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Dr Christian Wöhler worked with me on various projects, great and small. He taught me

to aim for the scientific merits of a project, beyond the task at hand.

Last but not least, I would like to thank Dr Pablo d’Angelo for discussions on photography,

programming, and Open Source software; Mr Kia Hafezi for his help in various projects;

Mr Frank Lindner for barbecue invitations, finding the simple solution, and condemning

C++; and my other colleagues at the DaimlerChrysler Research Centre for allowing me to

ask them questions at any time.

III



IV



Contents

I Introduction

1 Motivation 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 About This Thesis 17

2.1 Aim and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Data and Methods Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Section Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II The Multiocular Object Recognition System

3 Methodical Framework 22

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Appearance Based Methods 53

4.1 Multiocular Template Matching . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Feature Pose Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Segmentation Methods 68

5.1 Multiocular Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 The Contracting Curve Density Algorithm . . . . . . . . . . . . . . . . . . 71

6 Closest Point Methods 76

6.1 Object Recognition using Characteristic Local Features . . . . . . . . . . . 76

V



Contents

6.2 Object Recognition using Gradient Sign Tables . . . . . . . . . . . . . . . 79

III Experiments and Applications

7 Evaluating the Camera Calibration 89

7.1 Goal of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Pose Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Calibration Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Choice of External Calibration Algorithm . . . . . . . . . . . . . . . . . . . 101

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Oil Cap Inspection 105

8.1 Goal of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3 Pose Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.4 Object Classification Performance . . . . . . . . . . . . . . . . . . . . . . . 126

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9 Obtaining the Trajectory of Tubes and Cables 135

9.1 Goal of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.3 Accuracy of Trajectory Estimation . . . . . . . . . . . . . . . . . . . . . . 140

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

IV Closing Remarks

10 Summary 146

10.1 A-Priori Questions Answered . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.2 Additional Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11 Outlook 149

11.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.2 Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.3 Feature Pose Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

VI



Contents

11.4 Gradient Sign Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.5 Trajectory of Tubes and Cables . . . . . . . . . . . . . . . . . . . . . . . . 150

11.6 Other Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

V Appendix

A Definitions 152

A.1 Image Tuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2 Object Recognition Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 152

A.3 Camera Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.4 Mesh, Facet, Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.5 Appearance Based Object Recognition . . . . . . . . . . . . . . . . . . . . 153

A.6 Segmentation Based Object Recognition Algorithm . . . . . . . . . . . . . 153

A.7 Constraint, Soft Constraint, Hard Constraint . . . . . . . . . . . . . . . . . 154

A.8 Distance Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.9 Epipolar Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.10 Run Length Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 156

VII



Glossary

The following symbols are used in this thesis:

Symbol Description

a A scalar is denoted by a lower case letter.

~a A vector is denoted by a lower case letter.
~A A matrix is denoted by an upper case letter.

c Index of a camera or its image in a multiocular camera system.

d Index of the current dimension.
~H Homogeneous transformation matrix (4× 4).

i Index of a feature point.

j Index of an image in a sequence or set.

k Number of the current iteration.

l Index of the lattice point.

s Position along a curve. For example s = 0: Beginning of the curve, s = 1:

End of the curve

t Index into a set of curves. For example t = −1: left side of a tube model in

the image, t = +1: right side of the tube.
~Φ Parameter of an optimisation, a pose.

~̃Φ Result of an optimisation, the best matching pose.

~̃p Measured point (image coordinates).

~p Projected model point (image coordinates).

P Projection function (including distortions).

κ̃ Calibration parameter.

T Template.

~Λ, ~Λ Predetermined limits of the pose.

I Grey level image.

D Distance image.

θ Predetermined threshold. Subscript gives type.
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Additionally entities have super- and subscripts, prefixes and postfixes. If all of them are

present a symbol β
γαδ means:

Script Description

α Symbol. May be scalar, vector, or matrix.

β Target coordinate system (transformation matrix) or current coordinate sys-

tem (point).

γ Source coordinate system (transformation matrix).

δ Index in a vector, set, or sequence.
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Abstract

In this thesis various approaches to object recognition are investigated, mainly recorded by

multiocular imaging systems. The strengths and weaknesses of the approaches are anal-

ysed. Several different methods — Template Matching, Feature Pose Maps, Contracting

Curve Density, Active Contours — are implemented, thoroughly investigated, and eval-

uated. These methods make use of images synchronously taken by multiple calibrated

cameras in order to improve the location accuracy and to overcome ambiguities.

Based on these information a new object recognition and localisation algorithm is designed,

implemented, and tested. This algorithm is based on the sign of the gradient of the feature-

model distance in the image. Since the model function is reduced to very little information

(its sign) at a given feature position, the evaluation is very fast as it can be reduced to a

simple table lookup. Thus we named the new method Gradient Sign Tables.

In order to conveniently obtain a calibration of an arbitrary number of cameras a new

calibration procedure is designed, implemented, and tested that is centred around a reliable,

automatic calibration pattern finder.

Based on the methods above a 3D object recognition system is designed, implemented,

evaluated, and adjusted for selected practical applications. It has the following properties:

– The object pose is obtained with application specific degrees of freedom.

– The type of an object is automatically determined out of a set of given types with

rejection of unknown objects.

– Corresponding points between the images and the model of an object are automati-

cally determined.

– The implementations of the algorithms fulfil the timing requirements of typical in-

dustrial image processing applications. Processing times of at most seconds, but not

minutes are achieved.
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– Moderate requirements are made to the hardware in terms of image resolution and

memory consumption. Usually VGA sized camera resolutions are sufficient.

– No algorithm or implementation has arbitrary limits in image size or model complex-

ity, other than those imposed by memory consumption and desired run time.

The camera calibration is evaluated using 100 images per calibration rig position. So we

can obtain the influence of the image noise on the calibration parameters. We could verify

the rules of thumb regarding rig placement and found one new rule that is important for

multiocular cameras: Depicting the rig in the corners of the calibration volume improves

the external calibration parameters. Our correlation based corner detector achieves an

accurcay of 0.018 pixels (average) with a worst case error of 0.3 pixel near to overexposed

portions of the image.

The methods in this thesis are evaluated using two example application from automated

quality assurance. The first application estimates the pose of a rigid object — an oil cap

— in order to verify its correct mounting. Additionally the class of the oil cap is obtained

in order to verify the mounting of the correct type of oil cap.

We found that the multiocular methods achieve a depth error that is 2–3 times smaller

than that of the monocular methods for rigid objects. We also found that performing the

distance transform of the image and storing a small model is preferrable to a distance

transformed — and therefore large — model or the computation of the distance transform

on-the-fly.

The second application deals with the recognition of non-rigid objects. We obtain the

trajectory of a tube or cable by starting from a fixed end (“dangling rope problem”) and

follow it using object recognition methods. Using example images of varying contrast, three

different methods are evaluated: Contracting Curve Density, Active Contours, Gradient

Sign Tables.

Gradient Sign Tables are more robust and have a simpler implementation. They achieve

a slightly higher error due to the edge quantisation to integer pixel coordinates. The

Contracting Curve Density algorithm is the most accurate of the three methods, but cannot

cope very well with small object. This is the domain of the Active Contours, but at a higher

error.

Tubes and cables can be traversed for the complete length if a suitable contrast is present.

In this case the average error is about 1.5 mm for a tube-camera distance of about 700–
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1000 mm and a tube diameter of 7–25 mm. If only one edge of the tube or cable has a

poor contrast, the methods can follow a shading related edge to some extent. In this case

the average error is about 20 mm.

Based on these findings we present some possible improvements and directions of future

research.
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Part I

Introduction

1 Motivation

1.1 Context

In the field of image processing, industrial image processing is probably the topic of the

largest economic, ecological and social importance. Using image based quality control

methods the quality of products is enhanced, which immediately leads to more profit, more

investments and more jobs. With less rejects due to improved product quality, less natural

resources are used per product and the competitiveness of the enterprise is improved.

Manual quality control is a mentally exhausting job, especially if 100% of the parts are

to be checked. Workers doing such tasks are usually exchanged after about two hours to

maintain a sufficient level of attention. Relieving these workers from their both boring and

extremely responsible job improves the quality of their lives and the quality of the product.

Additionally robust and precise object localisation methods allow a much higher degree

of automation during production. A large percentage of jobs in manufacturing consists of

taking things out of containers and placing them somewhere. In some cases this is currently

technically impossible (e.g. where fine sensomotorics are required as during assembly) or

commercially not viable. The continuing progress in computer and sensor performance

leads to cheaper hardware, which in turn make once expensive set-ups now economically

interesting alternatives.

Using only one camera and no metric information about the observed object (e.g. the

length between two points in metres), the absolute values of size and position cannot be

1



1 Motivation

obtained. This problem can be solved by using further cameras capturing the scene from

different viewpoints, or geometrical information about the real-world object. Given the

relative positions of the cameras, size and position of an observed object can be obtained

by triangulation.

Due to these advantages this thesis is concerned with the use of multiple images for object

recognition. The methods investigated here can be used for solving either, or both, of the

aforementioned problems.

1.2 State of the Art

1.2.1 Overview

Current commercial computer vision systems and

Figure 1.1: 2D image processing

software. Source: www.mvtec.com,

12 Feb 2007

applications usually record and interpret the out-

side world in only two dimensions (Fig. 1.1). Nat-

urally only two dimensional positions, size and pla-

nar rotations of real world objects are obtained

from the image, usually by algorithms that are eas-

ily adjusted to a new task even by laypersons. This

is usually supported by constructive restrictions,

e.g. the inspected objects are to be placed on a

conveyor instead of leaving them in the storage box

they were transported in. Fig. 1.2 depicts such a

setup.

If three dimensional measures are to be obtained

by these state of the art algorithms, e.g. size and positions of holes or mounting points,

this is reduced to two dimensional methods by using a relatively large number of cameras.

Each camera inspects one e.g. hole, obtains its two dimensional size and position, and

eventually from the individual data and the camera poses the final measure is computed.

It is obvious that contraptions like this cause an enormous calibration and maintenance

effort. Over the last few years the situation improved, and now commercial systems [50]

are available that reduce the number of cameras by observing multiple features (e.g. holes

in the example above) per camera, thus reducing the maintenance effort (Fig. 1.3, page 4).

2



1.2 State of the Art

More interesting than these methods are 2.5 dimensional object recognition and localisation

algorithms (Def. A.2), a subject of past and current research. The methods obtain the three

dimensional orientation and position of an object by recognising a change in appearance,

e.g. the object became larger in the image, therefore it must be closer to the camera.

Methods of this type heavily rely on the distance scaling property of perspective optics [28].

From an engineering point of view this is acceptable

Figure 1.2: Conveyor, camera

(background), gripper of an indus-

trial inspection system. Source:

www.mvtec.com, 12 Feb 2007

because telecentric optics — which create a dis-

tance independent image of the object — are large

and heavy, which make them unsuited for many

applications. The size of those lenses is caused by

the fact the observed area is limited by the size of

the aperture [80]. For many industrial inspection

tasks this would require a prohibitively large optics.

See [80] for a cheap method to convert perspective

optics to telecentric optics for small observed areas.

Out of the three dimensional methods stereo vi-

sion based scene reconstruction is probably the best

known. Corresponding points from two camera im-

ages are identified and using projective geometry a

triangulation yields the three dimensional coordi-

nate of the point. Using homogeneous coordinates

the underlying epipolar geometry (Def. A.9) can be

expressed in a compact manner. Various methods

exist to obtain a more or less dense reconstruction

of the scene [56, 72] or modelling of objects [16, 67].

These scene reconstruction methods have the drawback that they have to solve the cor-

respondence problem before solving the localisation or recognition problem. Although

methods exist that integrate these problems into one algorithm, even mutually compen-

sating the error of each other, this intermediate representation is of secondary interest for

the task of object recognition. True, the object’s pose and type can be obtained from

such a reconstructed scene [16], but a more direct path from pixel matrix to object pose is

desirable in order to reduce the sources of error.

The principle that models of the object can be integrated into the recognition process is

3



1 Motivation

also widespread. Early approaches reformulate the model as a knowledge base and use

classical Artificial Intelligence methods [5]. Later on more robust approaches were pursued

(e.g. [48, 75, 84]) that relied less on symbolic logic, and more on numerical approaches.

In this thesis we will analyse methods from three groups: appearance based methods,

segmentation methods, and closest feature methods.

1.2.1.1 Appearance Based Methods

Appearance based methods use the object model to create a

Figure 1.3: 3D im-

age processing software.

Source: www.isra.de, 12

Feb 2007

database of object appearances. This is usually done by sim-

ulating the image acquisition process (e.g. using technologies

originally developed for Virtual Reality or computer games) or

by placing object or camera on a computer controlled actua-

tor (e.g. industrial robot). In both cases the recording process

is cumbersome to set up and time consuming. Appearance-

based methods use a so-called viewer-centred data representa-

tion [79].

The recognition process of appearance based methods con-

sists of a suitable comparison [5, 79] between the appearance

database and the object’s appearance in the image. Each

entry in the database is attributed with the pose parameter

used during the creation of the entry. A suitable interpolation

yields the pose even more accurate than the resolution of the

database.

Appearance based methods can be further subdivided by the

frequency of occurrence of the features they use: If a feature

exists for almost every object pixel the algorithm is said to

use dense features. Sparse features are used if only a minority

of pixels is used for matching. Image template matching [5]

uses dense features, since complete image matrices are compared. Edge template matching

uses sparse features, as relevant edges make up only a small portion of the image [79].

Classically, appearance based methods refer only to dense feature [5, 15]. We’d like to

extend the term appearance based method to sparse features if a database of object images

is involved and this database is checked against the image to be matched. Refer to Sec. 1.2.2

4



1.2 State of the Art

for an analysis of a recent dense appearance based matching procedure. Refer to Sec. 1.2.3

for an analysis of a recent sparse appearance based matching procedure.

