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1 Introduction

This chapter motivates the topic and provides an outline of this work.

1.1 Problem and Research Questions

The importance of social and economic networks has meanwhile been widely acknowledged

throughout social sciences. The textbook of Jackson (2008) synthesizes the main contributions

of economists to that topic. Literature from Sociology and other social sciences is collected in

Wasserman and Faust (1994), containing basic concepts, as well as many empirical examples.

Examples for networks of bilateral relationships include R&D collaborations, strategic alliances,

knowledge management within organizations, formal and informal leadership, personal (busi-

ness) contacts, information about job openings, bargaining power, but are not restricted to

these.

One famous example is given by Padgett and Ansell (1993) and illustrated in Figure 1.

Depicted are the richest Italian families of the 15th century and relations among them. A link

between two families indicates that there is a marriage relation. Note three typical aspects of

that time: there were no trading companies, but family clans; trading was dangerous without

trust in a long-term relationship; and marriages were arranged by the family leaders. Padgett

and Ansell (1993) argue that besides the many explanations that historians already had for the

rise of the Medici, it was their distinct position in this network of marriages that facilitated

their prosperity. This is just one of various studies that emphasize the profitability of certain

Figure 1: Marriage network of rich Italian families.
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positions in a network. Other examples are applicants getting a job (Granovetter, 1974),

networks facilitating companies’ cooperation (Powell et al., 1996) and their success (Uzzi, 1996).

However, in these studies the networks are considered as fixed. While it might be true that

a network (of bilateral relationships) is constraining the choices of an actor (person, company,

organization), it is also true that the actor’s choice on relationships influences the structure of

the network. The dynamics of these two aspects are in question: How do networks change when

actors follow incentives for profitable network positions? This question will be the recurrent

theme throughout this work.

A special motivation to study this topic is the popularity of concepts from research on

networks. Business consultants offer, e.g., to “study ways that Leaders can make better

use of networks” (Leader Values, 2008) and also to “Find emergent leaders in fast growing

companies [...] Determine influential journalists and analysts [...] Reveal key players [...] Reveal

opinion leaders” (Krebs, 2008); other examples can be found in Weidner (2008). Web-based

communities, such as Xing or Facebook, also draw attention to networks of bilateral relations.

The fact that more and more people are aware of the importance of networks might not be

without consequences for the way people decide about their relationships (be it in their personal

network or as a decision maker for an organization, such as a company).

Approach (and Core Literature)

As suggested, one of the factors influencing the emergence of networks, is the purposeful actions

of link formation and link dissolution in order to reach what we call “structural goals” (the

term is borrowed from Doreian, 2006). Structural goals incorporate beneficial aspects of social

networks that can be derived from the pure network structure, like the Medici’s position in

the marriage (resp. trade) network. This perspective is shared by Burt (1992), who stresses

that some actors actively enter profitable network positions. Hummon (2000) also takes a

rational choice perspective: Actors evaluate the consequences of network ties and make decision

according to their goals. However an actor’s position in a particular network does not only

depend on his linking decisions, but also on the decisions of the other actors. Thus, decisions

about profitable relations are not a situation of choice, but a situation of strategic interaction

– an aspect that is best covered by game theory.
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The field of ’Social network analysis’ has a long tradition in studying the (positive) effects of

network structure on individual well-being (see, e.g., Wasserman and Faust, 1994). However,

the networks are usually treated as fixed. Models of dynamic networks, on the other hand, have

long not considered aspects of agency. Random graph models (starting from Erdös and Renyi,

1960, through to Watts, 1999, Barabàsi and Albert, 1999) define probabilistic processes that are

able to reconstruct different patterns of empirically observed social networks. Recently, there

have been groundbreaking contributions in analyzing network dynamics theoretically, as well as

empirically, in a more goal-oriented manner. The work of Snijders provides a statistical model

relating changes in the network structure back to individual propensities to form and sever links

(see Snijders, 1996, and Snijders, 2001). The works of Jackson and Wolinsky (1996) and Bala

and Goyal (2000) provide concepts that allow us to study the formation of social networks as a

game in the sense of cooperative, respectively non-cooperative, game theory. Thereafter, there

has been a flourishing literature on specific situations of strategic network formation, of which

two small surveys can be found in Jackson (2004) and Goyal and Joshi (2006a). The various

network formation games provide micro-based models and analyze which networks are stable

(and which are efficient).

Despite major advancements of this literature, there are still substantial open points. First,

ideas from social network analysis are only integrated to a limited extent, (although this

literature has a long tradition in studying the effects of network structure and it is those

concepts, e.g. centrality, that are claimed to be important).1 Secondly, while the number of

specific models is constantly increasing, little is known about their interrelation. It can be

expected that there are models with similar incentive structure leading to similar networks.

Considering the status of the research on strategic network formation, we can state more

precisely the main question (How do networks change when actors follow incentives for profitable

network positions?). The following research questions guided this work:

Q1 How much do we need to know about the structural goals of the actors (their preferences)

in order to characterize endogenous network structure?

Q2 How do the stable network structures depend on the assumptions of increasing and

decreasing marginal returns of linking?

Q3 Do typical structures of social networks persist if actors strive for central network posi-

1The work by Goyal and Vega-Redondo (2007), forms a beautiful exception.
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tions?

Q4 Given two structural goals, to which extent do the induced networks differ, when actors

follow one of these goals? How do different goals interact with each other?

Q5 How do stable network structures differ from efficient network structures?

Q6 Why does individual interest in forming networks not always lead to efficient outcomes?

1.2 Outline (of the Work) and Main Results

The work is organized into three parts. Chapter 2 discusses modeling aspects addressing Q1

and Q2. Chapters 3 and 4 analyze a specific model targeted at Q3 and Q4. Finally, Chapter 5

provides an answer for Q5 and Q6 in a general setting.

Chapter 2 first introduces the necessary formal framework. In the general model actors have

preferences on all networks and form and sever links to reach better networks. Section 2.2

addresses how assumptions on the preferences affect the equilibrium outcomes, i.e. the stable

networks. The first type of assumptions defines which aspects of the network are relevant for

the actors. In two very simple models it is shown that such an assumption can already be

sufficient to partially characterize the equilibria, i.e. assure existence of stable networks and

describe some aspects of all stable networks. The second set of assumptions specifies the shape

of the utility function. In Section 2.3 we study the role of increasing and decreasing marginal

returns for a specific model and compare its results to a well-known model that is similar in

spirit. It turns out that the results of the two models coincide for certain specifications. While

specification details matter, they cannot arbitrarily determine the induced networks. A version

of this section (Section 2.3) is published in Buechel (2008).

Chapter 3 introduces and analyzes a specific model (of strategic network formation), where

actors strive for central network positions. We analyze this model not only by formal deriva-

tions, but also by numerical examples and simulations using a computer program written by

Vincent Buskens from Utrecht University. The first set of results presents the basic findings

with these three methods.

Then we contrast the dynamics of two structural goals, i.e. two types of centrality incentives,

that are incorporated in the model. It turns out that each type of incentive leads to a special
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class of networks in most of the cases. For readers who are already familiar with terms that will be

defined in the next chapter: Incentives for closeness centrality (capturing the gain of access to information and

support by having many other actors in close reach) lead to tree networks, while incentives for betweenness

centrality (capturing intermediation rents that are attained by being a broker for others) lead to complete

bipartite networks.

Next, we turn to the interaction of both types of incentives and find non-trivial dynamics:

a combination of the two structural goals frequently leads to networks that would have not

been induced by just one of these goals. We relate this phenomenon to the observation that

multiple structural goals allow two actors to form a link, each of them for very different reasons,

depending on their current network position. In the last section of Chapter 3, we analyze one

common effect of the two different structural goals. A typical feature of (friendship) networks

is to contain small groups that are heavily interrelated (known as “closure” or “local density”).

Section 3.4 shows that actors optimizing their centrality destroy such patterns.

Chapter 4 analyzes efficiency in the model introduced in Chapter 3. First, we show that

utilitarian welfare in this model is determined by very basic network statistics. For instance,

knowing the number of pairs at certain distances in the network is sufficient to compute its

collective value (“welfare”). Section 4.2 shows which networks are efficient (welfare maximizing)

for different parameters. Next, we combine these results with results of Chapter 3 to assess

under which conditions the efficient networks are unstable, stable or uniquely stable.

In Section 4.3 we use simulations to estimate the welfare of an emerging network for some

settings. Surprisingly, incentives for intermediation rents (i.e. betweenness) frequently lead to

networks that have lower welfare than the starting networks. This fact is based on a divergence

between individual and collective interest, since an individual link increases the (individual)

utility of the two actors who form it but decreases (collective) welfare. For the second structural

goal incorporated in the model, i.e. closeness centrality, we also find a systematic difference

between stable and efficient networks: egoistic actors do not internalize positive spill-overs of

link formation. The working paper Buechel and Buskens (2008) presents some of the main

findings of Chapters 3 and 4. While it was the author, who initiated to study this model and

carried out most of the analyses, Vincent Buskens provided invaluable assistance in interpreting

and presenting the results.
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Chapter 5 builds on the intuition gained in the example before: Negative externalities of link

formation tend to induce networks that are too dense, while positive externalities of forming

are assumed to lead to networks that are not dense enough. We introduce the notion of

over-connected and under-connected networks to clarify this argument. A network that is not

over-connected and not under-connected is locally efficient, which means that there is neither

a subnetwork nor a supernetwork with higher welfare. We show that for situations of strategic

network formation with positive externalities, no stable network can be over-connected; while

for situations with negative externalities no stable network can be under-connected if some

other conditions are met.

Those results contribute to a better understanding of the tension between stability and

efficiency (in situations of strategic network formation) in two ways. First, they formalize an

intuitive argument that provides a social planner a clear signal in which situations rather to

impede and when to foster bilateral relationships. Secondly, the results can be used in specific

network formation models to better characterize stable and efficient networks. We present this

for a few examples (of positive and negative externalities), while there are many other models of

strategic network formation that satisfy the required conditions. A similar version of Chapter 5

can be found in Buechel and Hellmann (2008), where we present some supporting results in

addition. It seems fair to consider Chapter 5 as produced by Tim Hellmann and the author in

equal parts.
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2 Modeling Preference-based Network Formation

In the recent past, different approaches were developed to model the formation of networks

as the result of strategic interactions. What they have in common is that agents can alter

the network structure in certain ways and networks are considered as stable if there are no

beneficial deviations left. It is not the focus of this work to describe and compare the different

game theoretic approaches (i.e. stability notions); instead the emphasis is on discussing the

assumptions on the preferences and analyzing their impact for stability.

For this purpose, we will distinguish network statistics and their evaluation when introducing

the necessary framework in the next section. Section 2.2 addresses how network statistics drive

the results and Section 2.3 addresses how the evaluation of network statistics can drive the

results.

2.1 Framework

2.1.1 Definitions of Agents and Networks

Let N = {1, ..., n} be a (finite, fixed) set of agents/players, with n ≥ 3. We restrict attention

to undirected and unweighted graphs. A network/graph g is a set of unordered pairs {i, j}
with i, j ∈ N . This set represents who is linked to whom, i.e. {i, j} = ij ∈ g means that agent

i and agent j are linked under g. Let gN be the set of all subsets of N of size two and G be

the set of all possible graphs, G = {g : g ⊆ gN}. For conciseness we denote g ∪ {i, j} = g ∪ ij
and g \ {i, j} = g \ ij.

A network can be seen as a binary relation on the agent set. Sometimes it is also convenient

to work with a matrix representation for a network called adjacency matrix.

A(g) =











· · ·
...

. . .
...

· · ·











nxn

, where aij =











1 , if ij ∈ g

0 , otherwise

Note that we are only working with relations that are symmetric and irreflexive, which is also

apparent in the matrices.

By Ni(g) we denote the neighbors (or friends) of agent i in network g, Ni(g) := {j ∈
N : ij ∈ g}. Similarly, let Li(g) be the set of links that agent i is involved in, that is
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Li(g) = {ij ∈ g : j ∈ N}. We define li(g) := |Li(g)| = |Ni(g)| sometimes called agent i’s

degree. An isolate is an agent with degree zero and a pendant is an agent with degree one (the

latter structure is called a loose end). Let l(g) := #{ij ∈ g} be the number of links of a

network. The network density is canonically defined as D(g) := l(g)
l(gN )

= l(g)
1
2
n(n−1)

.

A path between two agents i and j is a sequence of distinct agents (i1, ..., iK) such that

i1 = i, iK = j, and {ik, ik+1} ∈ g ∀k ∈ {1, ..., K − 1}. The (geodesic) distance between two

agents is the length of their shortest path(s), where the length is the number of links in the

sequence. Formally, we can define the distance (dij(g)) between two agents i 6= j in a graph

g by the corresponding adjacency matrix A(g): dij(g) := min{k ∈ N : Ak(g)ij ≥ 1}. If there

does not exist such a k for two agents, there does not exist any path between them. Such a

pair {i, j} is not connected and their distance is defined as dij(g) = M , a fixed number that is

bigger than the largest feasible distance (n− 1). As a convention we set dii(g) = 0 ∀i ∈ N .

A graph is called connected if there exists a path between any two agents in the graph. A

set of connected agents is called a component if there is no path to agents outside of this set.

The set of connected networks is formally defined as Ḡ := {g ∈ G | ∀i, j ∈ N, dij(g) < M}.
A link is called critical if its deletion increases the number of components in a graph. A graph

is called minimal if all links are critical.

Let us define some classes of networks and special network architectures that will be used

throughout the text. A tree is a connected network that is minimal. These networks are also

characterized by having a unique path between any pair of agents. A complete bipartite

network gl:r consists of two groups of nodes of sizes l and r (with l+ r = n and l, r ≥ 1) such

that there are no links within a group and all links are present across groups. If one group only

consists of one agent this is a star network g?, which belongs to the class of trees, in addition. In

a balanced complete bipartite network g
n
2
: n
2 the groups are of equal size (for even n). A circle

of size K is a sequence of K distinct agents (i1, ..., iK) such that {ik, ik+1} ∈ g ∀k ∈ {1, ..., K},
where iK+1 := i1. A circle network g© is a graph with no links besides a circle of size K = n.

Eliminating one link of a circle graph leads to a line graph g|.

2.1.2 Network Statistics

A basic ingredient of all network formation models is the assumption that agents derive utility

from the network structure. Let for each agent i ∈ N a utility function ui : G→ R represent his

(complete and transitive) preferences on the set of networks. Let u denote a profile of n utility
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functions. A situation of strategic network formation can be defined as a society (N,G, u).

Before discussing the game theoretic modeling, let us have a closer look at the agents’

preferences. To analyze and motivate the agents’ preferences I would like to make an unusual

but helpful distinction between relevant network statistics and their evaluation. This involves

decomposing the utility of an agent derived from a network into (a) the measurement of

certain criteria and (b) the evaluation of these criteria. Formally, we introduce a function

m : G −→ R
kn, which objectively measures k features of a graph for each agent. How these

dimensions matter to a certain agent will be specified later by an evaluation function Ui : X → R

with (X ⊆ R
k).

Different network statistics summarize relevant aspects of the network structure:

• Number of contacts / degree, li(g)

The number of links or neighbors that an agent has is an important network statistic

in virtually any analysis of network positions. On one hand it can serve as a proxy for

the strength of an agent’s position (as proposed by Freeman, 1979). On the other hand

the number of links certainly is also the main driver of costs – maintaining bilateral

relationships is assumed to involve effort, time, or money. One example for degree is the

number of contacts one has in an online community as Skype, MSN, Xing or Facebook.

• Number of connections, #{j 6= i : dij(g) < M}
The crucial feature of a network is sometimes the size of an agent’s component – the

number of people who are directly or indirectly connected to him. Empirical applications

are networks that allow for an easy flow of resources (such as information). The number

of connections also turns out to be the crucial feature of a more theoretical exercise: In

an infinitely repeated game without discounting where only the actions of the neighbors

can be observed, the set of equilibria depends on the number of connections, since this

determines the potential punishment of deviating actions (see the “proximity game” by

Renault and Tomala, 1998).

• Distance-based statistics

An intermediate case between number of connections and number of contacts is to use an

index that considers the distances of the different connections.2 Jackson and Wolinsky

2The distances of one agent to all other agents is not a unidimensional feature of a network. But there are
different indices computing one statistic for each agent based on distances.
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(1996) introduce a model where the benefit of a connection decreases with distance (“con-

nections model”, discussed in the subsections 2.3.3 and 5.1.2). Freeman (1979) proposes

a measure based on the average distance (
∑

j∈N dij(g)

n−1
) to assess an agent’s centrality: the

smaller the sum of distances, the higher the “closeness”. This has become one of the most

applied network statistics.

• Intermediating position / brokerage

If indirect connections are important, then it is reasonable that agents who connect others

are in a special position. Lying on many paths between other agents can be harmful in the

context of diseases or beneficial in a context of trading. Goyal and Vega-Redondo (2007)

consider the agents’ ability to block connections by being on every path for a certain other

pair (what is called being “essential”). They use an indication function that counts for

how many relationships a certain agent is essential. A more customary operationalization

of intermediation rents is the measure “betweenness” (proposed by Freeman, 1979) that

simply counts the number of shortest paths an agent lies on.

• Closure / closed triads #{jk ∈ g : j, k ∈ Ni(g)}
Another important aspect can be whether the neighbors of an agent are linked themselves,

which is known as “network closure”. As Burger and Buskens (2006) argue, there are

cooperative contexts in the sense of Coleman (1988) where closing triads is beneficial

(e.g. for building trust, see Buskens, 2002), while in “Burtian” contexts agents loose their

advantageous (brokerage) position when two of their neighbors connect (see Burt, 1992).

• Number of a friend’s friends (lj(g))j∈Ni(g)

Goyal and Joshi (2006a) only consider this feature of networks in what they call “local

spillover games”. They present two examples where the number of friends of friends are

considered beneficial (“provision of a pure public good” and “market sharing agreements”)

and two examples where these network statistics are considered as harmful (“free trade

agreements among countries” and “friendship networks”).

It is important to note that the different network statistics are not independent of each other.

First, the k different network statistics of one agent may be highly correlated. Secondly, there

are interrelations across the n agents, e.g. the sum of degrees cannot be odd.

Of course, there are many other aspects that can be important for specific applications.

Solely to assess the centrality of an agent many other indices were developed besides closeness,
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betweenness and degree (e.g. Eigenvector centrality, see Bonacich, 1987, or the three centrality

measures introduced by Friedkin, 1991). Moreover, the framework allows for general network

statistics that are relevant for any agent, e.g. the number of links of the whole graph l(g). Or

it can be appropriate to define new network statistics for specific applications. For example, if

there are two different characteristics of the agents, then one can split the degree into number

of links to similar people and number of links to different people.

For this work, however, it suffices to consider the indices listed above. Degree and number

of connections will be discussed in Section 2.2, distance-based statistics in Section 2.3 (both

in this chapter). The model analyzed in the chapters 3 and 4 uses closeness, betweenness and

degree (the three centrality measures proposed by Freeman, 1979). Finally, in the last chapter

(Chapter 5), we will have a closer look at two examples where the number of a friend’s friends

is crucial.

2.1.3 Evaluation (of Network Statistics)

Once the relevant network statistics are specified, the question is how agents evaluate the

(measured) qualities of certain graphs. Formally, for an agent i each graph can be represented

by a vector mi(g) ∈ R
k, where all of these vectors form the feasible set, Fi := {y ∈ R

k :

∃g : mi(g) = y}. We assume for each agent i an evaluation function Ui : X → R with

X ⊆ R
k(: Fi ⊆ X) that expresses his preferences over the feasible set. Technically, this

function’s domain is larger than the feasible set, e.g. its convex hull, such that the function Ui

can be assumed to be continuous and twice differentiable. So we write that an agent prefers a

certain network if he prefers its statistics:3

ui(g) ≥ ui(g
′) ⇐⇒ Ui(mi(g)) ≥ Ui(mi(g

′)).

When defining a certain model, one can describe an agent’s evaluation of network statistics

as assumptions on the evaluation function Ui(·). We will use the following categories of

assumptions to specify different models. Consider an agent i, a set X ⊆ R
k, and a vector

(x1, x2, ..., xa, ..., xk) ∈ X.

A0 Domain of Ui.

The first – and most basic – assumption is the choice of the function mi(·) that defines

3Without defining the network statistics, this is not restrictive.
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the relevant network statistics for each agent.

A1 Monotonicity U ′
i(xa) ≥ (≤)0 ∀xa.

Interestingly, all of the network statistics listed in Subsection 2.1.2 can be beneficial in

some contexts and harmful in others. So, a basic assumption is whether the evaluation

function is increasing or decreasing in its arguments.

A2 Additive separability Ui(x) = f 1
i (x1) + ...+ fk

i (xk).

It is very convenient to assume that the evaluation function is additively separable in

its arguments: As the cross-derivatives are zero, this assumption uncouples the effects

on utility coming from a change in one measure and the change (and level) in the other

measures.

A3 Curvature U ′′
i (xa) ≥ (≤)0.

In many applications it is clear how the shape of the evaluation function should be

modeled. For both beneficial and costly aspects, concave and convex functions might

be appropriate. Concave benefits stand for decreasing marginal returns; convex benefits

for increasing marginal returns. Concave costs may stem from the combination of fix

costs and variable costs; convex costs represent the scarcity of resources (e.g. time).

A4 Linearity Ui(x) = α0 + α1x1 + ...+ αkxk, with αa ∈ R.

Linear preferences satisfy additive separability and both convexity and concavity in each

argument. In other words: the marginal rate of substitution is constant. The linearity

assumption reduces the comparison of two networks mi(g) = x and mi(g
′) = y to the

differences of their network statistics: U(x)−U(y) = U(x−y). Although this assumption

is standard in the literature, its only justification is computational ease.4

A5 Homogeneity Ui(x) = f(x) ∀i ∈ N .

It is an interesting question to ask how networks evolve when agents differ in their

preferences (see, e.g., Galeotti et al., 2006). But it also complicates the analysis heavily.

Homogeneity is a reasonable assumption if the emphasis is on the different contexts that

influence everybody’s choice, not on the difference between agents (as also argued in

Burger and Buskens, 2006).

4We will also use this assumption in Chapter 3, but not without checking its importance in Section 2.3.
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Throughout this work we will slowly increase the the number of assumptions on the evaluation

function. Subsection 2.2.1 only uses A0, Subsection 2.2.2 uses A0-A1; Section 2.3 uses A0-A3

and A5; Chapter 3 uses A0-A5.

Conceptual Supplement: Microeconomic Theory of the Consumer

Since each graph is represented by a vector mi(g) ∈ R
k, the change of a network (from g to g′) can

be interpreted as a comparison of bundles of goods (mi(g) and mi(g
′)). This perspective suggests to

import concepts developed in the microeconomic theory of consumers. Among them are assumptions

on preferences and the “trick” to treat indivisible goods (integer network statistics) as realizations of

principally continuous dimensions.

For illustrative purposes, let k = 2, where there is one “good” X and one “bad” L and consider an

agent i that has to decide between network g and network g′. He compares the two networks by their

measured network statistics, mi(g) = (x, l) andmi(g) = (x′, l′) (with x, x′ ∈ X and l, l′ ∈ L). Assuming

additive separability, the evaluation of a point (x, l) ∈ X × L can be written as Ui(x, l) = b(x) − c(l),

where b(·) is considered the (differentiable) benefit function and c(·) the (differentiable) cost function.

If additional assumptions on the curvature of the benefit function and cost function are reasonable, it

can be handy to linearize the utility function in the following points P := {(x, l), (x′, l′), (x, l′), (x′, l)}.
For instance, if agent i has a concave benefit function and a convex cost function, we can find a

necessary and a sufficient condition on the marginal rate of substitution (MRS) for him to prefer g

over g′: ui(g) ≥ ui(g
′) if MRSi(x, l) ≥ x′−x

l′−l
and only if MRSi(x

′, l′) ≥ x′−x
l′−l

.

The MRS at the four points P allows such statements for any combination of concave and convex

costs and benefits. To work with the marginal rate of substitution might be very handy, since Ui(x, l) =

b(x) − c(l) implies that the MRS for an agent i at a point (x, l) is simply MRSi(x, l) = c′(l)
b′(x) . For the

evaluation of these points we can also import well-known types of preferences. For example, let the

agent’s preferences be strictly convex and assume in addition that a Cobb-Douglas utility function can

represent them: Ui(x, l) = xα(−l)1−α. Then his marginal rate of substitution is MRSi(x, l) = α−1
α

x
l
.

Thus, agent i′s evaluation is described by his elasticity of substitution.5 More ideas follow this avenue

(such as CES preferences, etc). However, there are also important differences between the choice of

a consumption bundle from a budget set and the attempts to alter network structures, because the

structure of interactions differs completely (as addressed in the next subsection). ♦

5Alternatively, one could also transform the utility function (by taking the logarithms) into an additive
separated form.



Preferences 14

2.1.4 Notions of Stability and Efficiency

Given a society (N,G, u), there are various ways to endogenize the network structure. We will

restrict attention to one approach and mention some alternatives thereafter.

A strategic network game can be defined as a tupel (N, 〈Si〉, 〈ûi〉) with the following specifi-

cations:

• The set of players is N as defined above.

• Following the idea of Myerson (1991), let an action be an announcement of requested

links. A player’s strategy space then can be defined as Si = {0, 1}n−1 such that a pure

strategy si is a (n−1)-vector, si = (si1, ..., si(i−1), si(i+1), ..., sin), where sij = 1 means that

i requests a link to j and sij = 0 otherwise. The set of all strategy profiles is denoted by

S = S1 × ...× Sn, and an element of it is s = (s1, ..., sn).

• The utility functions ûi : S → R stand for a player’s preferences over the set of strategy

profiles. These are induced by the original utility functions ui(g) and an outcome rule

that maps strategy profiles into consequences (r : S → G), that is ûi(s) = ui(r(s)). We

use the following outcome rule g : S → G, where g(s) = {ij : sij = sji = 1}, that requires

the request of both players to form a link.

Let NE(u) denote the set of (pure) Nash equilibrium strategy profiles. A first approach is to

consider the networks as stable if there is a corresponding Nash equilibrium. However, this

turns out to be too weak a notion (e.g. the empty network is always stable in that sense).

The issue with Nash stability is that networks are considered as stable even if there are two

players who would both benefit from linking because it is also an equilibrium strategy not to

request the link if the other player does not request it either. To account for this, a common

refinement is pairwise Nash stability, sometimes also called pairwise equilibrium (see Goyal and

Joshi, 2006a and Bloch and Jackson, 2006, among others).

Definition 2.1. A network g is pairwise Nash stable (PNS) if there exists a Nash equilibrium

in the corresponding link formation game that supports this network and no link will be added

by two players, that is

(i) ∃s ∈ NE(u) s.t. g(s) = g and

(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).
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This notion is not free of criticism. First, there is an asymmetry of deviations, since it

considers the addition of one link and the deletion of several links.6 Secondly, a very basic

deviation is not possible: replacing one link with another one. Buskens and Van de Rijt (2005)

propose a refinement that accounts for these two problems. They introduce the definition of

“initiative-proofness”. Informally put, a strategy profile s is initiative-proof if there is no player

who can make a proposition of rearranging his links (add some and/or delete some) without a

negative response of one player who would have to form one link (see Buskens and Van de Rijt,

2005). Correspondingly, they define:

Definition 2.2. A network g is unilaterally stable (US) if there exists a strategy profile s

that is initiative proof and g(s) = g.

In the context of cooperative games a simpler notion of stability was introduced by Jackson

and Wolinsky (1996), that became the most used in strategic network formation.

Definition 2.3. A network g is pairwise stable (PS) or just stable if no link will be added or

cut (by two, respectively one player):

(i) ∀ij ∈ g, ui(g) ≥ ui(g\ij) and

(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).

Pairwise stability is a very basic notion that can be seen as minimal requirement for stability.

In fact, for the notions introduced above, it holds that

[PS(u)]
(1)

⊇ [PNS(u)]
(2)

⊇ [US(u)], (2.1)

where we denote by [PS(u)], [PNS(u)], [US(u)] the sets of stable networks for a utility profile u.

For (1) see Bloch and Jackson (2006); for (2) see Buskens and Van de Rijt (2005). Besides the

two, there are other refinements, e.g. bilateral equilibrium (Goyal and Vega-Redondo, 2007),

strict bilateral equilibrium (ibidem), or strong stability (Jackson and Van de Nouweland, 2005),

allowing for coalitional deviations.

Despite its weakness, pairwise stability will often be sufficient to make a point. In this work,

we will mostly work with this concept for three reasons. First, it is simple. Secondly, the results

6By a unilateral change of strategy a player can induce a network where some of his links are deleted. However,
if no player is requesting a link to i, he cannot add any link by unilateral deviation. Condition (ii) allows
for the addition of one such link but not more.
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that exclude networks from being PS also hold for all stronger notions of stability. Thirdly,

the refinements are not always able to exclude many networks, as we will see throughout the

examples. When the set of stable networks is characterized for a specific setting, it is suggested

to the reader not to interpret it as a prediction (of which networks will most likely emerge),

but as a description of the candidates for reasonable predictions.

Working with the above notions of stability, there are some implicit assumptions attached,

which shall not be hidden:

• We restrict attention to local actions: players can only influence the formation or severance

of links they are involved in. Bloch and Jackson (2007) present an approach where this

assumption is relaxed.

• We do not consider situations where players are incapable of denying links that somebody

tries to form to them. Bala and Goyal (2000) introduce two such models of one-sided link

formation.

• Decisions are made myopically. This means that agents consider the consequences of their

actions on the current network structure, but do not anticipate the potential reactions of

others. See Page (2004) for a concept of farsighted agents.

• The introduced game is static in principle. Aumann and Myerson (1988) propose a

sequential game of link formation; Jackson and Watts (2001) present a dynamic model of

myopic deviations.

• Since any player is assumed to have rational preferences on the set of networks, the change

in utility by establishing a link equals the change by severing the link. In the framework

of Snijders (2001) this assumption is relaxed, because it might also be reasonable that

the cost to form a link is higher than the saving of severing an already established link

(e.g. consider the presence of certain inertia).

While stability tries to answer which networks emerge based on individual preferences, efficiency

addresses the evaluation of networks from a societal point of view. To formally capture

efficiency, we use a welfare function w : G→ R that evaluates each graph. Welfare is typically,

but not necessarily, only dependent on the n−vector of utility u(g). If so, a basic property

is monotonicity: a welfare function w satisfies monotonicity if ui(g) ≥ ui(g
′) ∀i ∈ N =⇒
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w(g) ≥ w(g′). A special case of a monotonic welfare function is the utilitarian welfare function:

wu(g) =
∑

i∈N ui(g).

Definition 2.4. A network g∗ is called efficient with respect to the welfare function w if it is

a welfare maximizing network, that is w(g∗) ≥ w(g) ∀g ∈ G.

Besides efficiency based on welfare, one can also consider Pareto efficiency: A network g is

Pareto efficient if there is no network g′ such that ui(g
′) ≥ ui(g) ∀i ∈ N and ui(g

′) > ui(g) for

some i ∈ N .

2.2 The Importance of Network Statistics

This section shall allow us to see how minimal assumptions on preferences can be sufficient to

find characteristics of stable networks.

2.2.1 The Most Basic Case: Only Degree Matters

Consider a society (N,G, u) where agents only care about the number of relationships they

maintain. In this model (M1) all relevant aspects of a network can be reduced to the degree:

(A0) mi(g) = li(g) for all players.

The feasible set for one agent is {0, 1, ..., n − 1}. For technical purposes let X = [−1, n] and

Ui : [−1, n] → R be a differentiable function. U denotes a profile of n such functions.

The fact that only degree matters provides a lot of structure without strong (respectively

any) assumptions on preferences. First of all, it allows us to establish existence.7

Proposition 2.1. In a network formation game based on degree (M1), for any profile U there

exists at least one stable network.

All proofs of this chapter can be found in the Section 2.4.

In a situation of choice, each agent would choose the number of links (li(g)) that maximizes

his utility (g ∈ argmaxUi(li(g))). In a situation of strategic interaction, it is not clear that

any player obtains the preferred number of links in equilibrium. The first reason is that not

any distribution of degree is feasible in a network.8 Secondly, the outcome of one player is still

(partially) dependent on the action of others because it takes two to form a link.

7I am thankful to Nicolas Trotignon, who opened my eyes to the simple construction of a stable network.
8The feasible set was described by the theorem of Berge and Erdös (see, e.g., Diestel, 2005).
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However, since foreign links are not part of the utility function, the equilibria can be partially

characterized. For a graph g, let us partition the players into three (disjunct and exhaustive)

groups A, B, and C:

• A := {i ∈ N : Ui(li(g) − 1) > Ui(li(g))}

• B := {i ∈ N : Ui(li(g) − 1) ≤ Ui(li(g)) and Ui(li(g) + 1) > Ui(li(g))}

• C := {i ∈ N : Ui(li(g) − 1) ≤ Ui(li(g)) and Ui(li(g) + 1) ≤ Ui(li(g))}.

Players in A strictly prefer to have one link less, and players in B and C do not. The players

in B strictly want to have (at least) one more link, the players in C do not. The players in C

are necessarily close to a “local optimum” U ′
i(l

∗) = 0). Those players do not have an incentive

to deviate. Players in A and B do, which leads to the following result.

Proposition 2.2. In a network formation game based on degree (M1), if g ∈ [PS] the

following holds: ∀i ∈ A it holds that li(g
∗) = 0 and ∀i ∈ B it holds that they are fully linked

among themselves (and might be linked to some players in C). If there is a network where every

agent belongs to group C, then this network is pairwise stable.

The result follows straightforwardly from the notion of pairwise stability. This proposition

helps characterize the equilibria a bit. If there are no players with optimal number of links

(U ′
i(li(g

∗) = 0)), then only trivial networks are stable, which is called the dominant group

architecture by Goyal and Joshi (2006a). The second part of the proposition states that if all

players are close to a local optimum, the network is stable. This, however, does not imply that

such a network is efficient – consider a stable network where some agent prefers to sever several

of his links but not one. The refinement of pairwise Nash stability can rule out these equilibria.

Proposition 2.3. In a network formation game based on degree (M1), the following holds: If

g ∈ [PNS], then ∀i ∈ N it holds that Ui(li(g)) ≥ Ui(l
′) for any l′ ∈ {0, 1, 2, ..., li(g)}.

So the possibility to sever multiple links, guarantees that each player prefers this network

over its subnetworks.9

The example of degree-based network formation shows that there are cases where the defini-

tion of a network statistic alone already sheds light into the set of stable and efficient networks.

