g. the O2DBI-II generated backend and mas-
ter modules.

Example: The GenDB-2.0 Application_Frame:

package GPMS::Application_Frame::GENDB;

use strict; use GENDB::DB; use GENDB::DB_MySQL;
use base(’GPMS::Application_Frame’);

1;

sub master_class {
return ’GENDB::DB’;

}

sub db_type {
return ’GENDB’;

}

192

A.3. A sample script and project initialization

A.3. A sample script and project initialization

The sample script below illustrates the initialization of a GenDB project. All contig objects
in the project database are retrieved and their names are printed.

#!/usr/bin/env perl

simple GenDB demo script that reads all contigs and writes their names

$Id: quellcode.tex,v 1.23 2004/03/03 12:36:22 agoesman Exp $

use strict;
use Carp;
use Getopt::Std;
use Term::ReadKey;
use IO::Handle;
use GPMS::Application_Frame::GENDB;

#
this is necessary if the script is started via rsh(1)
otherwise you won’t see any output until the first <RETURN>
#
STDOUT->autoflush(1);

sub usage {
print "gendb_demo - get all contig sequences and write their names\n";
print "usage: gendb_demo -p <project>\n\n";

}

global variables
our($opt_p);

getopts(’p:’);

start sanity checks
if (!$opt_p) {

usage;
print "ERROR: Can’t initialize GenDB: No project name given!\n";
exit 1;

};

get the login name of the current user
my $user = defined($ENV{’LOGNAME’}) ? $ENV{’LOGNAME’} : (getpwuid($>))[0];

print "Enter your database password: ";
ReadMode(’noecho’);
my $password = ReadLine(0);
chomp $password;
print "\n";
ReadMode(’normal’);

try to initialize GenDB project
initialize an Application_Frame for the current project
my $gendbAppFrame = GPMS::Application_Frame::GENDB->new($user, $password);

check if the initialization succeeded
die "Unable to initialize ApplicationFrame for GenDB project!" unless (ref $gendbAppFrame);

193

A. Selected topics of the source code

try to initialize a project for the given name
$gendbAppFrame->project($opt_p);

check a basic privilege
exit unless $gendbAppFrame->right("basic_access");

get a global O2DBI-2 master object
my $master = $gendbAppFrame->application_master();

fetchall contigs and print their names
print "Contigs in GenDB project $opt_p:\n\n";
my $contigs = $master->Region->Source->Contig->fetchall();
foreach my $contig (@$contigs) {

print $contig->name."\n";
}

print "\nDone.\n\n";

194

A.4. The GenDB-2.0 tool and job concept

A.4. The GenDB-2.0 tool and job concept

This section describes all components that are essential for understanding the GenDB-2.0
tool and job concept in more detail.

A.4.1. A sample tool

In GenDB-2.0 each tool is integrated as a separate subclass (e.g.Tool::Function::HTH) in
order to facilitate an easy and individual implementation. The following example describes
some details of a tool implementation:

Name
GENDB::DB_Server::Tool::Function::HTH - integration of
helix-turn-helix

Description
This module implements the server side extensions to class
GENDB::DB::Tool::Function::HTH. It can be used to compute
helix-turn-helix motifs in coding sequences (CDS). HTH can
be run as a scheduled tool or on the fly with user defined
settings. Observations can be recomputed on demand, the
tool result is returned as plain text.

Additional methods
o bool can_run_queued()

Use this method to check if Jobs can be created for
running HTH so that it can be scheduled (e.g. via
Codine) and run queued.

RETURNS: true, if HTH can run queued,
false otherwise

o bool can_recompute_observation()
Use this method to check if HTH observations can be
recomputed on demand.

RETURNS: true if observations can be recomputed,
false otherwise

o bool can_run_immediately()
Use this method to check if HTH can be run on the fly
with user defined settings.

RETURNS: true if HTH can run immediately,
false otherwise

o SCALAR run(OBJECT)
Overloaded method for running HTH. Depending on the
type of the parameter this method will perform differ-
ent actions:

GENDB::DB::Region: for a given region (e.g. a
CDS) HTH will be run on the
fly and return the tool re-
sult

GENDB::DB::Observation: the tool result will be re-
recomputed for the given

195

A. Selected topics of the source code

observation and returned as
a string

GENDB::DB::Job: in this case, HTH is com-
puted, the result will be
parsed, and observations are
stored in the database,
RETURNS: true on success,

false otherwise
RETURNS: see above for return values on success,

returns false for errors, for severe failures
this method dies (-> use eval)

o STRING command_line()
Create the command line with parameters from the tool
configuration.

RETURNS: the command line for HTH

o bool auto_annotate(OBJECT)
Run a simple HTH auto annotator for all created obser-
vations of a tool/region combination. For HTH we cre-
ate a new Region::CDS_Feature::HTH first, using the
previously created Observation::Region::Feature.
Afterwards we add an Annotation::Region and an Annota-
tion::Function for this region.

OBJECT: the GENDB::DB::Region that should be anno-
tated, in this case only CDS

RETURNS: true if the region was annotated successfully,
false otherwise

A.4.2. Computing tools – runtool.pl

This script can not only be used for the computation of batch jobs but also for debugging
newly implemented tools and for recomputing single jobs, e.g. all tools for a specific region.

#!/usr/bin/env perl

use vars qw($opt_p $opt_j $opt_d $opt_v $opt_a);
use strict;

use Carp qw(croak);
use Data::Dumper;
use Getopt::Std;
use Term::ReadKey;
use IO::Handle;
use GENDB::Common::GlobalConfig;
use GPMS::Application_Frame::GENDB;

#
this is necessary if the script is started via rsh(1)
otherwise you won’t see any output until the first <RETURN>
#
STDOUT->autoflush(1);

196

A.4. The GenDB-2.0 tool and job concept

sub usage {
print "runtool - executes single jobs for GenDB 2\n";
print "usage: runtool -p <project> -j <job id>\n"

." -d debug mode (necessary if you try to run a job WITHOUT SGE scheduler)\n"

." -v verbose tools\n"

." -a start auto annotator if available\n\n";
}

getopts(’p:j:dva’);

if (!$opt_p) {
usage;
print STDERR "Error: Missing project name!\n\n";
exit 1;

}

if (!$opt_j) {
usage;
print STDERR "Error: Missing job id (project: $opt_p)!\n\n";
exit 1;

}

if we are trying to run this script in the debug mode instead of the standard gendb user
we have to enter a database password...
my $usr = $GENDB_DEFAULT_USER;
my $password = $GENDB_DEFAULT_PWD;
if ($opt_d) {

$usr = defined($ENV{’LOGNAME’}) ? $ENV{’LOGNAME’} : (getpwuid($>))[0];

print "Enter your database password: ";
ReadMode(’noecho’);
my $password = ReadLine(0);
chomp $password;
print "\n";
ReadMode(’normal’);

};

try to init GenDB project
initialize an Application_Frame for the current project
my $gendbAppFrame = GPMS::Application_Frame::GENDB->new($user, $password);

check if the initialization succeeded
die "Unable to initialize ApplicationFrame for GenDB project!" unless (ref $gendbAppFrame);

try to initialize a project for the given name
$gendbAppFrame->project($opt_p);

check if the user has basic access to the current project
and the privilege to write observations/annotate
exit unless $gendbAppFrame->right("annotate");

get a global O2DBI-2 master object
my $master = $gendbAppFrame->application_master();

197

A. Selected topics of the source code

try to init job for given job id
my $job = $master->Job->init_id($opt_j);
if (!ref $job) {

usage;
print STDERR "Error: No job with id $opt_j!\n";
exit 1;

};

reset job state to submitted if we recompute a single job without using the JobSubmitter
if ($opt_d) {

$job->submitted($opt_p);
};

get tool for job
my $tool = $job->tool;

print some debug output
$tool->verbose(1) if $opt_v;

try to run the job
my $finished;
eval {

$job->running($opt_p);
$finished = $tool->run($job, $opt_p);

};

update job status
if ($@) {

print STDERR "Error: Running job $opt_j for project $opt_p failed: $@\n";
$job->failed($opt_p);

}
else {

if(!$finished) {
this is required for pipeline tools only
$job->pending($opt_p);

}
else {

run auto annotator if tool has reference on annotator
if (ref $tool->auto_annotator && $opt_a) {

print STDERR "Starting auto annotator...\n";
eval {

$tool->auto_annotate($job->region, $opt_p);
we’re done
$job->finished($opt_p);

};

check eval result
if ($@) {

print STDERR "Error: Running job $opt_j for project $opt_p failed: $@\n";
$job->failed($opt_p);

}
}
else {

we’re done
$job->finished($opt_p);

}
}

}

198

A.4. The GenDB-2.0 tool and job concept

A.4.3. The GENDB::Job class definition

The following section describes the API of the classGENDB::DB::Job.

Name
GENDB::DB_Server::Job - a class for scheduling the compu-
tation of bioinformatics tools

Description
This module implements the server side extensions for the
class GENDB::DB::Job. A Job can have 6 different state
values represented by integer values indicating the status
of a Job: PENDING (1), SUBMITTED (2), RUNNING (3), CAN-
CELLED (4), FINISHED (5), or FAILED (6). Initially after
their creation Jobs are PENDING. When a Job was registered
successfully in the scheduler the status is SUBMITTED. All
other stati should be self explaining.

Additional methods
o <Job> create_job(<Region>, <Tool>, integer)

Additional constructor method to the standard "create"
method. It creates a new Job object, sets the
date_ordered attribute to the current time and initial
default status of the Job is set to PENDING. An
optional integer value can be used to set an initial
priority for the Job.

<Region>: an arbitrary region for which the Job
should be created

<Tool>: the required Tool for the Job
integer: a numeric value for setting a defaul pri-

ority of the new Job
RETURNS: the newly created Job object, -1 if the

creation failed

o integer get_current_state()
Get the current status of a Job directly from the
database.

RETURNS: an integer for the current status.

o bool submit(string, bool)
This method submits a Job to the scheduler and sets
the job status to submitted. A single Job is only sub-
mitted if 1) the status is PENDING, 2) all mandatory
Jobs were finished successfully (state = FINISHED) and
3) all optional Jobs are done (state = FINiSHED, CAN-
CELLED, or <FAILED>).

string: name of the current project
bool: option for activating automatic annotators
RETURNS: true if the Job was submitted successfully,

false otherwise

o bool submitted(string)
Set the status of a Job to SUBMITTED.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

199

A. Selected topics of the source code

o bool pending(string)
Set the status of a Job to PENDING.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

o bool running(string)
Set the status of a Job to RUNNING. This can only be
done successfully if the previous status was SUBMITTED.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

o bool finished(string)
Set the status of a Job to FINISHED. This can only be
done successfully if the previous status was RUNNING.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

o bool failed(string)
Set the status of a Job to FAILED. This can only be
done successfully if the previous status was RUNNING.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

o bool cancel(string)
Set the status of a Job to CANCELLED. This can only be
done successfully if the previous status was SUBMITTED
or RUNNING.

string: name of the current project
RETURNS: true if the new status could be set,

false otherwise

o bool is_pending()
This method can be used to query whether a Job is cur-
rently PENDING.