According to the definition above, Active Appearance Models [20] are dense appearance

methods too, although they reconstruct the appearance not from a discrete set of ap-

pearances, but from a statistical model of them. This is basically a way to introduce

intermediate views, just as the method analysed in Sec. 1.2.2 is. The difference is the

choice of the reconstruction base.

Sparse appearance based methods which include generalised Hough transform, Geomet-

ric Hashing, and Image Registration/Pose Estimation extract two dimensional features

(points, lines, arcs, . . . ) from the images, and compare them with the database. In this

process primarily the pose is obtained, the recognition is done by computing a measure of

similarity [84].

The main advantage of appearance based methods is their ability to store the image posi-

tions of features and their visibility in the same object representation: Only the positions

of visible feature are stored. Deducing the occlusion state of a feature such as a line from

pose and 3D model either requires a time-consuming analysis of the geometrical relations

or computer graphics hardware.

The disadvantage of appearance based methods is their memory consumption. As the

pose space is to be quantised such that each point in pose space is assigned individual

appearance data, the available memory must be managed such that the recognition task

can be solved. This either requires elaborate caching schemes or a reduction of the degrees

of freedom that can be handled by the application.

1.2.1.2 Model Based Segmentation Methods

Model based segmentation methods such as Active Contours [12, 45, 68, 83], or the Con-

tracting Curve Density Algorithm [37, 38, 39, 40] adjust the parameters of a suitable

geometric representation such that it divides the image in two distinct set of positions:

inside and outside the models outline. This distinction is iteratively improved. These

methods use a so-called object-centred data representation [79].

Active Contours maximise an energy function that depends on the shape of segmentation

boundary and the image content. The model information may be integrated either as

5



1 Motivation

additional energy terms that prohibit larger deformations, or limitations of the search

space during the maximisation, or both.

The main advantage is that Active Contours can accommodate flexible objects or slight

deformations of rigid objects. In order to use them for model-based object recognition,

the outline of the object must be easily obtainable as operations on it are very frequent.

Furthermore they suffer from a limited radius of convergence, which is usually corrected

by search methods such as particle filters [3].

The less well-known Contracting Curve Density Algorithm [37, 38, 39, 40] maximises the

probability that the model curve separates the pixel value statistics on either side. Using

the Bayes Theorem and suitable approximations of the probabilities involved, the posterior

probability p (I|Φ) with I being the image and Φ being the model parameter is maximised

and therefore the curve is fitted to the image. Therefore, it can be seen as a model-driven

segmentation procedure.

The advantages of this method are that it converges within a few iterations, is very robust

to cluttered background, and offers an easy exchange of the model curve. Its drawback is

that for matching a self-occluding object the model curve generation becomes the limiting

factor in regard to performance.

Refer to Sec. 5.1 and 5.2 for the detailed analyses of Active Contours and the Contracting

Curve Density Algorithm.

1.2.1.3 Closest Feature Methods

As the name indicates, closest feature methods search the closest feature from model to

image or vice versa and use it to establish a preliminary correspondence. Using these cor-

respondences the current pose of the model is improved by minimising a distance measure

(e.g. the average distance of the model features projected to the image). This process is

iterated to convergence.

The best known method in this field is the Iterative Closest Point (ICP) Algorithm [6]. It

operates in exactly the aforementioned way and is used to refine the transformation of pre-

registered geometrical entities embedded in the same space (e.g. 3D points to 3D points,

3D points to 3D lines). There are numerous variants and applications of this algorithm.

The largest advantage of the classic ICP is its simplicity. Its disadvantages are a small

radius of convergence and a strong sensitivity to outliers or missing data.

6



1.2 State of the Art

One approach to speed up the closest point computation is the use of a distance trans-

form [30] of the image features. This avoids establishing explicit correspondences which

may be subject to combinatorial explosion. Furthermore the distance transform allows the

elegant treatment of missing data, which only locally increase the average distance.

Another closest feature method is presented in [75], where the object model is distance

transformed by expressing its surface as the zero level-set of an implicit function. Points

outside the object have an e.g. positive value, points on the inside a negative value. One

constrained optimisation per image feature position is performed to find the closest points

on the surface and on the projection ray. If these 3D correspondences are obtained, a new

pose is computed (3D-3D pose estimation). The process repeats to convergence.

The advantages of the method are its ability to directly integrate multiple views into the

recognition process and the large radius of convergence. The disadvantages are the long

run-times due to the optimisation for each point and the choice of polynomials as the

implicit function to express the distance transform.

Simple and smooth objects can be represented well by implicit polynomials [75], which

allow a large radius of convergence. The polynomials of lower degrees are not sufficient to

represent the sharp corners of man made objects, the polynomials of higher degrees suffer

from stability problems such as spurious zero sets. Even sophisticated fitting procedures

as from [46] offer only little help there. Functions of local support [69] suffer from inflexion

points near the surface and an object enclosing zero set. These properties prohibit its use

in practical tasks.

We developed the method of Characteristic Localised Features [54] prior to this thesis.

This method projects salient points of the 3D model in the image and, by means of a local

search, find the closest points. It allows very different types of features to be included in

one model, such as points and lines on one hand, and image templates mapped to planar

surfaces on the other hand. This is advantageous as the combination of different kinds

of features improves the robustness of the matching. The disadvantage is that a uniform

treatment of the different objective functions for finding the closest point is only possible

with a large amount of prior knowledge [55].

Refer to Sec. 1.2.5 for an analysis of a closest feature algorithm with explicit correspon-

dences.

7



1 Motivation

1.2.1.4 Multiocular Object Recognition and Camera Calibration

Most of the methods above (aside from stereo and [75]) are monocular methods. Most

of them have well-known properties, advantages and disadvantages alike. Quite a number

of publications show the more or less successful application of these methods to object

recognition tasks. To the best of the authors knowledge only Geometric Hashing [78] and

Hough Transform [36] have been investigated so far in multiocular applications.

All the methods above require detailed knowledge about the geometrical properties of the

cameras. This knowledge is obtained by camera calibration. Various camera models [11,

28, 77] can be found in the literature, along with calibration procedures [11, 77, 85, 86].

As the state of the art in this field does not influence the general scope of this thesis, it’s

analysis is postponed to Sec. 3.2.

1.2.2 Analysis of a Dense Appearance Based Matching Method

1.2.2.1 Algorithm Summary

In [71] Reinhold et al. propose an appearance based object recognition and localisation

method that is based on two basic ideas:

1. The silhouette of an object varies with the pose. In order to improve the recognition

only object pixels are to be matched, background pixels are to be ignored.

2. Similar poses yield similar appearances. Given a suitable function base, both the

object outline and the grey/colour/feature image can be expressed as linear combi-

nations of the basis functions depending on the pose parameters.

The basis functions are chosen to be the sine-cosine-decomposition {cos ωΦ, sin ωΦ} for

ω ∈ Z+. Φ is compromised of e.g. the two angles azimuth and elevation. This is closely

coupled to the image generation process: The object rotates on a turntable (azimuth) and

the camera rotates around the up and down around the same point (elevation). Scaling

(distance of camera from centre of rotation) is modelled in the same way using the cosine

only. The functions base vr consists of all Nr products of the sine and cosine elements. For

azimuth (Φ1) and elevation (Φ2) this results in the functions base summarised in Eq. 1.1.

vr (Φ) = 〈1, cos Φ1, sin Φ1, cos Φ2, . . . , cos 2Φ1 · cos 2Φ2〉T (1.1)
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1.2 State of the Art

Whether a pixel at image coordinate m belongs to the object or not is determined by

Eq. 1.2.

ξm (Φ) =
Nr∑
r=1

aξ,m,r · vr (Φ) (1.2)

Any pixel for that ξm (Φ) that is larger than a threshold e.g. 0.5 is assumed to be part of

the object, all other pixel are assumed to be background pixel. The pixel coordinates of an

object form its bounding region and will be denoted by O, with NO = |O|. The bounding

region is therefore different for every pose.

The grey/colour/feature values cm of the pixels are assumed to be from independent Gaus-

sian distributions with per-pixel mean µm and standard deviation σm. In order to obtain

a suitable statistics to compute µm and σm, a set of images under different lighting condi-

tions, but with the same pose is recorded. The model of the mean of a pixel value itself

is a linear combination of the base functions as Eq. 1.3 details, the standard deviation is

independent of the pose.

µm (Φ) =
Nr∑
r=1

aµ,m,r · vr (Φ) (1.3)

The model parameters a·,m,r are computed from a set of training images. Each image

exhibits a black background so that the object can easily be segmented and the training

values for O are easily obtained. There are multiple training images per pose, each with a

different lighting.

The probability of an object at image position t is the joint probability of all pixels having

the current grey/colour/feature value. Eq. 1.4 denotes this probability. The matching

objective function F is the geometric mean of the individual probabilities as denoted in

Eq. 1.5.

p (CO|B, Φ, t) =
∏
m∈O

p (cm|µm, σm, Φ, t) (1.4)

F (Φ, t) = (p (CO|B, Φ, t))
1

NO (1.5)
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1 Motivation

B comprises of the per-pixel mean and standard deviations. CO is the vector of the object

features cm.

Matching is performed by finding the maximum of Eq. 1.5 using a two level hierarchic

search: First F (Φ, t) is evaluated at coarse steps of Φ and t, then at promising positions

a finer search is performed. The objective function F (Φ, t) is the geometric mean of the

individual probabilities in order to normalise it to the different number of pixels in each

pose.

1.2.2.2 Analysis

The algorithm is rather economical concerning memory consumption, compared to the

original images: approx. 3500 images can be expressed by 52 basis functions. This stems

from the fact that neighbouring poses have similar feature images. This allows the impres-

sive run times of 1.7 seconds per localisation∗. The method scales linear with the number

of objects.

Due to the inclusion of various illumination situations during training the classification

rate exceeds 67% for scenes of heterogeneous background and 20% occlusion of the ob-

jects. Nonoccluded objects are found at least approx. 77% of the time in heterogeneous

backgrounds. These values apply to three databases (office items, e.g. stapler, hospital

objects, e.g. pillbox, and household items, e.g. cups).

For some applications in industrial image processing this recognition rate is sufficient to

reduce the number of workers by three fourths as occlusion can be prevented in almost any

case. In bin picking application this is done by having the camera look down into the bin.

Objects can be taken only from the top of the bin, which are therefore not occluded by

other objects.

Some objects (cutlery) can’t be recognised well with this algorithm, but this probably stems

from the parameter settings which were identical for all objects. We know from experience

with template matching algorithms used prior to this thesis that the form of an object

(long and slim vs. roundish) influences the choice of the search parameter: Assuming

an algorithm with a fixed radius of convergence (e.g. 50% overlap between object and

template), the search grid must be much finer for a small object, otherwise the matcher

skips over the object without noticing it. This will of course increase the matching time.

∗2.4 GHz Pentium IV
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A further drawback of the algorithm is its poor localisation performance: Again this might

be a problem of the matching parameters as the finest resolution was 4 pixels. This does

not explain why for some experiments the algorithm 50% of the time yields poses that

departed more than 10 pixels, 15◦ spatial orientation, or 2 cm in depth from the ground

truth.

Such a localisation accuracy is useless for e.g. grasping or correctness checking. Without

knowledge about the camera it is quite hard to obtain the spatial accuracy. As it is not

explicitly stated in the paper, we estimate it to about 3 mm, as the front image of a stapler

consist of approx. 4000 pixel according to [71], and the front of a stapler is approx. 2 cm

high and wide. This leads to approx. 63 pixel per two cm, or approx. 3.2 pixel per mm.

We assume that both the angular and spatial accuracy can be improved at the expense

of processing time and memory consumption by using more basis functions. This is the

biggest drawback of dense appearance based matching algorithms: Because there are so

many features, the reference values for the features have to be stored — which takes space

— and compared — which takes time.

Only the relative position of these values is of interest: For an object of approximately

uniform colour and planar surface (e.g. stapler from the top) each model pixel and image

pixel correspond. The position can only be determined from the fact that more area

overlaps at the correct position. If parts of the object are occluded (e.g. the right edge) the

positional information contributed by these pixels is ambiguous: Only the vertical direction

exhibits a sharp maximum, a horizontal ridge is formed.

1.2.3 Analysis of a Sparse Appearance Based Matching Method

1.2.3.1 Algorithm Summary

In [79] an object recognition and localisation method based on edge templates is presented.

An edge template is a list of pixel coordinates where edge pixels are located, relative to a

reference point.

In order to match a single edge template T with an edge image, the edge image is distance

transformed (Def. A.8): each pixel is assigned a value that is related to the distance to the

closest edge pixel. For each pixel position p ∈ T and each template position t the mean

(or Chamfer) distance is computed, with D denoting the distance image:

11
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f (t, T ) =
1

‖T‖
∑
p∈T

D (p + t) (1.6)

The best matching position b of the best matching template B out of the template set T
is obtained by finding the minimum of f :

b, B = argmin
t∈‖D‖,T∈T

f (t, T ) (1.7)

The resulting pose is interpolated to sub-grid accuracy using the 30 best templates.

The matching procedure is implemented as a hierarchical search that groups templates

that are known to yield similar values of f for the same image. The template hierarchy is

build off-line using a “partitional clustering algorithm based on simulated annealing” [79].

For a suitable set of poses the object’s images are rendered by PoVRay [27] and the edges

are extracted.

1.2.3.2 Analysis

The method yields an accuracy of better than 4◦ (worst case) and better than 2◦ (most

cases). If the point of view is carefully chosen (which is simple, as the camera is robot

mounted) the accuracy is about 1◦.

An oil cap was located within the image to 5 degrees of freedom stored as 1331 or 4550

templates. The computing time† is about 200 ms. In a different application two objects

(ignition plug and socket) were classified and located with an accuracy of 0.5 mm. For the

oil cap the recognition rate is excellent (better than 96.5% at 0% false positives).