9Unilateral Stability is not sufficient that all players are in the best of all subnetworks and supernetworks (a
global optimum).
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What makes this example so special is that the formation of a link between two agents has no

effect on any other agent. Let us add another aspect to the model that incorporates indirect

benefits.

2.2.2 Direct and Indirect Connections

Consider a society (N,G, u) where k = 2 and the most important network statistics are the

number of links (degree) and the number of connections of a player: (A0) mi(g) = (χi(g), li(g)),

where χi(g) := #{j 6= i : dij(g) < M} for any player i ∈ N .

The feasible set for some player i is illustrated in Figure 2. Having degree of l ≥ 1 corresponds

to at least l and at most n− 1 connections.

L

X

0 n-1

n-1

Figure 2: Set of feasible degree and number of connections for a player.

Let the domain of the evaluation function be X = [0, n − 1]2 and assume that any agent

evaluates degree as costly, where connections are beneficial: (A1) the evaluation function of

any agent Ui(·, ·) is strictly increasing in the first and strictly decreasing in the second argument.

We refer to this model as M2. (A1) determines the preference relation on all networks that

have the same number of links (vertically) or the same number of connections (horizontally).

This leads to the following proposition.

Proposition 2.4. In model M2, the following holds:

(i) All stable networks are minimal (or empty).

(ii) Any Pareto efficient network is minimal or empty.
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Both parts of the proposition follow the intuition that non-critical links are dispensable:

causing costs (degree), but with a marginal benefit of zero since cutting a non-critical link does

not decrease the number of connections (e.g. non-critical links lead to redundant information).

In that sense the result can be interpreted as agents rationalizing their local network structure.

The models M1 and M2 are not chosen for their substance, but serve as examples showing that

the definition of the relevant network statistics is able to drive results, without much structure

on the evaluation function. The next section illustrates how (the shape of) the evaluation

function affects results.

2.3 The Importance of Evaluation

Let us have a closer look at a specific example. We fix a beneficial network statistic – namely,

closeness – and analyze how decreasing versus increasing marginal returns affect the stable

networks. Finally, we compare the results to a slightly different network statistic.

2.3.1 A Closeness Model

In this section we consider a society (N,G, u) with k = 2, where the network statistics are

closeness and number of links. Closeness incorporates the idea that an agent is considered as

“central” in a social network if his distance to other agents is small (Sabidussi, 1966). In the

literature on centrality it is standard to normalize an index between 0 and 1. We follow this

convention by defining closeness of an agent i as the following affine transformation of his

average distance
∑

j∈N dij(g)

n−1
:

Closei(g) =
M

M − 1
−

∑

j∈N dij(g)

(M − 1)(n− 1)
.

Then Closei(g) = 0 for isolates, while Closei(g) = 1 for an agent who is directly connected to

all others in the network.

There is another operationalization which is more prominent in the literature: the closeness

definition according to Freeman (1979),10 FrClosei(g) := n−1
∑

j∈N dij(g)
. While Freeman’s version

(inverse distances) is much more customary, our closeness definition (reverse distances) more

naturally separates the measurement of a network statistic from its evaluation by keeping the

10In the original version, Freeman closeness is only defined for connected graphs. The extension to all networks
works with the definition of the distance of unconnected players (as M).
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units (as also argued in Valente and Foreman, 1998).11

This section uses three assumptions on the evaluation functions:

A0,A1 The agents make linking decisions in respect to their degree and their closeness, where

closeness is beneficial and links are costly.

A2,A3 Each player’s preferences are quasi-linear in degree. Although concave and convex cost

functions are reasonable, we will focus on different shapes of the benefit function (which

can be assumed to absorb the curvature of the cost function). For the benefit function we

will distinguish three cases: concave shape, convex shape and linear shape; which stand

for decreasing, increasing and constant marginal returns.

A5 The players are homogeneous in respect to preferences.

By introducing a (non-decreasing, twice differentiable) benefit function b : [0, 1] → R one can

put all assumptions together to what we denote as closeness model:

(M3) Each agent i ∈ N decides about links according to preferences that can be

represented by ui(g) = b(Closei(g)) − c̄li(g).

Remark 2.3.1 (Similar models). In the literature similar models to the closeness model are

discussed. First, there is the connections model introduced in Jackson and Wolinsky (1996). We

formally define this model in Subsection 5.1.2. A special case of it is the symmetric connections

model: uSCO
i (g) =

∑

j∈N\{i} δ
dij(g) − li(g)c, where δ ∈ (0, 1) and M = ∞. Another model stems

from Fabrikant et al. (2003) and is adapted to a setting of bilateral link formation by Corbo

and Parkes (2005): uFabrikant
i (g) = −∑

j∈N\{i} dij(g) − li(g)c, where M = ∞. Variations of

the parameter M in this model are studied by Brandes et al. (2008) (but only in a setting of

unilateral link formation).

Jackson (2008) summarizes such models as “distance-based utility models” in the following

way: udistance−based
i (g) = b̃(

∑

j∈Ci(g)\{i} dij(g)) − li(g)c, where Ci(g) is the set of players in i’s

component and b̃ is some decreasing function. Set b̃(k) = −k and b̃(k) = δk to see that the

symmetric connections model and the model of Fabrikant are special cases of distance-based

utility models (at least on the domain of connected networks).

The closeness model (M3) introduced in this subsection does not fall into this class. For example,

11Without fixing an evaluation function, this choice does not restrict generality: By taking the following convex
benefit function f(x) = [M − x(M − 1)]−1, the benefits of closeness are equivalent to Freeman-closeness
(with linear evaluation), because f(Closei(g)) = FrClosei(g).
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using a convex evaluation to get Freeman closeness, cannot be represented by a distance-based

utility function. However, consider a linear version of the closeness model, i.e. b(k) = k, and

set M = ∞: ulinear
i (g) = Closei(g)− c̄li(g) = M

M−1
−

∑

j∈N dij(g)

(M−1)(n−1)
− c̄li(g). In this linear closeness

model the benefits are just an affine linear transformation of the Fabrikant model, while for the

costs c̄ and c anyhow any possible value is considered. As a consequence the linear closeness

model and the Fabrikant model are equivalent when analyzing which networks are stable and

which networks are efficient. They are not equivalent in absolute values of utility, i.e. when

computing ratios of the welfare of different networks, as Corbo and Parkes (2005) do. Virtually

any result of this subsection can be found (in their corresponding formulation) in the literature

on similar models: for the symmetric connections model see Jackson and Wolinsky (1996), for

the Fabrikant model see Corbo and Parkes (2005), and for distance-based utility see Jackson

(2008). The point here is not the substance of the results, but their robustness according to

specification details.

2.3.2 Increasing versus Decreasing Marginal Returns

To have a shorter notation, we substitute two often needed units of closeness:

1. T1 := 1
(n−1)(M−1)

. This is the smallest possible change in closeness, as it corresponds to

a shift in distance of 1. It occurs when two players who were at distance two form a link

and only the distance between these two changes, e.g. because they are already directly

linked to everybody else.

2. T2 := 1
(n−1)

. This is the change in closeness of a player that links with an isolate. As his

distance shifts from M to 1, his closeness increases by M−1
(n−1)(M−1)

= T2.

The following results provide two characteristics of all stable networks.

Proposition 2.5. In a closeness model (M3) with linear costs and concave benefits, the

following holds:

(i) If c̄ < b(1) − b(1 − T2), all stable graphs are connected.

(ii) If c̄ > b(T2) − b(0), no stable graph exhibits loose ends.

The intuition behind the result is that the thresholds of (i) and (ii) are just the minimal and

the maximal marginal benefit that a link to an isolated node can mean.12 If the benefit function

12That is, the threshold in (ii) is the marginal benefit of a new link in the empty graph βij
i (g∅); and the threshold

in (i) is the marginal benefit that cutting a link means to the center of a star βci
c (g?).
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is not concave but convex, these two thresholds just switch roles, as stated by the following

proposition.

Proposition 2.6. In a closeness model (M3) with linear costs and convex benefits, the

following holds:

(i) If c̄ < b(T2) − b(0), all stable graphs are connected.

(ii) If c̄ > b(1) − b(1 − T2), no stable graph exhibits loose ends.

To prove existence of a stable network the assumption A0 is not (obviously) sufficient. With

the assumption of a convex benefit function, there is a very simple – admittedly not a very

elegant – way of proving existence.

Proposition 2.7. In a closeness model (M3) with linear costs and convex benefits, the

following holds: for any marginal costs c̄ ∈ (0,∞) (parameter value) there exists at least one

stable network.

Figure 3 shows the idea of the proof: For any marginal cost, we can give a trivial example

for a pairwise stable network. For low costs the complete graph, for high costs the empty

network, and in the medium range the star. If the benefit function is not convex but concave,

the thresholds shift such that these trivial graphs do not span the whole parameter space.

Figure 3: Existence of stable networks for convex benefits.

Remark 2.3.2. Figure 3 also contains the thresholds for Prop. 2.6 (on the right). In the case

of concave benefits these two thresholds not only switch positions, but also switch their roles as

stated in Prop. 2.5.

Pairwise Nash Stability

In the closeness model, (PNS) is not always a proper refinement of (PS):13

13The corresponding result in the Fabrikant model was already stated and proven in Corbo and Parkes (2005).
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Proposition 2.8. In a closeness model (M3) with linear costs and concave benefits, the set

of pairwise stable networks [PS] and the set of pairwise Nash stable networks [PNS] coincide.

One direction of the result follows directly from the definitions: [PNS] ⊆ [PS]. The other

direction shall be briefly discussed. Calvó-Armengol and Ilkiliç (2007) show that [PNS] and

[PS] coincide if the utility function u(·) satisfies a property called “α-convexity in own current

links”.14 Moreover, if costs and benefits are additively separable and marginal costs are constant,

it is enough to show that the benefit function satisfies ∀i ∈ N, ∀g ∈ G, ∀l ⊆ Li(g),

βl
i(g) ≥

∑

ij∈l

βij
i (g). (2.2)

In essence, the condition says that the deletion of some of player i ’s links hurts him weakly

more than the separate deletion of these links, one at the time.15

To show that condition 2.2 holds in a closeness model with concave benefits, we need two

steps: one step shows that the shift in closeness on the lefthandside of 2.2 cannot be smaller

than the shift in closeness on the righthandside. The other step exploits decreasing marginal

returns (which guarantee, roughly, that multiple small reductions of closeness are not evaluated

as severely as one big reduction).

The proof of Prop. 2.8 clarifies the role of network statistic and curvature of the evaluation

function for the stability of networks: it is a genuine feature of the network statistic that

cutting one link at a time shifts closeness (weakly) less than cutting them at once. The concave

evaluation (of closeness benefits) is just used to preserve this feature.

2.3.3 Constant Marginal Returns

Let us compare constant marginal returns of closeness to a convex evaluation according to

Freeman (1979) and to a similar distance-based network statistic. In addition to the assump-

tions before (M3), we assume preferences to be linear (A4). Without restriction of generality,

we represent any player’s preferences by ulinear
i (g) = Closei(g) − c̄li(g) , which is referred to

as the linear closeness model (M3’). Note that by taking the id-function as benefit function,

14The label “convexity” can be misleading. We discuss this property in Section 5.1.1.
15Recall that (for l ⊂ g) βl

i(g) = bi(Closei(g)) − bi(Closei(g\l)) denotes the marginal benefit that the deletion
of the links (in l) means to some player i. For constant marginal costs, it is intuitive that this is the condition
requiring that deviations of cutting more than one link are only utility improving if deviations of cutting
just one link are, which is sufficient for [PS] = [PNS].
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we mingle in this subsection what we distinguished before: the closeness of an agent and his

benefit derived from closeness.

The first proposition is a corollary of Prop. 2.5 and 2.6, as the linear benefit function is a

special case of both, concave and convex benefits functions.

Proposition 2.9. Let again T2 := 1
(n−1)

. In the linear closeness model (M3’), the following

holds:

(i) For c̄ < T2, all stable graphs are connected.

(ii) For c̄ > T2, no stable graph exhibits loose ends.

Observe that in this result two thresholds (of the benefit function before) coincide: b(1) −
b(1 − T2) = b(T2) − b(0) = T2. This is also true for the next result.

Proposition 2.10. Let again T1 := 1
(n−1)(M−1)

. In the linear closeness model (M3’), the

following holds:

(i) For c̄ < T1, the unique stable network is the complete network.

(ii) T1 ≤ c̄ ≤ T2, a star network is stable, but not necessarily unique.

Comparison between Linear Closeness Model and Connections Model

In the famous example of the symmetric connections model, basically the following benefit

is used: Connectionsi(g) =
∑

j∈N\{i} δ
dij(g), where δ ∈ (0, 1).16 So every reachable agent is

of value but this diminishes with distance. Like in the closeness model, agents gain from

short paths to other nodes. Consistently, Borgatti and Everett (2006) list the benefits of the

connections model among the “closeness-like” centrality indices. But there is also a difference:

In the connections model agents benefit from having many nodes close to them; while in the

closeness model agents benefit from having a small average distance.

While the motivation of the two models is similar, the results turn out to be almost identical.

Observe first that Prop. 2.9 and Prop. 2.10 correspond directly to the results of the

connections model (see Jackson and Wolinsky, 1996), where T1=̂δ − δ2 and T2=̂δ.

For n not too big, a computer can enumerate all networks and check for stability.17 We did

this for n = 8 with the connections model (taking δ = 0.5 and δ = 0.8), and for the closeness

16By convention, here M = ∞ (see Jackson and Wolinsky, 1996).
17I thank Vincent Buskens for programming the routines to find all the stable networks for the various centrality

measures. An extensive description of this method can be found in Subsection 3.2.2.
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model once with the convex benefit function according to Freeman and once taking the linear

closeness model (with M = n).

For n = 8 there are 12’346 non-isomorphic graphs (different network architectures). In the

linear closeness model only 45 of them are stable for some parameter range (greater than 0).18

As presented in Table 1, those 45 networks are not identical to the 63 stable networks with

convex benefit function (Freeman) but overlap to some extent. The stable networks of the

linear closeness model and the connections model overlap more heavily.

Table 1: Stable networks in the linear closeness model and related models for n=8.
Number of stable net-
works (for some cost
range∗)

Total Also stable in linear
closeness model

Freeman closeness 63 29
Connections δ = 0.5 29 26
Connections δ = 0.8 45 45

All of the above models are driven by similar linking behavior which we call “closeness-type”

incentives: there is high incentive to link to agents who are at high distance (including those

in other components) and there is low incentive to keep links that do not shorten some paths

significantly. Interestingly, the differences within these models stem from specification details

– be it increasing (instead of constant) marginal returns or level of decay – rather than from

the choice of the network statistic (connections vs. closeness).

How the stable networks look like in the linear closeness model is addressed in Section 3.3.1.

The lesson learned in this section is that assumptions on the curvature may strongly effect the

resulting networks but not in an arbitrary way. The assumption of linearity (A4) allows us

to state results in a easy and direct manner (since then the change of network statistics are

proportional to the change in utility). When assuming linearity in the next sections, it should

be kept in mind how relaxations of this assumption can affect the result.

2.4 Proofs of Chapter 2

Proof of Prop. 2.1. We construct a stable network. Start with the network g∅=̂g0. If ∃i, j
such that ui(g0∪ ij) > ui(g0) and uj(g0∪ ij) ≥ uj(g0), then let g1=̂g0∪ ij for any of those ij’s.

Repeat the procedure for gt to get gt+1. Because there are finitely many links, at some point this

18∗That is: we did not count the networks which are “stable” for only one point in the parameter space, e.g.
the networks which are only stable if c̄ = T 1.
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process will stop: Let gT be the network where 6 ∃i, j such that ui(g0∪ ij) > ui(g0) and uj(g0∪
ij) ≥ uj(g0). gT clearly satisfies condition (ii) of pairwise stability. It remains to show that it

also satisfies condition (i). Suppose not, then ∃i, j such that Ui(li(gT ) \ ij) > Ui(li(gT )). This

implies that i strictly prefers li(gT ) − 1 links over li(gT ) links which stands in contradiction to

the procedure.

Proof of Prop. 2.2. The result follows straightforwardly. (PS) requires the following, where

di stands for i′s degree:

(A) ∀i ∈ N : di > 0, Ui(di − 1) ≤ Ui(di) and

(B) ∀i ∈ N : Ui(di + 1) > Ui(di) it holds that they are fully linked to all ∀i ∈ N : Ui(di +

1) ≥ Ui(di). Moreover, for all players in group C, the two conditions of pairwise stability are

satisfied.

Proof of Prop. 2.3. This observation follows directly from condition (i) of pairwise Nash

stability. Consider l′ ∈ {0, 1, ..., li(g) − 1}. For any s : g(s) = g, it holds that s 6∈ NE(u)

because requiring l′ links is a better response for i.

Proof of Prop. 2.4. (i) Let g be a non-empty network that is not minimal. Then there exists

a player who can cut a link without decreasing the size of his component. By (A1) his utility

would increase, precluding PS.

(ii) Let g be a non-empty network that is not minimal. Then there exists a link ij that can be

deleted without increasing the number of components. Severing that link (g′ = g \ ij) implies

that no agent’s utility has decreased, some players’ increased. Thus, g′ Pareto dominates g.

Some Remarks to the Proofs of Section 2.3

Formally, ∀x, x′,∆ > 0 a concave benefit function implies b(x + ∆) − b(x) ≥ b(x′ + ∆) − b(x′)

whenever x ≤ x′ (by the mean value theorem). Convexity implies increasing marginal returns:

just let x′ ≤ x. Marginal costs c̄ are constant and serve as the parameter for our model.

Marginal benefits depend on the network g and on the shape of the benefit function. Let
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βij
i (g) denote the marginal benefit that link ij (either added or cut) means to player i in

graph g. That is, βij
i (g) := b(Closei(g ∪ ij)) − b(Closei(g \ ij)). When players make linking

decisions, they compare marginal costs and marginal benefits: in graph g player i is eager to

form a link to j (ij /∈ g) iff βij
i (g) > c̄ and i wants to cut a link with k (ik ∈ g) iff βik

i (g) < c̄.19

Proof of Prop. 2.5. (i) Take any unconnected graph g. Take any player i and let Closei(g) =:

x. Linking with somebody of another component leads to a shift in closeness of at least T2.

Because x + T2 ≤ 1 and b(·) concave, it holds that b(x + T2) − b(x) ≥ b(1) − b(1 − T2).

By assumption the marginal costs are lower, such that i wants to form this link. As in any

unconnected graph, there exist two players who are not connected; they will alter the network

structure, which makes g unstable.

(ii) Take any network g with at least one pendant and let i be his (only) neighbor. Denote

Closei(g) =: x. Cutting the link to the pendant means a shift in closeness of T2. Because

x ≥ T2 and b(·) concave, it holds that b(x) − b(x − T2) ≤ b(T2) − b(0). (By assumption the

marginal costs are higher. Therefore, i will cut the link, which makes g unstable.)

The proof of Prop. 2.6 is analogue to the proof of 2.5.

Proof of Prop. 2.7. To show that for any marginal costs c̄ ∈ (0,∞) there exists a stable

network, we take for low costs the complete graph, for high costs the empty network, and in

the medium range the star. It is easy to verify that:

• The complete graph is stable if c̄ ≤ βij
i (gN) = b(1) − b(1 − T1). Remember that T1 is

the shift in closeness when distance increases by 1.

• The empty network is stable if c̄ ≥ βij
i (gempty) = b(T2) − b(0).

• A star is stable if b(x + T1) − b(x) ≤ c̄ ≤ min{b(1) − b(1 − T2), b(x) − b(0)}, where

x := M
M−1

− 2n−3
(M−1)(n−1)

is the closeness of a peripheral player (pendant). To verify the

result, note that this condition precludes all possible deviations: (a) no peripheral players

add a link c̄ ≥ b(x+T1)−b(x); and (b) the center does not cut a link c̄ ≤ b(1)−b(1−T2);

and (c) no peripheral player cuts a link c̄ ≤ b(x) − b(0).

19When marginal benefits are equal to marginal costs, the player is indifferent. In this case he does not cut the
link, respectively does not initiate the new link (but agrees when asked).
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To prove existence for any marginal cost c̄, it remains to show that 1. the lower bound of

the star is below the upper bound of the complete network and 2. the upper bound of the star

is above the lower bound of the empty network (see Figure 1).

1. b(x + T1) − b(x) ≤ b(1) − b(1 − T1) follows from x+ T1 ≤ 1 and convexity of b(·). And 2.

b(1) − b(1 − T2) ≥ b(T2) − b(0) follows from convexity of b(·); and b(x) − b(0) ≥ b(T2) − b(0)

follows from b(·) increasing and x ≥ T2.

Proof of Prop. 2.8. Calvó-Armengol and Ilkiliç (2007) show that [PNS] and [PS] coincide

if the utility function u(·) is α − convex in its current links. Moreover, if costs and benefits

are additively separable and marginal costs are constant, it is enough to show that the benefit

function satisfies ∀i ∈ N, ∀g ∈ G, ∀l ⊆ Li(g),

βl
i(g) ≥

∑

ij∈l

βij
i (g),

where βl
i(g) = bi(Closei(g))− bi(Closei(g \ l)) denotes the marginal benefit that the deletion

of the links (in l) means to some player i. Because of our homogeneity assumption, we can fix

a player i without restricting the generality. So, we have to show that ∀g ∈ G, ∀l ⊆ Li(g) it

holds that

b(Closei(g)) − b(Closei(g \ l)) ≥
∑

ij∈l

[b(Closei(g)) − b(Closei(g \ ij))] (2.3)

In words: the deletion of some of player i ’s links hurts him weakly more than the separate

deletion of these links, one at the time.

Note the following property of concave functions: for any increasing concave function f :

R → R it holds that ∀x, δ1, ..., δT ,∆ ∈ R++, f(x) − f(x − ∆) ≥ ∑T
t=1[f(x) − f(x − δt)] if

∑T

t=1 δt ≤ ∆.

Let’s fix a graph g and a set of links l ⊂ Li(g). We substitute x ≡ Closei(g), ∆ ≡
Closei(g)−Closei(g\l), and for t = 1, ..., T , δt ≡ Closei(g)−Closei(g\it), where every pair in l

is renamed (in arbitrary order) as i1, i2,. . . ,iT. Using this substitution we learn from the result

above that for the (concave and increasing) benefit function b(·), b(Closei(g))−b(Closei(g\l)) ≥
∑

ij∈l [b(Closei(g)) − b(Closei(g \ ij))] is implied by
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∑

ij∈l

(Closei(g) − Closei(g \ ij)) ≤ Closei(g) − Closei(g \ l) (2.4)

So, (2.4) is a sufficient condition for (2.3), for this particular combination of g and l. As we

have to show that the statement (2.3) holds for any graph g ∈ G and set of links ∀l ⊆ Li(g),

we can use the substitution each time and check the sufficient condition 2.4. So to proof the

result, it remains to show for ∀g ∈ G, ∀l ⊆ Li(g) statement (2.4) holds.

By using the definition of closeness and after straightforward simplifications, (2.4) can be

rewritten as
∑

j∈N

dij(g \ l) −
∑

j∈N

dij(g) ≥
∑

ij∈l

(
∑

j∈N

dij(g \ ij) −
∑

j∈N

dij(g)). (2.5)

We define κl
i(g) := {k ∈ N : dik(g) < dik(g \ l)} for l ⊆ g and for the ease of notation we

write it afterwards as κ. We define κ̄l
i(g) :=

⋃

ij∈l κ
ij
i (g) and write it for the ease of notation as

κ̄. κ is the set of players whose distance to i increases when the l links are cut from g. κ̄ is the

union of players whose distance to i increases when one of the links in l is cut.

Now we can transform condition (2.5) by using the kappa sets (as the summation over all j

in N that are not in any kappa set, cancels out).

∑

k∈κ

dik(g \ l) −
∑

k∈κ

dik(g) ≥
∑

ij∈l







∑

k∈κ
ij
i (g)

dik(g \ ij) −
∑

k∈κ
ij
i (g)

dik(g)







∑

k∈κ

[dik(g \ l) − dik(g)] ≥
∑

ij∈l







∑

k∈κ
ij
i (g)

[dik(g \ ij) − dik(g)]






(2.6)

Note three properties of the distances in graphs (which are also used in Calvó-Armengol and

Ilkiliç, 2007).

• Note 1: dik(g \ l) ≥ dik(g \ ij) ∀ij ∈ l.

• Note 2: κ̄ ⊆ κ.

• Note 3: κij
i (g)

⋂

κih
i (g) = ∅ ∀ij 6= ih ∈ l ⊆ Li(g).
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By note 2 we can split the sum of the LHS in (2.6), and we switch the summation on the RHS:

∑

k∈κ̄

[dik(g \ l) − dik(g)] +
∑

k∈κ\κ̄

[dik(g \ l) − dik(g)] ≥
∑

k∈κ̄





∑

ij∈l

[dik(g \ ij) − dik(g)]





∑

k∈κ\κ̄

[dik(g \ l) − dik(g)] ≥
∑

k∈κ̄

(− [dik(g \ l) − dik(g)]) (2.7)

By considering note 3 and note 1, the RHS is non-positive. So, (2.7) clearly holds.20

Proof of Prop. 2.10. Remember that T1 is the shift in closeness when distances shift by 1.

(i) The minimal increase in benefit that a new link can lead to for both its owners is T1; because

a new link reduces at least the distance to the other player from 2 to 1. So, for c̄ < T1, it

follows immediately that nobody wants to cut a link in any graph (stability of complete graph)

and any two players who are not directly linked will add a link (uniqueness).

(ii) Shown in proof of Prop. 2.7.

20Hence, in this model deviations of cutting more than one link are only promising if deviations of cutting just
one link are. Note that the result [PS] = [PNS] together with the definition that [PNS] = [NS] ∩ [PS]
imply that [PS] ⊆ [NS].
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3 The Centrality Model

This section extensively studies the stable and emerging networks in one specific model where

agents try to optimize their centrality.

3.1 Introduction

3.1.1 Motivation and Research Questions

The examination of beneficial network positions is as old as social network analysis itself (see,

e.g., Wasserman and Faust, 1994). But, until recently, the question has not been asked how

incentive for central network positions affect the network structure. We introduce a model, in

which agents strive for closeness and betweenness (centrality), while links are costly.

Three motivations justify such a model. First, it complements the theory of centrality that

originally measured the effect of network positions on individual opportunities, but not the

effect of individual behavior on network structure. Secondly, the centrality indices are based

on network statistics that are relevant in many different applications – from ancient marriages

(Padgett and Ansell, 1993) to R&D collaborations (Walker et al., 1997). In the same manner

incentives for central positions are not restricted to single applications, but represent a general

type of behavior in building networks. Third, there is empirical support for centrality being

beneficial, e.g. Song et al. (2007) find that the centrality of a work unit has a positive impact on

its creativity. But regardless of the empirical validity of centrality indices, there is justification

to study network formation based on centrality incentives as long as there are researchers and

businessmen who claim that central positions are desirable. In fact, this claim becomes more

and more popular in the practice of business consulting, as argued in Section 1.1.

To cover the third aspect it is worthwhile to incorporate a centrality index that is well known.

We chose the three indices based on Freeman (1979): degree centrality, closeness centrality and

betweenness centrality. By this choice we cover the three most studied types of centrality

measures according to the typology of Borgatti and Everett (2006).

This model is supposed to capture two types of linking incentives.21 Closeness stands for

all incentives to access resources (information and support) by having many other agents in

close reach. Variants of closeness were defined in Subsection 2.3.1. Betweenness stands for

21We consider an environment where maintaining links is costly. Thus, degree centrality leading to costs (and
benefits) of direct links is not considered as a goal in its own right.
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the intermediation rents that stem from being a broker for others. Of course, there are other

indices to measure the intermediation rents. Depending on the application it might be more

appropriate to assume that only those players are getting intermediation rents who are essential

for a pair of players.22 A second shortcoming is that betweenness does not account for the length

of a path (as we will see in the definition). For instance, if a player is the only one between a

pair of agents his betweenness rent is the same as if there are 5 agents in a row that are on the

only shortest path. These two variations were studied by Goyal and Vega-Redondo (2007). In

their utility function they do not only incorporate incentives for intermediation rents, but also

incentives to avoid being brokered as well as incentives to be connected. In contrast, the model

studied here shall allow us to decouple effects of incentives for connections from incentives for

intermediation rents.23

This is not the first work to analyze network formation based on centrality incentives. Rogers

(2006) models the formation of weighted graphs using an index of social influence (Bonacich

index). The beneficial aspects in the models of Buskens and Van de Rijt (2008), Goyal and

Vega-Redondo (2007) and Jackson and Wolinsky (1996) can also be interpreted as measures

of centrality. What has not been done in the literature is (a) to contrast and (b) to combine

the dynamics of “closeness-type” incentives to the dynamics of “betweenness-type” incentives.

Considering the latter point, there is hardly any research on the interplay between different

types of incentives to predict network formation processes, although it is likely that multiple

incentives are simultaneously important.24

3.1.2 (A Centrality) Model

Consider a society (N,G, u). Closeness is formally introduced in Section 2.3: CLOSEi(g) =

M
M−1

−
∑

j∈N dij(g)

(M−1)(n−1)
. Its idea reaches back to the origins of social network analysis (Sabidussi,

1966). Dekker et al. (2003) argue that closeness increases accuracy of information. Song et al.

(2007) provide empirical evidence for the importance of closeness for the knowledge processing

of organizational units. Moreover, in the study of Powell et al. (1996) experienced firms are

22Being essential here means that there is no path between the pair that the focal player cannot block.
23Although this analysis is sometimes rather a thought experiment than an empirical model. Especially, for λ

close to 1.
24In fact, it seems difficult to find contexts where only one type of centrality is significant. For example, the

Medici’s position in the marriage network was important for their trading abilities (see Padgett and Ansell,
1993). Here betweenness centrality is stressed, but closeness should not be ignored. At least for agents with
low betweenness, it is important to be close to others.



Centrality 34

likely to occupy positions with high closeness.

Freeman (1979) clarifies that closeness measures one aspect of centrality, while it cannot

sufficiently capture others. Some agents exhibit a mediating role between other agents, which

can be beneficial for them. Burt (1992) emphasizes this idea by the term “tertius gaudens.” To

measure the brokerage role of a certain agent he not only proposes some new measures, but

also employs betweenness centrality (see Burt, 2002). Betweenness was introduced by Freeman

(1979) and was shown to be beneficial in many studies thereafter (e.g. Song et al., 2007).

The betweenness of an agent i is proportional to the number of pairs j and k for whom i lies

on the shortest path. If there are more than one shortest paths between j and k, the fraction

of shortest paths going through i is used. Formally,

BETWi(g) =
2

(n− 1)(n− 2)

∑

j<k(j 6=i,k 6=i)

τ i
jk(g)

τjk(g)
, (3.1)

where τjk(g) is the number of shortest paths between j and k, and τ i
jk(g) indicates the number

of shortest paths between j and k that go through i; the fraction
τ i
jk

(g)

τjk(g)
is replaced by zero,

when τjk(g) = 0. The constant before the fraction normalizes betweenness to be between zero

(an agent is on no shortest path between two other agents) and one (an agent is on all shortest

paths).

Besides closeness and betweenness, we also incorporate a player’s degree li(g), as in the

models (M1,M2,M3) before. Maintaining links is the source of costs in the network. On the

other hand, degree can also be interpreted as a measure of centrality (see Freeman, 1979).

We assume in our model that the costs of maintaining relationships exceed the benefits that

are restricted to direct contacts such that the net benefit of degree is negative. Without this

assumption every agent wants to be directly linked to every other agent, independently of the

network structure.

Note that the network statistics closeness, betweenness and degree are interrelated. Trivially,

an agent without any link, must have closeness and betweenness equal to zero. Such interde-

pendencies already imply a trade-off between high closeness, high betweenness and low costs:

while it is possible to reach two goals – having (a) high closeness and high betweenness (e.g.

center of a star k has maximal closeness, maximal betweenness CLOSEk(g) = BETWk(g) = 1,

but also maximal tie costs) or (b) having high closeness and low costs (e.g. a peripheral player

in a star, his average distance is smaller than 2) or (c) having high betweenness and low costs



Centrality 35

(e.g. the center of a line) – it is not possible to satisfy all three goals at once. Thus, agents

have to weigh the three aspects against each other.

In brief, the centrality model is based on the following assumptions (where the numbers refer

to the categories of assumptions introduced in Subsection 2.1.3):

A0 The relevant network statistics are closeness, betweenness and degree.

A1 The evaluation function25 is increasing in closeness, increasing in betweenness and de-

creasing in degree.

A4 Each player’s preferences are linear.

A5 All players have homogeneous preferences.

Given these assumptions, we can represent the preferences of any agent i ∈ N by a utility

function ui : G→ R with

ui(g) = (1 − λ)CLOSEi(g) + λBETWi(g) − cli(g).

The parameter c > 0 stands for the costs of one link (marginal costs). The parameter λ ∈ [0, 1]

stands for the weight of betweenness versus closeness in the benefits.26 We will analyze the

model for all points (λ, c) in the parameter space [0, 1]×R+, as they represent different contexts.

3.2 Methods and Basic Results

To study which networks are likely to emerge in the centrality model, we employ three com-

plementary methods: equilibrium analysis, enumeration, and simulation. In the following we

introduce each method and show some of its basic results.

3.2.1 Equilibrium Analysis

As throughout the other chapters, one can use analytical means (“paper and pencil”) to classify

networks into stable and unstable according to the notion of pairwise stability.

25For the conciseness of the model, the function is not defined explicitly.
26Instead of setting the slopes (λ and 1 − λ) in relation to each other, we could also have defined them

independently. Both notations allow us to represent any linear preferences and there is no difference when
examining stability and efficiency. The relative notation is advantageous for comparative statics, because c
then measures the costs in comparison to one unit of benefit.
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Analytical results on stability typically need the maximal incentive of any agent to sever a link

and the maximal incentive of any two agents to add a link and compare them to linking costs

c. Because benefits are based only on closeness and betweenness, the crucial aspects for a focal

agent i are the change in distances (
∑

j∈N dij(g) =̂ non-normalized closeness) and the change

in the number of shortest paths he is on, which will be called “brokerage” (
∑

j<k(j 6=i,k 6=i)

τ i
jk

(g)

τjk(g)
=̂

non-normalized betweenness). Specifically, if a new link for some agent i in some network g

means a decrease in distances of x and an increase in brokerage of y, then he is willing to form

the link only if c ≤ (1−λ)[x]
(M−1)(n−1)

+ λ2[y]
(n−1)(n−2)

. As players compare marginal costs with marginal

benefits. Although deriving the changes in distances and brokerage for a given situation might

be tedious, it is a straightforward task.