RETURNS: true if the state is PENDING,
false otherwise

o bool is_submitted()
This method can be used to query whether a Job is cur-
rently SUBMITTED.

RETURNS: true if the state is SUBMITTED,
false otherwise

o bool is_running()
This method can be used to query whether a Job is cur-
rently RUNNING.

RETURNS: true if the state is RUNNING,
false otherwise

o bool is_cancelled()
This method can be used to query whether a Job is cur-
rently CANCELLED.

RETURNS: true if the state is CANCELLED,
false otherwise

200

A.4. The GenDB-2.0 tool and job concept

o bool is_finished()
This method can be used to query whether a Job is cur-
rently FINISHED.

RETURNS: true if the state is FINISHED,
false otherwise

o bool is_failed()
This method can be used to query whether a Job is cur-
rently FAILED.

RETURNS: true if the state is FAILED,
false otherwise

o integer job_number_by_state(integer)
This method returns the number of all current Jobs
with a given status.

integer: the number of the status
RETURNS: the number of all Jobs with the given status

o ARRAY get_job_statistic()
This method can be used to retrieve a list of Job
statistics. It returns a list with the number of cur-
rent Jobs for each status.

RETURNS: a list of Job numbers for each status

A.4.4. The JobSubmitter wizard

This section describes the API of theJobSubmitter Wizardthat provides the basic function-
ality for submitting a batch ofJobsto the scheduler.

Name
GENDB::Wizard::JobSubmitter - a wizard for submitting a
batch of jobs

Synopsis
use GENDB::Wizard::JobSubmitter;

init wizard and register progress callback
my $wizard = GENDB::Wizard::JobSubmitter->new;
$wizard->register_callback(’progress’, \&my_progress_indicator);
$wizard->register_callback(’finish’, \&my_notifier);

create jobs to predict regions
$wizard->regions(\@regions, \@tools);

create jobs to predict functions
$wizard->functions(\@region, \@tools);

submits created jobs
$wizard->submit;

Description
This Wizard implements a generic mechanism to create Job
objects.

201

A. Selected topics of the source code

Methods
o GENDB::Wizard::JobSubmitter->new ([priority,
restart_failed, restart_submitted, restart_finished]);

Creates a new JobSubmitter-Wizard. The optional prior-
ity parameter can be use can be used to set job prior-
ities (e.g. to increase the priority for recomputing
jobs). restart_failed, restart_submitted and
restart_finished may be used to restart failed, sub-
mitted or even already finished jobs (in case of wrong
tool configuration or other errors that occured).

o $wizard->register_callback(name, callback sub)
Registers a callback to be invoked in certain situa-
tions.

o progress
Indicates the update of a progress widget. Invokes
the callback with two parameters, the number of
actions finished and the overall number of actions
to perform.

o finish
Called when all actions have been performed.

o $wizards->regions (\@regions, \@tools)
Creates jobs to predict regions. \@regions and \@tools
are optional arrays to restrict the wizard to certain
regions and tools. If no regions are specified, the
wizard will submit jobs for all Region::Source and
<Region::Partial_Region> objects. If no tools are
specified, all tools applicable to Region::Source and
Region::Partial_Region are used.

o $wizard->functions (\@regions, \@tools)
Creates jobs to predict functions. The parameters
\@regions and \@tools can be used as described in the
regions() method to restrict the submitted jobs to
certain regions and tools.

o $wizard->submit(options, email_address)
Submits the previously created jobs into the job
queue. Use the options string for aditional parame-
ters. The whole string is directly passed to the
Scheduler. SGE sends an email to the given address
after all jobs have been finished if you set a valid
email adress with the -m option.

202

A.4. The GenDB-2.0 tool and job concept

A.4.5. Submitting jobs – submit_job.pl

This script can be used to create and submit a batch ofJobsto the scheduler. It provides a
simple command line interface for using theJobSubmitter Wizard:

submit_job - submit a batch of jobs for a GenDB-2 project

usage: submit_job -p <project> [-c <region name>] [-t <tool name>]
-R|-F [-S] [-r|-s|-f] [-o] [-m user[@host]]

-p name of GenDB project as registered in project management
-c name of a region (e.g. a contig) in the selected project database
-t name of a single tool stored in the GenDB database
-R submit tools for the prediction of regions
-F submit tools for the prediction of functions
-S submit tools for all subregions of a given region
-r restart all failed jobs
-s restart all submitted jobs
-f restart all finished jobs

if none of -r|-s|-f is given, only submit
jobs for new tool/region combinations

-a activate automatic annotators
-o additional options for SGE (e.g. \’-l arch=solaris\’)
-m email address to send a message after jobs have been finished
-l use given SysLog facility to collect all job output

(stdout and stderr), e.g. ’local4.info’

PLEASE NOTE: Use explicit quoting for parameters that contain whitespaces etc.:
e.g. ’local4.info’

A.4.6. The Sun Grid Engine API (Codine.pm)

The module Scheduler::Codine provides a Perl API for the Sun Grid Engine (former Codine)
and implements the following class methods:

NAME
Scheduler::Codine - A perl API for the Sun Grid Engine
(Codine).

SYNOPSIS
Submit a single job:

use Scheduler::Codine;
my $job = Scheduler::Codine->new();
$job->command("/some/path/tool $args > outfile");
$job->submit();

Submit an array of jobs:

use Scheduler::Codine;
Scheduler::Codine->freeze();
foreach my $cmd(@jobs){

my $job = Scheduler::Codine->new();

203

A. Selected topics of the source code

$job->command($cmd);
$job->submit();

}
Scheduler::Codine->thaw();

DESCRIPTION
This module provides a Perl API for the Sun Grid Engine
(SGE). Check out http://gridengine.sunsource.net/ for pro-
ject details of SGE. Since there does not seem to be a (do-
cumented) API for this queueing system yet, this module was
written in order to provide an easy-to-use Perl interface
for submitting jobs.

Class methods:

o new()
Constructor method - returns a new Codine job object.

o freeze()
Freezes the scheduler - collects submitted jobs in an
array.

o thaw()
Thaws the scheduler - submits job array(s) to Codine.

o options()
Gets or sets Codine specific options (e.g. ’-l
arch=solaris’). See the qsub(1) manpage for a com-
plete list of available options.

o email()
Gets or sets email address. Codine sends an email to
the specified address when all submitted jobs are fin-
ished.

o syslog_facility()
Gets or sets syslog facility. Codine directs both the
output channel and the stderr channel to the syslog
facility given here.

Object methods:

o command()
Gets or sets the command. The full path to the exe-
cutable has to be provided since Codine will run it in
a very limited environment.

o directory()
Gets or sets the working directory. This defaults to
the current working directory.

o output()
Gets or sets the pathname of the job’s standard output
channel. This defaults to /dev/null. Note: this will
not work if you set syslog_facility().

204

A.4. The GenDB-2.0 tool and job concept

o stderr()
Gets or sets the pathname of the job’s standard error
channel. This defaults to /dev/null. Note: this will
not work if you set syslog_facility().

o queue()
Gets or sets the queue. Since Codine defines queues
per execution host we decided to provide 3 (host inde-
pendent) queues: -1, 0, 1. -1 corresponds to a low
priority queue, 0 to a queue with medium priority and
1 to a high priority queue. The default queue is 0.
The specified queue is combined with the given prior-
ity() value (see below) to an SGE specific priority
value.

o priority()
Gets or sets the priority. This value must be between
-64 and 63 and defaults to 0.

o submit()
Submits job to Codine. Depending on the state of the
scheduler (frozen after using the freeze() method or
thawn otherwise) the submitted job will be either col-
lected in a job array or directly submitted to SGE as
a single job.

205

A. Selected topics of the source code

A.5. BRIDGE modules

The following sections describe the most important basic modules implemented for the
BRIDGE platform.

A.5.1. BridgeFunc

Name
BridgeFunc - an interface for integrating heterogeneous
data sources

Synopsis
use BridgeFunc;

construct a GPMS::ApplicationFrame::GPMS object
my $bridgefunc = BridgeFunc->new($gpms_frame);

or write alternatively
my $bridgefunc = BridgeFunc->new($gpms_frame, ’my_local_namespace’);

register the Application_Frames

for the main Application_Frame:
$bridgefunc->register_AppFrame(’my_local_namespace’,$my_appframe);

and for further Application_Frames that should be used, e.g.:
$bridgefunc->register_AppFrame_Type(’GPMS::Application_Frame::GENDB’,

’GenDB’);

initialize an internal object that refers to an external object
my $internal_object = MyClass->init_id(123);

access an external object
my $external_object = $internal_object->ext_ref();
if (ref $external_object) {

do some stuff with the initialized external object
}
else {

do some error handling
either the lookup failed or the external reference was not set

}

Description
This BridgeFunc module provides some special functions
implementing the BRIDGE layer on top of the O2DBI server
classes for the integration of heterogeneous data sources.
It is responsible for storing and managing different
Application_Frame objects that are associated with a spe-
cific namespace. In addition to this, the methods provided
by this module can be used to obtain URIs for referencing
objects and for retrieving such external objects.

206

A.5. BRIDGE modules

Application management

Internally all applications are registered and managed
using their corresponding Application_Frame objects.
Thereby, an application is associated with a namespace
that uniquely identifies their data source.

Object management

The main purpose of the BridgeFunc layer is the handling
of inter-application references. This includes the identi-
fication and initialization of objects and the automatic
handling of Application_Frames for accessing such objects.
Although most of the work is done transparently, the meth-
ods used are also available for explicitly requesting
objects and URIs (see below).