Although the method uses the templates directly instead of a functional approximation as

in Sec. 1.2.2 it achieves a better accuracy at shorter computation time. This is due to the

vastly reduced number of pixel accesses: Usually less than 1% of the pixels are edge pixels.

The implementation, however, as presented in [79] is strictly monocular. The use of pixel

coordinates instead of spatial coordinates indicates this.

We chose the edge template matching as one of the methods to be extended to multiple

cameras for its simplicity in both training and application, its processing speed and high

accuracy. Refer to Sec. 4.1 for this extension.

†2.4 GHz Pentium IV
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1.2.4 Analysis of a Multiocular Appearance Based Method

1.2.4.1 Algorithm Summary

Harrie van Dijck’s Ph.D. thesis [78] extends the Geometric Hashing method to a stereo

camera system.

Geometric Hashing (GH) is an Indexing Method. It is used to detect objects in images

based on generic features (e.g. corner points). Doing so it handles the correspondence

problem and the pose estimation problem in an integrated way: If the correspondences are

set up correctly, the pose can be computed correctly and a consistent solution is found.

This is accomplished by computing a hash table from the reference image (the indexing,

or model building, step) and a voting scheme using this hash table (the recognition step).

GH is therefore most efficient for model-based object recognition, where the hash table can

be prepared off-line.

We will explain the construction of the hash table using a single planar model. The three

degrees of freedom used in the following example are planar rotation and translation.

Fig. 1.4(a) depicts the model to be preprocessed.

For all point combinations (e.g. 1–2, Fig. 1.4(b) or 1–3, Fig. 1.4(c)) a base coordinate

system is computed and the resulting points (i.e. 3, 4 for Fig. 1.4(b)) are transformed into

this coordinate system. A grid of cells is defined (Fig. 1.4(d)), the hash table. For each

occupied cell the points are stored together with its base co-ordinate system.

The matching procedure performs similar steps: Given a set of feature points all combina-

tions of two of these features are used to form a new coordinate system and the remaining

points are transformed to it. For each cell in the hash table that is hit by the transformed

points, an accumulator is incremented. There is one accumulator per basis and the bases

that exceed a percentage of votes are accepted matches.

The multiocular extension of GH (MOGH) is performed by computing all 3D coordinates

that can be formed from one point in one camera and the other points close to the epipolar

line (Def. A.9) in the other camera. This produces false-positive points, which in turn are

handled by the GH.

The MOGH poses are regarded as initial hypotheses only, they are checked by reprojecting

the 3D model in the image. This reduces false-positive matches.
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Tick marks: cell indices.
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(e) Hash table in numerical form.

Figure 1.4: Geometric Hashing: Hash table generation. Each point pair forms a new
coordinate system, the remaining points are transformed to it. The transformed point
coordinates are stored together with the basis in a discrete grid: the hash table. For
illustration only two bases are shown. After [78]
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1.2.4.2 Analysis

In a sense [78] is the most similar work in literature to this thesis: A well-known monocular

object recognition algorithm is extended to multiple cameras. It is, however, different

in that it computes 3D correspondences from the images and uses them as the primary

matching coordinates.

The MOGH is rather fast as less that 200 points were generated for the test scenes (white

polyhedral objects on grey background). A hash table implementation on recent hardware

and using sophisticated index computation [73] can definitely be done in real-time.

The recognition rate of 70% at 13% false positives for these simple scenes is rather low.

One would expect at least 90% percent recognition at a few percent false positives for the

homogeneous background. No information is to be found on the accuracy of the resulting

poses.

The approach shows that multiple cameras improve the recognition rate compared to

monocular matching of the same scenes. It also shows very clearly that computing all

possible 3D correspondence first and filtering them later does not yield sufficiently robust

matching results.

In the chapter describing related works Enhanced Geometric Hashing [60] is mentioned.

The method computes the resulting transform from assigned feature points and casts a vote

in the hough accumulator of the transform parameter space. At the end, peaks in the ac-

cumulator are identified and the resulting transform and object is returned. A method like

this is trivially extended to multiple views if performed for each camera independently. All

cameras vote in the same accumulator while taking into account their own transformation

to e.g. camera 0.

1.2.5 Analysis of a Closest Feature Method

1.2.5.1 Algorithm Summary

Beveridge describes in [7] a simple and efficient closest feature algorithm. It consists of

a method to hypothesise model/feature assignments, a pose estimation based on that

assignment, and a fitness measure given pose and assignment. The assignments are then

modified in order to improve the fitness measure. As only one assignment is changed at
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a time this method is a local search, a combinatorial optimisation. The assignments are

selected from image features that are close to the model features at the starting pose.

The features used this implementation are 2D lines obtained from binary edge images and

3D lines in the model. No visibility checking is performed on the lines. No indexing phase is

performed, the method tries to find the best match, even in presence of multiple instances

of the model.

In order to overcome the local optima, random assignments are built, optimised and the

best solution yields the matching result. Further optimisation methods (such as simulated

annealing) are evaluated in [62]. Beveridge [8] gives a few more examples.

1.2.5.2 Analysis

Determining a recognition rate is not done in [7], because given enough runs a random

search will find the global optimum. Instead the number of runs to achieve a 99% recog-

nition rate was computed, for multiple objects present and additional noise lines. This

investigation was performed on 6 models, 48 scenes per models and 100 runs each.

In some cases (very distinctive objects) only two runs were sufficient. For other, highly

symmetric objects (flower) 228 runs were required. The wall-clock times of these experi-

ments is basically meaningless, the implementation was done in Lisp. However, [62] used

a C implementation, which requires approx. 3.2 sec per run‡. This is approx. 0.13 sec per

run on a 2.4 GHz Pentium IV if the computer was a DEC, or approx. 0.057 sec if it was a

SPARC 2.

Explicitly establishing the correspondences first requires that a lot of combinations between

model and image features have to be tried out. There are only a few options for approxi-

mations or optimisations because the use or omission of a single model/feature assignment

changes the pose, which in turn changes the objective function value. The run-times for a

given recognition rate are therefore quite high.

It is possible to extend the pose estimation to multiple calibrated cameras, as the 2D-

3D pose estimation is basically a 3D-plane-point iterative closest point algorithm. This

allows the image lines, which are expressed as a spatial plane, to be transformed into the

coordinate system of one camera.

‡either Sun SPARC 2, SPARC 10 or DEC Alpha 3000

16



2 About This Thesis

2.1 Aim and Scope

The analyses above provided valuable insights into the problem of object recognition:

The two template matching methods (Sec. 1.2.2 and 1.2.3) showed the inherent flexibility

of the appearance based methods: a new object can be added by storing its template

data. Furthermore Sec. 1.2.2 indicated that the redundancies of neighbouring views on the

viewing sphere can be expressed as a function of the object pose.

This fact is also implicitly used by the clustering of similar edge templates (Sec. 1.2.3).

This implementation, however, does not make use of the pose values of the templates due

to its origins in detecting people, where training is performed from sample images.

Indexing methods (Sec. 1.2.4) suffers from the need to establish correspondences first as

they are bottom up methods. This causes problems due to the number of possible corre-

spondences which have to be reduced by using high-level features such as lines instead of

low-level features such as edge pixels.

The Closest Feature method (Sec. 1.2.5) taught us that the average distance of a feature

point to the closest model point is a relatively smooth function with some local minima.

This measure is therefore a valuable objective function for pose refinement applications if

an economic way for computing can be found.

There are some points which are — to the best of our knowledge — not yet investigated:

– Given the same object representation, which is better: a bottom-up or a top-down

approach to object recognition?

– Is it better to perform the distance transform of the model or the current image?

– Does multiocular evaluation always perform better, regardless of the object recogni-

tion method?
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– Can we simplify the Closest-Feature Method, especially regarding the matching pro-

cedure and the model?

We would like to investigate these and similar points in this thesis while meeting a few

basic requirements: Algorithms should provide low processing times and have a low memory

consumption. To avoid the combinatorial explosion connected to explicit correspondences

the generation of image-model correspondences should be performed in a nearest neighbour

like approach. The generation of model representation from CAD data should be as simple

as possible. Object shapes and poses should not be limited by the algorithm. It should also

be possible to account for non-Euclidean degrees of freedom such as internal deformation

(e.g. the angle between truck and trailer). The required prior knowledge of an algorithm

about the problem should be as small as possible, however, all prior knowledge should

result in a speed-up of the recognition process.

The aim of this thesis is therefore to investigate how 2.5 dimensional (Def. A.2) object

recognition and pose estimation algorithms may be extended to multiple calibrated cameras

such that all cameras are of equal importance and explicit correspondences do not have to

be generated. This is accomplished by either integrating the 2.5 dimensional contributions

of all images into one global function or performing matches on the images individually

and integrating the spatial results. The 3D information about the scene is extracted only

implicitly and on object level. We do not reconstruct the visible surface of an object, we

obtain the pose of the object directly.

The methods to be investigated are selected to cover a wide range of operating princi-

ples: Bottom-Up methods (Feature Pose Maps, Sec. 4.2), Top-Down methods (Template

Matching, Sec. 4.1), snakes (Sec. 5.1) and local statistics optimisation (Contracting Curve

Density, Sec. 5.2).

Based on these investigation a novel recognition scheme (Sec. 6.2) using the signs of the

gradient of a distance function is presented. It integrates all the favourable aspects of the

investigated methods.

User interface issues such as operator guidance, scene planning etc. are beyond the scope

of this thesis.

Applications to range images are not considered in this thesis, as the data quality and

resolution of current range sensors is sufficient only for a selected group of problems.
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2.2 Data and Methods Used

The object recognition system as proposed in this thesis relies on the availability of CAD

models of the objects to be recognised. This is not a severe problem as modern production

facilities are based on exactly those models. For simple objects the models can be re-

engineered in short time using Open Source tools only.

A CAD model is assumed to describe the visible surface of the object and to be stored in

form of a list of planar polygons (usually triangles). This so-called tessellated description

may be obtained from the structural description such as constructive solid geometry. This

format is widely used, almost all CAD programs export it, and arbitrary object shapes can

be represented. A concrete file format is not required by any of the algorithms presented

here. Most implementations make use of VRML 1 or VRML 2 files.

The following mathematical concepts and procedures are used in this thesis: linear algebra,

homogeneous coordinates and coordinate transformations, calculus and Newton’s method

of optimisation∗, projective geometry and the pinhole camera, statistics, basic graph theory.

We assume the reader is familiar with these topics. Otherwise [21, 28, 51] give a sufficient

overview of these methods.

The algorithms in this thesis use basic image processing methods such as filtering, edge

extraction, and thresholding. More advanced methods for e.g. object recognition and lo-

calisation, correspondence building, and feature extraction are introduced in the respective

sections.

All the algorithms presented here operate on extracted features. Therefore they may be

applied to grey level images, colour images, infra-red images etc. as long as the respective

feature may be extracted and the model fits the observation of the objects. The require-

ments of the aforementioned features, which limits the algorithms to extract them from

the images, are stated in the respective algorithm descriptions. Throughout this thesis

grey level images are used.

2.3 Notational Conventions

Certain notational convention outside the usual mathematical conventions will be listed in

this section. Established notational conventions are listed here only if multiple notations

∗Also the derived methods Gauss-Newton and Newton-Raphson
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are used in other works. The notation of cited works is unified to identical or at least

similar symbols to increase the consistency of this thesis.

Further definitions may be found in Sec. A in case a concept is not intuitively named.

The notation of transformations is similar to that of [21]: B
AH denotes a transform of

points defined in coordinate system A into coordinate system B. The homogeneous (4× 4)

matrix B
AH consists of a rotation matrix and a translation vector. In some cases it is more

convenient to use the rotation matrix and the translation vector separately. In these cases

they are named B
AR and B

AT . Keep in mind that the construction of H from R and T

depends on the ordering of the individual transformations as matrix multiplication is not

commutative.

Spatial points are denoted by ~P . Projected points are denoted as ~p. Computed values are

denoted x, measured values as x̃.

2.4 Section Overview

Even though this thesis is supposed to be read in sequential order of the chapters this

section serves as a directory to topics of particular interest to the reader.

Part II describes the architecture of the proposed multi-ocular vision system, its calibration

and various algorithms for object recognition and localisation.

In Chap. 3 we illustrate the foundations of all methods in this thesis. Sec. 3.1 describes

the vision system at coarsest level. The relationships between the four phases of object

recognition are illustrated and the data flow from camera to result is depicted.

Sec. 3.2 takes a deeper look at the camera calibration procedure with respect to multi-

camera systems. The values obtained by camera calibration describe a specific camera

system and are used in all multiocular algorithms in this thesis. We describe our design of

the calibration rig that is used throughout this thesis. A novel robust rig finding algorithm

is presented that copes with a wide range of cameras, including fish-eye and catadioptric

cameras. Based on the method by Bouguet a calibration procedure is designed and im-

plemented to cope with multiple, arbitrarily positioned cameras. The similarity between

calibration and object recognition is analysed.

Chap. 4 describes the appearance based methods used in this thesis: Template Matching

and Feature Pose Maps. Sec. 4.1 gives an overview of Template Matching , as found in the
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literature and our modifications. The section also describes our extension of the methods

to multiocular images. Special emphasis is put on edge templates applied to distance

transformed edge images. Sec. 4.2 provides a bottom-up method, the Feature Pose Map,

corresponding to the top-down template matching from Sec. 4.1. Several novel ways to

improve the robustness of the method are presented.

Chap. 5 explains how to use segmentation methods for object recognition, with emphasis

on multiocular images. Sec. 5.1 describes Active Contours, also known as snakes , and their

extension to 3D and multiple images. Sec. 5.2 explains the Contracting Curve Density Al-

gorithm and shows our newly developed extension to multiocular images. This appearance

based matching algorithm is especially interesting as no explicit edge extraction is per-

formed. Instead a statistical bipartition of the input images is optimised along with the

object pose.