Let us first have a look at some prominent networks. The following Prop. 3.1 presents the

parameter combinations for which five prominent network structures are pairwise stable.

Proposition 3.1. In the centrality model the following holds:

(i) The complete network gN is stable if and only if c ≤ 1−λ
(n−1)(M−1)

.

(ii) The empty network g∅ is stable if and only if c ≥ 1−λ
n−1

.

(iii) A star network g? is stable if and only if 1−λ
(n−1)(M−1) ≤ c ≤ min{1+λ

n−1 ; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1) }.

(iv) Let n be a multiple of 4. Then a circle network g© is stable if and only if
(1−λ)[ 1

8
n2− 1

2
n+1]

(M−1)(n−1)
+

2λ[ 1
8
n2− 3

4
n+1]

(n−1)(n−2)
≤ c ≤ (1−λ)[ 1

4
n2− 1

2
n]

(M−1)(n−1)
+

2λ[ 1
8
n2− 1

2
n+ 1

2
]

(n−1)(n−2)
.

(v) A complete bipartite network gl:r with 2 ≤ r ≤ l (where l and r are the sizes of the two

groups) is pairwise stable if and only if 1−λ
(n−1)(M−1)

≤ c ≤ 2(1−λ)
(n−1)(M−1)

+
2λ[ r−1

l
]

(n−1)(n−2)
.

All proofs of this chapter can be found in Section 3.5. The first implication of Prop. 3.1 is

that non-existence of stable networks is not an issue in this model.

Proposition 3.2. In the centrality model for any parameters (λ, c) ∈ [0, 1] × R+ there exists

at least one stable network.

As for the model in Section 2.3, at least one of the trivial networks (empty network, complete

network or the star) is stable. Figure 4 depicts the parameter space with weight λ on the

horizontal axis and marginal cost on the vertical axis. It illustrates (among other results) the

“regions” of the parameter space where the complete network, the star network, the balanced
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complete bipartite network and the circle network are stable.27 Not illustrated is the region

where the empty network is stable.

Closeness Betweenness0.5

c c

empty network unique

circle network

complete bipartite networks

star network and trees

complete network unique

Figure 4: “Parameter map” with stability for some prominent networks.

It is intuitive that for sufficiently low c, the complete graph is stable, as long as there are

some incentives for closeness. Above the upper bound for the stability of the complete network,

complete bipartite networks can be stable. Among them is the star network that is stable for

quite a range of the parameter space, but not for λ = 1. The figure indicates that the balanced

complete bipartite network and the circle network, both can be stable for any weight λ. While

the circle networks are high cost phenomena, the complete bipartite networks are low cost

phenomena.

Some aspects deserve additional attention. The boundary between stability of the complete

network and the complete bipartite networks marks a special border. At this border agents

are indifferent between keeping and removing a link with the minimal possible benefits – that

is a link that only serves to reducing the distance to one other agent by the amount of one,

27Results look different for small network size and slightly different for networks with an odd number of players.
For example, Figure 6 and Figure 7 qualitatively present how these regions look like for n = 8 and for n = 14.
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while it does not provide any brokerage. As a consequence, below this border the complete

network is uniquely stable. A similar observation can be made for the upper boundary of the

star network. This is the highest cost level, such that a network with loose ends can be stable.

Finally, for high enough c, the empty network must be uniquely stable.

Proposition 3.3. In the centrality model the following holds:

(i) The complete network gN is uniquely stable if and only if c < 1−λ
(n−1)(M−1)

.

(ii) If c > min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

}, any network with pendants (players at loose ends) is

unstable.

(iii) For large enough c, the empty network is uniquely stable.

So, the first set of equilibrium analysis results structures the parameter space. Below the

first frontier, the complete network is uniquely stable. As a second frontier one can consider

the upper bound for the stability of the balanced complete bipartite network. It can be shown

that any complete bipartite network with at least two agents in each group can only be stable

below this frontier.28 The intuition for this result is simple: If a complete bipartite network is

not balanced, there is one group of agents with less beneficial ties than in the balanced network,

such that high costs c lead to a deletion of ties. The third frontier has a “roof”-like shape and

restricts stability of networks with loose ends. Among them are all minimal networks (that

are non-empty). Consequently, trees can only be stable in the parameter region where the star

network is stable.

The last frontier is the lower boundary for the uniqueness of the empty network. Prop. 3.3

shows existence of such a boundary without answering where it is. We depicted it at the upper

boundary for stability of the circle network. Our conjecture that this is the maximal cost level

where networks with non-critical links can be stable.29 If this conjecture is true, it follows that

above the third and the fourth frontier, neither a network with non-critical links nor a network

with loose ends can be stable. Thus, only the empty network remains. Note that the empty

28This statement includes complete bipartite networks (with more than one player in both groups) with isolates,
which will be discussed in Subsection 3.3.2.

29We argue that among all networks that contain non-critical links, the circle network has the highest marginal
benefit for any of those (non-critical links). Define for ij ∈ g the marginal benefit of agent i as βij

i (g) := (1−
λ)CLOSEi(g)+λBETWi(g)−[(1−λ)CLOSEi(g\ij)+λBETWi(g\ij)]. And let T be the maximal marginal
benefit that a non-critical link can mean to both its owners, that is T := maxg∈G̃ min{βij

i (g), βij
j (g)}, where

G̃ := {g ∈ G : 1 < dij(g) < M}. The problem is to find the argmax of this expression.

Our conjecture is that T = β
ij
i (g©). For n odd this is (1 − λ) n−1

4(M−1) + λ n2−4n+3
4(n−1)(n−2) . For n even the

threshold is slightly smaller. If the conjecture holds, then for c > ub(g©) in any network with circles (circles
consist of non-critical links) at least one agent is willing to cut a link. Thus ub(g©) is the maximal cost level
where any network with circles can be stable.
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graph is stable “far below” this frontier,30 and trivially stable if the importance of closeness is

sufficiently low.

The equilibrium analysis is not only used to analyze for which parameter settings a particular

network is stable, but also to characterize the stable networks by properties they must or must

not satisfy. What is not possible by “paper and pencil”, however, is to find all pairwise stable

networks.

3.2.2 Enumeration

For n not too big (say n < 12) a computer can find all stable networks for a given weight

of the incentives.31 To be more precise, for a fixed weight λ, our algorithm takes a network

and considers all possible deviations (in the sense of pairwise stability). This yields a lower

bound (“addition proof”) and an upper bound (“deletion proof”) of costs c that are necessary

and sufficient for the focal network to be pairwise stable.32 For most of the networks the lower

bound is greater than the upper bound implying they are not stable for any costs c (at the fixed

weight λ). For some networks the lower bound coincides with the upper bound, implying that

there is an infinitely small range of costs (c) such that this network is pairwise stable.33 Those

networks do not seem to be reasonable candidates for emerging networks, because the networks

would lose their stability due to the smallest perturbations in the cost c. We will exclude such

networks when counting the number of stable networks for some weight λ.

We computed all stable networks for n = 3, ..., 8 setting M = n and fixing the weights at

λ = 0, 0.1, 0.2, ..., 1. With this procedure we can find all stable networks, except those which

are stable for some not used weight (say λ = 0.724) and not stable for all the used weights (i.e.

λ = 0.7, 0.8).

30If T = (1− λ) n−1
4(M−1) + λ n2−4n+3

4(n−1)(n−2) , we can assure that the empty network is stable above T ( 1−λ
n−1 < T ), by

letting M < 1
4 (n− 1)2 + 4.

31Such a method was used by Corbo and Parkes (2005) to find all stable networks in the Fabrikant model for
n = 10, which is equivalent to the centrality model if λ = 0 and M = ∞ (see Remark 2.3.1).

32To run the enumeration, we either have to fix λ and search for ranges of c for a given network, or fix c and
search for a ranges of λ. We chose to fix λ, because there are some canonical candidates of λ to analyze, i.e.
λ = 0 and λ = 1, while this is not true for c.

33As an example consider the network obtained when deleting one link from the complete network. This
network is pairwise stable if and only if the parameters are such that both, the complete network and the
star network are stable. In fact, this means an asymmetric treatment of the parameters c and λ. When we
find a network to be stable for some fixed λ, we cannot generally exclude that the range of λ for which it is
stable, is infinitely small.
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Table 2 shows the number of all different stable networks found with this procedure.

Table 2: Number of stable networks in dependence of size.

Network size n 5 6 7 8
Non-isomorphic networks 34 156 1,044 12,346
Fraction of stable networks for λ = 0.5 26% 13% 4.3% 0.95%
For Closeness (λ = 0) 6 12 21 45
For λ = 0.5 9 20 45 117
For Betweenness (λ = 1) 4 9 18 37

While the number of possible networks explodes with the size n, the number of stable networks

increases much more gradually. So our notion of stability – despite being a minimal requirement

– can already exclude many networks from being part of a prediction.

Beyond the sheer number, the enumeration can identify the stable networks. For instance,

Figure 5 shows the nine networks with five agents that are stable for λ = 0.5, as well as the six

networks that are stable for λ = 0 and the four networks that are stable for λ = 1.

Also stable for =0 and =1 Also stable for =0 Not stable for =1 or =0 Stable for =1, but not =0.5

Figure 5: All stable networks for λ = 0.5 with indication of stability for λ = 0 and λ = 1.

While the enumeration provides a full picture of the candidates for emerging networks, it

does not reveal which networks are most likely the endpoint of a dynamic process.34

34The equilibrium analysis and the enumeration are based on the notion of pairwise stability. Which is
conceptually a weak requirement. However, we do not work with stronger notions of stability for three
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3.2.3 Simulation

The third method is a simulation of myopic improvement dynamics. Consider a society where in

any period two agents randomly meet. Each meeting is a possibility for those agents to change

their relationship. To run a simulation one has to fix both behavioral parameters, weight λ and

costs c (as well as the basic settings, n and M). Then, the simulation takes the following steps:

1. Start with some network g0.

2. Pick a pair of players {i, j} at random.

3. Allow (PS) deviations for the link ij. That is to form the link if both improve their

utility (at least one strictly), g1 = g0 ∪ ij. Cut the link if at least one improves strictly,

g1 = g0 \ ij. Keep the graph in all the other cases, g1 = g0.

4. Take g1 and go back to step 1. Repeat until a pairwise stable network is reached: gT ∈
[PS].

So the procedure starts with one given networks, follows the sequence of deviations and stops

when no more changes occur. As starting networks we took a random sample (of all networks)

stratified by density, with sample size around 2500. We ran the simulation starting with every

network for n = 3, ..., 8, and a random sample for n = 14 and n = 20.

To give a specific example: For n = 14 we used a sample of 2’432 starting networks. Each of

them was used for 42 runs (see next paragraph). All sequences converged to a stable network

in less than 10’000 steps. The number of iterations is heavily skewed with a mean of 137 and

a median of 56.

It lies in the nature of such a simulation that one has to choose a few parameter settings

out of a continuum of possibilities. As in the enumeration, we fixed M = n in any simulation.

As parameter setting we chose the weights λ = 0, 0.1, 0.5, 0.9, 1 and four cost levels (c =

v_lo, lo,med, hi). The weights include the partial models – where only closeness incentives are

present and only betweenness incentives are present – one balanced model λ = 0.5, and cases

that check for jumps when going from a partial to a combined model.

reasons: a) As the enumeration shows, only a small subset of all networks are pairwise stable. b) We let
the enumeration also check for unilateral stability – which is stronger than pairwise stability and stronger
than pairwise Nash stability – but it turns out that this refinement does not heavily decrease the number of
equilibrium networks in our model. c) The simulation partially serves as some kind of equilibrium selection
device.
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The cost levels are defined according to analytical considerations as follows (in increasing

order): v_lo := 1
23n

− ε, low := 1
22n

− ε, med := 1
21n

− ε, and hi := 1
20n

− ε, where ε = 0.001.35

We have not run the simulation for c = v_hi, where typically the circle network is stable for

any λ. The subtraction of ε = 0.001 only serves to avoid prominent numbers. For λ = 1 there

was an additional run for “epsilon costs” c = ε, that is a cost level sufficiently small such that

any increase in betweenness benefits would justify its costs (for not too high n). By starting

twice (or three times) with each configuration there are 2(4 ∗ 5+ 1) = 42 (respectively 63) runs

per starting network.

Figure 6 and Figure 7 represent the parameter settings of the simulations for n = 8 and

n = 14. Each red dot stands for one setting of the parameters. While the proportions of the

different areas do not represent their real size, the figures represent the qualitative properties.

For example, for n = 14 and (λ, c) = (0.5, med), it holds that the star network is stable,

complete bipartite networks (with more than two players in each group) and the circle network

are unstable, and the empty network is unstable (the dot is below the blue line). Since the

qualitative position of a setting is important for the interpretation of the simulation result and

due to the large number of results, we will restrict our argumentation to examinations of n = 8

and n = 14. For n = 8 we can compare the simulation results with the enumeration results

to get a picture of how certain networks are selected from the set of stable networks. n = 14

seems sufficiently high to identify many of the network patterns (for small size, certain network

patterns degenerate).

An alternative description of how these types of simulation work can be found in Buskens

and Van de Rijt (2008). The purpose of the simulation is two-fold. Firstly, the simulation

can select among the stable networks the ones that are more likely to emerge. This works

well for n not too big. For instance, while the enumeration shows that for n = 8 there are

around 10 to 20 stable networks (for each parameter combination), the simulation leads to

two or three of them in at least 60 percent of the runs. Figure 8 exemplarily shows the most

frequently emerging networks and their probabilities of occurrence, when starting with every

non-isomorphic network three times.

The second purpose of the simulation is to provide a prediction of the patterns that the

emerging network exhibit. Although for larger size, n ≥ 12, we do not know all candidates

35Since we normalized betweenness and closeness to be within [0, 1] and used one unit of benefit as a numeraire
(λ+ (1 − λ) = 1), costs, i.e. constant c̄, across different settings of λ are interpretable. However, with some
knowledge about aggregation of closeness and betweenness (see Section 4.1) there is a different perspective
on this issue, as articulated in Remark 4.1.1.
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c c

empty network unique

complete network unique

complete bipartite networks

star network and trees

very low very low

low low

medium medium

high high

circle network

epsilon

0 10.5 0.90.1

Figure 6: Setting of the parameters λ, c
for simulation with n = 8.

0 10.5

c c

empty network unique

complete network unique

complete bipartite networks

star network and trees

low low

very low very low

medium medium

high high

circle network

epsilon

0.90.1

Figure 7: Setting of the parameters λ, c
for simulation with n = 14.

for stable networks (as the enumeration is no longer feasible), the simulation is still a proper

computational experiment. Starting with the same network structures, but using different

behavioral parameters provides important evidence how changes in behavior affect the network

structure. Table 3 shows the density of the emerging networks in the simulation with n = 14.

There is a strong effect of the marginal costs on the density. The higher c, the lower the density.

The weight λ does also have effects but those are not obvious.

Table 3: Density of emerging networks (sim. n = 14).

c λ 0 (Close.) 0.1 0.5 0.9 1 (Between.)
epsilon 78.2%
very low 34.7% 29.3% 35.5% 44.6% 25.7%
low 24.8% 24.7% 19.6% 29.9% 0.01%
medium 18.7% 18.3% 15.7% 16.1% 0.9%
high 15.1% 15.0% 14.7% 14.0% 0.1%

In the following we employ all three methods presented here (equilibrium analysis, enumer-

ation, and simulation) to answer specific questions about the consequences of closeness and

betweenness incentives on the network structure.

Remark 3.2.1 (Complementary methods). We argue that each of the three methods has its

significant strengths and weaknesses such that omitting one of them would not lead to an

appropriate examination of our model. Clearly, without equilibrium analysis, enumeration and
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Closeness

empty network
Betweenness

netid104
0.5

high costs (epsilon costs)medium costslow costs\ c

13% (not high costs, 

but epsilon costs!)

20% 11%23%

38%24%

99.9%60%

21%

probabilities

Figure 8: Most frequently emerging networks for different parameters (sim. n = 8).

simulation are black boxes leading to data which can be described but neither generalized nor

explained.

Omitting the enumeration, we do not get a full picture of the candidates for stable networks.

This is an issue, because the dynamics of the simulation are not only driven by the utility

function – the point we are interested in – but also by the process of link formation.36 I.e., the

rule that a pair of players is drawn to revise their relationship might induce different network

structures than, e.g., the rule that one players is drawn, who can change the relationship that

is most valuable for him.

Finally, without the simulation we assess a dynamic question (which networks emerge when...)

by only static methods. Moreover, we would not have had numerical examples for n ≥ 10 such

that we might miss important features of emerging networks.

3.3 Closeness versus Betweenness Incentives

This section first contrasts closeness dynamics with betweenness dynamics and then turns to

the combination of both.

36I thank Ulrik Brandes for pointing out this issue.
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3.3.1 Dynamics of Closeness

Although the centrality model in this form is new, there is sufficient literature to build expec-

tations how the emerging networks look like for its extremes, full weight on closeness (λ = 0)

or full weight on betweenness (λ = 1).

In the case of full weight on closeness, each agent strives for short distances to others, while

optimizing costs. This is similar to the utility function of the connections model, discussed in

Jackson and Wolinsky (1996), Hummon (2000), and Doreian (2006), where the value of each

connected agent decreases with its distance. The most prominent result of the connections

model is the star network, but besides different other stable networks were found (see Hum-

mon, 2000).37 In Section 2.3 we have shown that the analytical results of the (symmetric)

connections model correspond one-to-one to the closeness model with linear evaluation (which

is the centrality model for λ = 0). Furthermore, it was shown by enumeration that the sets of

stable networks for both models are almost coinciding.

However, we have not characterized in that section how the stable networks look like. Corbo

and Parkes (2005) identify some classes of stable networks and also mention the difficulty in

finding all stable networks. So the question remains whether the star or star-like networks

are a typical outcome for such a setting (closeness-type incentives) and which other networks

can occur. The star belongs to the family of minimally connected networks, the tree networks.

Among the trees the star is the network with the minimal sum of distances. Therefore, star-like

networks can be described as connected, sparse with short distances. Let us analyze to

which extent the stable and emerging networks for closeness incentives (λ = 0) satisfy these

three properties.

Equilibrium Analysis

For c < 1
(n−1)

all stable networks are connected, as shown in see Prop. 2.9. This threshold is

slightly above c = hi.

Concerning distances, one can find an upper bound for the maximal distance in a stable

network.38 A tie that links two agents who were at a certain distance before means a certain

amount of benefits in any case. Let the diameter of a network be the maximal distance between

two connected agents in the network.

37The prominence of the star outcome is also due to a similar model by Bala and Goyal (2000).
38This result is also found by Fabrikant et al. (2003).



Centrality 46

Proposition 3.4. In the centrality model with λ = 0 and costs c, the following holds: The

diameter of a stable network is smaller or equal to p,

with p = max{
√

c4(n− 1)(M − 1) + 1, 1}.

Let us study the implications of this result in a numerical example: for c = lo (= 1
22n

− ε ≈
1

22n
), the boundary is p =

√

(n−1)(M−1)
n

+ 1. That means that the maximal real distance that

can emerge in a simulation with M = n = 14 is three and in a simulation with M = n = 8 this

is two. For c = med, the maximal possible distance is three for size 8 and five for size 14.

Also the sparsity of stable networks can be shown analytically. As for each level of c, we

find an upper bound for the average degree. We cannot exclude a high degree player directly

because a star-like position leads to high benefits which can compensate for the costs. But

there is a link between the existence of small circles and the average degree d(g) := l(g)
n

that

we can use to get the following result:

Proposition 3.5. In the centrality model with λ = 0, the following holds: If c > 9n
16(n−1)(M−1)

,

then d(g) < 1
2
n + 1

2
for any stable network g and if c > 4n

5(n−1)(M−1)
then d(g) <

√
n for any

stable network g.

The first part does not drastically restrict the candidates for emerging networks. It restricts

the density of the stable networks not to be higher than around 60 percent.39 The second part

applies for higher costs, e.g. c = hi. It restricts the stable networks of size 8 to have less than

11 links, networks of size 14 to have less than 25 links.40

Enumeration

While the equilibrium analysis provides upper bounds, the enumeration reveals to what extent

the set of all stable networks for closeness incentives satisfies the three properties of interest

(sparsity, connectedness and short distances). Table 4 shows the enumeration results. The first

column describes the properties of all non-isomorphic networks and serves as a benchmark, the

second column contains all stable networks for closeness incentives, the third column takes the

same set excluding the complete and the empty network, which affect the result.

39From knowing the average degree, the density can be computed as D(g) =
1
2

n∗d(g)
1
2
n(n−1)

= d(g)
n−1 . We get: If

c >
9
16

n

(n−1)(M−1) , then D(g) <
1
2

n+ 1
2

n−1 and if c >
4
5
n

(n−1)(M−1) , then D(g) <
√

n

n−1 .
40The result on average degree and the result on the diameter get stronger for bigger sizes of the networks. For

n = M = 100 and c = lo the diameter is not higher than 9; and c = hi restrict the density to be less than
around 10 percent.
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Table 4: Properties of stable networks for pure closeness incentives λ = 0 (enum. n = 8).
all networks stable networks non-trivial stable n.

Number of networks 12’346 45 43
Number of trees 253 19 19
Number of connected networks 11’117 43 42
Mean number of links 14 9.09 8.86
Mean of average distance 1.779 2.149 2.040
Mean of average real distance 1.563 1.982 2.005

The first two rows of the table show that out of the 12′346 non-isomorphic networks, only

253 (that is 0.2 percent) networks are trees. While for the set of stable networks for full weight

on closeness λ = 0 there are 19 trees, which makes 42 percent.41 To interpret the rows in the

middle, note that a tree is connected with exactly 7 links. The table shows that, indeed, most

stable networks are connected and sparse with an average of 9 links per network. The last

two rows assess the distances. The average distance measures the distance between any pair of

agents in a network; the average real distance only considers connected pairs. The set of stable

networks exhibits relatively high distances. While a star has an average distance of 1.75, in the

set of stable networks there are many with higher distances. In fact, only three of the 45 stable

networks exhibit a lower average distance than an arbitrarily chosen network. This is the only

aspect of star-like networks that is not consistent with the expectation that star-like networks

are stable for pure closeness incentives (λ = 0). The stable networks are sparse and connected,

but do not necessarily exhibit short distances.42

The results above do not differentiate outcome by the level of c. Analytically, it is easy to

show that trees can only be stable for parameter values for which the star network is also stable

(this is a consequence or Prop. 3.3 (ii); see also Figure 4). For pure closeness incentives λ = 0,

this is the range c ∈ [ 1
(M−1)(n−1)

, 1
(n−1)

]. Below that cost range the complete network is uniquely

stable as shown in Prop. 3.3 (i). Above this range there are only few stable networks. For

example, using the enumeration for n = 8 there are three networks that can be stable above

this cost range. Those are the empty network, the circle network (see Prop. 3.1) and a network

consisting of a circle of size 7 plus one isolate. Let us now analyze which networks emerge

within this cost range.

41For other weights (λ = 0.1, 0.2, ..., 1), this fraction is not above 22 percent.
42We will return to this point, when discussing efficiency of the centrality model in Chapter 4.
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Simulation

We ran a simulation with three settings of c where trees are stable, starting with any possible

network. Table 5 shows the frequency that a tree and specifically the star emerges, as well as

the density and average distance of the emerging networks. The average distance equals the

average real distance, since all the emerging networks must be connected (by Prop. 2.9 (i)).

Table 5: Fraction of trees emerging for closeness incentives (sim. n = 8).
low cost medium cost high cost

Stable Networks 12 10 20
Trees emerging 1% 11.4% 90.7%
Star emerging 1.0% 0.6% 0.1%
Number of links 12.29 8.58 7.09
Average distance 1.56 1.90 2.34

The table shows that the star network itself is not a good prediction for the dynamics of

closeness.43 Trees are the dominant structure for a certain level of c. The 4th row shows the

average number of links for the emerging networks. The emerging networks are sparse, but

become denser when reducing c.

By drawing all of the frequently emerging networks in this simulation, we made the following

observations: For c = med the dominant architecture consists of loose ends and some non-

critical links forming a circle of size 4 or 5 (but not smaller). For c = lo we find more of

these circles in the dominant architecture, but there are typically no loose ends. The emerging

networks for these cost levels do not belong to some class of bipartite networks (neither trees

nor complete bipartite).

3.3.2 Dynamics of Betweenness

For full weight on betweenness (λ = 1), every agent is striving for brokerage opportunities. A

similar model was studied by Buskens and Van de Rijt (2008) using Burt’s network constraint

measure as operationalization of the benefits of structural holes. By equilibrium analysis and

simulation they find that complete bipartite networks emerge. More particularly, the balanced

complete bipartite network is the most likely outcome. Moreover, Goyal and Vega-Redondo

(2007) and Willer (2007) present models that (are supposed to) cover Burt’s idea of structural

holes. Willer (2007) finds the circle network as the most likely to emerge, but since he only

43This result is consistent with the argument of Watts (2001) analyzing the dynamics of the connections model.
In particular, she shows that for a dynamic process like the one we consider here (in the simulation), the
probability that the star network is reached, converges to zero for n going to infinity.
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considers networks up to size n = 4, the circle network cannot be distinguished from a complete

balanced bipartite network. Burger and Buskens (2006) use a simple utility function covering

the disadvantage of closed triads (no brokering) on a local level. Computer simulations select

the balanced complete bipartite network (for low capacity constraints), which is confirmed in

laboratory experiments. Finally, in the model of Goyal and Vega-Redondo (2007) agents not

only seek brokerage opportunity, but also derive benefits from the size of their component and

try to avoid being mediated by others. With a strong notion of stability, they find the star

network as most likely outcome. Since in our model for λ = 1 agents only optimize their

brokerage benefits, we expect that the dynamics lead to complete bipartite networks.

Properties of Induced Networks

Bipartite networks are characterized by not containing any circle of odd length. Since this

precludes complete triads, bipartite networks cannot be extremely dense. However, complete

bipartite networks are quite dense and contain only distances of length 1 and 2. Table 6 shows

to which extent the stable networks for λ = 1 satisfy those properties.

Table 6: Properties of stable networks for pure betweenness incentives λ = 1 (enum. n = 8).
all networks stable networks

Number of networks 12’346 37
Number of connected networks 11’117 19
Mean number of links (for connected subset) 14 (14.41) 12.7 (16.16)
Mean of average real distance 1.563 1.466
Fraction of networks with maximal real distance of 2 38.6% 86.5%
Mean of fraction of 3-circles 13.3% 9.0%
Number of networks without any 3-circle 3.3% 54%

First, it is notable that almost 50% of the stable networks are not connected. This fact has to

be considered when interpreting the other statistics. The mean density for the stable networks

is lower than in an arbitrary network, but this can be explained by the over-representation of

unconnected networks. The last rows of the table show that a considerable number of stable

networks satisfy the requirement of not containing a circle of length 3. The middle rows of

the table show that the distances of the stable networks are short and, indeed, there are few

networks with distances larger than 2. This observation is supported by the following analytical

result.

Proposition 3.6. In the centrality model with λ = 1, the following holds: (i) Any network

with a diameter of size (p ≥ 4) or larger is not stable if c <
(b p

2
c−1)b p

2
c

(n−1)(n−2)
. Moreover, (ii) for



Centrality 50

sufficiently low c,44 any network with a diameter of three or larger is not stable – in other

words: the distance between any two players is either one, two or M .

Those results give a first suggestion that the stable networks resemble complete bipartite

networks. Let us now check how many of the emerging networks really are complete bipartite

when starting with different values of c.

Emergence of Complete Bipartite Networks

As argued before, complete bipartite networks can only be stable for parameter values for which

the balanced complete bipartite network is also stable (see Subsection 3.2.1). This part of the

parameter space is depicted in Figure 4. So, we know that complete bipartite networks can

only occur for relatively low c. Nonetheless, if only betweenness matters, as the enumeration

shows, there are not many stable networks above this range, that is only 9 out of 37 stable

networks for n = 8. Plotting the other 28 networks shows that many are or at least resemble

complete bipartite networks. Some of them do not belong to this class in a strict sense, e.g., a

network with two isolates and a (4:2)-complete-bipartite component.

We ran the simulation for three settings of c, where complete bipartite networks are stable.

Table 7 presents the frequency of emergence for different sets of complete bipartite networks

(with at least two agents in each group). As the table shows, the family of complete bipartite

networks are, indeed, the dominant structure. Moreover, it can be observed that for small costs

c, rather the connected ones emerge; for higher costs c, rather the balanced ones. The balanced

complete bipartite network, belonging to both subclasses, is the most frequently emerging

network. It is notable that for c = lo the empty network emerges in 20.8% of the cases and for

costs higher than depicted (c = med and c = hi) the empty network emerges in 99.9% (resp.

94.0 %) of the simulation runs, while also the circle network is stable.

Table 7: Fraction of complete bipartite networks (CB) emerging (sim. n = 8).
epsilon costs very low costs low cost

Stable Networks 19 9 4
All CBs with or without isolates 40.4% 78.3% 61.1%
CBs (2:6, 3:5, 4:4) without isolates 29.0% 38.7% 0.9%
Balanced CBs (4:4, 3:3, 2:2) with or without isolates 13.4% 37.6% 61.1%
Balanced CB (4:4) without isolates 12.5% 25.4% 0.9%

Summarizing the dynamics of closeness and betweenness, we find that the results of our model

44Epsilon costs (c = 0.001) satisfy this requirement for n ≤ 15.
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correspond with the literature on similar models. The results suggest as a rule of thumb that

incentives for short paths (here closeness) lead to tree networks and incentives for intermediation

rents (here betweenness) lead to complete bipartite networks – without implying that their most

prominent representatives (the star and the balanced CB) emerge. Moreover, it must be stressed

that the results depend on the costs c.

3.3.3 Interaction of Multiple Incentives

Having characterized the emerging networks for pure closeness incentives (λ = 0) and for pure

betweenness incentives (λ = 1), the next question is how those results carry over to a scenario

with a combination of the two, what we call “mixed incentives”.

First, we check for trees and complete bipartite networks (the two dominant classes of

emerging networks for pure incentives). Running simulations reveals that networks of both

classes can also emerge quite frequently for mixed incentives. For example, in a simulation

with n = 8 and λ = 0.5, there is a cost level (i.e. c = v_lo) where complete bipartite networks

emerge in 37.8 percent of the runs; and there is a cost level (i.e. c = hi) where trees emerge in

78 percent of the runs. This, however, is only part of the story.

By enumeration we compare all stable networks for different incentives. Figure 9 depicts the

number of all stable networks found for different weights λ. The networks are organized by the

range of weights λ for which they are stable.

Strikingly, there are more stable networks for mixed incentives (λ = 0.1, ..., 0.9) than for pure

incentives (λ ∈ {0, 1}). All 45 networks that are stable for closeness incentives (λ = 0) are

also stable for some other weight. Eight can be stable for any weight; fifteen are stable for any

weight, except for pure betweenness (λ = 1). For pure betweenness incentives (λ = 1), there

are 37 stable networks. Fifteen of them never occur for any other weight (we used). This is

remarkable, as only three networks of the other categories are found stable for only one weight.

The other stable networks for betweenness are typically also stable for any other weight, except

for pure closeness (λ = 0). Thus, there is strong indication that the stable networks across

certain weights do not differ heavily, except for the case of pure incentives. One network was

even found that is stable for both pure incentives λ = 0 and λ = 1, but not for any mixed

incentive λ = 0.1, ..., 0.9.

Already the sheer number of stable networks indicates that pure incentives are special cases.

Measuring certain properties of the set of stable networks confirms that mixed incentives indeed
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lead to qualitatively different results from pure incentives. Figure 10 shows the cost ranges [c, c̄]

for all stable networks for different incentives. The two graphs depict the median of the lower

bound c and the median of the upper bound c̄ for stability.

Figure 9: Number of stable networks
by weights λ they are stable
for (enumeration n = 8).
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Figure 10: Cost range (median of all
stable networks) across cer-
tain weights λ (enumeration
n = 8).

For the mixed incentives (λ = 0.1 to 0.9), the typical costs for stability do not vary heavily,

but the results differ drastically for the extremes λ = 0 and λ = 1. So we observe that, although

the benefits of our model are a linear combination of closeness and betweenness, the results

due to enumeration may exhibit jumps.45 Thus, introducing a bit of closeness (betweenness)

incentives into a pure betweenness (closeness) model may heavily affect the stable networks,

changing and increasing the number of the candidates for emerging networks.

Integration of Isolates

To understand why such phenomena can occur, we analyze the interaction of closeness and

betweenness incentives focusing on one structural feature: the integration of isolates. Consider

a pendant i and his (only!) neighbor j, who is part of a larger component.

• When closeness only matters (λ = 0): i has a strong interest in the link ij, as this link

is his only connection to the rest of the network (without ij, CLOSEi(g) = 0). Player

j’s interest is restricted: cutting ij means not being connected to i, but does not have

an impact on any other distance. So for high enough marginal costs c, i is willing to link

with j but j rejects this offer.

45Not any characteristic of the stable networks is as discontinuous as the median costs, as can be seen in the
next subsection.
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• When betweenness only matters (λ = 1): j has a strong interest in the link ij because it

provides a considerable amount of betweenness (increasing with the size of j’s component).

On the other hand i does not want to keep the link if he is only interested in betweenness

(as his betweenness is zero with or without ij). So a network with loose ends cannot be

stable when only betweenness matters.

• When both incentives are present (λ ∈ [ε, 1 − ε]): both players do have high interest in

keeping this link. But for different reasons: i wants to keep access to the community

(closeness incentives); j enjoys mediating i with all his connections (betweenness incen-

tives). While in the partial models networks with loose ends are not stable (for high

enough c), they may well be stable in a mixed model.

The example here is a consequence of the players’ incentives to form critical links, as stated in

the next proposition. A bridge is a link that connects two otherwise unconnected components.

Proposition 3.7. Consider two agents i and j in different components of size l+1 (respectively

r + 1). In the centrality model agent i is willing to form a critical link to j if c < (1 −
λ)

(r+1)(M− 1
2
r−1))

(M−1)(n−1)
+ λ 2l(r+1)

(n−1)(n−2)
.46

By setting one component to be zero, e.g. r = 0, we are in the situation discussed above.