URIs

URIs (Unified Resource Identifiers) are used in the BRIDGE
system for referencing objects across different data
sources (e.g. different databases). These objects may be
part of other projects, projects of different application
types or even projects running on another server. The for-
mat (syntax) of these special URIs is defined as follows:

"o2xr://<namespace>/<projectname>/<datasourcetype>?uid"

o o2xr
This is a simple name for the BRIDGE naming scheme
(derived from O2DBI eXternal Reference).

o namespace
The namespace denotes an unique identifier for an
installation or instance of the General Project-Man-
agement System (GPMS) that is used for managing all
kinds of projects. Internally, all external GPMS sys-
tems have to be registered in the local GPMS database
as a special kind of project entry so that remote con-
nections can be established. When an URI is resolved,
the local GPMS database is queried for the information
that is required for accessing other (remote) GPMS
systems. As an example, a namespace could be the name
of an institute such as CeBiTec.Uni-Bielefeld.DE.

o projectname
This is an identifier for the project in the scope of
the namespace. The same project name may be used in
different namespaces, but the combination of namespace
and project has to be unique.

o datasourcetype
Projects may be composed by combining different kinds
of data sources (e.g. different O2DBI dataschemes for
different databases) but each project can only have
one data source of each different data source type.
Since objects are local to data sources, their unique
ids are local, too.

207

A. Selected topics of the source code

o uid
The unique id of an object.

Namespace, projectname and datasourcetype identify the
database that has to be used. The unique id thus refers to
a single object in that database.

Accessing local and remote GPMS

Since internal objects can refer to external objects
stored on a remote systems, the BridgeFunc layer has to be
able to resolve remote server names. Instead of using
classical (global) resolving service like DNS, a local
instance of the GPMS is used to resolve remote GPMS sys-
tems. This local GPMS is managed as a specialisation of
the project class in the implementation of the GPMS, which
allows the full range of possible configurations (differ-
ent access ways, redundant systems etc.). Thus the Bridge-
Func constructor expects the local GPMS and its namespace
as parameters. This GPMS instance will then be used to
lookup all namespaces that do not match the local names-
pace identifier given as an optional parameter. Conse-
quently a BridgeFunc application has to know its local
namespace and the O2DBI master for the local GPMS system
has to be constructed before the BridgeFun layer can be
used.

Using BridgeFunc

Most of the functions of the BridgeFunc layer were imple-
mented as static methods. Nevertheless, the BridgeFunc
module can be used in an object oriented way which also
provides a proper cleanup of the environment (especially
important when using mod_perl).

After creating a BridgeFunc object external reference
attributes can be used transparently and in the same man-
ner as objects from other registered Application_Frames.
If the lookup of an object fails, the getter method
returns the URI itself. Thus the return value should
always be checked (see Synopsis for further details).

Methods
o new(<GPMS Application_Frame>, [string])

Default constructor method for creating a new Bridge-
Func object.

GPMS ApplicationFrame: this Applica-
tion_Frame::GPMS object is used for accessing the
"local" GPMS

string: optional name of the local
namespace; if no name is give, the name of the

project associated to the
GPMS Application_Frame is used

o bool register_AppFrame(string, <Application_Frame>)
This method explicitly registers a new Applica-
tion_Frame object.

208

A.5. BRIDGE modules

string: name of the namespace
ApplicationFrame: the Application_Frame object
RETURNS: true if the namespace was regis-

tered correctly, false otherwise, e.g. if the names-
pace was already registered

o void register_AppFrame_Type(string, string)
The kind of an Application_Frame used for a specific
data source depends on the data source type that is
required since the BridgeFunc layer does not have a
priori knowledge about the corresponding application
that has to be instantiated internally (using the
"get_Object" method described below). Thus it has to
maintain a mapping of data source types to its corre-
sponding Application_Frame classes.

string: name of an Application_Frame module
string: the name of the data source type

o void remove_AppFrame(string, string)
Removes the Application_Frame that has been registered
for the given namespace and the given project.

string: name of the namespace
string: name of the project that corresponds to an

Application_Frame

o <Application_Frame> get_AppFrame(namespace, project
name)

This method returns the Application_Frame that has
been registered for a given namespace and a given pro-
ject.

string: the name of a namespace
string: the name of the project
RETURNS: an Application_Frame object for the given

namespace and project, undef otherwise,
e.g. if the namespace or project was not regis-

tered before

o get_namespace_project(Application_Frame / O2DBI II mas-
ter)

This method returns an array containing the namespace
and project name of a Application_Frame or O2DBI II
master object. If the Application_Frame or master
object is not registered with BridgeFunc, undef is
returned.

o string get_URI(<OBJECT>)
This method generates the URI for a given object. The
class of the object has to be marked as a referable
class in the O2DBI dataschema.

OBJECT: any O2DBI object that can be referenced
externally

RETURNS: the complete URI for the given object if it
can be referenced externally, an empty string other-
wise

o OBJECT get_Object(string)
This method tries to resolve a given URI and returns
the object referenced by the URI. Internally, this

209

A. Selected topics of the source code

method creates a new Application_Frame object if this
is necessary for accessing an external database.

string: the URI that refers to an external object
RETURNS: the requested object if it was initialized

successfully, undef otherwise

A.5.2. BridgeFunc::Projects

Name
BridgeFunc::Projects - simple class for handling projects
that are managed by the GPMS

Description
Simple module for handling applications using the BRIDGE
functionality. All projects that belong to a specific
namespace can be managed by this module.

Methods
o new(<GPMS>)

Default contructor method for creating a new Projects
object

<GPMS>: reference on GPMS::Application_Frame

o GPMS::Application_Frame gpms()
Get the current GPMS::Application_Frame that corre-
sponds to this object.

RETURNS: GPMS::Application_Frame

o void add_project(string, <Project>)
Add a new project to this project handler.

string: name of the project
Project: the project itself

o void remove_project(string)
Remove the project with the given name.

string: the name of the project that should be
removed

o <Project> get_project(string)
Get the project that corresponds to a given name.

string: the name of the project

o string query_project([Application_Frame|O2DBI_Master])
Get the project name for a given Application_Frame or
an O2DBI_Master.

o void destroy()
Explicit destructor method for objects of this class.
Remove all projects and unset the GPMS::Applica-
tion_Frame

210

A.5. BRIDGE modules

A.5.3. BridgeFunc::Namespaces

Name
BridgeFunc::Namespaces - a simple module for managing
namespaces used in BRIDGE applications

Description
Helper module to handle namespaces

Methods
o new(<GPMS>, <Namespace>)

Default contructor method for creating a new Names-
paces object

<GPMS>: reference on GPMS::Application_Frame
<Namespace> : the name of the namespace

o <GPMS> local_gpms()
Method for retrieving the ApplicationFrame::GPMS of
the local installation.

RETURNS: the local ApplicationFrame::GPMS

o bool query_namespace(string)
Method for checking if a namespace is defined or not.

string: the name of a namespace
RETURNS: true if namespace is registered, false oth-

erwise

o ARRAYREF projects(string)
Get all projects for a given namespace.

string: the name of the namespace
ARRAYREF: list of all projects

o ARRAYREF query_project(string, string)
Check if a project has been registered for a names-
pace.

string: the name of the namespace
string: the name of the project
RETURNS: the project if it is available, undef oth-

erwise

o ARRAY query_namespace_project([Applica-
tion_Frame|O2DBI_Master])

This method returns the namespace and the project name
for a given Application_Frame or an O2DBI_Master.

o void add_project(string, <Application_Frame>)
Add a project to an existing namespace.

string: the name of the namespace
Application_Frame: the corresponding Applica-

tion_Frame of the project

o void remove_project(string, string)
Remove the Application_Frame of a project from a
namespace.

string: the name of the namespace
string: the name of the project that should be

removed

211

A. Selected topics of the source code

o void set_namespace(string, <GPMS>)
Set a new namespace handler.

string: the name of the namespace
GPMS: Application_Frame::GPMS that should be set

for the given namespace

o <GPMS> get_GPMS(string)
Get the Application_Frame::GPMS for a given namespace.
This method will also try to construct a new Applica-
tion_Frame::GPMS if none exists.

string: the name of the namespace
RETURNS: the Application_Frame::GPMS if available,

undef otherwise

A.5.4. BridgeFunc::AppFrames

Name
BridgeFunc::AppFrames

Description
This class can be used for managing Application_Frames in
the BridgeFunc layer. This module keeps track of the
associations between Application_Frames and their corre-
sponding data sources (as they are used by the GPMS). It
also processes the O2DBI master modules and overwrites the
attribute handlers for classes that contain external ref-
erences.

Methods
o new()

Default contructor method for creating a new AppFrames
object

o string <Application_Frame> get_appframe_class(string)
Get a class of ApplicationFrames.

string: the name of a data source type
RETURNS: the class name of an Application_Frame

o void add_ds_type(string, <Application_Frame>, bool)
Add a new data source type.

string: name of the data source type.
Application_Frame: an Application_Frame object
bool: flag to indicate whether external

references should be resolved or not

o string get_ds_type(<Application_Frame>)
Get the data source type for a given Applica-
tion_Frame.

ApplicationFrame: an Application_Frame object
RETURNS: the name of the data source type

that corresponds to a given Application_Frame

212

A.5. BRIDGE modules

A.5.5. StatusWidget

Name
GUI::StatusWidget - abstract base class for widgets used
in the BRIDGE framework

Description
A StatusWidget provides a general framework for implement-
ing graphical user interfaces with Gtk, e.g. as special-
ized components of the BRIDGE system. It is an abstract
widget with status message signals.

Concepts
Basically, a StatusWidget is an extended container which
provides some common functionality that is frequently
needed in many GUI applications.

o Widget Hierarchy:
Gtk::Object
|
+-Gtk::Widget
| |
. +-Gtk::Container
. |
. +-Gtk::Box

|
+-Gtk::VBox

|
+-GUI::StatusWidget

Since a StatusWidget is a subclass of a Gtk::VBox, derived
widgets of this class can be nested and packed into each
other. Signals that are emitted by a nested StatusWidget
will be passed back through all parent StatusWidgets until
they are received by a toplevel widget which handles the
emitted signal. As an example the signal message could be
connected to a status bar of the main window in order to
display messages.