Chap. 6 illustrates the mechanisms behind Closest Feature Methods. Sec. 6.1 describes an

object recognition method that projects feature to the image and finds the closest matching

positions of these features. A 2D-3D pose estimation is then used update the current pose

in accordance with the feature matching results.

Sec. 6.2 introduces a novel pose estimation method based on Gradient Sign Tables. This

methods can be used to compute the distance transform without the requirement for dis-

tance images or for high speed pose refinement.

Part III is concerned with the evaluation of the aforementioned methods. All chapters in

this part first state the goal of the investigation, followed by the experimental setup and

are concluded with the results as well as their interpretation.

In Chap. 7 we analyse the performance of the camera calibration. Chap. 8 compares the

performance of the pose estimation and classification for rigid objects. Chap. 9 shows the

evaluation of flexible objects, such as cables and tubes.

Part IV completes the thesis by providing an outlook to further applications, improvements,

and open questions in Chap. 11. A summary of all insights gained in this thesis is given

in Chap. 10.

The appendix in Part V provides a set of definitions in Appendix A, and the bibliography.
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Part II

The Multiocular Object Recognition System

3 Methodical Framework

3.1 System Overview

This section provides an overview of the basic software architecture used in this thesis. We

start by describing the different phases that can be found in the recognition methods in

this thesis.

3.1.1 The Four Phases of Object Recognition and Localisation

All object recognition and localisation methods considered here can be divided into four

phases:

1. Training phase of the camera parameters.

2. Application phase of the camera parameters.

3. Training phase of the object recognition system.

4. Application phase of the object recognition system.

a) System evaluation on synthetic images.

b) System evaluation on real images.

c) Operational system.
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The terms training phase and application phase are used similar to the terminology related

to classification methods, even if most of the algorithms here are not strictly classifiers.

Training phase means the modelling phase of some aspect of the system, application phase

means the use of this model to fulfil some sub task of the system. Whether or not these

phases are separate or interleaved, explicitly performed or done on the fly, depends on the

algorithms of the respective recognition system.

In phase 1 the connection between image coordinates and real world (metric) coordinates

is established. Even human beings have such a step while growing up. It is this step that

allows us to distinguish an air plane model from a real air plane, e.g. by comparing it to

the size of a human being or the distance in which we see it. In a computer system this

step is usually one form of camera calibration to model one specific sensor with application

relevant detail.

Camera calibration in this sense is sometimes done implicitly during the training phase

of the recognition algorithm. In this case any geometrical information (e.g. size, position)

of the object can be extracted in multiples of pixels only, not metrically. This is due to

the fact that no information about the camera is obtained, only about the appearance of

the object. Current commercial quality control systems fall into this category. It is clear

that changing the camera or its lens change the appearance of the object in the image,

sometimes so much that all stored measures are invalid and have to be redone.

Phase 2 makes use of the camera calibration. In appearance based recognition systems

(Def. A.5) having an explicit phase 1, phase 2 contains the phases 3 and 4. This is due to

the dependence of the recognition data on pose and camera parameters.

Phase 3 extracts the relevant information about the objects to be recognised. This may

consist of extracting the recognition relevant geometrical elements from the face list of the

models.

In phase 4 the calibrated and trained recognition system performs its task. All information

obtained during the training phases is used here to obtain object type, position and orien-

tation from the recorded images. In order to efficiently develop and test even complicated

recognition systems this phase consists of three sub phases, the evaluation of the system

using synthetic images or pre-recorded real life images and the actual operation of the

deployed recognition system.

The difference between these sub phases is the source of input images and what is done

with the recognition results. During the evaluation the recognition results are recorded and
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analysed to improve the system performance, in the deployed system these results directly

influence the manufacturing process. Only phases 4a and 4b are relevant for this thesis

and the results of this evaluation are listed in Part III.

In the recognition system proposed here, except for the template based methods, all phases

are distinct and explicit. Phase 1, the camera calibration, is described in Sec. 3.2.

3.1.2 System Architecture

The architecture of the proposed multiocular object recognition system is depicted in

Fig. 3.1. This architecture clearly belongs to the class of feed-forward image processing

systems. At first the input images are acquired, either by loading from image files (data

source I), directly from a camera (data source II) or from an OpenGL renderer (data source

III). The output of either data source is an image tuple, which is passed on to the low level

image processing layer. Here the relevant features are extracted and passed to the high

level image processing layer where the actual object recognition (or feature preparation

during training) takes place.

The high level image processing layer generates pose and class membership information

which is analysed by the application logic. In the simplest case these data are visualised in

a suitable way (data sink a). This is useful during algorithm development where no actual

reaction is required. The deployed application usually feeds its output to either a machine

or a process control (data sink b). During training the prepared features are sent to the

recognition database (data sink c).

Some of the data paths I-a through III-c can be assigned to particular phases as Table 3.1

suggests. Data paths not listed make no sense and do not need to be implemented. Fig. 3.2

illustrates these data paths separately for the phases. Additionally the different data paths

for appearance based methods and non-appearance based methods in phase 3 are depicted.

3.2 Camera Calibration

Camera calibration lies the foundation for all object recognition methods considered in

this thesis. The aim of the calibration is to obtain the parameters of a certain camera
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Figure 3.1: System architecture at software module level. Roman numbers (I-III) denote
data sources, letters (a-c) denote data sinks. See Table 3.1 for data paths.

Table 3.1: Data paths in Fig. 3.1 and their assignment to the four phases. Missing paths
are not meaningful.

Data Data
Source Sink Application

I a Phase 4b
I c Phases 1 and 3, recorded images
II a Phase 4b, demonstration
II b Phase 4c
II c Phases 1 and 3, live images
III a Phase 4a, test on ideal images
III c Phase 3, ideal images

model, describing one physical camera in an optimal way according to this model. This

also applies to a set of cameras.

Throughout this thesis the term camera system denotes a group of Nc digital cameras∗

mounted in a rigid frame with respect to to each other. Such groups consist of at least

Nc = 2 cameras, even though calibration of single cameras can be done with the new

∗Cameras with analogue image acquisition, analogue signal transfer and a frame grabber are mathemat-
ically and algorithmically identical to purely digital cameras.
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Figure 3.2: Data flow within and between the four phases of object recognition. Elevated
boxes denote persistent data structures.

methods in this section. The imaging process which captures the outside world in form

of grey or colour values in the acquired pixel matrix is modelled by a set of mathematical

equations. One set of these equations is called a camera (system) model.

Camera models denote models of the imaging process of a single camera. A simple model,

the pinhole camera model [28], assumes a Camera Obscura type (assumed to be described

first by Chinese philosopher Mo-Ti, 5th century BC) of imaging, which models the imag-

ing process so that light shines through a very small hole on the sensor chip. Only the

magnification effect resulting from the distance between sensor, pinhole, and imaged object

are accounted for. Tele lenses (long focal length) and expensive, so-called distortion free

optics can be modelled adequately as a pinhole camera.

The parameters of the pinhole model are magnification factor, commonly called focal length

or more accurately camera constant, the distances of the pixel centres, and the coordinates

of the so-called principal point. This point is situated where a line parallel to the surface

26



3.2 Camera Calibration

normal of the sensor chip and passing through the pinhole intersects the infinitely thin,

planar sensor chip. This differs from the usual definition involving the optical axis as a

pinhole camera does not possess it. Eq. 3.1 and Fig. 3.3 illustrate this model.

[
u

v

]
=

[
f · su · X

Z
+ cu

f · sv · Y
Z

+ cv

]
, (3.1)

where f denotes the focal length in e.g. millimetre, su and sv denote the pixel density in

e.g. pixel/millimetre, cu and cv denote the coordinates of the principal point in pixel. The

scene point ~P = [XY Z]T is projected onto the sensor point ~p = [u, v]T .

The image points ~p are defined in the

Y

v

Scene Point (X,Y,Z)

Pinhole

Z

Chip

Pixel (u,v)

f

v

u

Principle Point

Chip

1/su

Figure 3.3: The pinhole camera model.

image coordinate system. The origin

of this coordinate system is at the top

left pixel of the image. The positive

u axis points to the right hand side of

the image, the positive v axis points

down.

The scene points ~P are defined in the

camera coordinate system, the origin

of which is in the pinhole. The Z-

axis points in viewing direction of the

camera. The positive X axis is as-

sumed to be parallel to the positive

u axis, the positive Y axis is there-

fore parallel to the positive v axis in

order to constitute a right handed co-

ordinate system.

More sophisticated camera models consider that the imaging process of today’s cameras†

involves a lens or a group of lenses instead of the pinhole. Such lens based optics allow more

light to illuminate the sensor compared to the pinhole, but the price for this advantage is

the fact that such optical devices distort the acquired image. This is perceivable in that

straight lines in the outside world become more or less curved on the chip (Fig. 3.4). The

†Lens cameras are assumed to be invented someday between the 14th and 16th century, for the use as
painters aids much as the original Camera Obscuras were.
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extend of this bending is coupled to the lens design. Whether or not this bending influences

the image processing depends on the algorithm and its accuracy requirements.

It is clear that the pinhole model does not

Figure 3.4: Imaging a regular chequerboard

with lens distortion. The white dashed line

was added to illustrate the amount of distor-

tion.

hold in presence of noticeable distortions,

so a more complicated model of the pro-

jection is required. There are quite a lot of

models that capture the distortion effects

of a real optical system [11, 28, 77] better

than the pinhole model. The model used

in this thesis is explained in Sec. 3.2.2.1.

The parameters f , s·, and c· together with

the distortion parameters of a model are

called intrinsic camera parameters. These

parameters cover geometrical properties

of the camera only. Other parameters,

e.g. blurring, are usually ignored as they

are not important for object recognition

tasks as long as the image is focused on

the object. Methods that rely on such pa-

rameters (e.g. depth from defocus [18]) are not considered in this thesis.

The relationships between coordinate systems are modelled using coordinate transforma-

tions [21]. The parameters of the transform between camera coordinate systems are called

extrinsic camera parameters. In this thesis two kinds of transforms are to be distinguished:

the transforms from one of the Nc camera coordinate system to any of the other Nc − 1

camera coordinate systems, called camera system internal transforms and the transform

from one camera coordinate system to a global reference coordinate system, the camera

system external transform.

The calibration, corresponding to phase 1 in Sec. 3.1.1, is performed by estimating all

aforementioned parameters, consisting of Nc sets of intrinsic parameters and Nc − 1 sets

of extrinsic parameters. These estimation is performed using modelled scene points ~P and

their corresponding image points ~p on the chip. The following five steps are performed in

the calibration procedure used in this thesis:

1. Images depicting the calibration rig are recorded.
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Figure 3.5: Bundle Adjustment: Principle of operation. The 2D-3D correspondences are
established by the calibration rig detector.

2. Salient points in the image are detected and located with sub-pixel accuracy.

3. The extracted points are identified such that explicit correspondences between the

2D image points and the corresponding points of a 3D model of the calibration rig

can be established. This includes the removal of false positives.

4. The unknown parameters of the camera system — and possibly additional metric

and angular information — is obtained by optimisation.

The points ~P have metric coordinates in the model (calibration rig) coordinate system.

Their 2D counterparts ~̃p are the sub-pixel accurate estimated locations in the image. Form,

position and reference coordinate system of the points ~P , the camera model and the esti-

mation procedure are the differences between calibration schemes.

At least the points ~̃p are subject to noise (due to discretisation, sensor noise, etc.). In order

to overcome these noise effects and increase the accuracy of the calibration result ~̃Φ least

mean squares optimisation methods are used to minimise the difference between camera

parameter related values ~p and measurement related values ~̃p.

Although experiments with other approaches exist [41], usually the difference between 3D

points ~P projected as 2D points ~p using a camera model P (e.g. Eq. 3.1) and measured 2D
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points ~̃p subject to a norm is minimised as denoted in Eq. 3.2. This minimisation principle

is illustrated in Fig. 3.5 and denoted in the following equation:

~̃Φ = argmin
~Φ

∑
i

∥∥∥~pi − ~̃pi

∥∥∥
~pi = P

(
~Φ

) (3.2)

This equation minimisation can be seen as sub problem of Bundle Adjustment [76].

Due to the non-linearity of the camera models direct estimation of the camera parameters

is impossible. Therefore indirect methods have to be employed, e.g. gradient descent,

Newton minimisation etc. See [65] for a good introduction to these methods.

There are two major groups of calibration procedures: self calibration and supervised cal-

ibration. Self calibration methods use the observed scene to obtain the correspondences.

Since the scene coordinates of the observed points ~̃P are unknown themselves, only cor-

respondences of two dimensional points ~̃p are established between images. It is clear that

— depending on the scene — such approaches are less robust and require more images to

obtain the camera system parameters. The major advantage of self calibration is the fact

that the calibration can be done continuously and therefore compensate changing camera

parameters. Self calibration is used in autonomous vehicles such as underwater robots [70].

Supervised calibration on the other hand requires less images, is far more robust to illumi-

nation changes and the actual camera parameters. This is achieved by using a calibration

object of precisely known geometry. The calibration object, also called calibration rig, con-

sists of a set of points ~P with known coordinates in the calibration rig coordinate system.

The rig is designed such that its image can be easily distinguished from other objects in

the image. This avoids false correspondences which would spoil the calibration result.

3.2.1 Calibration Rig Design and Detection

The purpose of the rig detection algorithm is to establish the aforementioned correspon-

dences between the calibration rig points ~P and their representations ~̃p in the Nc images.

To be of broadest use, rig detection algorithms work purely within the images, they do

not make any assumptions about the position, size and orientation of the rig in the im-

age. Additionally they cannot make any assumption about either intrinsic or extrinsic

parameters, as these are the values to be estimated. The choice of the calibration rig and
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the design of the rig point detection algorithm, and moreover the correspondence building

algorithm is therefore crucial to the performance of the calibration in terms of processing

speed, reliability and accuracy.