The threshold is sufficient but not necessary – it stems from considering a line structure in

the non-critical component (that is the network structure with the least marginal closeness

for the agent i). The necessary condition to be willing to form a link occurs when the non-

trivial component forms a star-like network structure. This was used in Prop 3.3 (ii) showing

a threshold for the stability of networks with loose ends. The result can be illustrated in the

Figure 4 in Subsection 3.2.1 since the upper boundary for the trees (e.g., the star network) is

driven by the fact that any tree contains loose ends. This area has a “roof”-like shape, achieving

its maximum for a combination of closeness and betweenness incentives. Especially, for pure

betweenness λ = 1, many networks fail to be stable because agents (i.e. pendants) do not have

any incentive to keep a link.47 Introducing a bit of closeness benefits can justify keeping these

relationships.

46Interestingly, adding players (increasing the l and r) has an additive effect on the marginal closeness, but a
multiplicative effect on the marginal betweenness of i and j.

47In 75 percent of all networks (n = 8) some agents are willing to sever a link even for the smallest costs c = ε

for pure betweenness λ = 1. The reason is that in most networks there is an agent with no betweenness that
already makes this network unstable.



Centrality 54

The example of integrating an isolate only gives a partial explanation why mixed incentives

lead to different network structures than pure incentives. Not only the number of stable

networks with loose ends is bigger for intermediate weights, but also the number of stable

networks without loose ends, as Figure 11 shows. The dotted line represents the number of

stable networks with loose ends, e.g. for λ ∈ [0.6, 0.9], the majority of the stable networks

exhibits loose ends.

The example shows how in a mixed model different incentives can be at work, although all

agents do have the same preferences.

3.3.4 Dynamics of Closeness and Betweenness

We discovered that stable networks for mixed incentives (0 < λ < 1) differ from stable networks

for pure incentives (λ ∈ {0, 1}). The next question is how they differ. Our analysis of the

dynamics for mixed incentives is rather exploratory and is limited to reporting basic results.

The first figure shows three networks that are stable for mixed incentives only (that is: they

are stable for some λ but not for λ = 0 or λ = 1).

The subsequent tables and figures report basic characteristics of the stable and emerging

networks for different incentives. Figure 13 shows the distribution of density (number of links)

in the stable networks. Figure 14 depicts the mean of this network statistic as well as of

different other network statistics (stretched in a way that all shapes can be seen). MAXDEG

and MINDEG stand for the maximal and minimal degree; DEGVAR is the variance of degree

within a network; CONNECTED stands for the fraction of connected networks. While REAL

DISTANCE measures the average distance between connected agents, MEAN DISTANCE

Figure 11: Number of stable networks with and without loose ends (enum. n = 8).



Centrality 55

Figure 12: Examples of networks that are stable for mixed incentives only.

stands for the average distance between all pairs of players.48

Figure 13: Distribution of den-
sity in stable networks
(enum. n = 8).

Figure 14: Properties of stable net-
works (enum. n = 8).

Simulation Results

It is important to keep in mind that the sets of stable networks above are not discriminated by

costs c. Fixing different c, only some of them are stable. Table 8 presents simulation results for

different settings of c. CONNECTED stands for the fraction of connected networks; LINKS for

the number of links (which is proportional to the density); DEG’VAR stands for the variance

of degree; AV’DIS measures the average distance (between all pairs) in a network; AV’RDIS

stands for the average real distance. Since the simulation starts with any possible network, the

first row stands for the properties of the starting networks and the mean values of the emerging

networks can be interpreted as estimations for an arbitrary starting network.

48All these variables measure the mean of network statistics for different sets of stable networks, which has to
be interpreted with caution.
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Table 8: Properties of emerging networks (simulation with n = 8).
WEIGHT COSTS CONNECTED LINKS DEG’VAR AV’DIS AV’RDIS
All networks 90% 14.0 0.42 1.78 1.56
0 (Closeness) very low 100% 28.0 0.00 1.00 1.00

low 100% 12.3 0.75 1.56 1.56
medium 100% 8.6 1.04 1.90 1.90
high 100% 7.1 1.05 2.34 2.34

0.1 very low 100% 28.0 0.00 1.00 1.00
low 100% 12.3 0.76 1.56 1.56
medium 100% 8.7 1.04 1.88 1.88
high 100% 7.2 1.01 2.30 2.30

0.5 very low 100% 17.4 0.66 1.38 1.38
low 100% 11.5 1.43 1.61 1.61
medium 100% 8.4 1.10 1.93 1.93
high 100% 7.2 0.97 2.30 2.30

0.9 very low 100% 15.1 0.65 1.47 1.47
low 100% 12.4 1.41 1.64 1.64
medium 100% 8.1 1.52 2.04 2.02
high 0% 0.4 0.03 7.76 2.00

1 (Betweenness) epsilon 83% 17.2 1.03 1.69 1.36
very low 45% 13.2 1.17 2.65 1.41
low 1% 6.5 1.35 5.39 1.42
medium 0% 0.0 0.00 7.99 1.71
high 0% 0.4 0.03 7.73 2.00

Throughout any weight λ, there are some clear-cut relations between the costs of linking c

and the properties of the emerging networks. The higher the costs, the lower the density and

the higher the average distances. The effects of different incentives is not trivial. There is no

property, except connectedness, that is influenced by weight (λ) in one clear direction.

While this section stresses the differences between closeness incentives, betweenness incentives

and a mixture of them, in the next section we analyze the general effects that these different

incentives have on social networks.

3.4 Lack of Clustering

The work of Watts and Strogatz (1998) has drawn attention to a structural feature of many

social networks, that can be described as closure, transitivity or clustering. Small groups

of agents are heavily linked among themselves such that “a friend of a friend is very likely

to be also my friend”. Formally, the clustering coefficient of an agent i is defined as the

number of links among his neighbors Ni(g) as a fraction of all possible links among them,

Clusti(g) := 2ζi(g)
(li(g)−1)li(g)

, with ζi(g) := #{jk ∈ g|j, k ∈ Ni(g)} (see Watts and Strogatz, 1998

or Watts, 1999). Let by convention the fraction be zero for li(g) ≤ 1.
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While many empirical studies measure closure – clustering indices of different networks can

be found, e.g., in Newman et al. (2002) – theoretical works (mainly in sociology) stress the

importance of closure for a society (e.g. Coleman, 1988).

The question arises whether such patterns persist when agents start to optimize their cen-

trality. Granovetter (1973) and Burt (1992) argue that complete triads are not the source of

the many network benefits, but the open triads providing connections to different areas of the

network. Betweenness incorporates that idea by measuring the brokerage of a given node; but

also closeness favors agents at distance two rather than one if links are sufficiently costly. So we

would expect that agents optimizing their centrality replace links in complete triads by links

that bridge higher distances.

Equilibrium Analysis: Cliques and Full Clustering

Consider a group of q fully connected agents (that is called a clique of size q). For pure closeness

incentives λ = 0, we can show the following:

Proposition 3.8. In the centrality model the following holds: For λ = 0 a network with a

clique of size q(≥ 3) or larger is not stable if c > n
q(M−1)(n−1)

.

Rather low costs (i.e. c = lo) are typically sufficient to rule out a clique of size 5. The result

above is restricted to the case where only closeness incentives are present. The next result

excludes clustering based on betweenness incentives.

Proposition 3.9. In the centrality model for any network g, player i with li(g) ≥ 2, and costs

c > 1−λ
li(g)(M−1)

the following holds:

if i has full clustering (Clusti(g) = 1), then the network is not stable (g /∈ [PS]).

The idea of the proof is simple. First, there is a Lemma stating that full clustering of a

player implies zero betweenness for him. As a consequence, betweenness incentives cannot

justify clustering. Secondly, the closeness benefit of clustering is also very restricted: since any

direct neighbor is also an indirect neighbor, cutting a link cannot decrease closeness heavily.

Consequently, a player with full clustering will not keep all of his links, except if costs c are very

low. In fact, the result leaves only a small “corridor” in the parameter map between the region,

where the complete network is uniquely stable and no full clustering can occur. Figure 15

illustrates this and the last proposition. Above the thick (red) line there are no agents with

full clustering and degree equal or higher than 3; and there are no cliques of size 4 or larger in

stable networks above the thick (green) line on the left-hand side.
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Figure 15: Illustration of closure results (Prop. 3.8 and Prop. 3.9).

Enumeration and Simulation: Clustering Coefficient

The two results above exclude networks with high clustering, but do not measure the extent of

possible clustering. There are different ways to combine the individual clustering coefficients

into one for the network.49 We use a common transitivity index (see, e.g., Frank and Harary,

1982), that is called the clustering coefficient (of a network) by Newman et al. (2002) and overall

clustering by Jackson (2008). This index is defined as the proportion of complete triads (three

fully linked agents) among the triads with two or three links. The choice of operationalization,

however, is not crucial at this point. Any index of network clustering is strongly related to

the number of complete triads. In fact, if there are no complete triads in a network, then the

clustering coefficient of every agent must be zero. We have already shown in Section 3.3 that

many emerging networks are bipartite networks. Be it trees or complete bipartite networks,

they all exhibit no complete triads (since a complete triad is a circle of odd length).

Table 9 shows the number of networks that exhibit no complete triad as a fraction of all

networks. For example, 60 percent of all stable networks at λ = 0.5 do not have any complete

triad. Thus, there is no player with positive clustering coefficient. Table 10 shows the clustering

coefficient (transitivity index) of the emerging networks in a simulation with n = 14, where the

starting networks have on average a clustering coefficient of 66 percent.

We observe that these networks with considerable clustering are transformed into networks

with (almost) zero clustering by the dynamics of centrality incentives. Note that both types of

incentives, closeness and betweenness, drive the closure results.

49One alternative is averaging the clustering coefficient of all individuals. However, by taking this average,
the weight of an agent with few ties is the same as the weight of an agent with many ties and also the
comparisons across networks of different size are problematic.
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Table 9: Stable networks with-
out any complete triad
(enum. n = 8).

fraction
All non-isomorphic networks 3.3%
Closeness 93%
λ = 0.5 60%
Betweenness 54%

Table 10: Clustering coefficient of emerging
networks (simulation for n = 14).

very low low medium
Closeness 0.19% 0.19% 0
λ = 0.5 4.86% 0.02% 0
Betweenness 0.49% 0 0

How can we explain the contradiction between empirical observations and the emerging

networks in respect to clustering. As this model is about isolating the effect of centrality

incentives on network structure, it does not consider many aspects that also drive the evolution

of networks. First of all, there are external forces, like the opportunity to meet somebody, which

increases the likelihood to become a friend of a friend. Secondly, by assuming homogeneous

agents we exclude any difference between agents. For instance, the linking costs for geographi-

cally close agents are not lower than for other agents or there are no characteristics that lead

to attractiveness (like homophily) etc. Finally, even if networks are determined by optimizing

agents who are all the same, our benefit function does not incorporate the utility agents derive

from closure (see Subsection 2.1.2) and strong ties (see Krackhardt, 1992, for example). So, it

might not be a surprising result that agents striving for closeness and betweenness destroy the

clustering patterns of a network, because it is in their best interest. The next chapter shows

that the evolution of networks does not always obey the interests of optimizing agents.

3.5 Proofs of Chapter 3

In order to follow the results, it is important to keep in mind the utility function defined in

Subsection 3.1.2. Moreover, it is helpful to read the first paragraph of Subsection 3.2.1. Let

the marginal benefit be defined as βij
i (g) := (1− λ)CLOSEi(g ∪ ij) + λBETWi(g ∪ ij)− [(1−

λ)CLOSEi(g \ ij) + λBETWi(g \ ij)]. The results are ordered according to their appearance

in the main text.

Proof of Prop. 3.1. The results of Prop. 3.1 present lower and/or upper bounds of c where a

network is claimed to be stable. For conciseness, we denote with lb(g) the claimed lower bound

of a network g and analogously the claimed upper bound with ub(g).

(i) The complete network gN can only be altered by deletion of a link. Any agent deleting
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any link increases his distances by 1 and does not change his brokerage. Therefore, no

agent will sever a link for c ≤ ub(gN) and any agent wants to sever a link for higher c.

(ii) The empty network g∅ can only be altered by the addition of links. Any agent adding any

link decreases his distances by M − 1, while his brokerage remains zero. Thus, no agent

will do that for c ≥ lb(g∅) and any pair of agents is willing to add a link for c < lb(g∅).

(iii) Only peripheral agents can add links. Any agent adding a link reduces his distances by 1

and does not change his brokerage. This leads to the lb(g?). The central agent severing a

link increases his distances by M − 1 and decreases his brokerage by n− 2. A peripheral

agent cutting a link increases his distances by M−1+(n−2)(M−2) and does not change

his brokerage. Plugging into the utility function yields that no agent wants to sever a link

for c ≤ min{ub1(g?); ub2(g?)}, while some agent is willing to sever a link for higher c.

(iv) Any agent severing any link increases his distances from the circle to the line network.

For n even this is a change in distances of 1
4
n2 − 1

2
n and a change in brokerage from

1
8
n2 − 1

2
n + 1

2
to zero, yielding the upper bound. Two agents forming a link benefit the

further away they are. For n a multiple of four, two agents on opposite sides (with two

shortest paths) can form a link building a network with two circles of odd length. Their

change in distances can be derived as 1
8
n2 − 1

2
n + 1, while their brokerage changes by

1
8
n2 − 3

4
n + 1. In the same way slightly different inequalities can be derived for other

network sizes.

(v) In complete bipartite networks, additional links are only possible within a group. Since

everybody is already indirectly linked, any agent adding a link reduces his distances by 1

without changing his brokerage. This yields the lb(gl:r).

Since both groups consist of at least two agents, cutting one link only affects the distance

between the focal agents. Their distance changes by 2. The brokerage for an agent in the

group of size l changes by 1
l
(r−1), because he is on one of l shortest paths between any pair

of agents in the other group (he loses brokerage for any connection of j to its own group).

Because l ≥ r, the agents in the l-group benefit less from their links. They are indifferent

about cutting if c = 2(1−λ)
(n−1)(M−1)

+
2λ[ r−1

l
]

(n−1)(n−2)
= ub(gl:r). Therefore, for c < lb(gl:r), two

agents of the same group form a link; for c > ub(gl:r) an agent of the larger group (of size

l) will sever a link. No agent can improve by changing a link for lb(gl:r) ≤ c ≤ ub(gl:r).
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Plugging in l = r = n
2

yields that a balanced complete bipartite network g
n
2
: n
2 (for even

n) is pairwise stable if and only if 1−λ
(n−1)(M−1)

≤ c ≤ 2(1−λ)
(n−1)(M−1)

+
2λ[1− 2

n
]

(n−1)(n−2)
.

Proof of Prop. 3.2. This theorem follows almost directly from Prop. 3.1 parts (i)-(iii). For

λ = 1, the empty network g∅ is trivially stable for any c. For λ < 1, g∅ is stable if c ≥ 1−λ
n−1

, gN

is stable if c ≤ 1−λ
(n−1)(M−1)

and g? is stable if 1−λ
(n−1)(M−1)

≤ c ≤ min{ub1(g?) = 1+λ
n−1

, ub2(g?) =

(1 − λ)[ M
M−1

− 2n−3
(M−1)(n−1)

]}.
It remains to be shown that if g∅ and gN are not stable, g? is stable. This follows directly from

lb(g?) = ub(gN), ub1(g?) ≥ lb(g∅) as 1+λ
n−1

≥ 1−λ
n−1

, and ub2(g?) ≥ g∅ (by definition n ≥ 3 and

M ≥ n− 1, which implies M(n−1)−2n+3
M−1

≥ 1).

Proof of Prop. 3.3. We have to show three statements.

(i) The proof is analogue to the proof of Prop. 2.10 part (i). The complete network gN is stable

because c ≤ 1−λ
(n−1)(M−1)

(see Prop. 3.1). For any network g ∈ {G\gN}, ∃{i, j} : dij(g) > 1.

By connecting, the distances of i and j decrease at least by 1, while their betweenness

is not reduced. So for c < 1−λ
(n−1)(M−1)

they want to connect and, therefore, the network

is unstable. The complete network is not uniquely stable for other values of c because if

c ≥ 1−λ
(n−1)(M−1)

, the star or the empty network is stable (see Prop. 3.1).

(ii) Take any network g with a pendant i and his neighbor j. We show that the condition

implies that one of the agents wants to sever this link.

a) Agent i does not reduce brokerage by severing this link. Removing the link increases

his distances at least by M − 1 (when agent j is also a pendant) and at most by

M−1+(n−2)(M−2) (when agent j is directly linked to all other agents). Therefore,

agent i will not keep the link if c > (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

.

b) Similarly, for agent j: severing a link increases his distances by M − 1 and hence

decrease his closeness by 1
n−1

. Moreover, he was on the shortest path between i and

any other agent in this component. The more agents in this component, the higher

the incentive to keep this link. The maximum brokerage of n − 2 is attained for a

connected network. Therefore, agent j wants to sever the link for c > 1−λ
n−1

+ λ2(n−2)
(n−1)(n−2)

rendering the network unstable.
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(iii) Prop. 3.1 (ii) shows that the empty network is stable for c ≥ 1−λ
n−1

. In addition we have to

show that any non-empty network is unstable for large enough c. This becomes obvious,

when considering that the marginal benefits are bounded, while the marginal costs c can

be arbitrarily large.50

Proof of Prop. 3.4. We show that in a network with a diameter of d > p, there exists a pair

of players who can increase their utility by forming a link.

Let Take any network g with a diameter of d > p ≥ 1. Let i and j be two players at maximal

real distance (dij(g) = d) and consider one shortest path between them. By forming the link

ij, agent i does not only decrease his distance to j, but also to some players on this shortest

path. The change in distances stemming from that path can easily be derived as:

∆di(d) =











2 + 3 + 5 + ...+ d− 3 + d− 1 = 1
4
d2 − 1

4
, for odd d

1 + 3 + 5 + ...+ d− 3 + d− 1 = 1
4
d2 , for even d

(3.2)

Therefore, βij
i (g) ≥ d2−1

4(M−1)(n−1)
. This also holds for βij

j (g). It remains to show that the

marginal costs c are lower than this marginal benefit. p =
√

4c(n− 1)(M − 1) + 1 implies that

c = p2−1
4(M−1)(n−1)

. The marginal costs are smaller than the marginal benefit, because p < d.

Lemma 3.5.1. In the centrality model with λ = 0, the following holds: For any marginal costs

c ∈ (0,∞) there exists a q ∈ N such that no network with a circle of size q or smaller is (PS),

with q satisfying q = maxz∈Nz s.t. c >
n[z−2+ 1

4
(z−3)2]

z(M−1)(n−1)
and z ≥ 3.

Proof of Lemma 3.5.1. The idea of the proof is the following: We look – among all configu-

rations with a circle of size q – for the one which maximizes the minimal marginal benefit of a

link that belongs to the circle. For marginal costs c higher than this frontier, we conclude that

all circles must break down.

Let © be the set of q nodes that belong to the circle and let ◦ be the set of the q links

that form the circle, ij ∈ ◦ and i, j ∈ ©. A circle of length q can only be stable if no

50To verify the argument consider c̃ > 1. Since for any g and any i, CLOSEi(g) ∈ [0, 1] and BETWi(g) ∈ [0, 1]
while λ ∈ [0, 1], it must hold that ∀g, ∀i, 0 ≤ bi(g) ≤ 1. Thus for any two networks g and g′ it holds that
bi(g) − bi(g

′) ≤ 1. In any non-empty network, there is a player who can reduce his costs by c̃ > 1, while he
cannot loose more benefits than 1.
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one wants to cut a link. This condition says that all players must face a marginal benefit of

their links that is not lower than the marginal costs, that is mini∈©β
ij
i (g) ≥ c, ij ∈ ◦, where

βij
i (g) = CLOSEi(g) − CLOSEi(g \ ij). If c is sufficiently high, no graph can satisfy this

condition, that is when

maxg:∃◦∈gmini,j∈©β
ij
i (g) < c.

We argue that the maximizer ĝ is one with all disposable nodes k /∈ © (a) equally distributed

among the nodes i ∈ © and (b) each is only attached to one node of the circle (meaning that

all paths of a disposable node to other members of the circle go through one member of the

circle) and (c) there are no links across the circle (this graph looks like a “sun”: one circle and

rays).

The reason for (c) is that a circle without crossing ties leads to higher damage if links are

cut. The reason for (b) is that the marginal benefit of a link of the circle is maximal when

the disposable nodes do not offer paths to avoid the circle. The reason for (a) is that the

equal distribution leads to the maximin: By allocating the disposable players it is possible to

construct higher marginal utility for certain players of the ring, but this will always mean that

we reduce the marginal utility of other players of the ring. 51

Derivation of the Maximin value:

Note first, the marginal benefit that the deletion of link ij(∈ ◦) means to i is the negative of

the marginal increase in benefit that establishing the link ij in the graph ĝ \ ij means. The

marginal benefit for βij
i (ĝ\ij) always consists of the worths of j and the players on the geodesic.

Besides them (they are exactly the members of the circle), there are disposable players that

are not on the circle. The worth of the disposable players depends on the node on the circle

they are attached to. In fact, they all have the same worth as their gatekeeper on the circle.

So, the distribution of the disposable nodes can be seen as a weighting of the marginal benefits

coming from the players on the circle.

Let now q be odd and a divisor of n such that we can distribute the disposable nodes equally

among the circle members. Then, as the worths are summed up, we can just take the marginal

benefit of a circle without disposable nodes and scale it by the number of disposable nodes plus

51Think of an extreme case where we maximize the marginal utility of one player i. We use the graph where
all disposable players are attached to j (who is a neighbor of i in the circle). Whereas the deletion of ij
has maximal consequences for i, they have only minimal consequences for j. So, this is “far” from being the
maximin configuration.
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one.

βij
i (ĝ) = βij

i (◦)t

βij
i (ĝ) =

(q − 2) + 1
4
(q − 3)2

(M − 1)(n− 1)
, where t =

n

q

βij
i (ĝ) =

n[q − 2 + 1
4
(q − 3)2]

q(M − 1)(n− 1)

For c higher than that, no circle of size q can be stable. If we did not take q to be odd and if

we did not take n to be a multiple of q the threshold would be lowered a bit. So, the restriction

does also hold for these cases.

Proof of Prop. 3.5. To proof the result, we employ the Lemma 3.5.1 and combine it with a

theorem by Alon, Hoory, and Linial 02 (see Diestel, 2005, Th 1.3.4). Let d(g) := 1
n

∑

i∈N li(g)

be the average degree and q(g) := the size of the smallest circle in g, which is defined to be

large if there are no circles. Let δ ∈ R and ρ ∈ N. The theorem states:

If [A] d(g) ≥ δ(≥ 2) and [B] q(g) ≥ ρ, then [C] n ≥ n0 =











1 + δ
∑

k=0,...,
ρ−3
2

(δ − 1)k for ρ odd

2
∑

k=0,..., ρ
2
−1(δ − 1)k for ρ even.

We transform the logical structure of [A] and [B] implies [C] into not[C] and [B] implies not[A].

To get [B], we fix a certain ρ, here ρ = 4, 5, and use the proposition that for c >
n[ρ−2+ 1

4
(ρ−3)2]

ρ(M−1)(n−1)

there are no circles of size ρ or smaller in stable networks (see Lemma 3.5.1 above). To get

not[C], we choose δ such that n0 = n+ 1 (this is possible as n0 is a function of δ and ρ). These

conditions together imply not[A], that means that d(g) < δ.

We now use this procedure for different values of ρ:

Let ρ = 4. Then [B] reduces to c > 9n
16(M−1(n−1)

. not[C] is achieved by choosing δ = 1
2
n + 1

2

because it implies that n = n0 −1 = −1+2
∑

k=0,1(δ−1)k = 2δ−1. not[A] tells that d(g) < δ.

So we get the result: If c > 9n
16(M−1)(n−1)

, then d(g) < 1
2
n + 1

2
.

Let ρ = 5. Then [B] reduces to c > 4n
5(M−1)(n−1)

. not[C] is achieved by choosing δ =
√
n because

it implies that n = n0 − 1 = δ
∑

k=0,1(δ − 1)k = δ2. not[A] tells that d(g) < δ. So we get the

result: If c > 4n
5(M−1)(n−1)

, then d(g) <
√
n.

Proof of Prop. 3.6. For part (i) we show that in a network with a diameter of d, two players

at maximal real distance increase their benefits at least by
(b d

2
c−1)b d

2
c

(n−1)(n−2)
by establishing a link
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between them. This implies for c below that level, that the network is unstable. If a network

has a larger diameter than d, then it also contains two players at distance d.

Take any network g with a diameter of d ≥ 4. Let i and j be two players at maximal real

distance dij = d and consider one of their shortest paths. Consider two agents i′ and j′ on that

geodesic such that dii′(g) + djj′(g) <
d−1
2

(i′, j′ 6= i, but j′ = j is allowed). It holds that i is not

on any shortest path between i′ and j′. It must also hold that di′j′(g) = d− dii′(g) − djj′(g).
52

Establishing ij adds a new path from i′ to j′ (that uses i). This path is of length dii′(g) +

djj′(g)+ 1 =: pi′j′. It is shorter than their former shortest path, as straightforward transforma-

tions show:

dii′(g) + djj′(g) <
d− 1

2
⇔ dii′(g) + djj′(g) < d− dii′(g) − djj′(g) (3.3)

⇔ pi′j′ < di′j′(g). (3.4)

Thus,
τ i
i′j′

(g∪ij)

τi′j′ (g∪ij)
− τ i

i′j′
(g)

τi′j′ (g)
= 1

1
−0 = 1. In words: player i increases his brokerage, since he is on the

unique shortest path between i′ and j′ now, while he was not before. In order to compute the

minimal change in brokerage, one can compute the number of pairs whose distance shortens.

The straightforward derivation yields the following (where χ is the number of pairs whose

distance shortens and bxc stands for the next lower integer):

χ(d) ≥ 1 + 2 + 3 + 4 + ...+ bd
2
c (3.5)

∆Brokerage ≥ 1

2
(bd

2
c − 1)bd

2
c (3.6)

∆BETWi(g) ≥
(bd

2c − 1)bd
2c

(n− 1)(n − 2)
. (3.7)

Since λ = 1, the marginal benefits are at least as high as the marginal costs c. The argument

holds for both players i and j such that g is not pairwise stable.

Part (i) does not count the marginal benefits of pairs (i′ and j′) who are on such a distance

that the establishment of ij builds an additional shortest path. Those pairs also increase the

marginal benefit of i, but the amount depends on the number of shortest paths. For part (ii)

we show that there exists such a pair.

Assume that for g ∈ G ∃i, j : 2 < dij(g) < M . By the existence of a path longer than two we

know that Ni(g) 6= ∅ and Nj(g) 6= ∅. As this path is a geodesic, we know that ∃k : k ∈ Ni(g)

and k 6∈ Nj(g); and ∃l : l ∈ Nj(g) and l 6∈ Ni(g). In fact, Ni(g) ∩ Nj(g) = ∅ which implies

52The distance cannot be shorter because this would imply that there exists a shorter path for i and j to
connect. The distance cannot be longer since there is this path on the geodesic.
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that dkj(g) ≥ 2. Let g′ := g ∪ ij, be the graph when we add the link ij. Then the path (k, i, j)

is a geodesic between k and j in g′. This generates some betweenness value for i. Idem for j.

As the marginal costs c are lower than any marginal benefit, we conclude ui(g) < ui(g
′) and

uj(g) < uj(g
′) which contradicts (PS).

Proof of Prop. 3.7. Let g be a network as described in the Prop. 3.7 and let R be the set of

agents in j′s component (excluding him). We have to show that the marginal benefit of a bridge

is at least as high as the marginal costs, that is βij
i (g) ≥ (1−λ)

(r+1)(M− 1
2
r−1))

(M−1)(n−1)
+λ 2l(r+1)

(n−1)(n−2)
. For

this purpose we show that the change in distances for player i is at least (r + 1)(M − 1
2
r − 1)

and the change in brokerage is l(r + 1).

It holds that dik(g) = M for all k ∈ R∪j. In g∪ij a shortest path from i to k ∈ R uses a shortest

path of j to k. Thus, it holds that dik(g∪ ij) = dij(g∪ ij)+djk(g∪ ij) = 1+djk(g). Therefore,

the change in distances is M−1+
∑

k∈R(M−djk(g)−1) = M−1+rM−r−∑

k∈R djk(g). The

change in distances is minimal if the sum of j′s distances is maximal. This is attained when

the component of j forms a line network: max
∑

k∈R djk(g) = 1 + 2 + 3 + ... + r = 1
2
r(r + 1).

Therefore the change in distances is at least M − 1+ rM − r− 1
2
r(r+1) = (r+1)[M − 1− 1

2
r].

By definition there are no paths between the two components. When forming ij, each path

across the two components of g uses agent i. Thus, his brokerage (number of shortest paths)

increases by l(r + 1).

Proof of Prop. 3.8. Let κij
i (g) := {k ∈ N : dik(g) < dik(g \ ij)} be the number of players

whose distance to player i increases, when cutting the link ij in network g (always j ∈ κij
i (g)).

Let H ⊂ N be a completely linked group of size q and h ∈ G its links. Note that cutting a

link ij ∈ h increases the distance to any agent k ∈ κij
i (g) by exactly 1, as i is linked to other

agents, which are linked to j (dij(g \ ij) = 2). Therefore,

∑

k∈N

dik(g \ ij) −
∑

k∈N

dik(g) =| κij
i (g) | . (3.8)

For all j, h ∈ H it holds that κij
i (g)∩κih

i (g) = ∅ and it also holds that κij
i (g)∩κij

j (g) = ∅. Fixing

a player i ∈ H allows us to distinguish q distinct Kappa sets, one for each of his neighbors and
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one for some neighbor j (N ⊇ {(κij
i (g))j∈Ni(g), κ

ij
j (g)}). As a consequence it holds that

min
i,j∈H

| κij
i (g) |≤ n

q
. (3.9)

Implying that mini,j∈H β
ij
i (g) ≤ (1 − λ) n

q(M−1)(n−1)
.

Proof of Prop. 3.9. Consider g ∈ G, i ∈ N with li(g) ≥ 2 and Clusti(g) = 1. We show that

i is willing to sever a link. First, we observe that there is no betweenness incentive to keep the

link.

Lemma 3.5.2. For all graphs g′ and players j with lj(g
′) ≥ 2, it holds that Clustj(g

′) = 1 ⇔
BETWj(g

′) = 0.

For a proof of this Lemma see, e.g., Everett et al. (2004) or Gago Alvarez (2007). It follows that

BETWi(g) = 0 and cannot decrease by deletion of a link. So, the marginal benefit of a link only

depends on the change in closeness.

Let κij
i (g) := {k ∈ N : dik(g) < dik(g \ ij)} be the set of players whose distance to player i

increases, when cutting the link ij in network g (always j ∈ κij
i (g)). Note that cutting a link

to a neighbor (j) increases the distance to any agent k ∈ κij
i (g) by exactly 1, as i is linked to

other agents, which are linked to j (dij(g \ ij) = 2). Therefore,

∑

k∈N

dik(g \ ij) −
∑

k∈N

dik(g) =| κij
i (g) | . (3.10)

For all j, h ∈ Ni(g) it holds that κij
i (g) ∩ κih

i (g) = ∅ (this note is also used in Calvó-Armengol

and Ilkiliç, 2007). So each player k ∈ N \ {i} can only be in one of the kappa sets for player i.

Therefore, it holds that

min
j∈Ni(g)

| κij
i (g) |≤ n− 1

li(g)
. (3.11)

Implying that minj∈Ni(g) β
ij
i (g) ≤ (1 − λ) n−1

li(g)(M−1)(n−1)
= 1−λ

li(g)(M−1)
.
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4 Efficiency in the Centrality Model

In this chapter we want to assess the efficiency of the centrality model, which was introduced

in the last section.

To motivate the discussion of efficiency let us have a look at the average closeness and average

betweenness (among all players in a given network). One might expect that if agents strive

for closeness (betweenness) centrality, the stable networks exhibit a high average closeness

(betweenness). The following two figures depict the distribution of average betweenness and

average closeness for different sets of stable networks. For example, the boxplot above .30

depicts the upper quartile and the lower quartile of average closeness (resp. betweenness) of all

networks found stable for λ = 0.3 (the thick black line represents the mean, and the vertical

black line reaches from the top ten to the bottom ten percent). As a reference point, the dashed

lines mark the lower and upper quartile for the set of all non-isomorphic networks.

Figure 16: Average closeness of all sta-
ble networks (enum. n = 8).

Figure 17: Average betweenness of all
stable networks (enum. n =
8).

What we observe seems paradoxical: The stable networks for closeness incentives λ =

0 (betweenness incentives λ = 1) do not exhibit high average closeness (betweenness), in

comparison to an arbitrary network. Moreover, average betweenness is specially high for the

stable networks with full weight on closeness λ = 0. Note that this observation does not allow us

to draw direct conclusions for the (in)efficiency of the stable networks – it serves as a motivation

for further investigating this topic.

Throughout this chapter, we restrict attention to the utilitarian welfare function, w := wu =
∑

i∈N ui(g). To be consistent with the other chapters, we speak of “welfare”, while the adequacy
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of this term is questionable. It is not canonically defined (in a setting where centrality is

important to the agents) which kinds of networks are socially desirable and which are not. The

justification for utilitarian welfare is to measure the agents’ actions by their own goals.53

To assess (in)efficiency (of the emerging networks) in this model it takes a systematic ap-

proach. Figure 18 illustrates some of the basic interdependencies. Starting point is the set of all

stable networks depicted in the center. Those networks exhibit certain measurable properties,

some of which are important determining the welfare. For each network one can evaluate its

welfare according to the utilitarian welfare function. Note that the utilitarian welfare function

is dependent on the parameters λ, c of the utility function. For each welfare function, that is

for each setting of parameters (λ, c), there is a value of maximal welfare, which is depicted on

the left bottom. Identifying the networks that maximize welfare means finding the efficient

networks. On the right hand side of the scheme, the emerging networks are represented. They

result of a dynamic process that starts with (a sample of) all networks and follows individual

improvements determined by the utility function. The utility function, in turn, is also set by

the parameters λ, c. Thus, a change in the parameters λ, c has three effects: (a) Since the

utilitarian welfare function changes, a given network is evaluated differently (its welfare can

change). (b) For the same reason different networks may be efficient (welfare maximizing); (c)

changing the utility function affects the dynamics such that different networks might emerge

and be stable.
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Maximal Welfare
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Properties

Welfare

Emerging Networks
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N
T
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Figure 18: Scheme of basic interdependencies between starting networks, efficient networks and
emerging networks.