Signals
o message (GUI::StatusWidget, string)

Emitted when new message is sent
GUI::StatusWidget -> the StatusWidget object
string -> the message

o init_progress (GUI::StatusWidget, int)
Emitted when new progress starts

GUI::StatusWidget -> the StatusWidget object
int -> total number of computations to

be done

o update_progress (GUI::StatusWidget, int)
Emitted every computation loop

GUI::StatusWidget -> the StatusWidget object
int -> current computation number

o end_progress (GUI::StatusWidget)

213

A. Selected topics of the source code

Emmited when computations are finnished
GUI::StatusWidget -> the StatusWidget object

o change_cursor (GUI::StatusWidget, int)
Emmited when cursor has to be changed

GUI::StatusWidget -> the StatusWidget object
int -> number of the cursor

Methods
o void init (CLASS)

Method to register a StatusWidget subclass as a Gtk
class if this has not been done already. This step is
required to access some Gtk internal functions and
make a new widget work. This method has to be called
directly in the constructor method of a subclass (in
most cases in the implementation of the method ’new’).

void destroy()
Extended Gtk destroy method for destroying also all
subwidgets.

o void register_subwidget(GUI::StatusWidget, GUI::Sta-
tusWidget)

This method has to be called to register a StatusWid-
get as a sub-widget of a parent StatusWidget. Only
calling this method will enable the functionality of a
StatusWidget described above.

o get_subwidgets
This method returns a list of all sub-widgets.

o void clear_subwidgets()
Clear the list of all sub-widgets.

o void remove_subwidget($widget)
Remove a given widget and all its sub-widgets from the
list of all sub-widgets.

o void print_subwidgets()
Debug method to print out all sub-widgets recursively.

o ARRAYREF get_subclasses()
This methods returns a list of all class names of the
sub-widgets.

o void add_config_classes(HASHREF, ARRAY)
This method can be used to register sub-classes of the
ConfigurationInterface.

HASHREF: contains additional data used in the Con-
figurationInterface, e.g.

a backend for storing the configuration (see also
UserConfig)

ARRAY: list of class names

Configuration Concept:

In order to create a configuration frontend for an imple-
mented StatusWidget the following steps are required:

214

A.5. BRIDGE modules

1) Implement a sub-class of the GUI::ConfigurationIn-
terface that contains the GUI elements for editing
attributes. For further details see the documentation
of the GUI::ConfigurationInterface.
2) Invoke this method in the constructor of the Sta-
tusWidget with the class name(s) of the corresponding
ConfigurationInterface(s). Thereby, the StatusWidget
is registered as a widget that has to be notified upon
changes in this/these ConfigurationInterface(s). At
the same time the ConfigurationInterface(s) is/are
added to the list of config classes which are shown in
the ConfigDialog for the current application.
3) Implement the "apply" method in the StatusWidget
which is called upon changes of the configuration.
This method is called with a hash argument containing
all changes of the configuration. Thus the "apply"
method has to update for example some elements of the
GUI.

o void get_config_classes(string)
Return a list of all registered classes of Configura-
tionInterface.

string: optional name of a group of configuration
classes

o void add_tooltips(Gtk::Widget, string, string)
Add a tooltip for any widget.

Gtk::Widget: a widget for which the tooltip should
be set

string: the text itself shown in the tooltip or if a
second string argument is given

this can be the name of an application (see Hel-
pRepository)

string: key of a section for an application docu-
mented in the HelpRepository

o void toggle_tooltips (GUI::StatusWidget, bool)
Toggle the visualization of all tooltips on or off
recursively for all sub-widgets.

o void stop_progress()
Set the interrupt signal in order to stop a time con-
suming operation.

o bool _stop_progress()
Check the interrupt signal if a time consuming opera-
tion should be stopped.

o LIST get_menu()
This method has to be implemented in the sub-classes
of a StatusWidget in order to define individual menu
entries. This method has to be called in the imple-
mented ’get_menu’ method itself in order to get the
menus of the subwidgets.

o void set_attribute(string, SCALAR)
Set an internal attribute for an a StatusWidget.

string: name of a key for the attribute

215

A. Selected topics of the source code

SCALAR: any kind of value

o SCALAR get_attribute(string)
Get an internal attribute of a StatusWidget.

string: name of an attribute key
RETURNS: scalar value of requested attribute

o SCALAR get_attributes(string)
Get an internal attribute of a StatusWidget. This
method is only provided for convenience.

string: name of an attribute key
RETURNS: scalar value of requested attribute

o void copy_attributes(GUI::StatusWidget)
Copy all attributes from this StatusWidget to another
StatusWidget.

GUI::StatusWidget: a StatusWidget that receives the
attributes

A.5.6. MenuCreator

Name
GUI::MenuCreator - a dynamic menubar

Description
The MenuCreator provides a dynamic menu bar that can be
modified on demand.

Concepts
Standard Gtk::MenuBar widgets can’t be modified using
Gtk::ItemFactory. Thus this class provides the requried
functionality to change such menu bars dynamically.

o Widget Hierarchy:
Gtk::Object
|
+-Gtk::Widget
| |
. +-Gtk::Container
. |
. +-Gtk::Box

|
+-Gtk::HBox

|
+-GUI::MenuCreator

Methods
o new

Constructor method for creating a new MenuCreator.

o void set_menu(Gtk::Window, ARRAYREF)
This method re-builds the menu bar from the descrip-
tion of a Gtk::ItemFactory.

Gtk:Window: a window required for setting accelera-
tors

ARRAYREF: the description for the Gtk::ItemFactory

216

A.5. BRIDGE modules

In addtion to those items and options defined for the
standard Gtk::ItemFactory, the following key words can
be used in the description:

default: initially activate check menu items
disabled: disable single menu items
get_widget: provide access to the widget represent-

ing a menu item

A.5.7. ContextMenuInterface

Name
GUI::ContextMenuInterface - a framework for building con-
text sensitive menus

Description
The ContextMenuInterface is a simple interface (not a
class!) that provides some basic functionality for context
sensitive menus.

Concepts
Context sensitive menus can be opened and build depending
on the context that they were openend for. Modules using
this interface have to implement the method ’_open_menu’.

Methods
o void open_menu(SCALAR, Gdk::Event)

This method simply opens a menu and pops it up onto
the screen.

SCALAR: context that is propagated to the context
menu (e.g. an object such as a CDS)

Gdk::Event: this event is required for controling
the menu behaviour

o void add_extern_menu_creator(string, CODEREF)
Add an external menu creator.

string: name of the menu creator
CODEREF: method for building the menu

o void remove_extern_menu_creator(string)
Remove an external menu creator described by the given
name.

string: name of the menu creator

A.5.8. PopoutBook

Name
GUI::PopoutBook - Notebook with pages that can pop out

Synopsis
use Gtk;
use GUI::PopoutBook;

init Gtk;

217

A. Selected topics of the source code

...
my $widget = new GUI::PopoutBook;
$widget->append_page(Tab-Text, Widget);
...
main Gtk;

Description
Set of pages with bookmarks, pages can pop out into a win-
dow.

Widget Hierarchy
Gtk::Object
|
+-Gtk::Widget
| |
. +-Gtk::Container
. |
. +-Gtk::Bin

|
+-Gtk::Notebook

|
+-GUI::PopoutBook

Signals
o page_pop_out (int, Gtk::Widget)

Emitted when the user or a function pops the page into
a window.

GUI::PopoutBook: the PopoutBook object
int: the page number
Gtk::Widget: widget that is popped out

o page_pop_in (int, Gtk::Widget)
Emitted when the user or a function kills a window and
pops the widget back into a PopoutBook page.

GUI::PopoutBook: the PopoutBook object
int: the page number
Gtk::Widget: Widget that is popped in

o page_toggled (int, Gtk::Widget, int)
Emitted when the user or a function toggles a page
(either pop out or pop in).

GUI::PopoutBook: the PopoutBook object
int: the page number
Gtk::Widget: widget that is popped in or out
int: 1 = page was popped out/0 = page

popped in

Methods
o new()

Default constructor method for creating a new Popout-
Book widget.

o int append_page(string, Gtk::Widget)
Appends a new page

string: the text in the tab
Gtk::Widget: the child widget for the new page
RETURNS: the number of the position where the new

page was added

218

A.5. BRIDGE modules

o append_page_menu(string, Gtk::Widget, string)
Appends a new page and inserts the corresponding menu
item

string: the text in the tab
Gtk::Widget: the child widget for the new page
string: text for the menu item

o insert_page(string, Gtk::Widget, int)
Inserts a new page at the specified position.

string: the text in the tab
Gtk::Widget: the pages child widget
int: the position to insert the page

o insert_page_menu(string, Gtk::Widget, string, int)
Inserts a new page and the corresponding menu item
into a PopoutBook

string: the text in the tab
Gtk::Widget: the pages child widget
string: the text displayed in the menu item
int: the position to insert the page

o destroy()
Remove all pages and destroy their parent PopoutBook.
Overloaded Gtk method to ensure that all pages are
destroyed.

o remove_page(int)
Remove a given page from the PopoutBook.

int: page number

o remove_pages()
Remove all pages from the PopoutBook.

o get_pos_by_widget(Gtk::Widget)
Get the pagenumber for a given widget.

Gtk::Widget: a widget that has been inserted into
the PopoutBook

RETURNS: the page number on which the given wid-
get was inserted, -1 otherwise

o set_text(int, string)
change the text label of a given tab

int: page number
string: new text

o set_popout_mode(enum)
Set the popout mode.

enum: values are (’all’, ’one’)
all means, all pages can pop out
one means, one page is kept

o toggle_window(int, bool)
Change the state of a page and switch between popped
out and popped in

int: the page number to toggle
bool: if true put the widget into a window,

else put it back into a page

219

A. Selected topics of the source code

o all_to_window()
Pop all pages out into separate windows.

o pop_all_back()
Close all windows and put their content back into the
notebook.

o menu_popup(Gdk::Event)
Show the menu at any place.

Gdk::Event: a standard Gdk event

o set_popout_active(int, bool)
Set the tab activity for a single page and enable
popout of one page.

int: which page
bool: enable/disable

o set_popouts_active(bool)
Set the tab activity for all pages and enable popup of
all pages.

bool: enable/disable

o use_individual_config(bool)
Each page that was popped out into a window can have
its own size configuration (see GUI::DialogWindow).

bool: enable/disable

A.5.9. ConfigurationInterface

Name
GUI::ConfigurationInterface - A general interface for
implementing configuration frontends.

Synopsis
package Foo;
@ISA = "GUI::ConfigurationInterface";

sub config_box {
create config box
return $config_box;

}

sub get_config_hash {
create config_hash
return \%config_hash

}

sub register_userconfig {
register UserConfig

}

sub config_name {
return $my_name;

}

220

A.5. BRIDGE modules

Description
Interface class for all user configuration frontends. A
ConfigurationInterface can be used to define GUI widgets
for editing configurable attributes. Widgets for config-
urable attributes are observed so that changes are regis-
tered and returned. Changes are also propagated to all
StatusWidgets that are registered for a ConfigurationIn-
terface.

Widget Hierarchy
Gtk::Object
|
+-Gtk::Widget
| |
. +-Gtk::Container
. |
. +-Gtk::Box

|
+-Gtk::VBox

|
+GUI::ConfigurationInterface

Signals
o saved()

This signal is emitted when changes in a Configura-
tionInterface have been saved. It is used in the Con-
figurationDialog to switch the Apply button.

o changed()
This signal is emitted when some configuration entity
was changed. It is used in the ConfigurationDialog to
switch the Apply button.