3.2.1.1 Calibration Rig Design

Various calibration rig designs are available both commercially as well as for self-con-

struction. A few of them will be analysed in this section.

Calibration rigs are to be designed such that there is a large number of known points ~P on

the rig, the rig is easily detectable by computer vision methods, and the image coordinates

~̃p of the rig points can the obtained as accurate as possible.

The key criterion for the design of calibration rigs is that each rig point ~P must be identified

unambiguously regardless how the rig appears in the images. One may see this as to assign

a unique number to each rig point ~P . Given the number, the actual coordinate of the point

may be computed in the rig coordinate system. This unique number may be either visible

on the rig or can be determined by the rig geometry (e.g. the rig is a regular grid of points

and point 0 is at the lower left).

Monocular calibration is still possible in some cases if the correspondences cannot be

established correctly. If, for example, the rig is a regular grid and the identification of

points is wrong by one row of points the pose of the rig will have an offset of one row

width. This case is indistinguishable from placing the rig at a shifted position and has

therefore no consequences on the calibration result.

Multiocular calibration is no longer correctly possible if the rig is detected with incorrect

correspondences in only one image of a single tuple. This is due to the fact that external

calibration estimates the transformations between the cameras. The only data that is

available for this are the image coordinates of the rig points. If the coordinates are wrong

or assumingly corresponding points are actually different physical points the resulting

calibration will be incorrect. In a calibration process according to Eq. 3.2, incorrectly

assigned points will increase the error locally, which is reduced by the estimation procedure

globally. This will change the camera system parameters ~̃Φ.

The following example will illustrate this fact: About 20 images showing different rig

positions and orientations are required for a proper calibration. If one out of the 20 image

tuples is incorrectly assigned, the calibration is off by 5% of the difference between the
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correct rig pose and the detected rig pose. Assume the rig is detected with a rotation of

180 degrees (i.e. the orientation was incorrectly detected in the opposite direction). The

total error of the calibration will then be 9 degree. An acceptable error is usually less then

a few tenths of a degree.

This illustrates the importance of a robust rig detection algorithm. The detector has to

establish the correspondences between the rig points ~P and its image ~̃p acquired by all Nc

cameras of a tuple. This has to be done on all the Nc images independently and regardless

of the actual appearance. Since new images are easily recorded it is a suitable strategy to

discard images where the correspondences cannot be obtained reliably.

Planar and Non-Planar Calibration Rigs On a planar calibration rig all calibration

relevant points are situated on a plane. Rigs of this type can be manufactured very easily.

The simplest version requires a printed version of the calibration pattern, adhesive tape

and a table top. More expensive (and portable) version consist of composite structures

and an e.g. photolithographically printed pattern.

Non-planar rigs exist in various forms. Usually rigidly connected planar rigs are used. One

variant connects these planes by a right angle, another in a layered design.

There are two differences between planar and non-planar calibration rigs. On one hand,

planar rigs are easier to manufacture. On the other hand the calibration results of non

planar calibration rigs are more accurate [52]. All the following rig designs are explained

for the planar version.

Regular Dot Pattern The first pattern type to be considered consists of a white back-

ground covered with black circular dots placed in a quadratic grid (Fig. 3.6(a)). The known

coordinates of the points are the dot centres relative to one specific dot, e.g. the top left

one. Other designs use white reflective dots on black background.

The major advantage of such a pattern is that the centre of the circles can be deter-

mined with excellent sub-pixel accuracy if the circles are large enough in the image [64].

Heikkilä [43] even includes a correction step for the distortion induced error of the centre

coordinates resulting in a standard deviation of 0.02 pixel for the dot centre.

The major drawback of such rigs is that the orientation of multiple cameras can only be

recovered with additional markers on the rig. The marker either takes up space which

cannot be used for dots e.g. if the marker is a ring around certain points or it is likely
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(a) Circular Dot Pattern. (b) Square Dot Pattern.

Figure 3.6: Calibration rigs using different regular dot patterns.

that the marker is not present the image (e.g. the marker is on the edge of the rig) in

at least some images of a tuple. The latter is the more serious problem as this leads to

compromises in rig placement: all markers in all images have to be visible.

A minor drawback is that circular dot pattern waste space on the rig: Only the black dots

can be used for the point estimation, the white space in between is useless and therefore

wasted. Usually the dots are circular and spaced along a grid line with 4r if r denotes the

dot radius, thus at 50 % mark-to-space ratio. This leads to 80% white and therefore waste

area on the rig.

Ring Code Dot Pattern The commercial system by Aicon [1] extends the dot pattern

by introducing a rotation invariant, binary code placed in a ring around the dot. The

binary code assigns a unique number to each point. Rigs are sold as carbon fibre planes

with a set of ring code points on them. The spatial coordinates are stored in a text file

accompanying the rig. The spatial coordinates are estimated to 0.001 mm accuracy during

rig manufacturing.

The advantage of these rigs are the relative sturdiness of the carbon fibre planes, the

accurate model coordinates and the robust point identification even for a partially visible

rig.

The drawbacks are that the user of these rigs has to use the commercial software that

cannot be adjusted to the specific needs of the application or improved in any way and the

comparatively high price. Additionally the wasted space is much greater than in the case

of the regular dot pattern.

Regular Squares Pattern Zhang [87] uses pattern of black squares on white background

(Fig. 3.6(b)) in a regular grid on a planar surface, using the four corner of each square as

the rig points.
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(a) Bouguet’s calibration rig. (b) The non-ambiguous calibration rig proposed
in this thesis.

Figure 3.7: Calibration rig: chequerboard

The advantage of such a rig is that no space is wasted on the rig. The disadvantage is

that orientation information has to be determined similar to the dot pattern, from specific

points or from the edge.

Chequerboard Pattern Bouguet [11] suggests a chequerboard pattern. This pattern also

does not waste rig space and the corners are found more reliably and efficiently compared

to Zhangs rig: In man made objects rectangular corners are quite common, whereas the

chequerboard corner is used in special cases only.

In its original form any orientation information has to be determined in similar ways to

the circular dot pattern or the regular squares pattern. Fig. 3.7(a) depicts this kind of

calibration rig.

We propose a new chequerboard design in this thesis, so information can be integrated into

the rig (Fig. 3.7(b)). Each square is augmented with an eccentric marker in contrasting

colour. The marker does not have sharply defined edges so that the corner detector does

not recognise this structure as a chequerboard corner. This modification might be applied

to Zhangs rig too.

Since the markers exist in all squares, even partially visible rigs contain sufficient informa-

tion to reliably obtain the orientation of the rig. Only if a rig is partially visible such that

complete rows or columns are missing the detection is ambiguous. This is due to the iden-

tical direction markers. If those are chosen such that adjacent squares form unique marker
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pattern e.g. by varying form, size, and/or placement, even this drawback can be overcome.

The chequerboard rig with identical markers will be used for calibration purposes.

In the following sections the parts of this chequerboard rig will be named:

square The black or white fields of the rig.

corner A point where four squares touch.

rig corner Outermost four corners.

3.2.1.2 Manual Chequerboard Detector

The MATLAB toolbox provides a manual calibration solution which prompts the user to

click near the rig corners. While being completely out of scope for an automatic process it

makes even the occasional calibration process very cumbersome and error prone: A good

calibration needs about 20 images per camera. At four clicks per image (if no mistake was

made), this amounts to 240 clicks with a precision of less than four pixels for a trinocular

system.

This manual method counts the black/white crossings between the four corners to obtain

the number of squares in the rig. Next the square corners are located. Then the user is

prompted for an initial guess for the first distortion parameter of the camera model. To do

so the user has to check the systems guess of the focal length which in turn is non-linearly

connected to the distortion to be guessed. The guessed distortion is used to reproject the

corner search seed points. The process ends on user’s request. With a bit of training it

is possible to learn a few rules of thumb how focal length and distortion are connected.

These rules are lens and rig dependent. A trained user can process about one image per

minute.

The actual sub-pixel accurate position is obtained using a modified Harris corner detec-

tor [42].

3.2.1.3 Polygon Fitting Based Automatic Chequerboard Detector

The OpenCV library [49] provides a chequerboard detection algorithm too. It is based on

an initial scanning process with a subsequent sub-pixel accurate search of the corner. The

initial scanning process operates on binary images, extracts the potential corner candidates
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and tries to sort them with a polygonal approximation in a loop. If all the expected corners

are determined the result is passed to the sub-pixel accurate location. This is implemented

using a gradient minimum search with a relocation of a neighbourhood window until the

centre keeps within a given threshold.

In practice this contour analysis turns out to be rather unstable. The OpenCV algorithm

is not able to properly detect and sort the corners under outdoor or factory floor lighting

conditions. In order to avoid singularities due to parallel image and calibration planes the

calibration rig must be imaged at a certain obliquity. The corner analysis of the OpenCV

implementation often fails if the angle or the camera-to-rig distance is too large, mainly due

to an improper polygon approximation as we have noted in various experiments. Finally,

the gradient based determination of the sub-pixel precise location of the chequerboard

crossing is not satisfactory. From [59].

3.2.1.4 Hough Transform Based Automatic Chequerboard Detector

Two proprietary implementations based on cross-correlation template matching, line fitting

and subsequent sub-pixel precise location estimation have been presented in [59]. They are

the predecessors to the algorithm in the following section.

The first algorithm operates on the assumption of a fully visible calibration rig. Hence,

it extracts a number of most prominent features, equal to the number of corners in the

calibration rig, by means of cross correlation matching [4]. Subsequently, an outlier de-

tection is performed based on Hough transform line detection and geometric constraint

evaluation. Upon this, the lines are approximated by least-squares methods. Independent

of the previously detected features the line intersections are used as coarse corner guesses

and a maximum search followed by fitting a paraboloid to the correlation coefficients is

performed.

The second method discards the assumption of a fully visible calibration rig. Instead of

extracting a fixed number it selected features according to their reliability. The coarse

feature sorting and outlier detection is performed as described above. After that, each

possible rig corner is tested for reliability with appropriately scaled rig-corner templates.

The final sorting is performed by accumulating features along line segments to least-squares

approximated lines. At last the sub-pixel precise feature location is performed.

These two state-of-the-art algorithms are very robust with respect to occlusion, illumina-

tion, and noise. Due to the efficient implementation of the correlation process they are
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fast enough for real time processing. The limit of usability is the assumption that the

straight lines through the corners appear approximately straight in the image. Once the

distortion effects are comparable to the corner spacing in the image this assumption cannot

be upheld, it is only true for lenses with small distortion.

If one has to cope with wide angle lenses, the distortion increases. In the image the lens

distortion make straight lines appear to be bent. This directly leads to blurring in the

Hough accumulator of the first sorting stage compared to a lens with low distortion. As

our experiments showed the blurred Hough accumulator either produces false-positive lines

or thresholds will not be exceeded due to the fact that the peak and its environment is

wider and less high. Obviously, this is directly connected to the fact that the Hough

transform is a global algorithm. One way to cope with the distortion is to change from a

global approach to a local approach as we propose in this thesis.

3.2.1.5 New Topology Based Automatic Chequerboard Detector

Due to the drawbacks of the aforementioned chequerboard detectors, we designed, tested,

and evaluated a new rig finding algorithm in this thesis. We published an overview of the

following in [59].

Overview Our new method is based on the aforementioned correlation coefficient between

the image and a corner mask, which proved to be robust in various experiments, both

indoor and outdoor. The local extrema are identified and located to sub-pixel accuracy

by weighted mean or bivariate quadratic interpolation. Fig. 3.8 depicts an input image

and its resulting correlation coefficient image. The image has been chosen to illustrate the

capabilities of the algorithm even under extreme lighting conditions.

The major difference is the integration of these local extrema to a complete rig. Both the

Hough transform and the new algorithm are bottom-up: Starting with atomic features,

more complex entities are constructed, cumulating in the complete calibration rig.

The integration in this algorithm is done by topological methods. This approach is guided

by one general principle: Prefer discarding the whole image to accepting a false positive

identification of the corners. This strategy results from the fact that images are easy to

acquire and errors are hard to cope with during subsequent processing stages.

The following steps are performed during the rig detection:
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Figure 3.8: Example image of a calibration rig (left) and it correlation coefficient image
(right). The rig is indicated by the dashed ellipse. Its top left corner is covered by the
bright spot.

1. Compute image of correlation coefficient between input image and corner mask.

2. Detect corners at local extrema of the correlation coefficient image.

3. Construct a graph with vertexes at the local extrema and direction labelled (up,

down, left, right) edges from maxima to minima and vice versa.

4. Filter for bi-directional edges, removing unidirectional edges and unconnected ver-

tices.

5. Filter for edges with strong length differences, removing the longer edges and uncon-

nected vertices.

6. Identify possible rig corners and enumerate the corners. Discard the image if an

inconsistent enumeration is found.

7. (Only for rigs from Fig. 3.7(b)) Find marker directions and change enumeration

accordingly.

Correlation Coefficient Image We want to find the corners by computing the correlation

coefficient between image and corner template, implemented efficiently. Since the correla-
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tion coefficient is a normalised value, both in terms of brightness and contrast, the actual

grey values of the templates are not important. So they are chosen to be -1 for the black

parts and +1 for the white parts.

The empirical correlation coefficient is defined as

c =
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where xi is a grey value of the input image and yi ∈ {−1, +1} is a pixel of the template. It

is assumed that the black and white areas in the template have an equal number of pixels

thus
∑
i

yi = 0. With a total area of n pixels this simplifies Eq. 3.3 to:
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(3.4)

This leads to the following optimisation: The pixel sums
∑
i

xiyi,
∑
i

x2
i and

∑
i

xi are

computed using integral images. In an integral image each pixel contains the grey value

sum of the top left sub image including the pixel itself. The sum of grey values in an

rectangular area is computed by reading the values of the area’s four corner pixels. Since

the memory bandwidth is the prominent bottleneck in this function, we reduced the number

of memory accesses per pixel. Obtaining numerator and the square of the denominator

requires 13 memory read operations per correlation coefficient.