This chapter is structured as follows. The first section analyzes how the utilitarian welfare

of a network is determined by its properties. Section 4.2 identifies the efficient networks for

53It can be argued that benefits of central positions are not only based on the absolute centrality of an agent, but
on his relative advantage (being more central than others). While this interpretation of the centrality model
is consistent with chapter 3, where agents try to improve centrality, it is not consistent with this chapter,
where we evaluate the efficiency of a network by the sum of utilities that consist of absolute centrality values.
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different settings of λ, c. Section 4.3 compares the welfare of the emerging networks (in the

simulation) to the welfare of the starting networks and the welfare of the efficient networks.

Section 4.4 addresses why the emerging networks differ from the efficient networks in this model.

As in any chapter, all proofs are collected in the last section.

4.1 Determinants of Welfare

In order to find the efficient networks it is necessary to understand the determining properties

of welfare in our model. We will derive three expressions of utilitarian welfare in this section

(W1, W2, W3), each based on a different set of network statistics. By linearity of the utility

function and additivity of the welfare function we can separate welfare into contributions from

aggregate closeness, aggregate betweenness and aggregate degree. While aggregate degree times

c determines the total costs of a network, aggregate closeness and betweenness weighted by λ

determine the total benefits.

w(g) =
∑

i∈N

ui(g) = (1 − λ)
∑

i∈N

CLOSEi(g) + λ
∑

i∈N

BETWi(g) − c
∑

i∈N

DEGREEi(g) (W1)

We will refer to this expression as W1, based on the first set of network statistics determining

welfare: aggregate closeness, aggregate betweenness and aggregate degree. Those network

statistics can be broken down into more basic network statistics.

Aggregate costs are clearly determined by the density (∼ number of links) of a network:
∑

i∈N DEGREEi(g) =
∑

i∈N li(g) = 2l(g). When aggregating closeness, we sum up the sum

of distances for each player. Denote by SD(g) :=
∑

j<k djk(g) the sum of all distances in a

network (counting M for unconnected pairs). Then aggregate closeness can be rewritten as
∑

i∈N CLOSEi(g) =
∑

i∈N

[

M
M−1

−
∑

j∈N dij(g)

(M−1)(n−1)

]

=

nM
(M−1)

−
∑

i∈N

∑

j∈N dij(g)

(n−1)(M−1)
= nM

M−1
− 2SD(g)

(n−1)(M−1)
. This is a linearly decreasing function in SD going

from n for the complete network to 0 for the empty network.

The Determinants of Aggregate Betweenness

It is possible to find a similar result for aggregate betweenness, although the determinants

of aggregate betweenness are not that obvious. The key idea is to switch the sequence of

summation: While betweenness computation sums for each player i the derived benefit over

all other pairs of agents {j, k : j 6= i and k 6= i}; we can also fix a pair of agents {j, k} and

compute the betweenness benefit that they mean for other agents. This actually turns out to
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be a simple function of their distance (as stated in Lemma 4.5.1 in the appendix).54 Applying

the lemma, we get the following theorem:

Theorem 4.1. Let α = 2
(n−1)(n−2)

(the normalization factor). Then aggregate betweenness of

a network can be written as

∑

i∈N

BETWi(g) = α
∑

j<k:djk(g)<M

(djk(g) − 1). (4.1)

The interpretation of this sum is straightforward: Any connected pair {j, k} contributes to

the aggregate betweenness proportionally to its distance. Two agents that are 4 steps away

from each other, mean 3 units of betweenness for their brokers. (That might be three agents

on the only geodesic or multiple agents sharing those units according to their position on the

geodesics.) If two agents j, k are not connected or if they are directly linked, then they do not

create any betweenness benefits for others. Gago Alvarez (2007) shows a similar result that

links the diameter of a network (the longest distances between any two connected agents) with

high aggregate betweenness.

So, we write the aggregate betweenness as a function of the “real distances”, the distances

between connected agents (not counting M for unconnected pairs). To rewrite the aggregate

betweenness in dependence of the sum of distances SD(g), we have to correct for the uncon-

nected pairs. Let ν(g) be the number of unconnected pairs in g, that is ν(g) := #{i, j ∈ N |
dij(g) = M}. Because SD(g) =

∑

j<k djk(g) =
∑

j<k:djk(g)<M(djk(g)) +M ∗ ν(g), it holds that
∑

j<k:djk(g)<M djk(g) = SD(g) −Mν(g), while
∑

j<k:djk(g)<M −1 = −1
2
n(n − 1) + ν(g). Using

this to rewrite (4.1) yields

∑

i∈N

BETWi(g) =
SD(g) − 1

2
n(n− 1) − ν(g)(M − 1)

1
2
(n− 1)(n− 2)

. (4.2)

This function is linearly increasing in the sum of all distances SD and goes from 0 to 1
3
n.

This implies for connected networks that both, aggregate closeness and aggregate betweenness

are fully determined by SD, the sum of all distances.55 Since the former is linearly increasing

54Arguably, the brokerage benefits that a pair offers are rather constant than increasing in their distances
such that being on a long shortest path, is not as beneficial as being on a short one (see, e.g., Goyal and
Vega-Redondo, 2007). But this is not true for the standard definition of betweenness (see, e.g., Wasserman
and Faust, 1994) used here.

55For connected networks g ∈ Ḡ aggregate betweenness simplifies to
∑

i∈N BETWi(g) = 2SD(g)
(n−1)(n−2) − n

n−2 .
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and the latter is linearly decreasing in SD, we conclude that for connected networks aggregate

closeness and aggregate betweenness are fully negatively correlated.56

How to Determine Welfare

Putting the considerations on aggregate degree, aggregate closeness, and aggregate betweenness

together, we can write the welfare of a network in the following way:

w(g) = (1 − λ)

[

nM

M − 1
− 2SD(g)

(n− 1)(M − 1)

]

+ λ
2SD(g) − n(n− 1) − 2ν(g)(M − 1)

(n− 1)(n− 2)
− c2l(g) (W2)

This very simple function is only dependent on three network statistics: the number of uncon-

nected pairs ν(g), the number of links l(g), and the sum of distances SD(g). This is the second

set of properties that suffices to compute the welfare of a given network. We will refer to this

expression as W2.

Let W : R
3 → R be the following mapping: W (l, ν, SD) = (1 − λ)

[

nM
M−1

− 2SD
(n−1)(M−1)

]

+

λ2SD−n(n−1)−2ν(M−1)
(n−1)(n−2)

− c2l (representing the welfare in dependence of the second set of network

statistics). Observe that this function is decreasing in l and ν. Its slope in respect to SD

depends on the weight λ. Taking the first derivative we get W ′(l̄, ν̄, SD) = −(1−λ) 2
(n−1)(M−1)

+

λ 2
(n−1)(n−2)

. Therefore, for small λ welfare is decreasing in the sum of distances and for large λ

welfare is increasing. It is easy to compute that W ′(SD) = 0 ⇔ λ = n−2
M+n−3

=: λ̂. Thus, for

λ = λ̂ the sum of distances cancels out from the welfare function. Recall that aggregate closeness

and aggregate betweenness are fully negatively correlated for connected networks. For λ = λ̂

aggregate betweenness and aggregate closeness are in balance. Some important conclusions will

follow from this observation later on. For the moment, note that the disaggregation provides a

handy way to compute the welfare of a given network.

For example, consider the circle network g©. If n is even its basic properties are ν(g) = 0,

l(g) = n and SD(g) = 1
8
n3.57 Consequently, the first set of network statistics is

∑

i∈N CLOSEi(g) =

Mn
M−1

− n3

4(n−1)(M−1)
,

∑

i∈N BETWi(g) = n3−4n2+4n
4(n−1)(n−2)

, and
∑

i∈N DEGREEi(g) = 2l(g). The

welfare of this network is still dependent on the setting of the parameters: w(g) = (1 −
λ) Mn

M−1
− n3

4(n−1)(M−1)
+λ n3−4n2+4n

4(n−1)(n−2)
− c2l(g). In the same way we can straightforwardly compute

56In this paper we work with closeness as the reverse distance, not the inverse distance according to Freeman
(1979). Using Freeman’s definition of closeness, then the correlation between aggregate (Freeman) closeness
and aggregate betweenness is -0.978 (for all non-isomorphic networks of size 8), as its correlation to aggregate
(inverse) closeness is +0.978.

57As always, the derivation of distances might be tedious, but is a straight forward task.
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the welfare of the different prominent networks (empty, complete, star, and line network):

w(g∅) = (1 − λ)0 + λ0 − 2c0 = 0 (4.3)

w(gN) = (1 − λ)n+ λ0 − cn(n− 1) (4.4)

w(g?) = (1 − λ)
nM − 2n+ 2

M − 1
+ λ1 − 2c(n− 1) (4.5)

w(g|) = (1 − λ)[
Mn

M − 1
− n3 − n

3(M − 1)(n− 1)
] + λ

1

3
− 2c(n− 1). (4.6)

An Alternative Way to Determine Welfare

It is possible – and will be helpful – to further disaggregate the three network statistics used

in W2 above. Let ψx(g) := #{i < j : dij(g) = x} denote the number of pairs (of agents)

who are in distance x to each other in network g. Clearly, ψM(g) = ν(g). Furthermore, it

holds that ψ1(g) = l(g). Moreover, SD(g) =
∑

j<k djk(g) = 1 ∗ ψ1(g) + 2 ∗ ψ2(g) + ... + (n −
1)ψn−1(g) + MψM (g). So, all network statistics needed to evaluate the welfare of a network

can be disaggregated into the number of pairs at certain distances ψ(g) ∈ N
n. Plugging in the

“ψs” into W2 above and simplifying, yields the following expression (see “Derivation of W3” in

Section 4.5):

w(g) = α0 + α1ψ
1(g) + α2ψ

2(g) + α3ψ
3(g) + ... + αn−1ψ

n−1(g) + αMψ
M(g), (W3)

α0 =
(1 − λ)Mn

M − 1
− λn

n− 2

α1 =
2λ

(n− 1)(n − 2)
− (1 − λ)2

(M − 1)(n − 1)
− 2c

αx = x

[

2λ

(n− 1)(n − 2)
− (1 − λ)2

(M − 1)(n − 1)

]

(x = 2, 3, ..., n − 1)

αM =
2λ

(n− 1)(n − 2)
− (1 − λ)2M

(M − 1)(n − 1)
.

Note that this function W3, such as W1 and W2, is linear in its network statistics (ψ(g)). The

α-coefficients may be positive or negative. The relation of those coefficients (e.g. α1 > α2 or

α1 ≤ α2) will be crucial in determining the efficient networks.

Figure 19 summarizes the findings of this chapter. The utilitarian welfare of a network

consists of total benefits and total costs. Total costs are determined by the aggregate degree

and the marginal costs c. Total benefits are a linear combination of aggregate closeness and
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aggregate betweenness. Those properties can be further disaggregated: aggregate closeness is

determined by the sum of distances. Aggregate betweenness depends on the sum of distances

and the number of unconnected pairs. Aggregate degree is just twice the number of links in

a network. A further disaggregation is possible by considering the number of pairs at each

distance. This set of network statistics also contains all necessary information to compute the

welfare of a network.

W3

number of 

pairs at 

distance M

number of 

pairs at 

distance n-1

�

number of 

pairs at 

distance 1

W2

number of 

unconnected

pairs

sum of 

distances

number of 

links

W1

aggregate

closeness

aggregate

between-

ness

aggregate

degree

W0

total benefits 

( ,c)

total costs 

( ,c)
c

Figure 19: Scheme illustrating how utilitarian welfare can be disaggregated into different sets
of network statistics.

Note that each expression of the welfare function W1, W2 and W3 is dependent on the

parameters c and λ. Given a network, increasing the marginal costs c clearly decreases welfare

(by increasing total costs). An analogue problem occurs for changes of the weight λ. Increasing

λ (i.e. in W1) shifts more weight on aggregate betweenness and less on aggregate closeness.

Since the dimensions of these numbers differ (see remark below), this results in an absolute

decrease in welfare (without being a statement about the set of networks that is assessed).

In the following sections we will use the results of this section to find the efficient networks

and discuss the tension between stability and efficiency.

Remark 4.1.1 (Relative costs). Although individual closeness and betweenness were normalized

to take values between zero and one, aggregate closeness and aggregate betweenness differ in their

range of possible realizations:
∑

i∈N CLOSEi(g) ∈ [0, n],
∑

i∈N BETWi(g) ∈ [0, 1
3
n].58 Aggregate closeness can exhibit a higher value than aggregate

betweenness, as betweenness is a more exclusive network statistic in the sense that there are

networks where everybody has full closeness (gN), but not so for betweenness.

58For completeness, note that
∑

i∈N DEGREEi(g) ∈ [0, n2 − n] because each agent can maximally have n− 1
links.
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This fact seems largely unproblematic, because we kept an individual unit of benefit as a

numeraire throughout the model. However, one can also argue differently: Since the maximal

total benefits are decreasing with λ, keeping c constant and increasing λ may also be interpreted

as increase in some kind of “relative costs”. In Chapter 3 and Chapter 4 we do not explicitly

follow this line of interpretation; but we respect differing interpretations by avoiding direct

comparisons of stable and emerging networks (across the weight λ) for fixed costs c.

4.2 Efficient Networks

In this section we identify the efficient networks depending on the parameter setting (λ, c) and

check whether they are (uniquely) stable for those settings.

4.2.1 Finding the Efficient Network(s)

A special class of networks plays an important role in the following elaboration. A network g

is called a local tree of size l if it holds that l(g) = l and there is a component of size l+1 (that

is: l + 1 players are connected with l links). Clearly, any tree is a local tree, but also networks

with isolates and one non-trivial component that is minimal is a local tree. According to this

definition, also the empty network g∅ belongs to the class of local trees.

The proofs of this section operate with W3, expressing welfare as a linear function of the

number of pairs at various distances. Clearly, each network has 1
2
n(n−1) pairs of agents, any of

which must be in exactly one distance:
∑

x=1,2,...,n−1,M ψx(g) = 1
2
n(n−1). Thus, the welfare of a

network depends on the distribution of those pairs and the relation of the α-coefficients. About

the distribution we use two basic facts: first, ψ1(g) = l(g) for any network. Secondly, there is

a relation between the number of links of a network and its minimal number of unconnected

pairs (stated in Lemma 4.5.2 in the proof of Prop. 4.1).

Now, in order to find the efficient networks, the relation of the α-coefficients in W3 is crucial.

Straightforward computations show the following:

α1 ≥ αx ⇐⇒ c ≤ (x− 1)

[

1 − λ

(M − 1)(n − 1)
− λ

(n− 1)(n − 2)

]

(x = 2, ..., n − 1) (4.7)

α1 ≥ αM ⇐⇒ c ≤ 1 − λ

n− 1
(4.8)

α2 > α3 > α4 > ... > αn−1 ⇐= λ < λ̂ (4.9)

αn−1 > αn−2 > ... > α3 > α2 ⇐= λ > λ̂ (4.10)

αx ≥ αM (∀x = 2, 3, ..., n − 1). (4.11)
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where λ̂ := n−2
M+n−3

, as before.59 To see that expressions (4.9) and (4.10) hold, consider the

definition of αx for x = 2, 3, ..., n−1. This expression increases with x, if the term the brackets

is positive. That is
[

2λ
(n−1)(n−2)

− (1−λ)2
(M−1)(n−1)

]

> 0 ⇐⇒ λ > n−2
M+n−3

= λ̂. From now on we

distinguish the cases, where λ < λ̂, λ > λ̂ and λ = λ̂.

Uniquely Efficient Networks

Proposition 4.1. In the centrality model with λ < λ̂, the following networks are uniquely

efficient (according to the utilitarian welfare function):

(i) the complete gN network for c < 1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

=: T1,

(ii) the star network g? for T1 < c < (1−λ)(Mn−2n+2)
2(M−1)(n−1)

+ λ
2(n−1)

:= T2

(iii) the empty network g∅ for c > T2.

To get an intuition for this result consider W2 and the subcase that full weight is on closeness

(λ = 0). In that case, welfare is determined by a trade-off between density (l(g)) and distances

(SD(g)). Figure 20 shows this trade-off by depicting the maximal aggregate closeness for any

level of density. For l(g) ∈ {0, 1, ..., n − 1}, the networks maximizing aggregate closeness are

local stars. For l(g) ∈ {n, n + 1, ..., 1
2
n(n − 1)}, among the networks maximizing aggregate

closeness are supersets of the star g ⊇ g?.

Now, the trade-off between total costs and total benefits is evaluated by the welfare function.

Figure 20 also represents one iso-welfare curve (iso-welfare curves have slope 2c). For extremely

low c, the network with the maximal closeness, that is the one with minimal SD, is efficient.

This is clearly the complete network, where the distance between any two agents is one. For

extremely high c, the network with minimal density, the empty network is efficient. For networks

that are not connected, l(g) ∈ {0, 1, ..., n−2}, there are increasing marginal returns from density,

while after the possibility of connected networks, the maximal closeness can only be linearly

increased. Therefore, for moderate c an efficient network typically has n − 1 links (i.e. seven

links in Figure 20). An exception is the case where the slope of the depicted function coincides

with the slope of the welfare function (c = T1), then there is a multitude of efficient networks

as will be shown in Prop. 4.3 (i). Before, let us have a look at the case λ > λ̂.

59Indeed, the threshold coincides with the threshold where distances cancel out in W2. That is why we denote
it with the same letter λ̂.
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Proposition 4.2. In the centrality model with λ > λ̂, the following networks are uniquely

efficient (according to the utilitarian welfare function):

(i) the line network g| for c < 1−λ
2(n−1)

[

Mn
4(M−1)

− n3−n
3(M−1)(n−1)

]

+ λ n
6(n−1)

=: T3,

(ii) the empty network g∅ for c > T3.

To grasp the intuition consider the subcase where λ = 1. In that case total benefits only

depend on the aggregate betweenness. By Theorem 4.1, aggregate betweenness depends on

the sum of real distances in a network (and total costs, as always, depend on the density).

Thus, welfare of a network is determined by a trade-off between the sum of real distances and

density (∼ number of links). Figure 21 shows the maximal aggregate betweenness for different

numbers of links. Clearly, the empty network has no links and zero aggregate betweenness.

Additional links can first be used to increase aggregate betweenness until the point of a minimal

connected network, l(g) = n − 1. Thereafter dense networks necessarily mean a low maximal

aggregate betweenness – think of a very dense network: because distances are short, there are

no intermediation rents (betweenness benefits). Since total costs are increasing in the number

of links, a network with l(g) > n − 1 can never be efficient. This is shown as Lemma 4.5.3 in

proof of Prop. 4.2 in the more general case λ ≥ λ̂. The second part of the proof is to establish

that for l ≤ n− 1 the efficient network must be a local line. Finally, we conclude that for high

enough c, the empty network is efficient, while otherwise the line network is efficient.
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Figure 20: Maximal aggregate close-
ness by number of links (n =
8).

Dot/Lines show Max Values

0 10 20

Density (number of links)

0.00

1.00

2.00

A
g

g
re

g
a

te
 b

e
tw

e
e

n
n

e
s

s

2c

Figure 21: Maximal aggregate
betweenness by number
of links (n = 8).

Multiple Efficient Networks

The results of Prop. 4.1 and Prop. 4.2 almost cover the full parameter space [0, 1] × R+.
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Exceptions are situations where two of the prominent networks, e.g. line network and complete

network, exhibit the same welfare. It can be checked that at the boundaries between the

uniqueness of two such networks, both of them are efficient: i.e. the line network and the

empty network are both efficient for c = T3 and λ ≥ λ̂ and (similarly for the complete network

and the star, the star and the empty, and the star and the line). In special cases those networks

are not the only efficient networks, as addressed by Prop. 4.3.

Proposition 4.3. In the centrality model according to the utilitarian welfare function, the

following holds:

(i) For λ = 0 and c = 1
(M−1)(n−1)

, any network that does not have a distance larger than two

(and is connected) is efficient.

(ii) For λ = λ̂ and c < n2−n
2n−3

(= T2 = T3), a network is efficient if and only if it is a tree.

(iii) For λ = λ̂ and c > n2−n
2n−3

, the empty network g∅ is uniquely efficient.

To get an intuition for the results (ii) and (iii) consider W2. Recall that for λ = λ̂ (= n−2
M+n−3

)

the sum of distances SD cancels out of the welfare function (as noted in Section 4.1). Thus,

welfare only depends on the number of unconnected pairs ν and the number of links l. For

l ≤ n − 1, local trees handle this trade-off best, by connecting the maximal number of pairs

with a given number of links (see Lemma 4.5.2). For l > n − 1, it is possible to connect the

network. Any connected network leads to the same aggregate benefits, v̂ = n2−n
2n−3

. Consequently,

any network that is minimally connected (trees) is efficient for not too high c.

Figure 22 summarizes Prop. 4.1, Prop. 4.2, and Prop. 4.3. Roughly speaking, we have the

empty network for extremely high c, the complete network for extremely low c (and some weight

on closeness), the star network for high weight on closeness (low λ) and the line network for

high weight on betweenness (high λ). Inside the regions a trivial network is unique. In the

point (λ, c) = (0, T1) there is a multitude of efficient networks. The second special case is the

frontier where the star and the line network are efficient. Any tree is efficient for this setting.

It is not that surprising that for a large part of the parameter space the efficient networks

are the star and the line. Both of them are minimal connected networks (trees). Moreover, the

line is the tree with maximal sum of distances of SD(g|) = 1
6
n3 − 1

6
n and the star network is

the tree with minimal sum of distances SD(g?) = (n− 1)2.
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Figure 22: Efficient networks in the parameter space.

4.2.2 Stability of Efficient Networks

Having found the efficient networks for different parameter settings, we can now check whether

those networks are also stable for the corresponding parameters. In fact, this is the usual way

to assess the tension between stability and efficiency (see Jackson, 2004).

By combining the results of Section 3.2.1 (Prop. 3.1 and Prop. 3.3) with the results above

(propositions 4.1, 4.2 and 4.3), we get the following partial characterization of the tension:

Proposition 4.4. In the centrality model (according to the utilitarian welfare function), the

following holds:

(i) For c < T1, the complete network gN is uniquely efficient and also uniquely stable.

(ii) For sufficiently large c, the empty network is uniquely stable and also uniquely efficient.

(iii) For 1−λ
(n−1)(M−1)

< c < min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

} and λ < λ̂, the star network is stable

and uniquely efficient.

(iv) For T1 < c < 1−λ
(n−1)(M−1)

, the complete network is uniquely stable, while the star network

is efficient.

(v) For c > min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

}, any stable network that is non-empty is inefficient.

(vi) For c < T3 and sufficiently large λ, the line network is uniquely efficient but not stable.
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Figure 23 illustrates the results. Beginning with the bottom left, there is the area where the

complete network is efficient and uniquely stable (i). In the region where the star network is

efficient, there is an area such that the complete network is uniquely stable (iv). Then for some

cost range, the star network is stable and efficient (iii). For higher c, the star network is still

efficient, but not stable, because it is above the threshold of (v) which is depicted by the thick

line with a kink. This result uses the fact that any (non-empty) efficient network contains loose

ends, while Prop. 3.3 excludes such networks from being stable (this idea was already used in

Jackson and Wolinsky, 1996). For λ arbitrarily close to 1, any c is above this threshold, which

is used in statement (vi). For the area (*) Prop. 4.4 does not exclude the stability of the line

network. However, for the stability of the line network it is required that two players, e.g., those

at the ends, do not form a link. This condition is rarely satisfied for c below the threshold of

(v), as discussed in Remark 4.5.1 in proof of Prop. 4.4.

(i)

Closeness Betweenness

(ii)

line networkstar network

(vi)
(v)

(iii)

(iv)

(*)

empty network

c c

Figure 23: Stability of the efficient networks.

Considering a dynamic process that only leads to stable networks, such as the one we use

in the simulation (see Subsection 3.2.3), the analysis above reveals the following: efficiency

is guaranteed if c < T1 where the complete network is efficient and uniquely stable; and for

high enough c, where the empty network is efficient and uniquely stable. In a small parameter

range, an efficient outcome is possible but not sure; that is when the star network is efficient

and stable but not uniquely so (and this might also happen for the line network in very special
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settings). In most other cases an inefficient outcome certainly occurs, either because, the line

is efficient but not stable, or because the star is efficient but not stable.

In general, assessing the stability of the efficient networks only partially answers whether

a dynamic process is efficient or not. First, it can neither guarantee efficient nor inefficient

outcomes when some of the stable networks are efficient but not all. A second shortcoming

is that, even if inefficient outcomes are certain, it does not quantify inefficiency, in the sense

of measuring the gap of welfare between the efficient network and the set of stable networks.

Several authors fill this gap by considering the welfare of the worst stable network (“price

of anarchy”) and the welfare of the best stable network (“price of stability”).60 Given the

simulation method, we overcome those two shortcomings directly: we estimate welfare of

emerging networks by weighting the stable networks by their frequency of emergence. So,

while in this subsection we assessed whether the efficient networks can or cannot emerge; the

next section tries to answer “how efficient” the emerging networks are.

4.3 Relative Efficiency of Emerging Networks

In this section we estimate the welfare of emerging networks for different settings by running

simulations. We will use the simulation method introduced in Subsection 3.2.3. For the

parameter settings where there is a unique stable network, there is no point in runnings

simulations. For all other settings, the simulation can complement the equilibrium analysis

of the model. However, we have to restrict ourselves to a few starting conditions. Taking the

same settings as in the last chapter – those are depicted in Figure 6 and Figure 7 – we examine

cases where the star network is efficient and stable and where the line network is efficient but

unstable.

In the first subsection, we introduce the method and make a first prediction of relative

efficiency for n = 8. Then, we recheck the findings for n = 14 and adding some more network

statistics (aggregate closeness and aggregate betweenness). In Subsection 4.3.3 we reconsider

the simulation for n = 14 and describe the emerging networks by the relevant network statistics

according to W2.

60See Koutsoupias and Papadimitriou (2007), Corbo and Parkes (2005), Fabrikant et al. (2003), or Brandes et
al. (2008).
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4.3.1 How to Estimate Relative Efficiency? Simulation for Eight Agents

Recall that changing parameter settings λ, c, does not only affect the induced networks – the

point we are interested in – but also the welfare of a given network (see the discussion at the

end of Section 4.1). So, before comparing the welfare of different scenarios, one has to make

sure not to deal with artifacts.

Table 11 shows the average welfare of all non-isomorphic networks for different levels of weight

λ and marginal cost c, which will be the benchmark for the emerging networks (since these are

the starting networks). Negative values of welfare simply mean that aggregate costs are larger

than aggregate benefits. Since w(g∅) = 0 for any (λ, c), negative values can be interpreted as

being worse than the empty network.

Table 11: Mean of welfare of starting networks (any non-isomorphic network for n = 8).

costs epsilon v_lo lo med hi
λ = 0 6.7008 6.2612 5.3876 3.6376
λ = 0.1 6.0627 5.6231 4.7495 2.9995
λ = 0.5 3.5105 3.0709 2.1973 0.4473
λ = 0.9 0.9583 0.5187 -0.3549 -2.1049
λ = 1 0.7010 0.3202 -0.1194 -0.9930 -2.7430

Instead of writing the absolute values of welfare, let us express it in relation to the efficient

network. We define the relative efficiency of a network g as a fraction of the maximal possible

welfare e(g) := w(g)
w(g∗)

, where g∗ is efficient.61 By definition of the term efficiency, a network

either is efficient (a welfare maximizer) or is not efficient. In contrast, the relative efficiency

allows us to state “how efficient” a network is.

The maximal welfare is taken from the efficient networks as described in the Table 12. For

weights λ = 0 (and λ = 0.1), the complete network is efficient if c = v_lo (bold) and the star

network if c = lo,med, hi (in italics). For any other parameter combination the line network is

efficient.

By Prop. 4.4 (i) we know that for the two settings where the complete network is efficient

(bold) the complete network emerges, such that the simulation would have not been necessary.

In the six settings where the star network is efficient (italic), it is also stable but not uniquely

so. In the thirteen settings where the line is efficient, the line is not stable.

61Relative efficiency makes some implicit assumption on the cardinality of the utility function. E.g., it is not
invariant to addition of constants in the welfare function (resp. the utility functions).
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Table 12: Welfare of efficient networks (n = 8).

costs epsilon v_lo lo med hi
λ = 0 x 7.1824 6.7188 6.2820 5.4070

λ = 0.1 x 6.3824 6.1045 5.6677 4.7927

λ = 0.5 x 3.9861 3.7663 3.3295 2.4545
λ = 0.9 x 2.7673 2.5475 2.1107 1.2357
λ = 1 2.6530 2.4626 2.2428 1.8060 0.9310

Simulation Results for Eight Agents

Table 13 shows the detailed simulation results for n = 8. The first and the second column

describe the total benefits and the total costs. Their difference is the absolute welfare, written

in the third column. The fourth column shows the relative efficiency of the emerging networks.

The last column is the benchmark describing the relative efficiency of the starting networks.

Presented is the mean (and the standard deviation) of these variables for all simulation runs.

Since we started with any possible network multiple times, the mean serves as an estimator for

starting with an arbitrary network.

Table 13: Estimation of relative efficiency for n = 8.

WEIGHT COSTS TOTAL BENEFITS TOTAL COSTS WELFARE REL. EFFICIENCY REL. EFFICIENCY 

STARTING

=0 (Closeness)

v_lo 8.0000 0.8193 7.1807 100.0% 93.3%

0.00 0.00 0.00

lo 7.3590 0.7435 6.6155 98.5% 93.2%

0.05 0.08 0.02

med 6.9729 1.0554 5.9175 94.2% 85.8%

0.12 0.11 0.06

hi 6.4656 1.7591 4.7065 87.0% 67.3%

0.18 0.07 0.17

=0.5

v_lo 4.0360 0.5103 3.5257 88.4% 88.1%

0.01 0.05 0.06

lo 4.0578 0.6958 3.3621 89.2% 81.5%

0.01 0.07 0.08

med 4.0881 1.0360 3.0521 91.7% 66.0%

0.01 0.10 0.11

hi 4.1217 1.7885 2.3332 95.1% 18.2%

0.09 0.11 0.12

=1 (Betweenness)

epsilon 0.4485 0.0344 0.4141 15.6% 26.4%

0.13 0.01 0.13

v_lo 0.4529 0.3875 0.0654 2.7% 13.0%

0.13 0.09 0.08

lo 0.2201 0.3911 -0.1710 -6.9% -5.3%

0.12 0.22 0.12

med 0.0008 0.0012 -0.0004 0.0% -55.0%

0.03 0.04 0.02

hi 0.0598 0.1037 -0.0440 -4.7% -294.6%

0.24 0.41 0.17

First, one can note that the standard deviation is small compared to the absolute values.
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Thus, differences across groups (i.e. settings) are interpretable.

For full weight on closeness incentives (λ = 0), relative efficiency of the emerging networks

is around 90 percent, with slightly higher numbers for low costs c. For c = v_lo, the complete

network is uniquely stable such that this simulation would not have been necessary.62 The

efficiency of the starting networks is improved for any cost level. For a mixture of incentives

(λ = 0.5), efficiency is also close to 100 percent. For low costs, the improvement of the starting

networks is modest (because relative efficiency of the starting networks is already high, as will

be explained later on). For c = hi, there is a strong improvement from 18 percent to 95 percent.

Finally, let us look at the case of full weight on betweenness (λ = 1). The welfare of

the emerging networks is much lower than the efficient network’s welfare. But the emerging

networks are not only inefficient; they exhibit lower welfare than the starting networks for

c = lo, v_lo, ε. That means that the dynamics of betweenness have decreased the welfare. For

c = med, hi this is not true anymore. For those cost levels the empty network emerges in

almost all simulation runs,63 while the line network would still be efficient. The empty network

exhibits a welfare of zero, which means an improvement to the starting networks that all have

negative welfare.

4.3.2 Simulation Results for Fourteen Agents

A second simulation is used to recheck the findings. The computation of relative efficiency

works as above. In addition, we show the results for λ = 0.1, λ = 0.9 and also present the

relevant network statistics according to W1. In this simulation the efficient networks are only

the star (for λ ≤ 0.1) and the line (for λ ≥ 0.5) (see Figure 7 in Subsection 3.2.3 and the results

of Section 4.2). In addition to the simulation results, the first two rows of Table 14 present the

network statistics for these two networks.

Note first that the results on relative efficiency look very similar to the case of n = 8.

Relative efficiency is between 90 percent and 100 percent for the weights 0, 0.5, and also for

λ = 0.1; again, the dynamics of betweenness (λ = 1) lead to drastically suboptimal results.

Now, reconsider W1:

w(g) = (1 − λ)
∑

i∈N

CLOSEi(g) + λ
∑

i∈N

BETWi(g) − c
∑

i∈N

DEGREEi(g).

62For larger network size, e.g. n = 14, this is not true anymore, such that using very low costs in the simulation
is informative.

63This point was already mentioned in Section 3.3.2. Here it can be seen by total costs and total benefits being
so close to 0.



Centrality 85

Table 14: Estimation of relative efficiency for n = 14 and properties determining W1.

WEIGHT COST AG’DEGREE AG’CLOSE AG’BETW WELFARE REL’EFF

line network g| 26.0 9.692 4.667 depends depends
star network g? 26.0 13.077 1 depends depends

λ = 0 very low 63.2 13.297 0.762 12.796 99.4%
low 45.0 13.014 1.068 12.254 97.0%
medium 34.0 12.506 1.618 11.327 93.0%
high 27.4 11.928 2.245 9.993 88.9%

λ = 0.1 very low 53.4 13.238 0.825 11.574 99.2%
low 45.0 13.020 1.062 11.066 96.8%
medium 33.4 12.483 1.643 10.241 93.4%
high 27.4 11.906 2.269 9.017 89.8%

λ = 0.5 very low 64.6 13.305 0.753 6.517 93.5%
low 35.8 12.993 1.091 6.439 95.5%
medium 28.6 12.522 1.601 6.069 96.7%
high 26.6 11.962 2.207 5.205 97.3%

λ = 0.9 very low 81.2 13.341 0.714 1.332 26.8%
low 39.8 12.893 1.199 1.698 35.9%
medium 29.2 12.512 1.612 1.687 39.5%
high 25.4 11.577 2.053 1.215 36.4%

λ = 1 epsilon 142.2 13.143 0.199 0.056 1.2%
very low 46.8 6.477 0.260 -0.111 -2.6%
low 0.0 0.004 0.000 0.000 0.0%
medium 1.6 0.337 0.030 -0.024 -0.7%
high 0.2 0.049 0.007 -0.006 -0.2%

If λ = 0, aggregate closeness and aggregate degree determine the results. For c = v_lo,

the emerging networks have higher aggregate closeness than the efficient network (star) which

implies higher total benefits, but they also exhibit higher aggregate degree implying higher total

costs. In sum, their welfare is close to the efficient network. For higher c, the aggregate degree

is close to the efficient network (the star has as any tree an aggregate degree of 26) such that

the total costs are almost as in that network. However, aggregate closeness of the emerging

networks is significantly lower than of the efficient network, implying that the relative efficiency

is below 100 %. Similarly for λ = 0.1.