Methods
The implementation of a ConfigurationInterface requires
the definition of four abstract methods:

o Gtk::Widget config_box()
Abstract method which defines the basic GUI widget
which contains all widgets for editing the config-
urable attributes. It is packed into a Gtk::VBox of
the ConfigurationInterface. All editable widgets have
to be observed for changes by using the "observate"
method.

RETURNS: Gtk::Widget, the GUI container widget

o get_config_hash(HASHREF)
Abstract method that has to be implemented for saving
the changes. Normally it returns the (modified) hash
of observed values. This method can be used as a fil-
ter for mapping internally used attribute names onto
global attributes.

HASHREF: hash of observed values
RETURNS: hashref, changed values

o register_userconfig()
Abstract method which registers the UserConfig.

221

A. Selected topics of the source code

o config_name ()
Abstract method that defines and returns the name of
the ConfigurationInterface.

The ConfigurationInterface also provides a number of meth-
ods for the interaction with its corresponding Configura-
tionDialog:

o new(attributes)
Constructor method for creating a new ConfigurationIn-
terface object.

attributes: a list of attributes

o add_subwidget(GUI::StatusWidget, string)
Add a GUI::StatusWidget object. All changes in this
StatusWidget will be observed by the current Configu-
rationInterface.

GUI::StatusWidget: a new widget that will be further
observed by the current ConfigurationInterface

string: a name for this instance of the Configura-
tionInterface

o clear_subwidgets()
Use this method to clear all subwidgets of a Configu-
rationInterface.

o apply(string)
Apply all changes and send them to the subwidgets.

string: name of configuration section

o observate(Gtk::Widget, string, [string | CODE])
Observate a widget and propagate all changes to the
ConfigurationInterface.

Gtk::Widget: the widget to observate
string: name of a signal that is emitted when

a widget was changed
string: the name of the changed attribute
CODE: run subroutine to get the name if a

single widget (e.g. a tree) can
be used to modify several attributes

o changed()
Check if any configurations were changed and therefore
have to be saved.

o set_attribute(key, value)
Set the value of an attribute.

key: the name of the attribute
value: the new value for the attribute

o get_attribute(key)
Get the current value of an attribute.

key: the name of the attribute for which the value
should be retrieved

o get_attributes(key)
Get the current value of an attribute.

222

A.5. BRIDGE modules

key: the name of the attribute for which the value
should be retrieved

o copy_attributes(widget)
Copy the attributes of one widget to another one.

widget: a Gtk widget that will obtain the attributes

A.5.10. ConfigurationDialog

Name
GUI::ConfigurationDialog - A dialog to manage Configura-
tionInterfaces.

Synopsis
use Gtk;
use GUI::ConfigurationDialog;

init Gtk;

...
my $dialog = new GUI::ConfigurationDialog;
$dialog->set_config_classes(@class_names);
...

main Gtk;

Description
The ConfigurationDialog is a simple dialog window for man-
aging ConfigurationInterfaces. Each ConfiguratioInterface
is packed into a separate page of a Gtk::Notebook. When
the user modifies the settings of a configurable attribute
the ConfigurationDialog is informed about these changes in
the current ConfigurationInterface (a single page or sec-
tion of the notebook). After accepting a new configuration
the settings are stored and propagated to all registered
StatusWidgets of a ConfigurationInterface where they can
be applied to all affected GUI elements

Widget Hierarchy
Gtk::Object
|
+-Gtk::Widget
| |
. +-Gtk::Container
. |
. +-Gtk::Bin

|
+-Gtk::Window

|
+-GUI::DialogWindow

|
+-GUI::ConfigurationDialog

Signals
So far no special signals were defined for this class.

223

A. Selected topics of the source code

Methods
o new(attributes)

Constructor method for creating a new ConfigurationDi-
alog object.

attributes: a list of attributes

o show()
Show this ConfigurationDialog and all sub widgets con-
tained therein.

o objects()
Class method: return the number of current objects

RETURN: number of current objects

o set_config_classes(@strings)
Set the configuration classes that should be used. All
classes that are added have to be subclasses of
GUI::ConfigurationInterface.

@strings: list of classnames

o apply_config()
Apply all changes for the current configuration inter-
face.

o set_attribute(key, value)
Set the value of an attribute.

key: the name of the attribute
value: the new value for the attribute

o get_attribute(key)
Get the current value of an attribute.

key: the name of the attribute for which the value
should be retrieved

o copy_attributes(widget)
Copy the attributes of one widget to another one.

widget: a Gtk widget that will obtain the attributes

o close()
Check if something was changed and has to be saved.
Close the dialog afterwards.

A.5.11. InterfaceCreator

Name
GUI::InterfaceCreator - Create GUIs from simple hash
descriptions.

Synopsis
use Gtk;
use GUI::InterfaceCreator;

use Data::Dumper;

init Gtk;

224

A.5. BRIDGE modules

my $description = [

{
type => ’label’,
name => ’label’,
label => ’A Label’,
default => ’label’,
optional => 1,
add_entry => sub { return time(); },
add_name => "change Label",

},

{
type => ’string’,
name => ’string’,
default => ’string’,
input_type => 0,
max => 10,
editable => 1,

},

{
type => ’int’,
name => ’int’,
default => 100,
max => 100,
min => -100,

},

{
type => ’float’,
name => ’float’,
default => 1.3233,
min => -1.1111,
max => 1.3255,
digits => 4,

},

{
type => ’list’,
name => ’list’,
list_vals => [qw(item1 item2 item3 item4 item5)],
default => ’item3’,

},

{
type => ’file’,
name => ’file’,
default => $ENV{HOME}."/file.txt",

},

{
type => ’color’,
name => ’color’,
default => ’green’,

},

{

225

A. Selected topics of the source code

type => ’font’,
name => ’font’,
default => "-bitstream-courier-*-r-*-*-*-*-*-*-*-*-*-*",

},

{
type => ’separator’,
name => ’separator’,

},

{
type => ’text’,
name => ’text’,
default => "A multiline\nText!",
font => "-bitstream-courier-*-r-*-*-*-*-*-*-*-*-*-*",
width => 400,
height => 100,

},

{
type => ’switchlist’,
name => ’switchlist’,
default => [["item4a", "item4b"]],
source => [

["item1a","item1b"],
["item2a","item2b"],
["item3a","item3b"]

],
titles => ["Source1", "Source2"],
titles2 => ["Dest1", "Dest2"],
hide => [0],
width => 400,
height => 100,

},

{
type => ’array’,
name => ’array’,
titles => ["Column1", "HiddenColumn2", "Column3"],
default => [

["item1a", "item1b", "item1c"],
["item2a", "item2b", "item2c"],
["item3a", "item3b", "item3c"],

],
hide => [1],
width => 400,
height => 100,
on_click => sub { print Dumper @_; },

},

{
type => ’multiplelist’,
name => ’multiplelist’,
titles => ["Column1", "HiddenColumn2", "Column3"],
list_vals => [

["item1a", "item1b", "item1c"],
["item2a", "item2b", "item2c"],
["item3a", "item3b", "item3c"],

226

A.5. BRIDGE modules

],
default => [["item2a", "item2b", "item2c"]],
hide => [1],
width => 400,
height => 100,
editable => 0,

},

];

my $imaker = new GUI::InterfaceCreator;
my $widget = $imaker->make_interface($description);

my $window = new Gtk::Window(’toplevel’);
$window->add($widget);

$window->show_all;

Gtk->main_iteration while($window->visible);

my $result = $imaker->get_result;
print Dumper $result;

Gtk->exit(0);

Description
Create graphical user interfaces (GUIs) from simple tex-
tual description. The GUI description has to be provided
as a list of hashes where each hash describes a single
widget. The InterfaceCreator is especially useful for sim-
ple user interfaces and for rapid prototyping of Gtk fron-
tends. The current implementation provides the most fre-
quently used widgets and their most important properties
which have to be specified in the hash keys.

Available hashkeys (widgets) and their corresponding value
types are:

o separator - create a Gtk::Separator
name (string REQ) - internally used name

o label - create a Gtk::Label
name (string REQ) - internally used name

label (string OPT) - the label shown on the left side
if not set, the name is used

default (string OPT) - the value shown on the right side

optional (bool OPT) - create a Gtk::Checkbox

add_entry (CODE OPT) - create a Gtk::Button, if clicked
CODE is called and the lable
is changed to the return value

add_name (string OPT) - only used with ’add_entry’,
set the Gtk::Button text

227

A. Selected topics of the source code

o string - create a Gtk::Entry
name (string REQ) - internally used name

label (string OPT) - the label shown on the left side
if not set, the name is used

default (string OPT) - the default value shown
in the Gtk::Entry

optional (bool OPT) - create a Gtk::Checkbox

add_entry (CODE OPT) - create a Gtk::Button, if clicked
CODE is called and the lable
is changed to the return value

add_name (string OPT) - only used with ’add_entry’,
set the Gtk::Button text

input_type (bool OPT) - if set to 0, the text is invisible

max (int OPT) - maximum text length

editable (bool OPT) - set the Gtk::Entry editable

o int - create a Gtk::SpinButton
name (string REQ) - internally used name

label (string OPT) - the label shown on the left side
if not set, the name is used

default (string OPT) - the default value shown
in the Gtk::Entry

optional (bool OPT) - create a Gtk::Checkbox

add_entry (CODE OPT) - create a Gtk::Button, if clicked
CODE is called and the lable
is changed to the return value

add_name (string OPT) - only used with ’add_entry’,
set the Gtk::Button text

input_type (bool OPT) - if set to 0, the text is invisible

max (int OPT) - maximum value

min (int OPT) - minimum value

editable (bool OPT) - set the Gtk::SpinButton editable

o float - create a Gtk::SpinButton
name (string REQ) - internally used name

label (string OPT) - the label shown on the left side
if not set, the name is used

default (string OPT) - the default value shown
in the Gtk::Entry

228

A.5. BRIDGE modules

optional (bool OPT) - create a Gtk::Checkbox

add_entry (CODE OPT) - create a Gtk::Button, if clicked
CODE is called and the lable
is changed to the return value

add_name (string OPT) - only used with ’add_entry’,
set the Gtk::Button text

input_type (bool OPT) - if set to 0, the text is invisible

max (int OPT) - maximum value

min (int OPT) - minimum value

editable (bool OPT) - set the Gtk::SpinButton editable

digits (int OPT) - number of digits to show

...