Additionally, the run time of the algorithm is independent of the size of the corner template.

This allows for improvements in terms of detection robustness and sub-pixel accuracy: As

soon as the integral images are computed, the recomputation of the correlation coefficient

only takes very little time. One could try different mask sizes and select one or integrate

the results of all of them.

Corner Detection Finding the corner candidates in the correlation coefficient image is

performed by a non-maximum suppression followed by false-positive removal.
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The non-maximum suppression is done by counting the number of pixels with a lower

absolute value than the centre pixel in the eight-neighbourhood. If the count exceeds a

threshold (currently 6) and the centre value exceeds another threshold (0.75), the pixel is

assumed to be a corner candidate.

This non-maximum suppression provides a robust detection with a reasonable amount

of false positives. The false positives are the neighbouring pixels of the true positive.

Deciding which of the pixels is the true positive is done during the estimation of the sub-

pixel accurate position. As soon as this position is available, it is used to determine the

interpolated cross-correlation value. The candidate with the larger cross-correlation value

is assumed to be the true positive.

Two algorithms for computing sub-pixel accurate positions are investigated: Weighted

mean (WM) and bivariate quadratic interpolation (BVI). The sub-pixel position of WM is

the mean of the eight-neighbourhood positions weighted by the corresponding correlation

coefficients. The sub-pixel position of BVI is the location of the extremum of the bivariate

quadratic function fitted to the correlation coefficient values, assuming it is sufficiently

shaped and does not form a saddle point. The interpolated cross-correlation value is the

function value at the extremum.

We investigate both these algorithms (WM and BVI) and the original manual rig finder in

terms of accuracy and speed in Part III.

Graph Generation The following processing steps operate on a directed graph G defined

as:

G = {V, E} (3.5)

V =

{
~vi =

[
ui

vi

]
| i = 1 . . . Nv

}
(3.6)

E = {~ei = (si, ti, di) | i = 1 . . . Ne; si, ti ∈ 1 . . . Nv

di ∈ D = {left, right, up, down}} (3.7)

One observes that positive and negative correlation coefficient peaks interchange. Each

positive peak has four negative neighbours directly connected along the black/white edges

of the squares and vice versa. The first step is to identify this neighbourhood relation.

Each corner candidate ~vi — estimated at sub-pixel accuracy above — is linked by edges

40



3.2 Camera Calibration

370 380 390 400 410 420 430

370

375

380

385

390

395

400

405

410

415

420

(a) Initial graph

370 380 390 400 410 420 430

370

375

380

385

390

395

400

405

410

415

420

(b) graph without non-bidirectional edges

Figure 3.9: Results of the elimination of non-bidirectional edges. The images depict a
zoom into the relevant part of Fig. 3.8, demonstrating the performance of the processing
steps under difficult conditions. The asterisks denote the direction of the edges. They are
placed at 80% distance towards the end of the edge.

~ej — containing the numerical identifiers of the source (si) and target (ti) vertex — to

the four neighbours, labelled with the respective directions (left, right, up, down). This is

implemented in the obvious way: O(N2) distances are computed from the N candidates

and compared with respect to the candidates sign of the correlation coefficient. Fig. 3.9

shows this for a close up of the image from Fig. 3.8.

Non-Bidirectional Edge Elimination The first filter is used to eliminate non-bidirectional

graph edges. Fig. 3.9(a) and 3.9(b) illustrate a situation where a false positive is elimi-

nated this way. This procedure consists of deleting all graph edges e = (s, t, d) subject to

(t, s, opposite (d)) 6= e.

Edge Circle Filter The second filter checks for circles of length four. These circles in

the graph map directly to the edges of the squares. Incomplete circles are present in e.g.

Fig. 3.9(b), top row, leftmost corner and complete circles in Fig. 3.10(a).

The filter is implemented as a mark-and-sweep algorithm. The first run marks all corner

candidates that are part of at least one circle (closed, non-reversing path in E) of length

four. The second run eliminates all candidates that are not marked. The circle check is
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(b) Final corner enumeration

Figure 3.10: Results of circle filter and enumeration. The images depict a zoom into
the relevant part of Fig. 3.8, demonstrating the performance of the processing steps under
difficult conditions. The asterisks denote the direction of the edges. They are placed at
80% distance towards the end of the edge.

performed as follows: A vertex v which fulfils the conditions in Eq. 3.8 through 3.10 is

marked. There is also a check which operates counter-clockwise instead of clockwise as

done here:

e1 = (v0, v1, d1) ∈ E| ∀d1 ∈ D (3.8)

ei = (vi−1, vi, di = cw(di−1)) ∈ E| ∀i ∈ {2, 3, 4} (3.9)

v0 = v4 (3.10)

The functions cw(d), ccw(d) and opposite(d) are defined as follows:

d cw(d) ccw(d) opposite(d)

left up down right

up right left down

right down up left

down left right up
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3.2 Camera Calibration

Edge Length Filter The third filter eliminates graph edges that have an exceptional

length difference. The lengths are compared along one axis only, i.e. left-right and up-

down. This avoids problems with extremely tilted rigs and false positives next to the rig

(not shown here). The lengths l1 = ‖vs − vt1‖ and l2 = ‖vs − vt2‖ are obtained for each

vertex with opposing edges (s, t1, d) ∈ E and (s, t2, opposite(d)) ∈ E. If the condition

la = max(l1, l2)

li = min(l1, l2)

1− li
la

> θ (3.11)

in Eq. 3.11 is fulfilled, the lengths are assumed to be so different that this cannot be a

result of lens distortion or a slanted rig. The threshold θ (currently 0.4) is connected to

the expected distortion. The larger the distortion, the smaller the threshold has to be.

Another run of the circle filter is performed to eliminate corners which have become un-

connected due to length differences.

Corner Enumeration At this point the rig is assumed to be one component of the graph.

The next step is to identify the component which describes the rig (Fig. 3.10(b)).

This algorithm iterates over all rig corner candidates. A rig corner candidate is identified

as a vertex with exactly two links which form a 90 degree angle when undistorted, e.g. left

and up. This can be checked efficiently by setting a bit for each direction and providing

an array of flags which holds the information whether the bit combination interpreted as

an integer number is a corner or not.

Starting from the rig corner candidate the links are followed in one direction. For each

vertex visited this way all vertices connected in the perpendicular direction are counted.

This process is done with both directions of the corner as the primary direction. The

maximum number of visited vertices is noted.

Handling both directions of the corner is important to reach all corner candidates in the

presence of missed corners or unseen corners when the rig is partially visible. Additionally

it allows for checking if extraneous points are connected to the rig. If this happens, i.e. 10

links are found in one direction where 9 are expected, the last candidate is assumed to be

a false positive.
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The remaining corner candidates are identified using the horizontal (Nx) and vertical (Ny)

square counts. The lower left corner number is set to 0, the upper right to NxNy − 1 etc.

From these starting positions all other connected vertices are identified depending on their

relative positions, e.g. going right increases the number by 1, going up by Nx. Additionally

the position in the rig (row and column) is computed and compared to the position of the

starting vertex. This avoids wrap-around effects and removes further false positives which

were not found during previous processing steps.

If a corner identifier is assigned twice, both corners along with the respective edges are

removed from the graph. This eliminates some rare errors where two corner candidates

are generated such that they are not eliminated by other steps. If the enumeration does

not yield the same result for all rig corner candidates used as starting points, the image is

discarded.

During the traversal the numbers of vertices per component is counted. The largest com-

ponent is assumed to be the rig. If the rig is rectangular the algorithm checks for the

correct size in both axes, i.e. a rig turned by 90 degrees is discarded.

Marker Direction Detector The last step is to detect the direction marks on the rig and

change the corner enumeration accordingly.

In order to detect the direction of each marker the grey values along two lines are extracted.

These lines start in the middle of one square border and end in the middle of the opposite

square border.

The grey levels on the horizontal line lead to a greater standard deviation than those on

the vertical line if the rig is horizontal (as in Fig. 3.7). Additionally it is obvious that

the weighted mean of these grey values yields a position that clearly detects them to be

off-centre.

We threshold the standard deviation to detect missing markers if the processing options

require them. In this case the image is discarded because expected markers cannot be

found.

The direction of the rig is determined by computing the mean direction vector from the

intersection points of the two lines to the centre of gravity along the line. The direction

of the mean vector is quantised into four directions (left, right, up, down) and the corner

identifiers obtained in the previous step are adjusted accordingly using the square counts.
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3.2 Camera Calibration

3.2.2 Monocular Camera Calibration

In this section we briefly summarise the calibration procedure for both monocular and mul-

tiocular camera systems. The methods applied here are state of the art in photogrammetry

and have been implemented using standard numerical algebra libraries.

3.2.2.1 Camera Model

In this thesis we use the camera model by Bouguet, which is inspired by Brown [13],

Fryer [31] and Heikkilä [43]. The documentation of the MATLAB camera calibration

toolbox [11] gives the details about this camera model.

The camera model characterises a calibrated camera by the following parameters.

~f = [fu, fv]
T Focal lengths in pixel. There is a horizontal and a vertical length. The values

~f is the product of the more common parameters focal length f in mm and pixel

pitches su and sv in pixel per mm. If the pixel pitch is unknown, there is no way to

compute f , hence ~f is computed.

~c = [cu, cv]
T Principal point in pixel. This is the point on the chip where the optical axis

intersects the chip. This is different to the definition of the pinhole camera above,

but consistent with literature. The normal of the chip is assumed to be parallel to the

optical axis. In practice this is not the case and the resulting errors are compensated

as tangential distortions. Additionally the radial distortions are centred around this

point.

α Skew coefficient. This value is the sine of the angle between pixel rows and pixel columns.

For digital cameras the computation is disabled by default and if enabled yields values

close to 1.

~k = [k1, k2, k3, k4, k5]
T The five distortion parameters. Two denote the tangential distor-

tions, three denote radial distortions as forming a polynomial of degrees 2, 4 and

6.

The complete camera model

~p = P
(
κ, ~P

)
(3.12)
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transforms a point ~P in the camera coordinate system to a point ~p on the pixel grid. Due

to the tangential distortions P is not invertible in closed form. The vector κ =
[
~f,~c, α,~k

]
combines the camera parameters. One may see this as Eq. 3.1 extended by distortions.

3.2.2.2 Monocular Calibration Procedure

According to Bouguet’s approach the calibration procedure has three steps: initialisation,

single camera calibration, and multiocular camera system calibration. Both the initialisa-

tion and the single camera calibration algorithm stem from Zhang [87] and Heikkilä [43].

The initialisation step performs a linear estimation of the focal lengths based on homogra-

phies. Additionally the initial poses ~Ri, ~Ti of the calibration rigs are obtained from similar

operations.

The single camera calibration obtains the internal camera parameters and the poses of

the calibration rigs by finding the local minimum of the objective function in Eq. 3.13

optimised by a Gauss-Newton algorithm:

[
κ̃,

{
~̃Ri, ~̃T i

}]
= argmin

κ,{~Ri, ~Ti}

∑
i

∑
j

(
~̃pij − P

(
~κ, ~Ri

~Pj + ~Ti

))2

. (3.13)

The detected rig point j in image i is denoted by ~̃pij. It is compared with the projected rig

point ~Pj subject to the transform from rig coordinates to camera coordinates using ~Ri, ~Ti

and the internal parameters.

3.2.2.3 Calibration and Pose Estimation

It is interesting to compare Eq. 3.13 to the pose estimation method in [2]. The 2D-3D pose

estimation problem is one of the most important problems in monocular, three dimensional

scene analysis. Quite a few approaches have been pursued in the past, most notably [2], it

predecessor [63], and [28, 41].

These algorithms try to solve a sub-problem of calibration: Obtain the transformation from

the object coordinate system to the camera system using a known camera model. During

calibration one tries to obtain the same transformation and the unknown camera model.

The method in [2] solves the 2D-3D pose estimation problem exactly in the same way as if

Eq. 3.13 would not modify the internal parameters κ. This fact leads to a completely dif-
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3.2 Camera Calibration

ferent view of the camera calibration task. If pose estimation is sub-problem of calibration

and object recognition, can calibration be seen as an object recognition task?

The answer is: Yes, camera calibration is a model-based object recognition and localisation

task subject to specific constraints. The object to be found is cooperative: the calibration

rig is designed to be found easily. Its presence has to be detected to discard faulty images.

The rig pose has to be estimated along with other degrees of freedom: the internal param-

eters. The rig pose itself is usually of no interest, the internal parameters are the goal of

the computation.

The rig itself is designed for best recognisability, which is not an option for most object

recognition applications where the object cannot be changed. On the other hand, the

accuracy requirements of a calibration are usually higher than those of object recognition

in general.

An interesting field of investigation is opened by this insight: Which object recognition

approaches can be extended to serve as a calibration procedure? The algorithms should be

able to handle non-linear projections, sub-pixel accurate features and poor initialisations.

Algorithms such as the Contracting Curve Density [38], Sec. 5.2; statistical object recogni-

tion [81]; and Iterative Closest Point methods [30] are probably best suited as they provide

a large radius of convergence, even if they are top-down approaches which iteratively refine

an initial pose. The method from Sec. 6.2 — newly developed in this thesis — is also

applicable.

It is very likely that the integration of feature extraction and parameter estimation is

computationally more expensive than the current scheme since iconic operations tend to

be time consuming. It is also very likely that such an object recognition scheme will

produce far more accurate results from fewer images. The reason for this is the fact that

the current image processing concentrates on the square corners only, in other words the

coordinates of less than one hundred points are used. The edges between the squares are

completely neglected during processing although they account for at least one order of

magnitude more coordinates.