For weight λ = 0.1, aggregate closeness does not matter, but aggregate betweenness deter-

mines the total benefits. Aggregate betweenness is low in any of the simulation runs (compared

to the line network with an aggregate betweenness of 4.67). Moreover, for very low c, total

aggregate degree is high, implying high total costs. In sum the emerging networks are heavily

inefficient. For c = lo,med, hi, the empty network emerges in most cases. This is indicated by

the aggregate degree (and the aggregate closeness and aggregate betweenness) to be so close to

zero.

For weight λ = 0.9, this is different. Most of the emerging networks are connected. Still
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aggregate betweenness is low in comparison to the efficient network. For c = lo, relative

efficiency is lower than for c = med by both reasons: lower total benefits (driven by aggregate

betweenness), higher total costs (driven by aggregate degree).

Finally, for λ = 0.5, both aggregate closeness and aggregate betweenness determine total

benefits. For any c, the emerging networks have lower aggregate betweenness and higher

aggregate closeness than the efficient network. It can be shown that aggregate benefits are

extremely similar in all emerging networks (see Table 13 above).64 For high enough c, aggregate

degree is close to 26, the aggregate degree of the efficient network(s). For low c, the average

degree is higher such that networks are not as efficient.

Before addressing why emerging networks differ from efficient networks, let us describe in

some more detail how they differ.

4.3.3 Comparison of Emerging Networks and Efficient Networks (Simulation for

Fourteen Agents)

Table 15 depicts the same simulation results as Table 14, but this time showing some more basic

network statistics (that are relevant for welfare according to W2). Instead of presenting ν, the

number of unconnected pairs of a network, we indicate in column CONNECTED, the fraction

of emerging networks that are connected. AV’RDIS is defined as the average distance between

any two connected pairs, that is AV ′RDIS(g) :=
∑

j<k:connected djk(g)

#{j<k:connected}
.65 This gives information

about the typical length of a shortest path (not considering unconnected pairs). Finally, the

statistics of the other columns are as in Table 14 above. In addition to the simulation results,

the first two rows of Table 15 present the network statistics for the efficient networks.

Before interpreting the results, recall W2 (derived Section 4.1):

w(g) = (1 − λ)

[

nM

M − 1
− 2SD(g)

(n− 1)(M − 1)

]

+ λ

[

2SD(g) − n(n− 1) − 2ν(g)(M − 1)

(n− 1)(n − 2)

]

− c2l(g).

The term in the first brackets stands for aggregate closeness; the term in the second brackets

stands for aggregate betweenness and 2l(g) equals aggregate degree. Recall that welfare is

decreasing in l and decreasing in ν, while the effect of SD is ambivalent: for high weight

on closeness (λ < λ̂) welfare is decreasing in the sum of distances and for high weight on

64In fact, all connected networks (also the star and the line network) have the same total benefits for λ ≈ 0.48,
as discussed in Subsection 4.2.1.

65In a connected network, this network statistic is fully correlated to SD but not so in unconnected networks.
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Table 15: Estimation of relative efficiency for n = 14 and properties determining W2.

WEIGHT COST c CONNECTED l(g) SD(g) AV’RDIS WELFARE REL’EFF

line network g| yes 13.0 455 5.00 depends depends
star network g? yes 13.0 169.00 1.86 depends depends

λ = 0 very_low 100% 31.6 150.42 1.65 12.796 99.4%
low 100% 22.5 174.31 1.92 12.254 97.0%
medium 100% 17.0 217.23 2.39 11.327 93.0%
high 100% 13.7 266.10 2.92 9.993 88.9%

λ = 0.1 very_low 100% 26.7 155.33 1.71 11.574 99.2%
low 100% 22.5 173.82 1.91 11.066 96.8%
medium 100% 16.7 219.14 2.41 10.241 93.4%
high 100% 13.7 267.95 2.94 9.017 89.8%

λ = 0.5 very_low 100% 32.3 149.75 1.65 6.517 93.5%
low 100% 17.9 176.11 1.94 6.39 95.5%
medium 100% 14.3 215.87 2.37 6.069 96.7%
high 100% 13.3 263.19 2.89 5.205 97.3%

λ = 0.9 very_low 100% 40.6 146.69 1.61 1.332 26.8%
low 100% 19.9 184.55 2.03 1.698 35.9%
medium 100% 14.6 216.75 2.38 1.687 39.5%
high 96% 12.7 295.70 2.83 1.215 36.4%

λ = 1 epsilon 83% 71.1 163.45 1.18 0.056 1.2%
very_low 3% 23.4 726.72 1.45 -0.111 -2.6%
low 0% 0.0 1273.63 1.71 0.000 0.0%
medium 0% 0.8 1245.50 2.00 -0.024 -0.7%
high 0% 0.1 1269.82 2.50 -0.006 -0.2%

betweenness (λ > λ̂) welfare is increasing in the sum of distances. The effect of SD cancels out

for λ = λ̂. Thus, let us distinguish three cases from now on:

Case I: λ << λ̂, i.e. λ = 0 or 0.1.

Total benefits are dominated by aggregate closeness, which is decreasing in the sum of distances

SD. Total costs depend on the number of links. Thus, there is a trade-off between low number

of links and short distances.66 For the starting conditions used in the simulation, the star

network handles this trade-off best67, using 13 links to produce an aggregate closeness of 13.077

(where 14 is the maximum reached in the complete network), which corresponds to a sum of

distance of SD(g?) = (n− 1)2 = 169. For very low c, networks emerge that even have a lower

SD (implying higher aggregate closeness), but with using much more links: 31.6, resp. 26.7,

on average. The higher c, the closer the number of links approaches the number 13 of the star

network. However, the SD is not as small implying that the aggregate closeness is lower than

the aggregate closeness of the efficient network.

66This trade-off is depicted in Figure 20.
67Neither the complete network nor the empty network is efficient, for n = 14 and c = v_lo, lo,med, hi.



Centrality 88

Observe that for c = hi the predicted number of links of the emerging networks is 13.7 and

all of the emerging networks have at least 13 links since they are connected. This means that

usually only critical links will be present in the long run because minimally connected networks

have exactly 13 links. The trees that emerge differ from the efficient network (the star which

is a special case of a tree) in that they feature longer distances.68

Case II: λ >> λ̂, i.e. λ = 1 or 0.9.

In this case, total benefits are dominated by aggregate betweenness, which depends on the sum

of distances SD and the number of unconnected pairs ν. Keeping the number of unconnected

pairs fixed, aggregate betweenness is an increasing function in SD. If both network statistics

vary, the interpretation is not straightforward. Large distances are only valuable if they are

real, that is if two agents are connected (recall Theorem 4.1 for the determinants of aggregate

betweenness). Thus, for unconnected networks we do not only consider SD, but also the network

statistic AV ′RDIS, providing information about the distances within components of a network.

As always, total costs are determined by the number of links in a network. The efficient

network, the line graph, has the maximal aggregate betweenness of all networks based on the

maximal sum of real distances, i.e. SD(g|) = 1
6
n3 − 1

6
n = 455.69 As the star, it is minimally

connected with 13 links. Recall that with fewer links, it is not possible to produce the same

aggregate betweenness and this is also true for more than n− 1 = 13 links (see Figure 21).

Now let us look at the emerging networks of the simulation. All of them (from c = ε to c = hi)

have very small aggregate betweenness compared to the efficient network, and consequently, all

of them are heavily inefficient.

One main driver of that is depicted in the first column : (1) Many of the emerging networks

for pure betweenness incentives λ = 1 are not connected. As noted several times, for λ = 1

and not too low costs (for n = 14 that is c = lo,med, hi) the empty network emerges in most

of the simulation runs.

The non-connectedness, however, can only partially be responsible for the inefficiency. For

λ = 0.9 almost all runs lead to connected networks, but still relative efficiency is low. Moreover,

for c = ε, where 83 percent of the emerging networks are connected, relative efficiency is also

68As argued in Section 3.3.1, the star network only occurs for a special sequence of link formation (the order
of pairs who are allowed to change their relationship).

69The empty network has the maximal SD but aggregate betweenness of zero.
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extremely low: While the efficient network exhibits an aggregate betweenness of 4.6̄, none of

the emerging network is close to that value (not presented in Table 15, but in Table 14.

Thus, there is a second driver of insufficient aggregate betweenness: (2) the distances between

connected agents are short. The average real distance of the efficient network (the line) is 5,

while the emerging networks have a average distance between 1.6 (for λ = 0.9 and c = v_lo)

and 2.8 (for λ = 0.9 and c = hi). Thus, for low enough costs, in the emerging networks most

pairs of agents are directly or indirectly linked, while brokerage opportunities increase with

long distances.

Remark 4.3.1 (Role of distances). Since this is a crucial point of the analysis, let us check

this issue in the simulation for n = 8. For n = 8, λ = 1, c = ε the efficient network has an

average real distance of 3. The starting networks have an average real distance of 1.563. Finally,

the emerging networks have an average real distances of 1.36. This corresponds to a predicted

betweenness of 0.0561 that is only half of an arbitrary starting network (mean is 0.091, quartiles

are 0.071 and 0.107). For c = ε, v_lo, lo, the estimated AV’RDIS of the emerging networks is

smaller than the distances of the starting networks and of the star network.

The third network statistic is the number of links: (3) We observe that the emerging networks

can be quite dense. This is more surprising when considering the number of emerging networks

that are not connected.70 Recall Table 7 in Subsection 3.3.2 showing that for c = lo, v_lo, ε

and λ = 1, the dominant network architecture of emerging networks are complete bipartite

networks allowing for isolates besides (for n = 14). Those networks exhibit all three indicators

of insufficient welfare according to W2: (1) not connected, (2) high density, (3) short distances.

Case III: λ ≈ λ̂, i.e. λ = 0.5.

A weight of 0.5 is very close to λ̂ = 0.48 (for n = 14 = M). In Section 4.1 we have shown that

for λ = λ̂, SD cancels out of W2, implying that welfare is only determined by the number of

links l and the connectedness ν. The tradeoff for efficiency is that the number of unconnected

pairs reduces welfare, while it takes links to connect agents. Any connected network has the

same total benefit, i.e. constant v̂ = n2−n
2n−3

. The efficient networks for not too high costs c are

70Of course, problem indicator (3) (too dense networks) and problem indicator (2) (too short distances) are
heavily related to each other. While problem (1) occurs in high cost settings; problems (2) and (3) occur for
low enough costs. Consider c = v_lo and let the weight change from λ = 0 to λ = 0.1. Before the change, we
have all problems of inefficiency, after the change, we are in a situation where agents with zero betweenness
keep their links because of closeness incentives. Ruling out problem (1) leads to a jump in relative efficiency
from a negative value to 26.8 percent.
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minimally connected (trees).

By looking at the simulation results, we observe that all emerging networks are connected for

the parameters we used (c = v_lo, lo,med, hi). For high costs c, most of the emerging networks

are connected with the minimal number of links (13). In the simulation the average number of

links is 13.3 and the minimum is 13 (since all of them are connected). However, for lower costs,

i.e. c = lo, v_lo, significantly more than 13 links emerge. Thus, there are non-critical links

persisting in the long-run, although they are useless from a welfare perspective (they do not

reduce the number of unconnected agents). Still, for any starting condition we use, the dynamic

process leads to networks that are close to efficiency. Note that we did not run simulations

with costs higher than the threshold of Prop. 4.4 (v).71

Remark 4.3.2 (Cost effects). In all the simulation runs we observed a strong effect of c

on the density (number of links, aggregate degree) of the emerging networks: the higher the

marginal costs c, the lower the density (as already shown in Table 3 in Subsection 3.2.3).

Moreover, the density of a network is strongly correlated to many other network statistics

including connectedness and sum of distances (that determine welfare according to W2).

Thus, Table 15 also shows how settings of the parameters λ, c can induce high total benefits

and total costs, respectively their determinants. The estimated density is heavily decreasing

with the marginal costs c. Moreover, the lower the marginal costs c, the lower SD, and the

higher aggregate closeness. For aggregate betweenness the effect of c goes in the other direction:

increasing costs increases aggregate betweenness by inducing longer real distances. This is only

true up to a certain level where issues of unconnectedness become dominant: for high enough c,

the emerging networks exhibit small aggregate closeness and small aggregate betweenness, e.g.

the empty network.

Although the set of stable networks for closeness incentives exhibits high aggregate betweenness

(as shown in Figure 17), the effect of the parameter λ on the aggregate closeness and betweenness

is not clear. Any weight – except full weight on betweenness – leads to roughly the same level

of average closeness and betweenness. For full weight on betweenness the average closeness and

betweenness is lower because it converges to the empty network in most cases.

Summing up the assessment of efficiency: For enough weight on betweenness (λ ≥ 0.5 > λ̂),

the stable and emerging networks are inefficient, except for c > T3, where the empty network

is efficient. First, the efficient network (line) is usually not stable. Secondly, the (stable and)

71In fact, our conjecture is that for c > 1+λ
n−1 the empty network is the most frequent outcome.
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emerging networks exhibit low welfare. Thirdly, dynamics of betweenness regularly lower the

welfare of the starting networks or lead to the empty network. For the dynamics of closeness,

the picture is not so clear. In some parts the efficient networks (complete, star, empty) are also

stable. For settings of c where the star is efficient and stable, it does not often emerge, but the

emerging networks exhibit almost as high welfare. No simulations were run where the star is

efficient but not stable (higher c than the frontier for stability of loose ends). While this section

described how the emerging networks differ from the efficient networks in some settings, the

next section addresses why this happens.

4.4 The Sources of Inefficiency

We have observed that agents that try to improve their utility do not automatically induce a

process that leads to networks with a high sum of utilities. There are even situations where

agents lower the welfare of the starting networks. In this section we try to trace back the

inefficient outcomes to a discrepancy between individual interests and collective interests. First,

we analyze the collective consequences of individual linking actions. Then, we discuss in three

examples why stable networks differ from the efficient networks. Finally, we summarize the

tension between centrality and efficiency in this model.

4.4.1 Individual versus Collective Interest

Let the marginal utility of player i in network g be µl
i(g) := ui(g ∪ l) − ui(g \ l). While

linking actions are made by individual players, they might affect the utility of any agent in the

network. Consider a network g and and a network g′ = g ∪ ij. Recall that w(g′) ≥ w(g) ⇐⇒
∑

h∈N uh(g ∪ ij) − ∑

h∈N uh(g) ≥ 0 ⇐⇒ ∑

h∈N µ
ij
h (g) ≥ 0; a network g′ has a higher welfare

than a network g if the sum of marginal utilities (of a change from g to g′) is positive. To

emphasize the role of the active and passive players we can also write

w(g′) ≥ w(g) ⇐⇒ µi(g) + µj(g) +
∑

k∈N\{i,j}

µk(g) ≥ 0. (4.12)

To analyze how different actions affect the utility of the focal players (i, j) and of the players

not involved in a link (k ∈ N \ {i, j}), we have to analyze the fundamentals of utility in our

model: ui(g) = (1 − λ)CLOSEi(g) + λBETWi(g) − cli(g). Clearly, two agents forming a link

increase their degree by 1, while the degree of any other player stays constant. Moreover, the
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following Lemma shows that individuals establishing a link, strictly increase their closeness and

weakly increase their betweenness. If the link is critical, it also weakly increases the closeness

and betweenness of all other players. If the link is non-critical, it also weakly increases the

closeness of all other players, but not so for betweenness.

Lemma 4.4.1. By the definition of closeness and betweenness the following holds:

(i) For all g, and ij 6∈ g, CLOSEi(g∪ij) > CLOSEi(g) and CLOSEj(g∪ij) > CLOSEj(g)

and for all k ∈ N \ {i, j} it holds that CLOSEk(g ∪ ij) ≥ CLOSEk(g).

(ii) For all g, and i, j : dij(g) = M , BETWi(g ∪ ij) ≥ BETWi(g) and BETWj(g ∪ ij) ≥
BETWj(g) and for all k ∈ N \ {i, j} it holds that BETWk(g ∪ ij) ≥ BETWk(g).

(iii) For all g, and i, j : 1 < dij(g) < M , BETWi(g ∪ ij) ≥ BETWi(g) and BETWj(g ∪ ij) ≥
BETWj(g); and

∑

k∈N\{i,j}BETWk(g ∪ ij) <
∑

k∈N\{i,j}BETWk(g).

Part (i) is based on a fundamental property that additional links can only reduce distances

between players but never increase them. For part (ii) and (iii) w.r.t. i and j, we use that any

new path in g ∪ ij (that was not present in g) uses link ij, such that the brokerage of i and j

cannot decrease. Part (ii) and (iii) w.r.t k ∈ N \ {i, j} distinguishes between critical and non-

critical links. Critical links establish new connections and can lead to additional brokerage.

Non-critical links reduce aggregate betweenness by reducing the sum of distances (without

changing the number of unconnected pairs, see Eq. 4.2). Since the betweenness of the focal

players cannot decrease, there must be other players k who lose betweenness benefits. This is

plausible, because the link ij first of all takes away the brokerage benefits for all agents that

were on their geodesics before. Moreover i, j can now be on shortest paths were others were

before.

Effects on Welfare

When individuals alter the network structure, they do not consider the consequences for other

players. First of all, there might be diverging interests between two agents (i and j) about

forming a link. While one of them might want to form, the other one can hinder him;

respectively, if the link is already present (g′), one agent can cut the link, without considering

the harm it does to the other player involved. Such a problem can be relaxed by allowing agents

to pay transfers to other players whom they form a link with. In Chapter 5 we define the concept
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of pairwise stability with transfers. Our focus here will be on a more robust problem: The effect

of an action (of one or two players, i, j) on the players not involved in a link k ∈ N \ {i, j}.72

Suppose two agents i and j agree to form a link. With use of Lemma 4.4.1, we can partially

characterize whether this agreement increases or decreases welfare:

Proposition 4.5. In the centrality model for any g ∈ G and i, j ∈ N : ui(g ∪ ij) > ui(g) and

uj(g ∪ ij) ≥ uj(g), the following holds (according to the utilitarian welfare function):

(i) If dij(g) = M , then w(g ∪ ij) > w(g).

(ii) If dij(g) < M and λ ≥ λ̂, then w(g ∪ ij) < w(g).

(iii) If λ = 0, then w(g ∪ ij) > w(g).

Part (iii) obviously follows from Lemma 4.4.1 (i): by assumption, player i strictly increases

his utility, player j weakly increases his utility, while for all other players the benefits weakly

increase (based on closeness only), but the costs (based on degree) do not change. Similarly,

part (i) follows from Lemma 4.4.1 (i) and (ii). In contrast, part (ii) is directly shown by using

W2. It is based on the increase of total costs, while the total benefits decrease. In fact, (ii)

does not require the condition that ui(g ∪ ij) > ui(g) and uj(g ∪ ij) ≥ uj(g), that is: it holds

for any g ∈ G and i, j ∈ N : 1 < dij(g) < M . In words Prop. 4.5 shows the following effect

of a new link: if the link is critical, it increases welfare. If the link is non-critical and λ ≥ λ̂,

then it decreases welfare. For λ = 0 the link increases welfare, whether it is critical or not.

The only case that is not covered by Prop. 4.5 is when ij is not critical (for g) and 0 < λ < λ̂.

Then welfare may increase or decrease (because aggregate benefits increase, while aggregate

costs decrease).

Note that the statements are formulated for the addition of links. For non-severance the

proposition must be adapted by ui(g ∪ ij) ≥ ui(g). Then, statement (i) and (iii) are not strict

anymore (w(g ∪ ij) ≥ w(g)), since it might happen that everybody is indifferent.73

Remark 4.4.1. This proposition does not make statements about severance of links! Consider

a network g and a player i : ui(g \ ij) > ui(g). If the link is critical (i), we can show that for

all players k ∈ N \ {i, j} it holds that uk(g \ ij) ≤ uk(g), but the effect for j is not clear. In the

third case (iii) (λ = 0), it can be shown that for all k ∈ N \{i, j} it holds that uk(g\ij) ≤ uk(g),

but the effect for j is not clear (since his closeness decreases and his costs decrease). In the

72We will informally call this effect “spillovers” throughout this section, while in the next chapter we formally
define externalities and analyze their role in strategic network formation.

73A new link need not have spillovers, e.g. a link between two isolated players.
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discussion of integrating an isolate in Subsection 3.3.3, we have already observed that marginal

utilities of a new link can be very different. Only in the second case (ii) (if the link is non-

critical and λ ≥ λ̂), the effect of cutting a link is clear: welfare increases. Considering W2,

one can see that total benefits do not decrease, while total costs strictly decrease. Agent j then

might have negative marginal utility, but he cannot block i′s decision.

Let us study how the discrepancy between individual and collective interests drives ineffi-

ciency in three examples, one for each case of Prop. 4.5.

4.4.2 Example A: Betweenness Incentives and Very Low Costs

Consider the setting λ = 1, c = v_lo, which is a subcase of Case II in Subsection 4.3.3.

Recall that in that case the line network is uniquely efficient but not stable. In the simulation

we observed heavily inefficient outcomes: Welfare is not only low compared to the efficient

network, but also the welfare of the starting networks is lowered by the dynamics. Figure 24

depicts the most frequently emerging network in this setting for n = 8, the balanced complete

bipartite network, emerging in 25 percent of all simulation runs.74

Figure 24: Most frequently emerging network for λ = 1, c = v_lo (sim. n = 8).

The balanced complete bipartite network (henceforth: BCB) g is connected with n
2
∗ n

2
links.

It has a density of l(g)
l(gN )

= n
2(n−1)

which is 57% for n = 8. All pairs of players are at distance

one or two. Thus, the depicted network exhibits two of the three characteristic aspects of the

inefficient networks identified in Subsection 4.3.3 for Case II: (3) the network is dense and (2)

the network has short distances.

74A similar argumentation can be held for (λ, c) = (0.9, v_lo). In that case the BCB emerges in 49% of all
simulation runs for n = 8.
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For λ = 1 the addition of links can increase individual utility by increasing betweenness

(Lemma 4.4.1 states that it cannot decrease it) such that for low c, agents do so. Consider the

network of Figure 24 without one link, say g \84. This network is not stable, since both, player

8 and player 4, have an interest in reestablishing their link. They increase their benefits by
2[1− 2

n
]

(n−1)(n−2)
, which is larger than c = v_lo. In the various simulation runs leading to this BCB

network (exactly, 9’415 of 37’038), there must be several actions where agents add non-critical

links, respectively do not sever them. However, by Prop. 4.5 (ii) the addition of any non-critical

link decreases welfare, i.e. w(g) < w(g \ 84).

The individual incentive to establish a link, as well as the collective benefit is dependent

on distances. Theorem 4.1 shows that collectively it takes long real distance to produce high

aggregate betweenness, which implies total benefits in this case. However, the presence of long

distances is ground for establishing new links, as shown in the diameter result (Prop. 3.6) in

Subsection 3.3.2.75 In fact, the efficient network – the line network – is a subnetwork of the

BCB network. Its long distances on one hand produce the highest welfare. At the same time

they offer multiple possibilities to increase individual intermediation rents. Any two players

that are at a distance larger than 3 (and less than M) are eager to form a link, each time

increasing their betweenness, while reducing the welfare of a network. Respectively, if such

agents have the possibility to sever their link, they will not do so. We conjecture that this

situation of diverging interests – shortening distances increases individual utility but reduces

social welfare – is the main source of inefficiency for c “not too high” and λ >> λ̂.

Remark 4.4.2 (When does the argument apply). The individual benefits of shortening dis-

tances is not restricted to the case λ = 1, because it is also true for closeness that bridging

distances increases individual centrality substantially. c not too high is used to make sure that

benefits of adding non-critical links exceeds costs and to exclude issues of non-connectedness.

λ >> λ̂ assures that welfare steeply decreases in non-critical links.

75Prop. 3.6 states that any network with a diameter (maximal real distance) of size (p ≥ 4) or larger is not stable

if c <
(b p

2
c−1)b p

2
c

(n−1)(n−2) := c̃. Plugging in p = 4, the threshold becomes c̃ = 2
(n−1)(n−2) . For c = v_low = 1

23n
− ε

and n not too large (n ∈ {3, 4, ..., 18}) it holds that c < c̃ such that the maximal real distance of any stable
(and emerging) network is 3.
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4.4.3 Example B: Closeness Incentives and High Costs

Consider the setting (λ, c) = (0, hi) which is a subcase of Case I in Subsection 4.3.3. In that

case the star network is uniquely efficient and also stable but not uniquely so. The emerging

networks exhibit welfare close to efficiency. They can be characterized as connected and sparse

(usually they are trees), but differ from the star network by having longer distances. Figure 25

depicts the most frequently emerging network (eleven percent of the simulation runs for n = 8),

which illustrates those typical characteristics.

Figure 25: Most frequently emerging network for λ = 0, c = hi (sim. n = 8).

The depicted network only consists of critical links. In fact, for (λ, c) = (0, hi) it holds that:

when two players have the opportunity to form a critical link, they will do so. They increase

their benefits by at least 1
n−1

(if they are isolates, see Prop. 3.7, setting l = r = 0 and λ = 0)

while costs are lower than that c = hi = 1
n
− ε; conversely, if two players are asked to cut

a critical link, they will not. If two players have the opportunity to form a non-critical link,

this looks different. Non-critical links only rarely persist in the long run (see Subsection 4.3.3).

These dynamics lead to networks with slightly lower welfare than the efficient network (the star

network).

One explanation of the occurring inefficiency is not based on the incentives of the players, but

on the basic process of the simulation: the rule of link formation is to pick a pair of players at

random which is allowed to change their relationship. Watts (2001) shows that such dynamics

only occasionally leads to the star network. With high probability it is not possible to reach the

star network, even if any selected pair of players would only act to improve social welfare. If

this issue was the only source of inefficient outcomes, it would hold that any emerging network

cannot be improved by the addition or severance of a link.
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We will show that there is a second reason for inefficient outcomes, which is based on a conflict

between individual and collective interest. Let us check in Figure 25 whether there is a pair of

agents who are not directly linked, although this would increase welfare. This network g is stable

if and only if lb ≈ 0.12245 ≤ c ≤ ub ≈ 0.14268. If the network is stable, a new link can increase

total costs maximally by 2 ∗ ub (once for each holder). By W1, it is socially beneficial to take

these costs if the total benefits increase sufficiently. Total benefits are determined by aggregate

closeness which is determined by SD (see Section 4.1). It is easy to compute that for c = ub an

additional link ij improves welfare if 2 ∗ ub < 4∑

i∈N CLOSEi(g, ij) ⇔ 4SD(g, ij) > 7. In

network g there are multiple possibilities to shorten the sum of distances by more than 7, e.g. a

link between agents “5” and “7” would reduce the sum of distances by 9. However, the network

is stable. As this problem occurs even at the upper bound of the cost range, this network can

be socially improved by addition of links whenever (that is for any c) it is stable.

A look at the simulation results shows that this problem frequently occurs: For network size

n = 14 (and still (λ, c) = (0, hi)) a new link needs to change the sum of distances by at least

12 in order to increase social welfare. In the simulation with full weight on closeness 67.9% of

all emerging networks have a distance of 6. If two players at distance 6 form a link, then the

sum of distances reduces by at least 13 in any possible network.76 That implies that at least

the 67.9% of the emerging networks for this setting can be socially improved by the addition

of a link. Thus, in many situations the individual interest to build links is not as strong as the

collective interest.77

To explain this discrepancy reconsider the network in Figure 25. The costs of the link 57 is

paid by player 5 and player 7 alone. However, link 57 not only contributes to their benefits, but

also to the benefits of other players (i.e. players 3, 4, and 6). More generally, it can be shown

that if λ = 0, then for any g and ∀ij it holds that for any k ∈ N \ {i, j}, uk(g ∪ ij) ≥ uk(g),

that is: the formation of links can only have positive spillovers for λ = 0.78 But there are also

situations without spillovers: consider a network g : g ⊇ g?. Any two players are maximally at

distance 2 in network g. As one consequence, the addition of a link only increases the closeness

of the two players involved such that for λ = 0, the utility of any other player does not change.

76In the worst case there is a line of seven players.
77Since benefits of all agents are only based on distances and any newly formed link decreases distances, one

can put it in the following way: The individual interest to shorten distances is present but not as strong as
the collective interest.

78We show this result in the proof of Prop. 4.5 (iii).
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We argue that the process described in this example is a general driver of inefficiency in

settings with λ = 0 (not restricted to high c). For lower c, we observed that the emerging

networks are much denser (see Subsection 4.3.3), consisting of critical and non-critical links.

Still, it holds that any link in a stable network, ij ∈ g, contributes to its welfare, w(g) ≤ w(g\ij).
Prop. 4.5 (iii) shows even more generally, that any link (critical or not) that is build in the

dynamic process increases welfare. Thus, inefficient outcomes must be based on agents refusing

to build (respectively cutting) socially desirable links, besides some artifacts due to the sequence

of link formation.

4.4.4 Example C: Very High Costs

Consider the setting (λ, c) = (0.1, c̃) with 1+0.1
n−1

< c̃ < T2 (= (1−λ)(Mn−2n+2)
2(M−1)(n−1)

+ λ
2(n−1)

), where

the star network is efficient but not stable.

For this setting of c, the sequence of link formation will lead to sparse networks (any method

showed a strong pattern that density is decreasing with c). For c = hi already non-critical links

only rarely persist in the long run. However, networks that only consist of critical links, contain

loose ends and cannot emerge for c > 1+0.1
n−1

by Prop. 3.3 (ii). In the enumeration for M = n = 8,

97.5 percent of the stable networks are not stable for c > 1+0.1
n−1

. There are only three candidates

for emerging networks: the circle network, a network consisting of a 7-circle and one isolate,

and the empty network. We have not run any simulation for such high costs, c = v_hi, but

our conjecture is that in the large majority of simulation runs the empty network would emerge.

Consider two players willing to form a link in the empty network. They would increase their

benefits by 1−0.1
n−1

, which is not worth the costs c. Forming such a link would not have any

spillovers to other players, thus individual interest and collective interest in this link coincide.

However, consider the network g = {12, 34} (for n ≥ 5). Forming a link between player 2 and

3, would change their benefits by β := (1−λ)[2M−3]
(M−1)(n−1)

+ 2∗2λ
(n−1)(n−2)

. Now consider that c̃ = β, then 2

and 3 are indifferent about forming the link. For lower costs c̃ < β the link 23 will be formed,

while also agent 1 and 4 benefit from that (their closeness increases by (1−λ)[2M−5]
(M−1)(n−1)

, their degree

and betweenness stays constant). By Prop. 4.5 (i) welfare increased. If, however, c̃ is slightly

greater than β, then players 2 and 3 do not form the link, although it would still be socially

beneficial (as long as 2c < 2β + 2 (1−λ)[2M−5]
(M−1)(n−1)

).

As discussed in the network g and g∅ above, the formation of critical links might have positive
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spillovers or no spillovers. In fact, we can generally show that there are no negative spillovers:

for any g and ∀ij : dij(g) = M (ij is critical for g), it holds that for any k ∈ N \ {i, j},
uk(g ∪ ij) ≥ uk(g).

79 Moreover, it can be can shown that if λ < 1 and Ni(g) ∪Nj(g) 6= ∅ (not

both are isolates), it holds that
∑

k∈N\i,j uk(g ∪ ij) >
∑

k∈N\i,j uk(g).

While in the network discussed above (g = {12, 34}) both players agree not to form a critical

link, although it would be socially desirable, it is generally sufficient that one player involved

in the link does not accept it. For example, in the efficient network, the star network, the

central player of the star is not willing to keep his links, since the costs c̃ exceed the benefit of a

neighbor that does not lead to indirect connections 1+0.1
n−1

. This central player does not consider

the harm he does to the peripheral player, who is willing to keep his link. Neither he considers

the negative spillovers to the other peripheral players.

We argue that the issues discussed in this example can be generalized to any setting of λ,

for sufficiently high c (c high enough that most non-critical links are not formed and loose

ends are not stable, but below the thresholds where the empty network is efficient). First, it

may happen that critical links typically have positive spillovers that are not internalized by the

two players involved. At the same time a different issue seems to be predominant: A critical

link that would increase welfare, is only accepted by one of the two players involved.80 Thus,

inefficient outcomes (empty network emerges, while trees, i.e. the star network and the line

network, are efficient) are rather explained by an asymmetry of link formation – it takes two

players to form a link but one to sever it – than by positive spillovers of critical links.

In the three examples of this section, we identified some basic effects leading to inefficient

networks. Example C presents agents that decrease the welfare of a network by unilaterally

severing critical links. Those links exhibit positive spillovers either for the second player involved

or for other players or for both. A similar issue is illustrated in Example B, where critical and

non-critical links have positive spillovers. Moreover, we discussed in that example that the

sequence of link formation might also prevent the dynamic process from reaching the efficient

outcome. Finally, Example A shows agents that form links that are socially harmful, not

79We show this result in the proof of Prop. 4.5 (i).
80We already discussed this issue in Subsection 3.3.3 where we examined the integration of an isolate to explain

the emergence of unconnected networks for λ = 1 and c = med, hi. This was the only setting of the simulation
where costs were sufficiently high to observe the phenomenon of unconnected networks frequently.
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considering the negative spillovers.

Although the identified effects seem very important in determining the outcome of our model,

it must be noted that they are not necessarily the only effects and that they do not occur in

isolation. This makes the explanation of the emerging networks a non-trivial task. For example,

the most frequently emerging network for λ = 1, c = lo (in the simulation with n = 8), depicted

in Figure 8, exhibits the issue of non-connectedness (discussed in Example C) and the issue of

addition of non-critical links (discussed in Example A). Still, we try to trace back the emerging

networks to those effects when summarizing the tension between stability and efficiency in the

next subsection.

4.4.5 Summary of the Tension

The summary refers to Figure 23 and is organized according to the areas where a network is

uniquely efficient (ignoring the frontiers of these areas, where we have a multitude of efficient

networks).