Widget Hierarchy
Gtk::Object
|
+-GUI::InterfaceCreator
|
+-...

Methods
o new()

Constructor method for creating a new InterfaceCreator object.

o make_interface(description)
Create the graphical user interface for a given hash description.

description: hash description for the GUI, see sec-
tion ’Description’ above

RETURN: Gtk::Widget, container widget

o set({keys => values})
Change a certain widgets by specifying key/value pairs
in a hash.

keys: names of the widgets
values: new values

o wait()
Wait for user input.

o get_widget(string)
Get a certain widget that is specified by its name.

string: the name of the requested widget
RETURN: the Gtk::Widget

o get_result(name)
Return value of widget name ??? if value is not
defined return values of all widgets

name: the widgets name
RETURN: values

229

A. Selected topics of the source code

A.6. Description of “Common” modules

The CVS tree of the BRIDGE system contains some general purpose tools that can be used
by all components. Since these modules provide simple commonly used functions they
are installed in a separate directory. All currently available modules are listed below in
alphabetical order:

• AAUtils.pm
This module contains a collection of useful methods for handling amino acid se-
quences, e.g. for calculating the molecular weight of a given sequence.

• AsynchronStarter.pm
TheAsynchronStarterpackage can be used for starting concurrent processes. It pro-
vides a simple interface to thefork system call.

• CSV.pm
The CSVmodule provides generic methods for parsing and writing general spread-
sheet files like comma or tab delimited files.

• DNAUtils.pm
This module contains some useful functions to handle DNA sequences, e.g. for trans-
lating a DNA sequence or for computing the reverse complement.

• FastaUtils.pm
This package provides simple methods for reading and writing files in FASTA (Pear-
son) format.

• FileStorage.pm
TheFileStoragemodule can be used to manage a file repository, e.g. of large images.
It handles all read and write accessess and implements a locking strategy.

• FileUtils.pm
The packageFileUtils.pmprovides some comfortable functions for handling files and
directories, e.g. set permissions upon creation, remove all data recursively.

• HelpRepository.pm
This module can be used to manage an interactive online help repository. Help mes-
sages can be provided in a variety of formats (text, html, etc.) and at different levels
of detail.

• Overlap.pm
The Overlap.pmpackage has been implemented for computing overlapping regions
and intergenic regions based on a generic input of position values.

230

A.6. Description of “Common” modules

• Profiler.pm
This package provides some basic methods for the profiling of Perl programs. It can be
used to compute time intervals required for the execution of specific parts in a running
program.

• QuerySRS.pm
TheQuerySRS.pmmodule encapsulates accessess to an SRS server. It has been im-
plemented for retrieving database entries via the SRS system and it can return the data
in different formats.

• StringUtils.pm
This module provides simple methods for handling strings, e.g. splitting a given string
near to an approximately given position where a specified delimiter occurs.

• UserConfig.pm
The packageUserConfighas been implemented as an generic interface that can be
used to access different configuration backends (e.g. .ini files or the project manage-
ment system). Individual storage backends are thus implemented in special subclasses
which are not listed here.

• Wizard.pm
This module can be used as a basic framework for the implementation of special func-
tional modules. AWizard can provide special callbacks which are executed upon
specific actions. As an example, theJobSubmitterWizardhas been derived from this
class.

231

A. Selected topics of the source code

232

APPENDIX B

Installation of the software

This chapter finally gives some additional information and hints for the installation of the
BRIDGE system. The current version and updates of the software can be found on the web
site of each project.

B.1. System requirements

Since one aim of all projects described above is to provide a platform for end users and
developers, the system has very modest system requirements. A Unix system with Perl, an
SQL database and BioPerl is necessary. For the full functionality some additional tools are
needed that have to be installed on the system. If the user wants to schedule computations
the Sun Grid Engine or another queuing system has to be installed as well. For a complete
local installation of the GenDB system, the sequence databases used by the tools and some
sequence retrieval mechanism are required. We currently use SRS and BioPerl for this pur-
pose. Of the systems available today only SRS provides user friendly views on the sequence
databases. The system can be installed on a single (e.g. Linux) server or can be spread out
over multiple machines creating a client-server installation. Locally, test and development
installations exist on single CPU Linux platforms like Suse Linux, while our production en-
vironment includes a client-server environment with a server for the frontend, a dedicated
database server and a BioGrid to perform time consuming computations.

233

B. Installation of the software

B.2. License

To provide a resource to the academic community the complete system (including source
code) is distributed to non-commercial users under an open source license. Special commer-
cial licenses are also available on request.

234

Bibliography

[AAB +01] R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas,
P. Bucher, L. Cerutti, F. Corpet, M. D. R. Croning, R. Durbin, L. Falquet,
W. Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn,
A. Kanapin, Y. Karavidopoulou, R. Lopez, B. Marx, T. M. Mulder, N.
J.and Oinn, M. Pagni, F. Servant, C. J. A. Sigrist, and E. M. Zdobnov. The
InterPro database, an integrated documentation resource for protein families,
domains and functional sites.Nucleic Acids Res., 29(1):37–40, 2001.

[ABL +99] M. A. Andrade, N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich,
A. Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander. Auto-
mated genome sequence analysis and annotation.Bioinformatics, 15(5):391–
412, 1999.

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.Nucleic Acids Res., 25:3389–3402, 1997.

[Bai00] A. Bairoch. The ENZYME database in 2000.Nucleic Acids Res., 28(1):304–
305, January 2000.

[BB90] Dodd I. B. and Egan J. B. Improved detection of helix-turn-helix DNA-binding
motifs in protein sequences.Nucleic Acids Res., 18(17):5019–5026, Septem-
ber 1990.

[BBC+02] A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R. Eddy,

235

Bibliography

S. Griffiths-Jones, K. L. Howe, M. Marshall, and E. L. L. Sonnhammer. The
Pfam protein families database.Nucleic Acids Res., 30(1):276–280, 2002. The
Pfam contribution to the annual NAR database issue.

[BCCT+02] S. D. Bentley, K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Challis, N. R.
Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper,
A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin,
A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.-H. Huang,
T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O’Neil, E. Rabbinowitsch, M.-
A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp,
R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Wood-
ward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. Complete genome se-
quence of the model actinomyceteStreptomyces coelicolorA3(2). Nature,
417(6885):141–147, 2002.

[BFJ+01] M. J. Barnett, R. F. Fisher, T. Jones, C. Komp, A. P. Abola, F. Barloy-Hubler,
L. Bowser, D. Capela, F. Galibert, J. Gouzy, et al. Nucleotide sequence and
predicted functions of the entireSinorhizobium melilotipSymA megaplasmid.
Proc. Natl. Acad. Sci. USA, 98(17):9883–9888, 2001.

[BH02] P. Baldi and G. W. Hatfield.DNA microarrays and gene expression: from
experiment to data analysis and modeling. Cambridge University Press, 2002.

[BHQ+01] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeck-
ert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenis-
son, F. C. P. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson,
A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo,
and M. Vingron. Minimum information about a microarray experiment (MI-
AME) toward standards for microarray data.Nature Genetics, 29(4):365–371,
2001.

[BKML +02] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and
D. L. Wheeler. GenBank.Nucleic Acids Res., 30(1):17–20, January 2002.

[BO99] H. Badger and G. J. Olsen. CRITICA: coding region identification tool invok-
ing comparative analysis.Mol. Biol. Evol., 16:512–524, 1999.

[Bow99] D. L. Bowtell. Options available from start to finish for obtaining expression
data by microarray.Nature genetics, 21(1 Suppl):25–31, January 1999.

[BPB+97] F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Ri-
ley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor,
N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and

236

Bibliography

Y. Shao. The complete genome sequence of Escherichia coli K-12.Science,
277(5331):1453–1462, 1997.

[BPSMM00] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML).http://www.w3.org/TR/REC-xml, 2000.

[BTM+02] H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. Exten-
sive feature detection of N-terminal protein sorting signals.Bioinformatics,
18(2):298–305, 2002.

[Bun02] Bundesministerium für Bildung und Forschung (BMBF). Systeme des Lebens
- Systembiologie. Referat Öffentlichkeitsarbeit, 53170 Bonn, September
2002.

[CAM+99] V. G. Cheung, M. Aguilar, F. Massimi, A. Kucherlapati, and R. Childs. Mak-
ing and reading microarrays.Nature Genetics, 21(1 Suppl.):15–19, January
1999.

[Cla02] Jörn Clausen. O2DBI. Technical report, Bielefeld University, 2002.

[DBC+99] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent. Expression pro-
filing using cDNA microarrays.Nature genetics, 21(1 Suppl):10–14, January
1999.

[DGB+03] M. Dondrup, A. Goesmann, D. Bartels, J. Kalinowski, L. Krause, B. Linke,
O. Rupp, A. Sczyrba, A. Pühler, and F. Meyer. EMMA: A platform for con-
sistent storage and efficient analysis of array-based data.Journal of Biotech-
nology, 106(2-3):135–146, December 2003.

[DHK+99] A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L. Salzberg. Improved
microbial gene identification with GLIMMER.Nucleic Acids Res., 27:4636–
4641, 1999.

[DIB97] J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring gene expression on a
genomic scale.Science, 278:680–686, 1997.

[DJ01] B. Dysvik and I. Jonassen. J-Express: exploring gene expression data using
Java.Bioinformatics, 17:369–370, 2001.

[DJD+01] R. D. Dowell, R. M. Jokerst, A. Day, S. R. Eddy, and L. Stein. The Distributed
Annotation System.BMC Bioinformatics, 2(7), 2001.

[DJSH+03] G. Dennis Jr., B. T. Sherman, D. A. Hosack, J. Y. W. Gao, H. C. Lane, and
R. A. Lempicki. DAVID: Database for Annotation, Visualization, and Inte-
grated Discovery.Genome Biology, 4, 2003.

237

Bibliography

[DYCS00] S. Dudoit, Y. H. Yang, M. J. Callow, and T. P. Speed. Statistical methods for
identifying differentially expressed genes in replicated cDNA microarray ex-
periments. Technical report, Department of Biochemistry, Stanford University,
August 2000.

[DYCS02] S. Dudoit, Y. H. Yang, M. J. Callow, and T. P. Speed. Statistical methods
for identifying differentially expressed genes in replicated cDNA microarray
experiments.Statistica Sinica, 12(1):111–139, 2002.

[EA93] T. Etzold and P. Argos. SRS an indexing and retrieval tool for flat file data
libraries. Cabios, 9:49–57, 1993.