Furthermore calibration in the form presented here is also sub-problem of Bundle Adjust-

ment, the primary method of photogrammetry. As [76] states, methods that are known to

photogrammeters for more than a century are rediscovered by the computer vision com-

munity. We will revisit this connection in Sec. 3.2.4.
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3.2.3 Multiocular Calibration

In order to define the so far independently calibrated cameras in one common coordinate

system a further optimisation procedure is necessary. We therefore require a successful

and correct monocular calibration of the cameras involved.

3.2.3.1 Coordinate Systems

Additionally to the internal camera param-

Figure 3.11: Coordinate systems in a gen-

eral multiocular camera system.

eters, the positions and orientations of the

camera coordinate systems with respect to

each other will be estimated. These trans-

forms use the coordinate system of cam-

era 0 as their reference coordinate system.

Doing so has the advantage that a trans-

formation of points in the world coordi-

nate system into the coordinate system of

camera i can be performed by building a

transformation chain: world — camera 0

— camera i. It is clear that such a conven-

tion forces the transformation of camera 0

to be the identity transformation.

Fig. 3.11 depicts the coordinate systems of a multiocular camera system with three cameras.

One can see that the image of the object is upside-down in camera 2 compared to cameras 0

and 1. An external calibration has to account for this.

The coordinate systems of the individual camera are named camera coordinate systems.

Assuming the cameras can be moved as a whole with respect to the object, the world, or

both, the sensor coordinate system defines a reference frame between the cameras. Without

loss of generality we assume that the sensor coordinate system is identical to the camera

coordinate system of camera 0.

3.2.3.2 External Calibration by Bundle Adjustment

The camera system calibration according to Bouguet obtains the external camera param-

eters by finding the local minimum of a target function optimised by a Newton algorithm.
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3.2 Camera Calibration

Bouguet’s approach is to use a target function that optimises both the internal and exter-

nal parameters in the same run. This works pretty well for cameras with normal fields of

view (up to 30 to 45 degrees) and therefore small or moderate distortions.

For cameras with larger fields of view (e.g. 90 de-
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Figure 3.12: Fitting a function to

noisy points. Solid line: noise-free

fit. Dashed lines: space of possible

solutions from noisy points. Circles:

distribution of measured points.

grees) and thus larger distortions this combined

approach leads to less accurate results. We ob-

served in several calibration runs on two camera

systems of this kind (10 cm and 24 cm base line)

that the distortion parameters were reduced by the

combined optimisation. The reason for this be-

haviour is rather obvious: As calibration requires

images which show the rig in all cameras to estab-

lish the correspondences in different views of the

same scene the calibration rig has to be far enough

from the camera to be seen by all cameras.

The distortions as a function spanning the whole

image cannot be determined properly if the noisy

measurements cover only a small portion of the image. Fig. 3.12 illustrates this. It sketches

the fit of a non-linear function to a small number of closely spaced points, leading in a

poor signal-to-noise ratio.

Similar to the internal calibration this procedure is a Bundle Adjustment method. We mod-

ified it to optimise the external parameters only to overcome the aforementioned problems.

The objective function of this minimisation is:

F =
∑
ijc

(fijc)
2 (3.14)

fijc = c̃~pi − P
(
κ̃c,

c
CH · ~Hj · ~Pi

)
(3.15)

with P being the projection function of the respective camera model as obtained by the

internal calibration. The matrix ~Hj denotes the transformation of the rig coordinate ~P i

into the camera system coordinate system for image tuple j. The matrix c
CH denotes

the transformation from the sensor coordinate system to the respective camera coordinate

system. The variables to be optimised are c
CH and all ~Hj. The point c̃~pi was observed in

camera c and identified as point i.

49



3 Methodical Framework

A suitable initialisation can be linearly obtained by finding the transform between the

spatial coordinates c ~̃P i and 0 ~̃P i of the calibration rig points as obtained in the individual

camera calibrations.

The transforms 0
kH are split into rotation and translation. The rotation matrices are usually

not orthonormal (esp. for strong distortions). But according to Haralick et al. [41] this

is not a problem, because the singular value decomposition of the matrices, followed by

setting the singular values to one, and reconstruction of the matrix yields a suitable initial

orthonormal matrix.

3.2.3.3 External Calibration From Metric Rig Coordinates

A different approach to the calibration of the external camera parameters is to reuse

the metric rig coordinates j ~̃P i obtained during the internal calibration of the individual

cameras. As the internal calibration is a bundle adjustment too, one can assume reasonable

quality of the metric scene reconstruction.

Using the metric rig coordinates reduces the number of free parameters in the optimisation.

Instead of optimising the few camera-to-camera transforms and the many camera-to-rig

transforms only the camera-to-camera transforms are optimised. This may yield a better

convergence behaviour as the dimensionality of the optimisation problem is drastically

reduced.

However it is very likely that the optimum of this different objective function will be at a

different position. We are therefore interested how well this method performs compared to

Bundle Adjustment.

The most simple camera system that allows to derive the equations is one with three

cameras, we therefore assume in this section Nc = 3. The resulting objective functions is

to be found in Eq. 3.16:

F =
∑

i

(
0fi

2
+ 1fi

2
+ 2fi

2
)

(3.16)

k
jfi = k

j
~̃P i −

(
k
j
~Rj ~̃P i + k

j
~T
)

(3.17)

Eq. 3.17 for k = 2, j = 1 has to be reformulated such that the transform 2
1
~R, 2

1
~T is expressed
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in terms of 2
0
~R, 2

0
~T , 1

0
~R, 1

0
~T since those are the optimisation parameters. This is done using

transformation chains [21], e.g. 2
1
~R = 2

0
~R ·

(
1
0
~R
)−1

.

The initialisation is done as stated in Sec. 3.2.3.2.

An extension of these equations to an arbitrary number of cameras is straight forward, as

the objective functions for any Nc cameras will always consist of Nc − 1 functions Eq. 3.17

that can be used directly and Nc(Nc−1)
2

− (Nc − 1) functions where the transformation is to

be derived using transformation chains.

For Nc cameras there will be a camera 0 and Nc − 1 other cameras. Obviously there are

Nc(Nc − 1) possible transformation between any given 2 cameras out of the Nc available.

Half of the transformations describe the inverse of the other half. To describe all rigid

connections between the camera one therefore needs Nc(Nc−1)
2

transforms. There are only

Nc − 1 unique transformations as the other Nc(Nc−1)
2

− (Nc − 1) transformations can be

built as a connection of any two unique transformations involving the camera 0 coordinate

system.

This means that Nc − 1 transformations start at camera 0 and end at one of the other

cameras. For any other camera there either is a transformation ending at camera 0 — which

therefore is the inverse of one of the unique transformations — or there is a transformation

chain no longer than 2 transformations, the intermediate coordinate system being that of

camera 0. There exist many other transformation chains from one camera to the other,

but only Nc(Nc−1)
2

− (Nc − 1) involve camera 0 in the middle.

3.2.4 Rig Placement Strategy

In order to obtain a precise calibration of the camera system, the position and orientation of

the rig in each recorded image tuple has to be selected such that the resulting optimisation

problem is well posed.

Seeing calibration as a form of bundle-adjustment, the rig placement strategy is identical

to the camera placement strategy given a fixed set of object points that are (almost) always

visible. The photogrammetric literature identifies this problem as First Order Design.

The only feasible way to deduce a placement strategy is simulation [66]. The simulation

selects suitable initial camera positions and optimises a quality measure of the resulting

calibration expressed as function of camera orientation and position. Whether the initial

poses are selected according to a heuristic (as in [66]), randomly or on a multidimensional
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grid is a matter of computing time. This bears similarities to [25], which might be applicable

to the problem. Since the complexity of this subject is probably greater than that of this

thesis, we have excluded a detailed investigation here.

Another interesting method may be used: Third Order Design, the improvement of an

existing calibration by adding further images of rigs. This opens the opportunity to inter-

actively improve the calibration: The user may be directed to move the rig to particularly

promising positions and orientations.

In practice the following “rules of thumb” have been collected from the literature and from

our own experience to yield a suitable set of calibration images:

– For each camera, the rig should fill the image. This captures the distortions.

– The rig should be shown at three different distances to the camera: At the beginning

and the end of the working volume as well as in the middle.

– At the near end, the far end, and in the middle of the working volume, the calibration

rig should be placed in the image corners.

– At each of those position the rig should be shown orthogonal to the optical axis and

in four tilted orientations either axis-wise (up, down, left, right) or diagonal (up-left,

up-right, down-left, down-right). The latter is slightly better according to Mason

[66, Table 4.2]. The angle between optical axis and rig normal should be between 0

and 30 degrees.

This yields about 20–30 image tuples and should result in a calibration of reasonable

accuracy. If the calibration stops with unusually large error bounds, more images are

usually required. This is either achieved by fixing the rig at each position and recording a

number of images to reduce the corner detection noise or capture intermediate positions.

Since the rig detector is fast enough to run on interactive frame rates, it is recommended

to apply it to all incoming images and to store the corner coordinates. For small working

volumes this results in about 200 image tuples in a matter of less than a few minutes

according to the aforementioned rules and should ensure a correct calibration.
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4.1 Multiocular Template Matching

Template matching is one of the oldest, and most established, appearance based object

recognition methods. There are quite a few references concerning theory and practice

of template matching, even hardware has been custom built for the purpose of template

matching [34, 44]. We present here a novel multiocular definition of edge templates and an

accompanying matching procedure where only the correlation function is taken from [35].

A template T is a possible appearance of the object to be recognised. It is assumed that

there is a function T
(
~Φ

)
that generates the template (usually by retrieving from a storage

device) corresponding to the object pose ~Φ. In the simplest case a template can be a

recorded image of the object, however templates are not limited to this.

Given an image I the template matching procedure in Eq. 4.1 identifies which template

matches best according to a certain correlation function f .

best
~Φ

f
(
I, T

(
~Φ

))
(4.1)

Usually the function T
(
~Φ

)
retrieves templates from a finite storage. The set of templates

in this storage is T = [Ti]. The template set is computed during phase 3 of Sec. 3.1.1 and

used during phase 4.

It is clear that the number of templates can be quite large, depending on how different the

object may appear in the image. The choice of template representation and correlation

function is therefore crucial to run-time and memory consumption, as well as recognition

robustness and the ability to distinguish objects. Obviously the first constraints contrast

the latter, so compromises must be made.
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4.1.1 Image Templates and Cross Correlation Matching

The classical template matching method [5] defines a template Ti to be an image of the

same type (grey level, colour, . . . ) as I. A template is assumed be a rectangular matrix of

ui by vi pixels, ni pixel in area. This means that each template may be of a different size.

Templates are either recorded images of the object (possibly using special hardware like

turntables to realise the different appearances) or more recently rendered using methods

of generative computer graphics.

Classically the object pose consists of the planar rotation and the position of the template’s

top left corner in the image, i.e. ~Φ = [Φα, Φu, ΦΦ]T . The template set contains rotated

versions of the objects using a suitable quantisation of Φα.

The correlation function f is the empirical cross correlation coefficient depending on I, Ti,

and ~Φ as denoted in Eq. 4.2.

f (I, Ti) =

∑
uv

IuvTuv − 1
ni

∑
uv

Iuv

∑
uv

Tuv√[∑
uv

I2
uv − 1

ni
I

2
] [∑

uv

T 2
uv − 1

ni
T

2
] (4.2)

Iuv = I(Φu + u, Φv + v)

Tuv = Ti(u, v)

I =
∑
uv

Iuv

T =
∑
uv

Tuv

The properties of the method are:

– Memory consumption and run-time is fairly high.

– The object’s texture, not only its geometry, is considered. This may lead to false-

positive recognitions due to local maxima in f .

– Slight differences in appearance lead to strong differences in the values of f . This

requires dense sampling of f and/or leads to reduced robustness of the recognition.
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– Using the correlation coefficients above makes the matching theoretically invariant

to global brightness and contrast. In practice the matching is very tolerant to strong

changes if they do not change the relative grey values e.g. by shadows on the object.

4.1.2 Edge Templates and Chamfer Matching

A different template matching method is based on edge templates. This means that the

appearance of intensity discontinuities of an object is used as the primary recognition

feature. To achieve this, a grey or colour image of an object is obtained as described in

Sec. 4.1.1 and an edge operator is applied to this image. The output of this edge operator

is stored as Ti.

For the remainder of this section we assume that the edge orientation is quantised as No

steps per 360 degrees. The notation E(u, v, o) refers to a so-called demultiplexed edge

image, where each layer o is of the same size as the input image, but contains only edge

pixels of orientation o.

The template Ti is assumed to consist of ni edge pixels. The definition of an edge template

is therefore:

Ti = {(uij, vij, oij ∈ [0, No − 1])}with j ∈ [0, ni − 1] (4.3)

The empirical correlation coefficient computed from Ti and the edge image of I cannot be

used here, as it is very sensitive to the slightest shifts of the template. If the template is

one pixel away from the correct position, f drops to very small values since the number

of overlapping edge pixels is rather low. A smoother function is desirable to promote

robustness and run-time efficiency. This is accomplished by applying the so called distance

transform to the input image. Fig. 4.1 and Def. A.8 depict edge images and their distance

transforms.

The distance transform D = DT (E) of a feature image E is defined as an image of the same

size as E. Each pixel (ud, vd) of D contains the distance d to the nearest feature position

(ue, ve) according to a certain distance metric. The transform is computed independently

for each orientation layer of E.