Starting at the bottom left (i), in this area the complete network is efficient and uniquely

stable. From both, the individual and the collective perspective, a link between any pair of

players is worth its costs. Above that, there is the region where the star network is efficient. In

the lowest area (iv) of this region the complete network is uniquely stable. Consider a network

g : g ⊇ g?. As discussed in Example C, there are no positive spillovers on closeness from linking

in this case. However, the addition of a link decreases the betweenness of the players who are

directly linked to both (there is at least one such player, the center of the star). In this area

(of the parameters), costs c are low enough such that the individual increase in closeness is

worth the costs (c < 1−λ
(n−1)(M−1)

). Thus, each pair of players uses each opportunity to add a

link. While this might also increase other player’s utility in many situations, at some point, the

network becomes a superset of the star network. Then, players continue to add links without

considering the negative effects on the utility of other players (some loose betweenness benefits).

That is why we observe for λ > 0 such an area where the star is efficient and the complete

network is uniquely stable.

Above that, there is an area (iii), where the star network is efficient and also stable but not

uniquely so. The emerging networks exhibit welfare close to efficiency. However, for λ ≈ 0,

there is systematic problem that was discussed in Example B. The addition of links not only

increases the utility of the involved agents but might also increase closeness of other agents. If
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this increase in closeness is higher than the decrease in betweenness, then not involved agents

benefit from the link. Since maintenance of links is costly, there are situations where agents

refuse to build the links, although they would increase welfare. Thus, many emerging networks

feature distances that would socially be worth bridging but no pair of agents is willing to do

so. For λ >> 0 this effect need not be at work, since spillovers on betweenness can be negative.

Above that, there is a large area where the star network is still efficient but not stable.

Prop. 4.4 (v) states that in this area any non-empty network is inefficient. Specifically, the

central player of the star is not willing to keep his links, although they would be socially

beneficial, as discussed in Example C. Moreover, we make the conjecture in Example C that for

this setting of c, the sequence of link formation will most frequently lead to the empty network,

either because the other stable networks (typically we found networks with isolates and large

circles) are not very easily reached in the dynamic process, or because for large enough c the

empty network is uniquely stable.81 Thus, individual incentives to form some links break down

for a level of c, where it can still be socially desirable to keep them.

For high enough c (ii), the empty network is efficient and uniquely stable (Prop. 4.4 (ii)). In

that case the individual and collective incentives are aligned, since no link is worth its costs,

neither collectively nor individually.

Finally, there is a region where the line network is efficient. Prop. 4.4 (vi) ruled out stability

of the line for λ large enough.82 Consider the line network as starting network in the dynamic

process. With its distances, the line network offers a maximum of betweenness. However, it

is not stable. When two players that are at a large enough distance have the opportunity to

form a link, they will do so. For λ large enough, players with zero betweenness, i.e. at a loose

end, do not keep their link. This sequence of shortening distances and cutting ties by the loose

ends would lead to isolates and a dense component (such as in Figure 8 for (λ, c) = (1, lo)).

Similarly, for given λ and c large enough, we expect the empty network to emerge in most of

the cases as discussed in Example C.

Thus, in the area where the line network is efficient, for higher c there is the problem that

unconnected networks, i.e. the empty network, emerge; for lower c, the problem is that non-

critical links are added. Both problems can occur at the same time, e.g. for λ = 1 and c = lo.

81That is, we argue that the threshold of the empty network to be uniquely stable is lower than the threshold
for the empty network to be efficient. See also, Prop. 3.3 (iii) and its discussion in Subsection 3.2.1.

82Moreover, there is the conjecture that the line network is never stable for λ ≥ λ̂ and n ≥ 7, see Remark 4.5.1
in proof of Prop. 4.4.
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As a consequence, relative efficiency is low, which becomes apparent for λ >> λ̂. For λ close

enough to λ̂, say λ = 0.5, and c low enough to exclude the first issue, the emerging networks

are much denser than efficient, but without exhibiting low relative efficiency. This is because

short distances do not severely reduce total betweenness (for λ ≈ λ̂) and total costs are not

dominating total benefits (for c low enough). However, it is still true in this region that networks

emerge that are socially improvable by severance of ties.

Individuals in our model myopically increase their utility. What they do not consider are the

consequences for other players. This basic problem between individual incentives and collective

consequences is one of the main forces driving the discrepancy between the agents’ goals and

the social outcome – that is: the tension between stability and efficiency – in various settings

of our model. We will analyze this problem in a much more general framework in the next

chapter.

4.5 Proofs of Chapter 4

To prove Theorem 4.1 we need the following lemma:

Lemma 4.5.1. ∀g ∈ G and ∀j 6= k : djk(g) < M , it holds that

∑

i∈N\j,k

τ i
jk(g)

τjk(g)
= djk(g) − 1. (4.13)

In words: fixing a connected pair of agents (i.e. {j, k}) and summing up all agents that are

on one or more of their geodesics (weighted by the fraction they are on) results in counting the

length of the shortest path between j and k.

Proof of Lemma 4.5.1. Take any g with a pair of connected agents j and k. Let t( 6= 0) be the

number of geodesics τjk(g) = t and let H be the set of agents who are on some geodesics, that

is H := {i ∈ N \ j, k | τ i
jk(g) > 0}. Denote by hx the number of (distinct) agents who are on x

geodesics (hx := #{i ∈ N \j, k | τ i
jk(g) = x}). The definitions imply that |H| = h1+h2+...+ht,

which will be refered to as (*). Note first that if the t geodesics are independent (disjoint),

then there are t(djk(g)− 1) distinct agents in H . This number is reduced by any agent that is
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on more than one geodesic:

|H| = t(djk(g) − 1) − h2 − 2h3 − 3h4 − ...− (t− 1)ht

⇐⇒ t(djk(g) − 1) = |H| + h2 + 2h3 + 3h4 + ...+ (t− 1)ht (4.14)

On the other hand, recall that τ i
jk(g) = x means that agent i is on x geodesics of j and k.

By the definition of hx we can write

∑

i∈N\j,k

τ i
jk(g) = h1 + 2h2 + 3h3 + ... + tht (4.15)

We show that the left-hand side (LHS) of (4.14) equals the LHS of (4.15) by subtracting the

right-hand sides RHS (4.15)-(4.14):

∑

i∈N\j,k

τ i
jk(g) − t(djk(g) − 1) = h1 + h2 + ...+ ht − |H| (∗)

= 0

=⇒
∑

i∈N\j,k τ
i
jk(g)

t
= djk(g) − 1

where the (*) part follows from the definitions.83

Proof of Theorem 4.1 We have to show that ∀g ∈ G,

∑

i∈N

BETWi(g) =
2

(n− 1)(n− 2)

∑

j<k:djk(g)<M

(djk(g) − 1). (4.16)

By definition of betweenness (eq. 3.1)

∑

i∈N

BETWi(g) =
∑

i∈N







2

(n− 1)(n− 2)

∑

j<k

(j 6=i,k 6=i)

τ i
jk(g)

τjk(g)






. (4.17)

83The same result was also found by Gago Alvarez (2007). To check the plausibility of the lemma just let the
t geodesics be fully independent. Then |H | = t(djk(g) − 1). Each agent i ∈ H derives a betweenness of 1

t
.

Hence
∑

i∈N\j,k

τ i
jk(g)

τjk(g) =
∑

i∈H

τ i
jk(g)

τjk(g) = t(djk(g) − 1) ∗ 1
t

= djk(g) − 1.
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By changing summation we get:

2

(n− 1)(n− 2)

∑

i∈N







∑

j<k
(j 6=i,k 6=i)

τ i
jk(g)

τjk(g)






=

2

(n− 1)(n− 2)

∑

j<k





∑

i∈N\j,k

τ i
jk(g)

τjk(g)



 .

The fraction in brackets was defined to be zero if the denominator is zero. Since this is always

true for unconnected pairs (i.e. djk(g) = M =⇒ τj,k(g) = 0), only connected pairs count for

the sum before the brackets. Therefore we can apply lemma 4.5.1 which yields the result:

∑

i∈N

BETWi(g) =
2

(n− 1)(n− 2)

∑

j<k:connected

(djk(g) − 1).

Derivation of W3. We start with W2 and get W3:

w(g) = (1 − λ)

[

nM

M − 1
− 2SD(g)

(n− 1)(M − 1)

]

+ λ
2SD(g) − n(n− 1) − 2ν(g)(M − 1)

(n− 1)(n− 2)
− c2l(g)

=
(1 − λ)nM

M − 1
−

(1 − λ)2
∑

j<k djk(g)

(n− 1)(M − 1)
+
λ2

∑

j<k djk(g)

(n− 1)(n− 2)
− λn(n− 1)

(n− 1)(n− 2)

−λ2ν(g)(M − 1)

(n− 1)(n− 2)
− c2l(g)

=
(1 − λ)nM

M − 1
− λn(n− 1)

(n− 1)(n− 2)
+

∑

j<k

djk(g)

[

− 2(1 − λ)

(n− 1)(M − 1)
+

2λ

(n− 1)(n− 2)

]

−2cψ1(g) − ψM (g)
λ2(M − 1)

(n− 1)(n− 2)

=
(1 − λ)nM

M − 1
− λn

n− 2
+ ψ1(g)

[

1 ∗ 2λ

(n− 1)(n− 2)
− 1 ∗ (1 − λ)2

(M − 1)(n− 1)
− 2c

]

+ψ2(g) ∗ 2

[

2λ

(n− 1)(n− 2)
− (1 − λ)2

(M − 1)(n− 1)

]

+ψ3(g) ∗ 3

[

2λ

(n− 1)(n− 2)
− (1 − λ)2

(M − 1)(n− 1)

]

+...+ ψn−1(g) ∗ (n− 1)

[

2λ

(n− 1)(n− 2)
− (1 − λ)2

(M − 1)(n− 1)

]

+ψM (g)

[

M ∗ 2λ

(n− 1)(n− 2)
− M ∗ (1 − λ)2

(M − 1)(n− 1)
− λ2(M − 1)

(n− 1)(n− 2)

]

,

where the expression in the very last brackets simplifies to αM = 2λ
(n−1)(n−2)

− (1−λ)2M

(M−1)(n−1)
.

Proof of Prop. 4.1. The following lemma is helpful for this proof as well as for the proofs of

Prop. 4.2 and Prop. 4.3.
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Lemma 4.5.2. For any network g ∈ G with l(g) = l it holds that ψM (g) ≥ 1
2n(n− 1) − 1

2 l(l + 1). In

words: the number of links of a network determines the minimal number of unconnected pairs.

Proof. For l ≥ n − 1, the statement is not restrictive, because 1
2n(n − 1) − 1

2 l(l + 1) ≤ 0. For

l = 0, it holds that ψM (g) = 1
2n(n− 1). For l ∈ {1, 2, ..., n − 1} a network with l links can maximally

connect 1
2 l(l + 1) pairs of agents. This is because such a network must be minimal and contain only

one non-trivial component (we call such networks local trees). A local tree of size l connects l + 1

agents, while 1
2n(n− 1) − 1

2 l(l + 1) pairs stay unconnected. q.e.d.

(i) Consider W3. For λ < λ̂ and c < 1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

it holds that α1 > α2 > α3 >

... > αn−1 > αM (see inequalities (4.7) and (4.11)). gN is the only network with all pairs

at distance 1: ψ1(gN) = 1
2
n(n− 1), while ψx(gN) = 0 for all x 6= 1.

(ii)-(iii) Consider W3. For λ < λ̂ it holds that α2 > α3 > ... > αn−1 > αM (see inequalities (4.9)

and (4.11)). Let us distinguish two cases:

• Consider a network g with l(g) > n − 1. Necessarily: ψ1(g) = l(g). There are

1
2
n(n−1)−ψ1(g) other pairs. If all of them are at distance 2, the welfare function is

maximized (because α2 is the biggest coefficient in W3).84 Let g be such a network

and denote t := l−(n−1) = l−n+1. Such a network differs from a star by having t

pairs more at distance one and t pairs less at distance two. By W3 this implies that

w(g?) − w(g) = t(α2 − α1). Since c > 1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

it holds that α2 > α1

(see Inequality (4.7)), implying that w(g?) > w(g).

• Consider a network g with l(g) := l ≤ n−1. Note that having l ≤ n−1 links implies

that the number of connected pairs is at most 1
2
l(l+1) (see Lemma 4.5.2). l of them

are at distance 1: ψ1(g) = l(g). If all other connected pairs are at distance 2, the

welfare of a network with l links is maximized (because α2 is the biggest coefficient

in W3). Such networks exist and can be described as local stars of size l (only local

trees minimize the number of unconnected pairs; only stars have a maximal distance

of 2 for all connected pairs). This shows that for l ≤ n − 1 the best networks are

local stars.

Because for local stars of size l it holds that ψ2(g) = 1
2
l(l + 1) − l and ψM(g) =

1
2
n(n−1)− 1

2
l(l+1), its welfare can be computed as lα1+(1

2
l(l+1)−l)α2+

1
2
n(n−1)−

1
2
l(l+1)αM . straightforward computations show that for c > (1−λ)(Mn−2n+2)

2(M−1)(n−1)
+ λ

2(n−1)

84Indeed, for l(g) > n− 1 there exist such networks (e.g. a star with other links in addition).
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any local star has negative welfare such that the empty network is efficient. Moreover,

if a local star of size l has positive welfare, then a local star of size l+ 1 has strictly

higher welfare. For c < (1−λ)(Mn−2n+2)
2(M−1)(n−1)

+ λ
2(n−1)

the local star with l = n − 1 links

(that is g?) has strictly higher welfare than the empty network (and any other local

star).

Proof of Prop. 4.2. The following Lemma is helpful.

Lemma 4.5.3. For λ ≥ λ̂ any efficient network is minimal or empty.

Proof. Let g ∈ G \ g∅ be a network that is not minimal. That means ∃i, j : dij(g \ ij) < M .

Thus, ν(g \ ij) = ν(g). Since cutting a link cannot shorten any distance, SD(g \ ij) ≥ SD(g). Finally,

l(g \ ij) < l(g). Consider W2 and its discussion in Section 4.1. For λ ≥ λ̂ W2 is non-decreasing in

SD(g), while it is always decreasing in l(g) and ν(g). Therefore, w(g \ ij) > w(g). q.e.d.

Lemma 4.5.3 implies that an efficient network does not have more than n − 1 links (any

network with more links is not minimal). For λ > λ̂ it holds that αn−1 > αn−2 > ... > α3 >

α2 > αM (see inequalities (4.10) and (4.11)). Consider a network g with l(g) ≤ n − 1. Such a

network can have at most 1
2
l(l+1) connected pairs (by Lemma 4.5.2). The higher the distances

between the connected pairs, the higher the welfare. Consider a network that forms a line of

size l. For such a local line it holds that ψl(g) = 1, ψl−1(g) = 2, ψl−2(g) = 3, .... Since a local

line not only minimizes the number of unconnected pairs, but also uniquely maximizes the sum

of distances, it is the network structure with highest aggregate betweenness of all networks with

l links. By W1 any efficient network must be a local line.85

A local line network of size l has the following welfare: lα1 + (l − 1)α2 + (l − 2)α3 + ... +

2αl−1 + 1αl + (1
2
n(n − 1) − 1

2
l(l + 1))αM . straightforward computations show that for c >

1−λ
2(n−1)

[

Mn
4(M−1)

− n3−n
3(M−1)(n−1)

]

+ λ n2−4n+3
4(n−1)(n−2)

any local line has negative welfare such that the

empty network (the local line of length zero) is efficient. Moreover, if a local line of size l has

positive welfare, then a local line of size l + 1 has strictly higher welfare.

85A local line of size 0 is the empty network.
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Proof of Prop. 4.3. (i) By Inequality (4.7)

α1 ≥ α2 ⇐⇒ c ≤ (2 − 1)
[

1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

]

.

Thus, for λ = 0 and c = 1
(M−1)(n−1)

, it holds that α1 = α2. Since 0 < λ̂, it holds that

α1 = α2 > α3 > α4 > ... > αn−1 > αM (see Inequality (4.9)). Take any network g,

with maximal distance of two.86 This network is connected since M > 2. It holds that

ψ1(g) + ψ2(g) = 1
2
n(n− 1). Considering W3 and the inequalities above, this implies that

g is efficient.

(ii)-(iii) For λ = λ̂ it holds that α1 < α2 = α3 = α4 = ... = αn−1 > αM (see inequalities (4.7) and

(4.11)). By Lemma 4.5.3 only minimal networks can be efficient. For minimal networks

it holds the l(g) ≤ n−1. Consider a network g with l(g) =: l ≤ n−1. Clearly, ψ1(g) = l.

Considering W3, the highest possible welfare for a network with l links occurs if ψM is at

its minimum. This is only true for local trees of size l (see Lemma 4.5.2). So among all

networks with l links a local tree has the highest welfare.

A local tree has welfare of lα1+ 1
2
l(l+1)α2+[1

2
n(n−1)− 1

2
l(l+1)]αM . It is straightforward

to compute that for c > n2−n
2n−3

any local tree has negative welfare, rendering the empty

network efficient. Moreover, if a local tree of size l has positive welfare, then a local tree

of size l + 1 has strictly higher welfare. So, for c < n2−n
2n−3

only local trees of size l = n− 1

are efficient. Since α2 = α3 = ... = αn−1, any local tree is efficient.

Proof of Prop. 4.4. (i) This result is a direct corollary of Prop. 4.1 (i) and Prop. 3.3 (i).

Just note that ( 1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

) = T1 ≤ 1−λ
(n−1)(M−1)

.

(ii) This result is a triviality. Consider c̃ > max{T2, T3, n2−n
2n−3

, 1}. By Prop. 4.1 (iii), Prop. 4.2

(ii), and Prop. 4.3 (iii), g∅ is uniquely efficient. It remains to show that the empty network

is uniquely stable for c̃ > 1. This is done in the proof of Prop. 3.3.

(iii) The stability of the star network g? follows directly from Prop. 3.1 (iii). For efficiency, we

use Prop. 4.1 (ii). We have to show that for any c : 1−λ
(n−1)(M−1)

< c < min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

},
it holds that T1 < c < T2. The first part is obvious since T1 ≤ 1−λ

(n−1)(M−1)
. The second

86Such networks exist. For example, a star with other links in addition (g ⊇ g?).
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part requires some more computational effort. We show for n ≥ 6 that ub1 ≤ T2.

ub1 ≤ T2 ⇐⇒ 1 + λ

n− 1
≤ (1 − λ)(Mn− 2n+ 3)

2(M − 1)(n − 1)
+

λ

2(n − 1)
(4.18)

⇐⇒ −Mn+ 2M + 2n− 4 ≤ λ(−M + 1 −Mn+ 2n− 2) (4.19)

⇐⇒ λ ≤ −Mn+ 2M + 2n− 4

−Mn−M + 2n− 1
=
Mn− 2M − 2n+ 4

Mn+M − 2n + 1
(4.20)

Eq. (4.18) is to show. Subtracting λ
2(n−1)

and after some simplifications (e.g. we multiply

both sides by (n − 1)2(M − 1)) we get Eq. (4.20). The last step is to divide by the

expression in the brackets on the LHS, which has a negative sign (because Mn > 2n). To

show that Eq. (4.21) holds we make an approximation, showing that the fraction is larger

than 0.5, while clearly λ < λ̂ < 0.5.

Mn− 2M − 2n+ 4

Mn+M − 2n+ 1
≤ 1

2
⇐⇒ 2[Mn− 2M − 2n+ 4] ≥Mn+M − 2n+ 1 (4.21)

⇐⇒ Mn− 5M − 2n+ 7 ≥ 0 (4.22)

⇐⇒ (n− 1 + σ)n− 5(n− 1 + σ) − 2n+ 7 ≥ 0 (4.23)

⇐⇒ σ(n− 5) + n(n− 8) + 12 ≥ 0 (4.24)

From Eq. (4.22) to Eq. (4.23) we replaced M by (n− 1 + σ) for some σ > 0. Eq. (4.24)

holds for n ≥ 6.

(iv) This result is a direct corollary of Prop. 3.3 (i) and Prop. 4.1 (ii).

(v) Let c > min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

}. By Prop. 3.3 (ii), any network containing loose

ends is unstable. It remains to show that for c, any efficient network that is non-empty

contains loose ends. Let us distinguish two cases. For λ ≥ λ̂ Lemma 4.5.3 in Proof of

Prop. 4.2 shows that any efficient network is minimal. Clearly, a non-empty minimal

network contains loose ends.

Now consider the case λ < λ̂. We firstly show that min{ 1+λ
n−1

= ub1; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

=

ub2} > 1−λ
(M−1)(n−1)

− λ
(n−1)(n−2)

= T1.

With simple transformations we get T 1 < ub1 ⇐⇒ 1
M−1 < λ( 1

M−1 + 1 + 1
n−1 ). The LHS must be

strictly negative, while the RHS is a product of two non-negative factors. Similarly, T 1 < ub2 ⇐⇒
1−λ

(n−1)(M−1) [1 − (M(n− 1)− 2n+ 3)] < λ
(n−1)(n−2) . The RHS is non-negative; the first factor of the LHS

is strictly positive (because λ < 1). Thus, it remains to check that the second factor is strictly negative,

that is [1 − (M(n− 1) − 2n+ 3)] < 0. Since this expression is decreasing in M and since M > n− 1 (as

always), it holds that [1− (M(n− 1)− 2n+ 3)] < [1− ((n− 1)2 − 2n+3)] replacing M with n− 1. Thus,

it suffices to show that [1 − ((n− 1)2 − 2n+ 3)] ≤ 0 which simplifies to (n− 1)[−n+ 3] ≤ 0.
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Thus, by assumption c > T1. In the proof of Prop. 4.1 part (ii) and (iii) we show that

for c > T1 any efficient network must be a local star (including the star network and the

empty network).87 Clearly, any non-empty local star contains loose ends.

(vi) Prop. 4.2 shows that the line network is uniquely efficient for λ > λ̂ (and c < T3). Since

the line network has loose ends, a necessary condition for stability comes from Prop. 3.3

(ii): c ≤ min{ub1; ub2 = (1 − λ)M(n−1)−2n+3
(n−1)(M−1)

}. Since the fraction has always a positive

sign (n ≥ 3,M > n− 1), ub2 is a linearly decreasing function in λ, going to 0 for λ going

to 1. Thus, for any cost c̃ we can find a λ̃ such that c̃ < ub2, rendering the line network

unstable.

Remark 4.5.1 (Stability of the line network). In fact, the line network is usually unstable. A

second necessary condition for stability is that the players at the ends do not improve by adding

a link between them. Let us make an approximation of the marginal benefits of a player i at the

end linking with the other end j.

His distances decrease by

∆di(n) =











n− 2 + n− 4 + n− 6 + ...+ 3 + 1 = 1
4(n− 1)2 , for odd n

n− 2 + n− 4 + n− 6 + ...+ 4 + 2 = 1
4n(n− 2) , for even n

(4.25)

Thus, closeness of player i increased by at least 1
(M−1)(n−1) [

1
4n(n− 2)].

Betweenness increases (see also Proof of Prop. 3.6), too. Let χ be the number of pairs whose

distance shortens (bxc stands for the next lower integer):

χ(n) ≥ 1 + 2 + 3 + 4 + ...+ bn− 1

2
c ≥ 1

2
(bn − 1

2
c − 1)bn − 1

2
c (4.26)

∆BETWi(g) ≥
(bn−1

2 c − 1)bn−1
2 c

(n− 1)(n − 2)
. (4.27)

Since bn−1
2 c − 1 ≥ n−2

2 , betweenness of player i increased by at least
(n−2

2
−1)n−2

2
(n−1)(n−2) , which further

simplifies to n−4
4(n−1) . Let βi := (1−λ)CLOSEi(g

|∪ij)+λBETWi(g
|∪ij)−[(1−λ)CLOSEi(g

|)+

λBETWi(g
|)] and similarly for j. Since the increase in closeness and betweenness is identical

for j, a necessary condition for stability is:

c ≥ βi = βj ≥
(1 − λ)[n(n− 2)]

4(M − 1)(n − 1)
+
λ(n − 4)

4(n − 1)
(4.28)

87Using proposition Prop. 4.1 (ii) and (iii), we see directly that the statement holds for the case T 1 < c < T 2
(star network is uniquely efficient) and for the case c > T 2 (the empty network is uniquely efficient). However,
this proposition does not make a statement about the case c = T 2. There it holds that w(g?) = w(g∅) = 0.
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On the other hand, a line can only be stable if its loose ends are stable. By Prop. 3.3 (ii) this

means

c ≤ ub2 =
(1 − λ)[M(n − 1) − 2n+ 3]

(n− 1)(M − 1)
(4.29)

The two conditions Eq. (4.28) and Eq. (4.29) can easily get in conflict with each other.

Proof of Lemma 4.4.1. The lemma follows from the definition of closeness and betweenness

and some characteristics of shortest paths.

(i) Let us first show that for any h ∈ N , ∀g ∈ G, ∀ij it holds that CLOSEh(g ∪ ij) ≥
CLOSEh(g). Since any path that exists in g also exists in g ∪ ij, no distance can be

increased by addition of a link: For all h, k ∈ N , ∀g ∈ G and ∀ij it holds that dhk(g∪ij) ≤
dhk(g). By definition closeness is decreasing in the distance to any other player, i.e.

CLOSEh(g) = M
M−1

−
∑

k∈N dhk(g)

(M−1)(n−1)
, showing the last statement of the first part (∀k ∈

N \ {i, j}, it holds that CLOSEk(g ∪ ij) ≥ CLOSEk(g)). It remains to show that two

players involved in a link (i.e. i and j) strictly increase their closeness. For this end it

suffices to find one distance for each of them that is shorter in g ∪ ij than in g. Consider,

the distance between the focal players i and j themselves. Since, ij 6∈ g, dij(g) > 1, while

dij(g ∪ ij) = 1.

(ii) We shall first show that in any network g any new link ij does not decrease the betweenness

of a player i (independently of dij(g)). Recall the definition of betweenness: BETWi(g) =

2
(n−1)(n−2)

∑

j<k(j 6=i,k 6=i)

τ i
jk

(g)

τjk(g)
, (where τjk(g) is the number of shortest paths between j and

k, and τ i
jk(g) indicates the number of shortest paths between j and k that go through i;

the fraction
τ i
jk

(g)

τjk(g)
is replaced by zero, when τjk(g) = 0). We show that in any network g

for all h 6= p(∈ N) and all i, j : h 6= i, p 6= i it holds that
τ i
hp

(g∪ij)

τhp(g∪ij)
≥ τ i

hp
(g)

τhp(g)
.

Consider a network g and any distinct i, h, p ∈ N and some j 6= i. Since g ∪ ij ⊇ g any

path that is present in g is also present in g ∪ ij. Since the two networks only differ by

the link ij, it must hold that any path that is not present in g, but is present in g ∪ ij,
uses the link ij. There are three possibilities: (a) None of the new paths is a shortest

path between h and p,88 (b) some of the new paths are shortest paths between h and p

88ij ∈ g belongs to that case.
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and those paths are shorter than their shortest path in g, (c) some of the new paths are

shortest paths between h and p with the same length as the paths before.

In case (a) clearly the inequality holds with equality (the nominator and denominator on

both sides are equal). In case (b) any shortest path in g∪ij uses i, thus
τ i
jk

(g∪ij)

τjk(g∪ij)
= 1 which

is the maximal value this fraction can attain. (Thus, the inequality holds.) In case (c)

let a > 0 be the number of new shortest paths. Since any new path uses i, it holds that
τ i
jk

(g∪ij)

τjk(g∪ij)
=

τ i
jk

(g)+a

τjk(g)+a
≥ τ i

jk
(g)

τjk(g)
(the last inequality holds because τ i

jk(g) ≤ τjk(g)). Therefore,

for all g, and for all i, j, BETWi(g∪ ij) ≥ BETWi(g) and BETWj(g∪ ij) ≥ BETWj(g).

For the second statement of (ii) we use the condition that the new link is critical: We

have to show that for all k ∈ N \ {i, j} it holds that BETWk(g ∪ ij) ≥ BETWk(g) for

some ij : dij(g) = M . By the definition of betweenness, it is sufficient to show that in any

network g for all distinct h, p, k ∈ N and any i( 6= k), j( 6= k) : dij(g) = M it holds that
τk
hp

(g∪ij)

τhp(g∪ij)
≥ τk

hp
(g)

τhp(g)
.

Since g ∪ ij ⊃ g any path that is present in g is also present in g ∪ ij. Since the two

networks only differ by the link ij, it must hold that any path that is not present in g,

but is present in g ∪ ij, uses the link ij. Let Ci and Cj denote the two components of g

that are bridged by ij. Since no (shortest) path uses an edge twice, any path present in

g ∪ ij and not present in g must lead from Ci to Cj (connecting two agents of those two

components). Thus, for any pair h, p such that neither h ∈ Ci and p ∈ Cj nor p ∈ Ci and

h ∈ Cj , the inequality above holds with equality, because g and g ∪ ij do not differ with

respect to shortest paths between h and p. Otherwise – if either h ∈ Ci and p ∈ Cj or

p ∈ Ci and h ∈ Cj – it holds that
τk
hp

(g)

τhp(g)
= 0 because there is no shortest path.

(iii) The first statement is shown in the proof of part (ii).

The second statement is that
∑

k∈N\i,j BETWk(g ∪ ij) <
∑

k∈N\i,j BETWk(g) for some

{i, j} : 1 < dij(g) < M . Since we have shown that BETWi(g ∪ ij) ≥ BETWi(g) and

BETWj(g ∪ ij) ≥ BETWj(g), it suffices to establish that
∑

h∈N BETWh(g ∪ ij) <
∑

h∈N BETWh(g).
89

As a consequence of Theorem 4.1, we have shown that Eq. (4.2):
∑

k∈N BETWk(g) =
SD(g)− 1

2
n(n−1)−ν(g)(M−1)

1
2
(n−1)(n−2)

. dij(g) < M means that ij is a non-critical

89The argument follows from
∑

h∈N BETWh(g) = BETWi(g) +BETWj(g) +
∑

k∈N\i,j BETWk(g).
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link. By definition a non-critical link does not connect different components, thus all pairs

who are not connected in g are also not connected in g ∪ ij: ν(g ∪ ij) = ν(g). SD was

defined as the sum of distances, SD(g) :=
∑

j<k djk(g). Since any path that is present

in g is also present in g ∪ ij, there is no pair of players whose distance increases when

establishing ij. However, there is at least one pair of players, i.e. {i, j}, whose distance

strictly decreases (dij(g) > 1, while dij(g ∪ ij) = 1). Thus, SD(g) > SD(g ∪ ij) implying

that
∑

k∈N BETWk(g ∪ ij) <
∑

k∈N BETWk(g).

Proof of Prop. 4.5. Recall, that w(g) =
∑

h∈N uh(g). Thus, w(g ∪ ij) ≥ w(g) ⇐⇒ ui(g ∪
ij) − ui(g) + uj(g ∪ ij) − uj(g) +

∑

k∈N\i,j(uk(g ∪ ij) − uk(g)) ≥ 0.

(i) Since by assumption the utility of the i and j are increasing from g to g ∪ ij, it remains

to show that if dij(g) = M , then
∑

k∈N\{i,j}(uk(g ∪ ij) − uk(g)) ≥ 0. For this purpose

let us show that ∀k ∈ N \ {i, j}, it holds that uk(g ∪ ij) − uk(g)) ≥ 0. By definition

uk(g) = (1 − λ)CLOSEk(g) + λBETWk(g) − clk(g). Thus, uk(g ∪ ij) − uk(g) = (1 −
λ)[CLOSEk(g∪ ij)−CLOSEk(g)]+λ[BETWi(g∪ ij)−BETWi(g)]−c[lk(g∪ ij)− lk(g)].
Clearly, lk(g ∪ ij) = lk(g) (because k 6∈ {i, j}) such that the last term is zero. Since ij is

critical (dij(g) = M), Lemma 4.4.1 part (i) applies, stating that the expression in the first

brackets cannot be negative and by Lemma 4.4.1 part (ii), the second brackets cannot be

negative. This implies that uk(g ∪ ij) − uk(g) ≥ 0.

(ii) We will show directly that w(g∪ij) < w(g). Consider W2: w(g) = (1−λ)
[

nM
M−1

− 2SD(g)
(n−1)(M−1)

]

+

λ2SD(g)−n(n−1)−2ν(g)(M−1)
(n−1)(n−2)

− c2l(g). For λ ≥ λ̂ this function is weakly increasing in SD(g)

and strictly decreasing in l(g) and ν(g).

Note first that ν(g ∪ ij) = ν(g) since ij is not critical for g.90 Secondly, recall that

SD(g) :=
∑

h<p dhp(g). It holds that SD(g ∪ ij) ≤ SD(g) because an additional link

cannot increase the distance between any pair (the shortest path between h and p in

network g is still available in g∪ij). Finally, l(g∪ij) = l(g)+1. Therefore, w(g∪ij) < w(g).

90The number of unconnected agents ν only changes by the addition of a link if the number of components
decreases. If a link is not critical, it does by definition not change the number of components. That is, there
is no pair of players h, p such that dhp(g) = M and dhp(g ∪ ij) < M when ij is non-critical for g.
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(iii) Let again µl
i(g) = ui(g ∪ l) − ui(g \ l) denote marginal utility. We show that w(g ∪ ij) >

w(g) (⇐⇒ ∑

h∈N µ
ij
h (g) ≥ 0) by showing that for agent i, µij

i (g) > 0, while for all j 6= i

it holds that µij
j (g) ≥ 0. For i and j this holds by assumption. For any k ∈ N \ {i, j},

it holds that µij
k (g) = (1 − 0)[CLOSEk(g ∪ ij) − CLOSEk(g)] + 0[BETWk(g ∪ ij) −

BETWk(g)]− c[lk(g ∪ ij)− lk(g)]. Clearly lk(g ∪ ij) = lk(g). Lemma 4.4.1 (i) states that

the expression in the first brackets cannot be negative. Thus, µij
k (g) ≥ 0.
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5 Generalizations – The Role of Externalities

In Chapter 4 we observed in the centrality model that individual interest can be at odds with

societal welfare. Such a tension between stability and efficiency is known to be a central problem

in strategic network formation since the seminal contribution of Jackson and Wolinsky (1996).

What has not been explicitly studied are the sources of inefficiency. In particular the question

is how do stable networks generally differ from efficient networks? And, why does individual

interest not always lead to efficient outcomes? We approach these questions by analyzing the

role of externalities (or spillovers) of link formation. First, we address positive externalities

and its examples; then we turn to situations with negative externalities (Subsection 5.2).

Subsection 5.3 concludes.