[Eck95] W. W. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications.Open Information
Systems, 10(1), 1995.

[Edd98] S. R. Eddy. Profile hidden Markov models.Bioinformatics, 14:755–763, 1998.

[EHKW03] L. B. M. Ellis, B. K. Hou, W. Kang, and L. P. Wackett. The university of min-
nesota biocatalysis/biodegradation database: Post-genomic datamining.Nu-
cleic Acids Res., 31(1):262–265, 2003.

[ESBB98] M. Eisen, P. Spellman, D. Botstein, and P. Brown. Cluster analysis and display
of genome-wide expression patterns.Proc. Natl. Acad. Sci. USA, 95:14863–
14868, December 1998.

[FAH+01] D. Frishman, K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zoll-
ner, and H. W. Mewes. Functional and structural genomics using PEDANT.
Bioinformatics, 17(1):44–57, 2001.

[FEN+02] C. M. Fraser, J. A. Eisen, K. E. Nelson, I. T. Paulsen, and S. L. Salzberg. The
value of complete microbial genome sequencing (You get what you pay for).
J. Bacteriol., 184:6403–6405, 2002.

[FES00] C. M. Fraser, J. A. Eisen, and S. L. Salzberg. Microbial genome sequencing.
Nature, 406:799–803, 2000.

[FF97] C. M. Fraser and R. D. Fleischmann. Strategies for whole microbial genome
sequencing and analysis.Electrophoresis, 18:1207–1216, 1997.

[FJT+03] M. E. Frazier, M. J. Johnson, D. G. Thomassen, C. E. Oliver, and A. Patri-
nos. Realizing the Potential of the Genome Revolution: The Genomes to Life
Program.Science, 300(290):290–293, April 2003.

238

Bibliography

[FMMG98] D. Frishman, A. Mironov, H. Mewes, and M. Gelfand. Combining diverse ev-
idence for gene recognition in completely sequenced bacterial genomes.Nu-
cleic Acids Res., 26(12):2941–2947, 1998.

[FPB+02] L. Falquet, M. Pagni, P. Bucher, N. Hulo, C. J Sigrist, K. Hofmann, and
A. Bairoch. The PROSITE database, its status in 2002.Nucleic Acids Res.,
30:235–238, 2002.

[FPR+02] M. Forster, A. Pick, M. Raitner, F. Schreiber, and F. J. Brandenburg. The
System Architecture of BioPath.In Silico Biology, 2(0037), 2002.

[FRH+93] S. P. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L.
Adams. Multiplexed biochemical assays with biological chips.Nature,
364:555–556, 1993.

[FWW+01] T. M. Finan, S. Weidner, K. Wong, J. Buhrmester, P. Chain, F. J. Vorhölter,
I. Hernandez-Lucas, A. Becker, A. Cowie, J. Gouzy, B. Golding, and A. Püh-
ler. The complete sequence of the 1,683-kb psymb megaplasmid from the
n2-fixing endosymbiontSinorhizobium meliloti. Proc. Natl. Acad. Sci. USA,
98:9889–9894, 2001.

[GFL+01] F. Galibert, T. M. Finan, S. R. Long, A. Pühler, P. Abola, F. Ampe, F. Barloy-
Hubler, M. J. Barnett, A. Becker, P. Boistard, G. Bothe, M. Boutry, L. Bowser,
J. Buhrmester, E. Cadieu, D. Capela, P. Chain, A. Cowie, R. W. Davis,
S. Dreano, N. A. Federspiel, R. F. Fisher, S. Gloux, T. Godrie, A. Goffeau,
B. Golding, J. Gouzy, M. Gurjal, I. Hernandez-Lucas, A. Hong, L. Huizar,
R. W. Hyman, T. Jones, D. Kahn, M. L. Kahn, S. Kalman, D. H. Keat-
ing, E. Kiss, C. Komp, V. Lelaure, D. Masuy, C. Palm, M. C. Peck, T. M.
Pohl, D. Portetelle, B. Purnelle, U. Ramsperger, R. Surzycki, P. Thebault,
M. Vandenbol, F. J. Vorhölter, S. Weidner, D. H. Wells, K. Wong, K. C. Yeh,
and J. Batut. The composite genome of the legume symbiontSinorhizobium
meliloti. Science, 29:668–72, 2001.

[GH02] P. R. Graves and T. A. J. Haystead. Molecular Biologist’s Guide to Proteomics.
Microbiology and Molecular Biology Reviews, 66(1):39–63, 2002.

[GHM+02] A. Goesmann, M. Haubrock, F. Meyer, J. Kalinowski, and R. Giegerich.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Bioinformatics, 18(1):124–129, 2002.

[GHW96] U. E. Gibson, C. A. Heid, and P. M. Williams. A novel method for real time
quantitative RT-PCR.Genome Research, 6(10):995–1001, 1996.

239

Bibliography

[GLR+03] A. Goesmann, B. Linke, O. Rupp, L. Krause, D. Bartels, M. Dondrup, A. C.
McHardy, A. Wilke, A. Pühler, and F. Meyer. Building a BRIDGE for the
integration of heterogeneous data from functional genomics into a platform
for systems biology.Journal of Biotechnology,, 106(2-3):157–167, December
2003.

[GOZ03] F.-B. Guo, H.-Y. Ou, and C.-T. Zhang. ZCURVE: a new system for recog-
nizing protein-coding genes in bacterial and archaeal genomes.Nucleic Acids
Res., 31:1780–1789, 2003.

[Gre01] E. D. Green. Strategies for the systematic sequencing of complex genomes.
Nat. Rev. Genet., 2(8):573–583, August 2001.

[GS96] T. Gaasterland and C. W. Sensen. MAGPIE: automated genome interpretation.
Trends Genet, 12(2):76–8, 1996.

[HBB+03] A. T. Hüser, A. Becker, I. Brune, M. Dondrup, J. Kalinowski, J. Plassmeier,
A. Pühler, I. Wiegräbe, and A. Tauch. Development of aCorynebacterium
glutamicumDNA microarray and validation by genome-wide expression pro-
filing during growth with propionate as carbon source.Journal of Biotechnol-
ogy, submitted, 2003.

[HGPH00] J. G. Henikoff, E. A. Greene, S. Pietrokovski, and S. Henikoff. Increased
coverage of protein families with the blocks database servers.Nucleic Acids
Res., 28:228–230, 2000.

[HHP99] S. Henikoff, J. G. Henikoff, and S. Pietrokovski. Blocks+: A non-redundant
database of protein alignment blocks dervied from multiple compilations.
Bioinformatics, 15(6):471–479, 1999.

[HSLW96] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams. Real time quantitative
PCR.Genome Research, 6(10):986–994, 1996.

[HvHS+02] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron.
Variance stabilization applied to microarray data calibration and to the quan-
tification of differential expression. Bioinformatics, 18(Suppl 1):96–104,
2002.

[IG96] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[IGH01] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: Systems
Biology. Annual Review of Genomics and Human Genetics, 2:343–372, 2001.

[Jol86] I.T. Joliffe. Principal component analysis. Springer, 1986.

240

Bibliography

[Kar98] P. D. Karp. Metabolic databases.Trends In Biochemical Sciences, 23(3):114–
116, March 1998.

[Kat03] F. Katagiri. Attacking Complex Problems with the Power of Systems Biology.
Plant Physiol., 132(2):417–419, June 2003.

[KB03] L. Krol and A. Becker. Phosphate regulon ofSinorhizobium meliloti. personal
communication, 2003.

[KBB+03a] O. Kaiser, D. Bartels, T. Bekel, A. Goesmann, S. Kespohl, A. Pühler, and
F. Meyer. Whole genome shotgun sequencing guided by bioinformatics
pipelines – an optimized approach for an established technique.Journal of
Biotechnology, 106(2-3):121–133, December 2003.

[KBB+03b] J. Kalinowski, B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski,
N. Dusch, L. Eggeling, B. J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hart-
mann, K. Huthmacher, R. Krämer, B. Linke, A. C. McHardy, F. Meyer,
B. Möckel, W. Pfefferle, A. Pühler, D. A. Rey, C. Rückert, O. Rupp, R. Sahm,
V. F. Wendisch, I. Wiegräbe, and A. Tauch. The completeCorynebacterium
glutamicumATCC 13032 genome sequence and its impact on the production
of l-aspartate-derived amino acids and vitamins.Journal of Biotechnology,
104(1-3):5–25, 2003. in press.

[KG00] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and
Genomes.Nucleic Acids Res., 28(1):27–30, January 2000.

[Kin81] S. Kindel. title unknown.Technology, 1:62, 1981.

[KKB03] I. S. Kohane, A. T. Kho, and A. J. Butte.Microarrays for an Integrative
Genomics. The MIT Press, 2003.

[KKSed] M. Katzer, F. Kummert, and G. Sagerer. Robust automatic microarray image
analysis. InProceedings of the International Conference on Bioinformatics,
Bangkok, 2002 (accepted).

[Koh97] Teuvo Kohonen.Self-organizing maps. Springer, 1997.

[KR90] R. Kaufman and P. J. Rousseeuw.Finding Groups in Data. An Introduction
to Cluster Analysis. Wiley Series in Probability and Mathematical Statistics.
Wiley, 1990.

[KR97] J. Koolman and K.-H. Röhm.Taschenaltlas der Biochemie. Georg Thieme
Verlag, Stuttgart; New York, 2. edition, 1997.

241

Bibliography

[KRS+00] P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-
Toole. The EcoCyc and MetaCyc databases.Nucleic Acids Res., 28(1):56–59,
January 2000.

[KSK02] J. Köhler and S. Schulze-Kremer. The Semantic Metadatabase (SEMEDA):
Ontology based integration of federated molecular biological data sources.In
Silico Biology, 2(21), 2002.

[Küs03] H. Küster. Using DNA arrays for expression profiling and identification of
candidate genes.Grain Legumes, 38(23), 2003.

[LE97] T. M. Lowe and S. R. Eddy. tRNAscan-SE: a program for improved detection
of transfer RNA genes in genomic sequence.Nucleic Acids Res., 25(5):955–
964, March 1997.

[Leh85] A. L. Lehninger.Grundkurs Biochemie. Walter de Gruyter, 2. edition, 1985.
ISBN 3-11-0102210-8.

[Lin02] B. Linke. O2DBI II – ein Persistenzlayer für Perl-Objekte. Master’s thesis,
Bielefeld University, 2002.

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors,Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages
281–297. University of California Press, 1967.

[Mey01] F. Meyer. GenDB – A second generation genome annotation system. PhD
thesis, Bielefeld University, 2001.