Consider a society (N,G, u). Recall that a network g∗ is called efficient with respect to the

welfare function w if it is a welfare maximizing network, that is w(g∗) ≥ w(g) ∀g ∈ G, where

the utilitarian welfare function wu is just one of the reasonable welfare functions satisfying

monotonicity. To further characterize efficiency, we introduce the following two notions:

Definition 5.1. A network g is called over-connected (with respect to the welfare function

w) if ∃g′ ⊂ g such that w(g′) > w(g).

Definition 5.2. A network g is called under-connected (with respect to the welfare function

w) if ∃g′ ⊃ g such that w(g′) > w(g).

A network is over-connected if it is “too dense” in the sense that overall welfare can be

improved by cutting links. Similarly, under-connected networks are “not dense enough”. Ef-

ficient networks are neither over-connected nor under-connected. Note that for a given w, a

network can satisfy both, one, or none of these two properties. To shed some light into the

tension between stability and efficiency, we will ask whether and under what conditions stable

networks are under-connected respectively over-connected. From the perspective of a social

planner, this gives some insights whether to subsidize or to tax the formation of links in order

to arrive in a socially preferred outcome.
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5.1 Positive Externalities

5.1.1 Main Result on Positive Externalities

Recall that each (exogenously given) u defines a situation that is the basis for a strategic network

formation game. Externalities describe the spillovers of link formation: Positive externalities

simply capture that two players forming a link cannot mean harm for others.91

Definition 5.3. A profile of utility functions u satisfies positive externalities if ∀g ∈
G, ∀ij /∈ g, ∀k ∈ N \ {i, j} it holds that

uk(g ∪ ij) ≥ uk(g).

Being required for any network, any link, and any player, this property seems quite restrictive.

However, we argue that there are many such contexts and we can easily find examples in the

literature on strategic network formation that satisfy this property. Among them are “Provision

of a pure public good” (Goyal and Joshi, 2006a), “Market sharing agreements” (Goyal and Joshi,

2006a), and the “Connections model” (Jackson and Wolinsky, 1996) which we discuss below.

In case of a utility function that is additive separable into costs and benefits (where costs only

depend on the own links), positive externalities are implied by a simple monotonicity property

of the benefit function.

Since players who pay for certain links have to share their benefits with other agents,

individual incentives to establish links can be lower than their collective value. The subsequent

results, follow this intuition.

Theorem 5.1. If a profile of utility functions u satisfies positive externalities, then no pairwise

Nash stable network is over-connected with respect to any monotonic welfare function w, that

is ∀g ∈ [PNS(u)] it holds that 6 ∃g′ ⊂ g : w(g′) > w(g).

All proofs of this chapter can be found in Section 5.4. To prove this result we show that

any player is worse off in a subnetwork g′ of a PNS network g.92 Because of PNS, a player

cannot prefer a network g̃(⊂ g) that has only been reduced by some of his own links. Because

of positive externalities, he cannot prefer a subnetwork g′ ⊂ g̃.

91What we call positive externalities here, is called “non-negative externalities” in Jackson (2008). “Positive
externalities” in the sense of Jackson (2008) require that the inequality is strict for at least one agent k. Any
result that we state for positive externalities, also holds for “positive externalities” in the stronger sense.

92The result also implies that no subnetwork of a PNS network is Pareto better.



Externalities 116

Extension to Pairwise Stability

Since (PS) is weaker than (PNS), we need an additional assumption to make a statement about

the pairwise stable networks as well. Let µl
i(g) := ui(g∪ l)−ui(g\ l) denote the marginal utility.

We employ a definition that was also used in Bloch and Jackson (2007):

Definition 5.4. A profile of utility functions u is convex in own current links, if ∀i ∈
N, ∀g ∈ G, and ∀l ⊆ Li(g) it holds µl

i(g) ≥
∑

ij∈l µ
ij
i (g).

Because convexity in own current links93 is sufficient for [PNS(u)] = [PS(u)], the next result

follows.

Corollary 5.1.1. If u satisfies positive externalities and convexity in own current links, then

a g ∈ [PS(u)] is not over-connected (with respect to any monotonic welfare function).

The non-over-connectedness results have trivial implications for the complete and empty

network. As any network is a subnetwork of the complete network, it follows that (a) if the

complete network is stable, then it must also be efficient. Since any network is a supernetwork

of the empty network, it follows that (b) if the empty network is uniquely efficient, then no

other network can be stable. More insights, can be won when studying specific examples.

Remark 5.1.1 (Convex or concave). Hellmann (2009) shows that convexity in own current

links is equivalent to “concavity in own new links” and equivalent to an intuitive property called

“concavity (in own links)”. Informally put, the third property (concavity) requires that the

marginal contribution of a link for a player is decreasing in the set of links he already has. We

use this equivalence in proof of Theorem 5.2 in the next section.

5.1.2 The Connections Model Revisited

Recall the connections model (introduced in Jackson and Wolinsky, 1996) that models the flow

of resources (like information or support) via the shortest paths in a network. In its general

form the utility of each player can be written as

uCO
i (g) = wii +

∑

j 6=i

δdij(g)wij −
∑

j:ij∈g

cij , (5.1)

where wij stands for the undiscounted worth of a connection to agent j and cij stands for the

cost of maintaining a link with agent j, while δ ∈ (0, 1) and M = ∞.

93Recall that Li(g) ⊆ g such that µl
i(g) = ui(g) − ui(g \ l).



Externalities 117

It is easy to see that the connections model satisfies positive externalities. If ij forms in

some network g, then the utility of player k 6= {i, j} either does not change, or increases as

some of k’s distances are shortened, because dkm(g ∪ ij) ≤ dkm(g) for all ij and m. Moreover,

Calvó-Armengol and Ilkiliç (2007) show that a specific form of the connections model (uSCO),

the symmetric connections model, satisfies convexity in own current links – a result that can

be generalized to various distance-based utility functions including uCO above.94 Consequently

(by the results Theorem 5.1 and Corollary 5.1.1 above), no pairwise (Nash) stable network can

be over-connected w.r.t. any monotonic welfare function. While the stable networks depend

on the dyadic specifications of value and costs (wij, cij), the non-over-connectedness results tell

that the welfare of a stable network can never be improved by severing certain links – in fact,

any player weakly prefers a stable network to any of its subnetworks.

There are more specific results for the connections model in its symmetric version, setting

wij = 1, cij = c (∀i 6= j) and considering wu. This was studied in Jackson and Wolinsky (1996),

Jackson (2003), Hummon (2000), and in Section 2.3.3 of this work, among others. Jackson

and Wolinsky (1996, Prop. 1 and Prop. 2) show that for low costs (c < δ − δ2), the complete

network is efficient (and uniquely pairwise stable); for medium costs (δ − δ2 < c < δ + n−2
2
δ2),

the star network is efficient; while for very high costs (c > δ + n−2
2
δ2), the empty network is

efficient. Their famous statement of inefficiency in the connections model is the following: “For

δ < c, any pairwise stable network which is non-empty is such that each player has at least two

links and thus is inefficient.”95

What does our result excluding over-connectedness add to their discussion of inefficiency?

First, there are the trivial implications for the complete and the empty network: If the empty

network is uniquely efficient, then it must be uniquely stable. Thus, the statement of inefficiency

is restricted to δ < c < δ+ n−2
2
δ2. Secondly, the result on over-connectedness adds a new point

of view on the flavor of inefficiency. This can be illustrated in the following example, which is

also taken from Jackson and Wolinsky (1996, Ex. 1).

Example 5.1. The network in Figure 26, called “Tetrahedron”, is stable for costs c > δ, where

the star network is efficient.96 The tetrahedron is “too dense” in the sense that it has 18 links,

while the efficient network has 15. Accordingly, Jackson and Wolinsky (1996, p. 51) label it

as “over-connected”. However, it is not over-connected according to the definition used in this

94The proof can be requested by the author.
95Jackson and Wolinsky (1996), p. 51.
96More precisely, g is pairwise stable iff δ−δ5+δ2−δ4+δ2−δ5+2(δ3−δ4) ≤ c ≤ δ−δ8+δ2−δ7+δ3−δ6+2(δ4−δ5).
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Figure 26: Example of an inefficient network (“Tetrahedron”).

work. This means that the welfare of the tetrahedron cannot be improved by leaving out some of

its links. Moreover, we claim that the tetrahedron is under-connected for the parameters where

it is pairwise stable. In Section 5.4 we show that the addition of a link between the players

“2” and “13” would strictly improve utilitarian welfare (Prop. 5.4). The same point as in the

Tetrahedron can be illustrated in a circle graph of n ≥ 7: both networks are under-connected for

any costs that they are pairwise stable.

The example illustrates two different viewpoints on the inefficiency (in the connections

model). From the viewpoint of a social planner that can unrestrictedly manipulate a given

network, some stable networks are “too dense” in the sense that less links are needed to form

the efficient one. From the viewpoint of a social planner that is either able to foster or to hinder

the formation of links, many stable network in the connections model are “not dense enough”

(under-connected), while none is “too dense” (over-connected).

5.1.3 Further Examples for Positive Externalities

Besides the connections model, it is easy to find further examples for positive externalities.

Among them is the model of “market sharing agreements” described in Goyal and Joshi (2006a).

Given n firms and n markets, each firm has one home market and can be active in all other

markets, too. In t = 0 bilateral agreements can be made to stay out of each others home

market. In t = 1 there is Cournot competition (with homogeneous goods) in each market. Let

the Cournot profit of a firm i in market k be represented by π̃i = λ(n − lk(g)), where λ(·) is

assumed to be decreasing and convex (in the number of active firms). This makes for one firm

uMSA
i (g) =

∑

j 6∈Ni(g)

λ(n − lj(g)) − cli(g), (5.2)
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counting the home market as well as all foreign markets for which there is no agreement (note

that by definition i 6∈ Ni(g)).
97

New agreements of a firm increase its profit on the home market, but reduce the number

of other markets it is active on. To establish positive externalities only the assumption λ(·)
decreasing is needed since a new link reduces the number of competitors in two markets. Any

player (not paying for the link) is either active in both, one or none of them.

So, again, Theorem 5.1 applies. Goyal and Joshi (2006a) show that the pairwise Nash stable

networks consist m ∈ [1, n] fully connected groups and besides there may be some isolated

players. While these networks can be quite dense, the non-over-connectedness result tells that

the components are not “too dense”, as welfare cannot be improved by deletion of links.

Remark 5.1.2 (Non-monotonic welfare). Efficiency here is only from the firms’ point of view.

Considering the consumers, the efficient networks look completely different.

Before turning to negative externalities, let us have a closer look at one more example for

positive externalities.

Provision of a Pure Public Good

The model “provision of a pure public good” is also taken from Goyal and Joshi (2006a), who

extended a model of Bloch (1997). n players choose an output level xi (second stage), which is

valuable for everybody π̃i(x) =
∑

i∈N xi. Collaboration (knowledge sharing) between any two

players costs c, but can reduce the cost of producing the output (first stage).98 Assuming that

any player chooses his output quantity optimally (in the second stage), the utility of a player

is

uPG
i (g) =

1

2
(li(g) + 1)2 +

∑

j∈N\i

(lj(g) + 1)2 − cli(g), (5.3)

where the first term is the difference of own output and the costs to produce it (the second

term is the output of all others and the last part is the costs of collaborating).

Not surprisingly, the network formation situation of the first stage satisfies positive external-

ities, because other agents cooperating lowers their costs, increases their optimal output, and,

hence, is beneficial. To see this, observe that the addition of foreign links increases the middle

97The notation of Goyal and Joshi (2006a) is inconsistent in this point.
98Agent i’s cost of producing the output is fi(xi, g) = 1

2 ( xi

li(g)+1 )2. So, fixing the number of collaborators

li(g), the utility maximizing output quantity of an agent i can be derived by maxxi∈R+
xi +

∑

j∈N\i xj −
1
2 ( xi

li(g)+1 )2 =: F (x). This yields F ′(x) = 0 ⇐⇒ x∗i = (li(g) + 1)2. Then, plugging in the optimal output

(F (x∗)) for any agent into the objective function subtracting the linking costs yields the utility of one agent.
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term of the utility function. Note that in this example the externalities are strict in the sense

that the addition of any link increases the utility of all agents that are not involved.

Consider very low costs c ≤ 5n2−6n+3
2n−2

=: lb such that the complete network is Nash stable.

By Theorem 5.1, no pairwise Nash stable network can be over-connected. Thus, the complete

network must also be efficient for c ≤ lb. In fact, since the externalities are strict, there exists

an ε > 0 such that gN is efficient for c ≤ lb+ ε. The tension can be observed for lb < c < lb+ ε.

In this cost range the complete network is efficient, but stable networks are not complete.

The model can be interpreted as a doubled public goods problem. In the second stage there

is the classic public goods problem where individual output xi is chosen “too low” (from a

collective perspective). This problem persists, but in addition (in the first stage) players tend

to choose “too few” links reducing the cost of provision, such that the overall outcome is even

worse. In the same manner any network formation situation with positive externalities can be

interpreted as a public goods problem. Utility maximizing agents do not internalize the positive

effects that establishing a bilateral link means for other agents.

5.2 Negative Externalities

Negative externalities in network formation occur, when adding links is not beneficial for the

players not involved in them. Formally, we speak of negative externalities99 if the following

holds:

Definition 5.5. A profile of utility functions u satisfies negative externalities if ∀g ∈
G, ∀ij /∈ g, ∀k ∈ N \ {i, j} it holds that

uk(g ∪ ij) ≤ uk(g).

Before, turning to the general results, let us study a prominent example.

5.2.1 The Co-author Model

The co-author model has been introduced by Jackson and Wolinsky (1996) and describes the

utility of joint work. The nodes of the network are interpreted as researchers, who spend time

writing papers. A link between two researchers i and j represents a collaboration between both

researchers. The amount of time a researcher spends on a project is inversely related to the

99What we call negative externalities here, is called non-positive externalities in Jackson (2008).
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number of projects he is involved in. The payoff function (consisting of the contribution of i,

the contribution of j plus a term for synergies) is given by:

uCA
i (g) =

∑

j∈Ni(g)

(

1

li(g)
+

1

lj(g)
+

1

li(g)lj(g)

)

= 1 +

(

1 +
1

li(g)

)

∑

k∈Ni(g)

1

lj(g)
,

and uCA
i (g) = 0 if li(g) = 0. The utility only depends on own degree and neighbors’ degree.

Obviously, the functional form satisfies negative externalities as utility of players decrease,

when neighbors add links, i.e. increase their degree. This is already mentioned in Jackson and

Wolinsky (1996), who get the following result:

Proposition 5.1. In this co-author model, if n is even, then (a) any efficient network (with

respect to utilitarian welfare) consists of n/2 separate pairs. (b) Any pairwise stable network

can be partitioned into fully intraconnected components, each of which has a different number

of members (if a is the number of members of one such component and b is the next largest

size, then b > a2).

The proposition shows that the stable networks are much denser than the efficient networks.

Although not every stable network contains the efficient network as a subset, it can be shown

that any stable network can be socially improved by the severance of some links.

Proposition 5.2. In this co-author model, every stable network is over-connected w.r.t. the

utilitarian welfare function.

The proof uses the proposition of Jackson and Wolinsky (1996) component-wise (that is for

any completely connected component of the pairwise stable networks) and is then straightfor-

ward. It is welfare better for any component of at least size three to be connected such as

one of the efficient networks. Thus any component of any pairwise stable network contains

a welfare better subcomponent, implying that any pairwise stable network contains a welfare

better subnetwork.

Consider a dynamic process as described by the simulation in Section 3.2.3. Suppose that

the empty network is the starting network. By linking two players can improve (Jackson and

Wolinsky, 1996 show in their proof of Prop. 5.1 that if li(g) = lj(g), then they both improve

by linking). If, by coincidence the sequence of drawing pairs does not draw the same player

twice before any player was drawn, then the efficient network forms. However, the process is

not finished. Further links will be added, despite the collective harm this action has. So, the

co-author model is an example where the emerging networks are “heavily” over-connected.
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5.2.2 Main Result on Negative Externalities

The co-author model is in line with the intuition on negative externalities: egoistic players

do not internalize the negative effects of their linking actions such that the resulting networks

tend to be over-connected. Despite the clear intuition, it is not that easy to generally show the

relation between negative externalities and over-connectedness of the stable networks.

When using pairwise stability (or similar concepts), it can occur that a stable network is

under-connected despite negative externalities. To see this, suppose that one player i gains a

lot of utility from a link with player j, but the link is simply not formed because j looses a

little bit of utility. Assuming that all others do not loose a lot of utility either, the addition of

the link ij could produce higher welfare (e.g. according to the utilitarian welfare function).

A simple way out of this problem is to allow for side payments (first proposed in Jackson

and Wolinsky, 1996). This refinement requires in addition to pairwise stability that ∀ij /∈
g, ui(g) + uj(g) ≥ ui(g ∪ ij) + uj(g ∪ ij), excluding networks from being stable if there are

two players who in sum would benefit of establishing a link. This requirement is most sensible

in a context where agents can pay transfers for others to make them willing to form and not

to form a link. A basic stability concept in that context can be found in Bloch and Jackson

(2007):

Definition 5.6. A network g is pairwise stable with transfers (PSt) if there does not exist

any pair of players that can jointly benefit by adding, respectively cutting, their link:

(i) ∀ij ∈ g, ui(g) + uj(g) ≥ ui(g \ ij) + uj(g \ ij) and

(ii) ∀ij /∈ g, ui(g) + uj(g) ≥ ui(g ∪ ij) + uj(g ∪ ij).

Denote by [PSt(u)] the set of pairwise stable networks with transfers and by [PSSP (u)]

the set of pairwise stable networks with side payments. While it holds that [PSSP (u)] =

[PSt(u)] ∩ [PS(u)]100; in general, neither [PS(u)] ⊆ [PSt(u)] nor [PS(u)] ⊇ [PSt(u)].

Preclusion of Under-connected Networks

Given the possibility of side payments (be it as a refinement of PS or in a context of transfers),

it can be assured that the addition of a link to a stable network cannot increase the utilitarian

welfare. To establish a non-under-connectedness result, we need one additional property, that

100PSt is a stronger concept than PS for links that are not in g, whereas PS is stronger than PSt for links in g.
PSSP captures both strong conditions.
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can be described as “concavity in own new links” (see Calvó-Armengol and Ilkiliç, 2007).

However, this property is shown (in Hellmann, 2009) to be equivalent to convexity in own

current links, such that we get the following result:

Theorem 5.2. Suppose a profile of utility functions u satisfies negative externalities and

convexity in own current links, then no network g ∈ G, which is pairwise stable with transfers,

is under-connected with respect to the utilitarian welfare function.

In full analogy to non-over-connectedness for positive externalities, the non-under-connectedness

result has trivial implications for the complete and empty network. As any network is a

supernetwork of the empty network, it follows that (a) if the empty network is pairwise stable

with transfers, then it must be efficient. Since any network is a subnetwork of the complete

network, it follows that (b) if the complete network is uniquely efficient, then no other network

is pairwise stable with transfers.

In contrast to the results on positive externalities, this result requires the possibility of

transfers, while there is no exogenous justification, why contexts of negative externalities should

typically be contexts of transfers. In Buechel and Hellmann (2008) it is shown, mainly due

to Tim Hellmann, that by restricting attention either to a certain class of network forma-

tion games or to Pareto efficiency (instead of utilitarian welfare), it is possible to get non-

underconnectedness results for the notion of pairwise stability as well. Moreover, in many

specific models there are situations where two agents feel an identical change in utility by

the formation or severance of a specific link, such that the requirements of pairwise stability

and pairwise stability with transfers coincide. Conversely, we have not discussed a setting

of transfers in the part on positive externalities. Theorem 5.3 in Section 5.4 shows that the

analogue result to Theorem 5.2 holds for positive externalities.

The assumptions on the utility function, namely negative externalities and convexity in own

current links, appears in a lot of networks formation models, some of which will be analyzed

subsequently.

5.2.3 Examples for Negative Externalities

The model of free trade agreements (FTA) has been introduced by ) (2006b). In each of n

countries there is one firm producing a homogeneous good. The firm may sell the product in

the domestic market, as well as in foreign markets. If two countries do not have a free trade

agreement (FTA) the importing country charges tariffs. Given a network of FTAs, the firms
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then compete in each market by choosing quantities. In this model uFTA satisfies negative

externalities (this can be checked in the utility function for each country in Goyal and Joshi,

2006b). Suppose a free trade partner j of country i signs a free trade agreement with country

k. Then firm k will enter market j and thus reduces the Cournot output of firm i, lowering

the country’s utility. If two non-trade partners of i sign a free trade agreement, then i’s payoff

remains unaffected. Let us study one final example.

Patent Races

Goyal and Joshi (2006a) derive this model as a variation of the classical patent race model.101

In addition to the classical model, firms can join R&D collaborations to accelerate research.

The first firm to develop the new product is awarded a patent.

With some assumptions on the probability of winning the patent race, the expected utility

of a firm can be written as

uPR
i =

li(g)

ρ+ 2l(g)
− li(g)c =

li(g)

ρ+ 2li(g) + 2l(g−i)
− li(g)c (5.4)

where g−i represents the network, obtained by deleting player i and all his links. This model

satisfies negative externalities since links of other firms reduce the probability to innovate firstly.

Moreover, uPR
i is a concave function of li(g) implying that it satisfies convexity in own current

links. From Theorem 5.2 we can thus conclude that no pairwise stable network with transfers

is under-connected.

In fact, it is straightforward to calculate the efficient networks since the utilitarian welfare is

given by:

wPR(g) =
∑

i∈N

uPR
i (g) =

∑

i∈N

(

li(g)

ρ+ 2l(g)
− li(g)c

)

=
2l(g)

ρ+ 2l(g)
− 2l(g)c.

In this case the utilitarian welfare only depends on the total number of links and thus any

network that contains the optimal number of total links is efficient. The distribution of links

and the structure of the network do not matter for efficiency. We can easily calculate that for

ρ

(ρ+2(k+1))(ρ+2k)
< c < ρ

(ρ+2k)(ρ+2(k−1))
any network which contains exactly k links is efficient and

no other networks are efficient.

It requires a little bit more to characterize stable networks. However, for this matter we can

101See Dasgupta and Stiglitz (1980) among others.
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apply Theorem 5.2 in order to bound the total number of links.

Proposition 5.3. Suppose that ρ

(ρ+2k+2)(ρ+2k)
< c. Then any network g which is pairwise

stable with transfers contains at least k links, that is l(g) ≥ k.

The example shows that Theorem 5.2 not only describes the tension between stability and

efficiency, but it can also be applied to characterize the stable networks (resp. the efficient

ones).

Clearly, the patent to win is a constant reward. Certain agents investing to win the race,

cannot increase the reward but only their chances of winning. Consequently, they increase their

utility by reducing other players utility, which is the interpretation of negative externalities,

not restricted to this specific functional form.

5.3 Concluding Remarks

The results of this chapter are formalized for general classes of network formation models.

We illustrated a few examples while the results can be applied to many others models. For

instance, reconsider the models discussed throughout this work. In Section 2.2.1 there is a

model (M1) without any externalities, since agents only care about degree. Formally, the

model satisfies both negative and positive externalities (as defined here). Thus, both groups

of results apply, excluding over-connectedness and under-connectedness in many settings. In

Section 2.2.2 we study a model (M2) that obviously exhibits positive externalities: A new link

can increase the number of indirect connections of agents not involved in the link but never

decrease it. Such a model is studied by Bala and Goyal (2000) in a framework of unilateral link

formation (considering directed links). Similarly, the closeness model analyzed in Section 2.3

exhibits positive externalities. Finally, the centrality model studied in Chapter 3 and Chapter 4

neither satisfies positive externalities nor negative externalities (see Lemma 4.4.1) – except for

the setting λ = 0, which is a special case of the closeness model. Although the results of this

chapter do not apply to the centrality model, their heuristic substance is of use. In Section 4.4 we

describe how positive and negative “spillovers” drive the discrepancy between efficient networks

and emerging networks.

For future work it seems helpful to adapt the results of this section, to requirements of special

models. One can think of network formation models that fulfill the properties of Theorem 5.2 or

Theorem 5.1 only on a certain domain G̃ ⊂ G, e.g. the set of all connected networks. Moreover,
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when restricting attention to utilitarian welfare, the assumption of positive (resp. negative)

externalities is stronger than necessary. It suffices that the sum of spillovers is always positive

(or negative), i.e. the requirement ∀g ∈ G, ∀ij /∈ g it holds that
∑

k∈N\{i,j} uk(g ∪ ij) ≥ uk(g)

is sufficient to assure that no pairwise Nash stable network is over-connected. Finally, there is

a straightforward adaption of the results to a framework of formation of directed links.

Limitations

This work discusses some topics in strategic network formation as summarized in Section 1.2.

It belongs to an approach of network dynamics where the current network structure affects the

probability of the future network structure via individual assessment and action. The strengths

of our modeling are also its shortcomings: it isolates single effects, e.g. the impact of centrality

incentives on the network structure, out of a very complex social reality. Clearly, various

other aspects influence network dynamics. First of all, there are institutional conditions that

shape the opportunity and constraints of meeting. Secondly, we restrict the benefits of social

networks to aspects that are reducible to network statistics. By ignoring actor specific and

dyadic specific explanatory variables, we exclude hedonic effects such as homophily. Further

effects are excluded by studying only unweighted and non-directed networks, e.g. effects of

reciprocity.

Finally, we work with unrealistically high assumptions on rationality: Fully informed actors

who are able to compute the change in centrality a new link (resp. a link less) would mean.

But this only serves as an “as if” assumption. In their analysis Padgett and Ansell (1993)

made very clear that Cosimo de’ Medici did not purposefully plan to create his family’s central

position in the marriage network. However, the Medici’s marriage behavior differed from the

behavior of the other superelite families by frequently marrying outside of their quarters. The

model of Burger and Buskens (2006) incorporates only local utility considerations that can be

easily understood in laboratory experiments. Their results are not in contradiction with high

rationality models. Thus, there are much simpler rules of thumb that lead to behavior “as if”

an individual agent was optimizing his network position.

5.4 Proofs of Chapter 5

Proof of Theorem 5.1. Let g ∈ [PNS(u)]. We show that for all g′ ⊂ g it holds that ui(g
′) ≤

ui(g) for all i ∈ N . Let l := l(g, g′) = g \ g′ for some g′ ⊂ g, and denote li := li(g, g′) = l∩Li(g)
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and l−i := l \ li. Since g ∈ PNS(u), we get that ui(g) ≥ ui(g \ li). Since u satisfies positive

externalities, it holds for all g̃ := g \ li that ui(g̃) ≥ ui(g̃ \ l−i) (because player i does not own a

link in l−i), i.e. l−1 ∩ Li(g) = ∅). Thus: ui(g) ≥ ui(g \ li) ≥ u((g \ li) \ l−i) = u(g′). The same

argument holds for all i ∈ N , implying that w(g) ≥ w(g′) for any welfare function satisfying

monotonicity.

Proof of Corollary 5.1.1. Calvó-Armengol and Ilkiliç (2007) show that (1-)convexity in own

current links is sufficient for [PS(u)] = [PNS(u)]. Thus, Theorem 5.1 applies.

Proposition 5.4. In the symmetric connections model with parameters δ, c and the corre-

sponding utilitarian welfare function, the following holds: gTetra is under-connected for any

parameters that it is pairwise stable.

Proof of Prop. 5.4. We have to show that if δ, c is such that gTetra ∈ PS(uδ,c), then ∃g′ ⊃
gTetra such that wδ,c(g

′) > wδ,c(g
Tetra). Specifically, we show that the condition

c ≤ δ − δ8 + δ2 − δ7 + δ3 − δ6 + 2(δ4 − δ5) := ub (5.5)

is necessary for stability, but sufficient for wδ,c(g
Tetra ∪ {2, 13}) > wδ,c(g

Tetra). The labeling of

the players corresponds to figure 26.

The first part was done in Jackson and Wolinsky (1996) already. Suppose that c > ub, then

player 1 benefits from cutting {1, 2} (because his change in benefits is just ub).

For the second part denote by βi :=
∑

j 6=i δ
dij(g

Tetra∪{2,13}) − ∑

j 6=i δ
dij(g

Tetra) the change in

utility for player i and by ∆ :=
∑

i∈N βi the aggregate change of benefits. This allows us to

write

wδ,c(g
Tetra ∪ {2, 13}) > wδ,c(g

Tetra) ⇐⇒ ∆ > 2c. (5.6)

It is straightforward to derive that

β1 = β12 = δ2 − δ4 + δ3 − δ4

β2 = β13 = δ − δ5 + δ2 − δ4 + δ2 − δ5 + 2(δ3 − δ4)

β3 = δ2 − δ5 + δ3 − δ4 + δ3 − δ5

β4 = β7 = β9 = β15 = δ3 − δ4

β14 = δ2 − δ5 + δ3 − δ4 + δ3 − δ5,
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and for all other i: βi = 0.

This yields

∆ = 2(δ − δ5) + 4(δ2 − δ4) + 4(δ2 − δ5) + 12(δ3 − δ4) + 2(δ3 − δ5). (5.7)

To show that ∆ > 2c under the condition c ≤ ub, it is sufficient to show that ∆ > 2ub holds.

Recall that

2ub(g) = 2(δ − δ8) + 2(δ2 − δ7) + 2(δ3 − δ6) + 4(δ4 − δ5). (5.8)

Thus,

∆ > 2ub⇐⇒ 6δ2 + 12δ3 − 20δ4 − 4δ5 + 2δ6 + 2δ7 + 2δ8 > 0. (5.9)

That the last equation holds for δ ∈ (0, 1) can be checked numerically (we used Maple).

Proof of Prop. 5.2. All pairwise stable networks consist of completely connected components

that can be ordered according to size such that each larger component of size m satisfies m > n2,

where n is the size of the smaller component. There cannot be singleton components, because

each player is better off connecting to some player than to none, and each player i wants a

link to a player j, for whom lj ≤ li. Note that this implies that there exists at least one

component of size three, if n ≥ 3. Since any even sized network of n/2 separate pairs and any

odd sized network of (n − 2)/2 pairs and the remaining three players being connected by 2

links is efficient (w.r.t. utilitarian welfare), it is also component efficient for any component of

size n and, hence, strictly welfare better than any completely connected component of at least

size three. For the exact calculations see Jackson and Wolinsky (1996). Hence, any completely

connected component of size three or larger contains a welfare better subcomponent, whereas

a completely connected component of size two is component welfare maximizing, implying the

result.

Proof of Theorem 5.2. Let us first transform the property convexity in own current links.

Hellmann (2009) shows that this property is equivalent to the following property called con-

cavity in own new links. Denote the marginal utility by µl
i(g) := ui(g ∪ l)− ui(g \ l). Thus, for

l 6∈ g, µl
i(g) = ui(g ∪ l) − ui(g).
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Definition 5.7. A profile of utility functions u is concave in own new links, if for all i ∈ N , for all

g ∈ G and for all links l such that l ⊆ Li(g
N ), and l ∩ g = ∅ the following holds: µl

i(g) ≤
∑

ij∈l µ
ij
i (g).

Now, let g be pairwise stable with transfers. We show that for all g′ ⊃ g it holds that
∑

i∈N ui(g
′) ≤ ∑

i∈N ui(g). Suppose that u satisfies negative externalities and concavity in own

new links. For g′ ⊃ g, let l := g′ \ g and for each i ∈ N let li := l∩Li(g
′) and l−i := l \ li. Since

u satisfies negative externalities, it holds for all i ∈ N that:

ui(g
′) ≤ ui(g

′ \ l−i). (5.10)

Concavity in own new links implies for all i ∈ N :

ui(g ∪ li) − ui(g) ≤
∑

j:ij∈li

ui(g ∪ ij) − ui(g). (5.11)

Now, since g is pairwise stable with transfers, (5.10) and (5.11) imply:

∑

i∈N

(ui(g
′) − ui(g)) =

∑

i∈N

(

ui(g ∪ li ∪ l−i) − ui(g)
)

(5.10)

≤
∑

i∈N

(

ui(g ∪ li) − ui(g)
)

(5.11)

≤
∑

i∈N

(

∑

j:ij∈li

[ui(g ∪ ij) − ui(g)]
)

(∗)
=

∑

ij∈l

ui(g ∪ ij) − ui(g) + uj(g ∪ ij) − uj(g)
(5.6)

≤ 0,

where the equality (*) holds, because for each link ij ∈ l it holds that ij ∈ lk if and only if

k ∈ {i, j} and only links in l are considered.

Theorem 5.3. If u satisfies positive externalities and convexity in own current links, then a

g ∈ [PSt(u)] is not over-connected with respect to the utilitarian welfare function.

Proof of Theorem 5.3. Let g be pairwise stable with transfers. We show that for all g′ ⊂ g

it holds that
∑

i∈N ui(g
′) ≤ ∑

i∈N ui(g). Suppose that u satisfies positive externalities and

convexity in own current links. For g′ ⊂ g, let l := l(g, g′) := g \ g′ and for each i ∈ N let

li := li(g, g′) := l(g, g′)∩Li(g
′) and l−i := l−i(g, g′) := l(g, g′) \ li(g, g′). Given these definitions,
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we have to show that
∑

i∈N

ui(g) −
∑

i∈N

ui(g
′) =

∑

i∈N

µl
i(g) ≥ 0. (5.12)

Since u satisfies positive externalities, it holds for all i ∈ N that:

ui(g
′) ≤ ui(g

′ ∪ l−i). (5.13)

Convexity in own current links implies for all i ∈ N :

µli

i (g) ≥
∑

ij∈li

µij
i (g). (5.14)

Now, since g is pairwise stable with transfers (5.6), (5.13), and (5.14) imply:

∑

i∈N

µl
i(g)

(5.13)

≥
∑

i∈N

µli

i (g)

(5.14)

≥
∑

i∈N

∑

j:ij∈li

µij
i (g)

(∗)
=

∑

ij∈l

[µij
i (g) + µj(g, ij)]

(5.6)

≥ 0,

where the equality (*) holds, because for each link ij ∈ l it holds that ij ∈ lk if and only if

k ∈ {i, j} and only links in l are considered.

Proof of Prop. 5.3. Let c < ρ

(ρ+2k+2)(ρ+2k)
, then it holds for the welfare maximizing number

of links that l∗(g) ≥ k. Since any network containing l∗(g) links is welfare maximizing, any

network, which has less than l∗(g) links is under-connected. By Theorem 5.2 no network that is

pairwise stable with transfers can be under-connected since uPR satisfies negative externalities

and convexity in own current links. Thus, any network g ∈ [PSt] has to contain at least

l∗(g) ≥ k links.
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