[MGEa] MGED. Minimum information about a microarray experiment – MIAME.
http://www.mged.org/Annotations-wg/MGEDAnnotNov2000/
mgedannotnov2000.html.

[MGEb] MGED. MicroArray and Gene Expression – MAGE.http://www.mged.org
/Workgroups/MAGE/mage.html.

[MGM+03] F. Meyer, A. Goesmann, A. McHardy, D. Bartels, T. Bekel, J. Clausen, J. Kali-
nowski, B. Linke, O. Rupp, R. Giegerich, and A. Pühler. GenDB – an open
source genome annotation system for prokaryote genomes.Nucleic Acids Res.,
2003.

[Mic92] G. Michal, editor.Biochemical Pathways. Böhringer Mannheim, Germany, 3.
edition, 1992.

[Mic99] G. Michal. Biochemical pathways (Biochemie-Atlas). Spektrum Akademis-
cher Verlag GmbH, Heidelberg; Berlin, 1999. ISBN 3-86025-239-9.

242

Bibliography

[MKM] P. Mattis, S. Kimball, and J. MacDonald. The Gimp Toolkit.http://www.gtk.
org/.

[MKPM04] A. C. McHardy, J. Kalinowski, A. P"uhler, and F. Meyer. Comparing ex-
pression level-dependent features in codon usage with protein abundance: An
analysis of predictive proteomics.Proteomics, 4(1):46–58, 2004.

[Mur85] F. Murtagh. Multidimensional clustering algorithms.COMPSTAT Lectures,
4, 1985.

[NEBH97] H. Nielsen, J. Engelbrecht, S. Brunak, and G. Heijne. Identification of
prokaryotic and eukaryotic signal peptides and prediction of their cleavage
sites.Protein Engineering, 10:1–6, 1997.

[Nis97] T. Nishizuka, editor.Cell Funcions and Metabolic Maps. Biochemical Society
of Japan, 1997.

[OB02] Z. N. Oltvai and A.-L. Barabási. Life’s Complexity Pyramid.Science, 298,
October 2002.

[OLP+02] R. Overbeek, N. Larsen, G. D. Pusch, M. D’Souza, E. Selkov, N. Kyrpides,
M. Fonstein, N. Maltsev, and E. Selkov. WIT: integrated system for high-
throughput genome sequence analysis and metabolic reconstruction.Nucleic
Acids Res., 28:123–125, 2002.

[OLW+03] R. Overbeek, N. Larsen, T. Walunas, M. D’Souza, G. Pusch, E. Selkov Jr.,
K. Liolios, V. Joukov, D. Kaznadzey, I. Anderson, A. Bhattacharyya, H. Burd,
W. Gardner, P. Hanke, V. Kapatral, N. Mikhailova, O. Vasieva, A. Osterman,
V. Vonstein, M. Fonstein, N. Ivanova, and N. Kyrpides. The ERGO genome
analysis and discovery system.Nucleic Acids Res., 31(1):164–171, January
2003.

[Pea90] W. R. Pearson. Rapid and Sensitive Sequence Comparison with FASTP and
FASTA. Methods in Enzymology, 183:63–98, 1990.

[Per] Perl – Practical Extraction and Report Language.http://www.perl.org/.

[PL88] W. R. Pearson and D. J. Lipman. Improved Tools for Biological Sequence
Comparison.PNAS, 85:2444–2448, 1988.

[Ril93] M. Riley. Functions of gene products ofEscherichia coli. Microbiol. Rev.,
57(4):862–952, 1993.

[Ril98] M. Riley. Genes and proteins ofEscherichia colik-12 (genprotec).nar, 26:54–
55, 1998.

243

Bibliography

[RJR+04] S. Rendulic, P. Jagtap, A. Rosinus, M. Eppinger, C. Baar, C. Lanz, H. Keller,
C. Lambert, K.J. Evans, A. Goesmann, F. Meyer, R.E. Sockett, and S.C.
Schuster. A Predator Unmasked: The Lifecycle ofBdellovibrio bacteriovorus
from a Genomic Perspective.Science, 303(5658):689–692, 2004.

[RKO+03] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo. The
discovery net system for high throughput bioinformatics.Bioinformatics,
19(1):225–231, 2003.

[RPC+00] K. M. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M.-A. Rajan-
dream, and B. Barrell. Artemis: sequence visualisation and annotation.Bioin-
formatics, 16(10):994–945, 2000.

[RPK03] C. Rückert, A. Pühler, and J. Kalinowski. Genome-wide analysis of the L-
methionine biosynthetic pathway inCorynebacterium glutamicum. Journal of
Biotechnology,, 104(1-3):213–228, 2003.

[RTK+03] S. Rüberg, Z. X. Tian, E. Krol, B. Linke, F. Meyer, Y. Wang, A. Pühler, and
A. Becker. Construction and validation of aSinorhizobium melilotiwhole
genome DNA microarray: genome-wide profiling of osmoadaptive gene ex-
pression.Journal of Biotechnology, 2003. submitted.

[San95] G. Sander. Vcg – visualization of compiler graphs. Technical report, Univer-
sität des Saarlandes, FB 14 Informatik, 1995.

[Sch95] G. Schussel. Client/server past, present, and future. online, 1995.

[SFT+01] A. Siepel, A. Farmer, A. Tolopko, M. Zhuang, P. Mendes, W. Beavis, and
B. Sobral. ISYS: a decentralized, component-based approach to the integra-
tion of heterogeneous bioinformatics resources.Bioinformatics, 17(1):83–94,
2001.

[SGMS98] E. Selkov, Y. Grechkin, N. Mikhailova, and E. Selkov. MPW: the Metabolic
Pathways Database.Nucleic Acids Res., 26(1):43–45, January 1998.

[SGS+88] R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn,
K. B. Mullis, and H. A. Erlich. Primer-directed enzymatic amplification of
DNA with a thermostable DNA polymerase.Science, 239(4839):487–491,
1988.

[SNC77] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-
terminating inhibitors.Proc. Natl. Acad. Sci. USA, 74:5463–5467, 1977.

[SRG03] R. D. Stevens, A. J. Robinson, and C. A. Goble.myGrid: personalised bioin-
formatics on the information grid.Bioinformatics, 19(1):302–304, 2003.

244

Bibliography

[SSDB95] M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray.Science,
270:467–470, 1995.

[SSK+86] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell,
C. Heiner, S. B. Kent, and L. E. Hood. Fluorescence detection in automated
DNA sequence analysis.Nature, 321(6071):674–679, June 1986.

[SSS95] D. Schomburg, D. Salzmann, and D. Stephan.Enzyme Handbook, Classes
1-6. Springer, 1990-1995.

[SSZ+98] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell
cycle-regulated genes of the yeastSaccharomyces cerevisiaeby microarray
hybridization.Molecular Biology of the Cell, 9:3273–3297, 1998.

[Str91] L. Stryer. Biochemie. Spektrum Akademischer Verlag GmbH, Heidelberg;
Berlin; New York, 1991. ISBN 3-86025-005-1.

[STVC+02] L. H. Saal, C. Troein, J. Vallon-Christersson, S. Gruvberger, A. Borg, and
C. Peterson. BioArray Software Environment (BASE): a platform for com-
prehensive management and analysis of microarray data.Genome Biology,
3(8), 2002.

[SvHK98] E. L. L. Sonnhammer, G. von Heijne, and A. Krogh. A hidden markov
model for predicting transmembrane helices in protein sequences. In J. Glas-
gow, T. Littlejohn, R. Major, F. Lathrop, D. Sankoff, and C. Sensen, editors,
Proceedings of the Sixth International Conference on Intelligent Systems for
Molecular Biology, pages 175–182, Menlo Park, CA, 1998. AAAI Press.

[The00] The Gene Ontology Consortium. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[THM+02] A. Tauch, I. Homann, S. Mormann, S. Rüberg, A. Billault, B. Bathe, S. Brand,
O. Brockmann-Gretza, C. Rückert, N. Schischka, C. Wrenger, J. Hoheisel,
B. Möckel, K. Huthmacher, W. Pfefferle, A. Pühler, and J. Kalinowski. Strat-
egy to sequence the genome ofCorynebacterium glutamicumATCC 13032:
use of a cosmid and a bacterial artificial chromosome library.Journal of
Biotechnology, 95(1):25–38, 2002.

[TNG+01] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T.
Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and
E. V. Koonin. The COG database: new developments in phylogenetic classi-
fication of proteins from complete genomes.Nucleic Acids Res., 29(1):22–8,
January 2001.

245

Bibliography

[WC53] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid.
Nature, pages 171–173, 1953.

[WL02] M. D. Wilkinson and M. Links. BioMOBY: An open source biological web
services proposal.Briefings in Bioinformatics, 3(4):331–341, December 2002.

[Woe87] Carl Woese. Bacterial evolution.Microbiological Rev., 1987.

[WPH+04] J. Westberg, A. Persson, A. Holmberg, A. Goesmann, J. Lundeberg, K.-E. Jo-
hansson, B. Pettersson, and M. Uhlén. The Genome Sequence of Mycoplasma
mycoides subsp. mycoides SC Type Strain PG1T, the Causative Agent of Con-
tagious Bovine Pleuropneumonia (CBPP).Genome Res., 14:221–227, 2004.

[WPK03] S. Weidner, A. Pühler, and H. Küster. Genomics insights into symbiotic nitro-
gen fixation.Current Opinion in Biotechnology, 14(2):200–205, 2003.

[WRB+03] A. Wilke, C. Rückert, D. Bartels, M. Dondrup, A. Goesmann, A. T. Hüser,
S. Kespohl, B. Linke, M. Mahne, A. McHardy, A. Pühler, and F. Meyer.
ProDB: Bioinformatics support for high throughput proteomics.Journal of
Biotechnology, 106(2-3):147–156, December 2003.

[WY93] P. H. Westfall and S. S. Young.Resampling-Based multiple testing: exam-
ples and methods for p-value. Wiley Series in Probability and Mathematical
Statistics. Wiley, 1993.

[YDLSa] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization for cDNA
Microarray Data.

[YDLSb] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization for cDNA
Microarray Data. Technical report, Department of Statistics, University of
California at Berkeley.

[YHR01] K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo. Validating clustering for gene
expression data. InProceedings of the 9th International Conference on Intelli-
gent Systems For Molecular Biology (ISMB 2001), volume 17, pages 309–318.
Oxford University Press, 2001.

[Zha99] M. Q. Zhang. Large-scale gene expression data analysis: a new challenge to
computational biologists.Genome Research, 9:681–688, 1999.

246