Since the Euclidean distance is too slow to compute in practice, it is approximated using fix-

point numbers to the base of two. This assigns horizontal and vertical differences of 2 and a
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X X X
X
X

⇒

1.41 1.00 1.00 1.00 1.41
1.00 0.00 0.00 0.00 1.00
1.00 0.00 1.00 1.00 1.41
1.00 0.00 1.00 2.00 2.23
1.41 1.00 1.41 2.23 3.16

An edge image Euclidean Distance Transform

⇓
3 2 2 2 3
2 0 0 0 2
2 0 2 2 3
2 0 2 4 5
3 2 3 5 7

Chamfer Distance Transform

Figure 4.1: An edge image and its Euclidean and Chamfer distance transform.

diagonal difference of 3. Fig. 4.1 illustrates this. Since the minimum relation is transitive,

a distance transform can be computed efficiently using a recursive algorithm [35].

A suitable correlation function f between image I and template Ti is defined [35] as:

f (D, Ti) =
1

ni

∑
j

D(uij, vij, dij) (4.4)

with D = DT (E (I)).

This correlation function is called the Chamfer distance. Its properties are:

– Memory consumption and run-time is fairly low.

– The object’s edges are considered. This makes false positives less likely especially if

the edges result from the objects silhouette only.

– Slight differences in appearance lead to slight differences in the values of f .

Due to these excellent properties the Chamfer distance is used throughout this thesis.

4.1.3 Multiocular Evaluation Strategy

Another important point to be considered is the evaluation strategy of f from Eq. 4.4 to

find its local minima, which are assumed to correspond to real world objects. Since classical
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4.1 Multiocular Template Matching

template matching is a 2D method, its evaluation strategy cannot be used efficiently for

multiocular object localisation. We will show that in the following.

The classical evaluation strategy [35] consists of a hierarchical evaluation of f depending

on the image based degrees of freedom, IDoF (pixel position of the template centre, scale,

rotation). It starts by evaluating f at a coarse resolution of the IDoF and refines at

promising positions.

Different views of the object are handled in [35] by a hierarchical clustering based on sim-

ilar appearances. This is appropriate for objects with many internal degrees of freedom

such as pedestrians as in [35], but yields a complicated template generation and matching

procedure. In another, unpublished in-house implementation, this was replaced by a com-

bined coarse-to-fine-search in pose space (3 rotations and distance to camera) and image

space. We have extended this to a coarse-to-fine-search in the application relevant space.

The simplest extension to multiple images

Figure 4.2: Conveyor transporting a flat ob-

ject.

performs the matching in each image inde-

pendently and establishes corresponden-

ces between the matching results of differ-

ent images. This works fairly well if only

one matching template is found in each

image (e.g. object at the top of Fig. 4.2).

If there are more matches (e.g. the two

objects at the bottom of Fig. 4.2) these

correspondences may be ambiguous. It is

not clear which two of the four combina-

tions are the correct ones. Only external

constraints, e.g. admissible distance to the

camera and therefore admissible disparity

between left image position and right im-

age position, can be used to disambiguate the results. The algorithm is therefore identical

to the problem of feature-based stereo with the object templates as features.

Fig. 4.2 illustrates another disadvantage of this simple extension of 2D matching: Far more

templates than necessary have to be matched resulting in poor run-time performance. In

this example the object may only appear on the conveyor. The application specific degree

of freedom, ADoF of the object to be localised here is exactly one: The position of the
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object along the conveyor’s transportation direction. The unmodified 2D matching method

requires three IDoF: translation and planar rotation. This leads to a run-time complexity

of O (n3) template matches versus O (n) for ADoF with n templates per degree of freedom.

An improvement would be to match only those appearances of the object that may actually

appear: The poses which place the object on the conveyor. To do so, we simulate the

appearance of the object by varying the ADoF in world coordinates and projecting it to

each camera. This multiocular template actually consists of Nc individual templates which

are evaluated together:

Ti =
(
0Ti,

1Ti, . . . ,
Nc−1Ti

)
(4.5)

where cTi denotes the template from one camera c out of Nc cameras total. From now on

all templates are assumed to be of that type, but for simplicity they are indexed as if they

were monocular (Eq. 4.3). This also maps well to the actual implementation: If the Nc

images are placed in a larger meta-image (e.g. below each other at consecutive addresses),

the multiocular extension adds more feature positions to a template that now refers to

the meta-image. The actual template matching algorithm is identical for monocular and

multiocular images.

The matching is done by hierarchically evaluating f (Eq. 4.4) depending on the DoF of the

application (ADoF). Evaluating f depending on ADoF is far more robust than evaluating

it using image space templates: Since the ADoF are defined with respect to the world or

sensor coordinate system, the corresponding templates describe an actual object pose, not

a hypothetical one which has to be verified. Therefore, problematic cases in 2D matching

such as repeated objects are avoided by not testing for those object occurrences.

The ADoF dependent templates are in fact three dimensional templates. They implicitly

perform a triangulation of corresponding points during matching. If the image tuple depicts

the same pose as a template, all points on the object can be recovered. The method

therefore performs localisation and recognition at the same time. A template only matches

well if it recognises the object at the correct position.

4.1.4 Lattice of Poses

In practical applications the ranges of the DoF are finite. We will denote this range of

values for the DoF pose space and impose a quantisation for each of the Nd dimensions

58



4.1 Multiocular Template Matching

Φ2

Φ1

Φ2

Φ1

Figure 4.3: Lattice (top) and templates (triangles). Left: direct pose-template associa-
tion. Right: similarity pose-template association. Details: see text.

(degree of freedom). Such a quantised space can be represented most conveniently as a

multidimensional grid (math.: lattice), i.e. equidistantly spaced values in arbitrary many

dimensions.

We assume that one dimension d ∈ [1, Nd] of this lattice corresponding to the ADoF d is

limited to the interval
[
Λd, Λd

]
with a step size of σd. The handling of object symmetries

is done by limiting the rotational DoF accordingly. In Fig. 4.3 each lattice has an Nd = 2

with 16 poses.

Now that a range of values for each component of the pose is defined, Eq. 4.4 can be

evaluated on the lattice. Given a point on the lattice the template associated with this point

must be retrieved in order to compare this template with the image. The straightforward

method of associating one lattice point ~l with exactly one template is called T~l direct

pose-template association, dPTA. The advantage is the straightforward implementation of

pose-template and template-pose association as seen in Algorithm 4.1. The corresponding

retrieval function that is used during the matching phase is seen in Algorithm 4.2. A

possible implementation using pointers is depicted in left part of Fig. 4.3. Each lattice

point (circles) points to a different template data structure.

The drawback here is the memory consumption: As current 32 bit operating systems allow
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at most 3 GB of memory per process∗, one either has to conceive a memory management

method or reduce the number of templates. 3 GB may seem like a lot of memory, but if

the templates for all cameras together require about 3 kB this yields roughly one million

templates. Given six DoF this makes just ten steps per DoF. One template usually contains

about 1000 edge pixels, this limits the system to three cameras. An additional point to

keep in mind is that the memory transfer rate becomes the limiting factor in terms of

processing performance.

The memory consumption can also be reduced by a more sophisticated implementation of

the pose-template association, the similarity pose-template association, sPTA. The idea is

to avoid storing similar templates that differ only by the positions in the image, as depicted

in the right part of Fig. 4.3.

Instead, some templates are stored completely (top left lattice point in Fig. 4.3) and other

poses (bottom right lattice point in Fig. 4.3) refer to the stored template and the resulting

offset in the image (Algorithm 4.3). Thus templates that differ very little from an already

stored template require very little extra memory.

A template is stored as a link if the result of Eq. 4.4 is below a threshold θe after compen-

sation of the position of the templates in the image. The corresponding retrieval function

that is used during the matching phase is seen in Algorithm 4.4.

Algorithm 4.1 Template Generation for Direct Pose-Template Association

Variable Type Description

Nd Input Number of lattice dimensions (ADof)
Λd, Λd Input Limits of lattice dimension d
σd Input Step size of lattice dimension d
T Output Template set
~l State Index of current pose
T~l State Template of current pose p

1: for ld ∈
[
Λd : σd : Λd

]∣∣Nd

d=1
do

2: Render template T~l =
{(

u~l,i, v~l,i, o~l,i

)}
3: end for
4: T ⇐

{
T~l

}
∗Microsoft Windows NT: 300–500 MB, Windows XP: < 2 GB, Linux: < 3 GB
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Algorithm 4.2 Template Retrieval for Direct Pose-Template Association

Variable Type Description

~l Input Index of template to be retrieved
T Input Template set
T~l Output Retrieved template

1: Read T~l from T

Algorithm 4.3 Template Generation for Similarity Pose-Template Association

Variable Type Description

Nd Input Number of lattice dimensions (ADof)
Λd, Λd Input Limits of lattice dimension d
σd Input Step size of lattice dimension d
θe Parameter Maximal approximation error [pix]
T Output Template set
~l State Index of current pose
T~l State Template of current pose p
k State Index of most similar real template
e State Approximation error of current template [pix]

1: T ⇐ ∅
2: for ld ∈

[
Λd : σd : Λd

]∣∣Nd

d=1
do

3: Render template T~l =
{(

u~l,i, v~l,i, o~l,i

)}
with projected origin

(
x~l, y~l

)
4: Find neighbouring templates

{
T~j

}
in pose space with projected origins

{(
x~j, y~j

)}
5: ~k = argmin

~j

f
(
DT (T~m) , T~l

)
, with T~m =

{(
u~j,i − x~j + x~l, v~j,i − y~j + y~l, oji

)}
6: e = f

(
DT (T~m) , T~l

)
with T~m =

{(
u~k,i − x~k + x~l, v~k,i − y~k + y~l, o~k,i

)}
7: if e < θe then

8: Tp ⇐
(
~k, x~l, y~l

)
{Linked template}

9: else
10: Tp ⇐ T~l {Reference template}
11: end if
12: end for
13: T ⇐ {Tp}
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Algorithm 4.4 Template Retrieval for Similarity Pose-Template Association

Variable Type Description

~l Input Index of template to be retrieved
T Input Template set
T~l Output Retrieved template

1: if ~l is a linked template then

2: Read
(
~k, x~l, y~l

)
from T

3: Read T~k from T
4: T~l =

{(
u~k,i − x~k + x~l, v~k,i − y~k + y~l, o~k,i

)}
5: else
6: Read T~l from T
7: end if

4.1.5 Hierarchical Multiocular Matching Procedure

The matching can be efficiently performed according to the following procedure. Without

loss of generality we assume an Nd dimensional lattice with the limits ~Λ and ~Λ as during

template generation. If there is more than one lattice per object type and/or more than

one object type the other lattices can be evaluated in the same manner.

The Chamfer distance is a very smooth function. It has local minima only if other struc-

tures besides the object are visible in the edge image. Since we only know that these

local minima are valid objects if the Chamfer distance is small enough, they have to be

evaluated. Neighbourhoods of lattice points that are not sufficient similar to the object do

not need to be inspected.

The criterion for a successful match is two-fold: A certain percentage of template pixels

has to overlap with the image, i.e. the distance of so many template pixels must be below

a threshold. The lattice is checked first with a small overlap, large admissible distance

and coarse steps. This non-linear function is taken from the aforementioned unpublished

implementation, where it proved to be a very robust method.

The steps are defined in multiples of the lattice resolution, which is an improvement over

the aforementioned unpublished implementation, as it enables the use of ADoF instead

of IDoF. A refinement of these matching poses is done by increasing overlap, reducing

admissible distance and step size. Algorithm 4.5 details the matching procedure.

The total complexity in units of template evaluations is O

(
Nd∏
d=1

Od

)
. The DoF-wise com-
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Algorithm 4.5 Hierarchical Multiocular Template Matching Procedure

Variable Type Description

Nl Input Number of hierarchy levels
Nd Input Number of lattice dimensions
Λd, σd, Λd Input Limits and step size of lattice dimension d
D(u, v, o) Input Demultiplexed distance image
T Input Template set
θl Parameter Maximal Chamfer distance.
µl Parameter Minimal percentage of matching pixel.
sld ∈ N Parameter Grid scaling factor
PNl−1 Output Set of matching poses
l State Current hierarchy level
Pl State Set of promising poses in level l
~p State Index of pose candidate to be refined.
n~p State n~p = |T~p|
u~p,i, v·, o· State Coordinates of feature i in T~p

1: ~p0 ⇐ {}
2: for pd ∈

[
Λd : s0dσd : Λd

]∣∣Nd

d=1
do

3: Retrieve T~p from T (Algorithm 4.2 or 4.4)
4: ζ ⇐ {i|D (u~p,i, v~p,i, o~p,i) < θ0}
5: if |ζ|

n~p
> µ0 then

6: f ⇐ 1
n~p

∑
i∈ζ

D (u~p,j, v~p,j, d~p,j)

7: P0 ⇐ P0 ∪ {(~p, f)}
8: end if
9: end for

10: for l = 1 to Nl − 1 do
11: Pl ⇐ {}
12: for ~p ∈ Pl−1 do

13: for td ∈
[
pd − 1

2
sl−1,dσd : sldσd : pd + 1

2
sl−1,dσd

]∣∣Nd

d=1
do

14: Retrieve T~t from T (Algorithm 4.2 or 4.4)
15: ζ ⇐

{
i|D

(
u~t,i, v~t,i, o~t,i

)
< θl

}
16: if |ζ|

np
> µl then

17: f ⇐ 1
np

∑
i∈ζ

D
(
u~t,i, v~t,i, d~t,i

)
18: Pl ⇐ Pl ∪

{(
~t, , f

)}
19: end if
20: end for
21: end for
22: end for
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plexities Od are computed as follows. nd is the number of grid points in dimension d of the

lattice. The best case complexity is Od = O
(

nd

s0

)
. This is the case if no object could be

found at the top level. The worst case complexity is Od = O (nd). In this case all templates

have to be evaluated. This will only happen with poor choice of the thresholds.

The average case complexity largely depends on the average scene and the number of real-

world objects in it. One has to at least acquire one sample per object. Therefore the step

size should be about the object size in that degree of freedom. On the other hand this

requires a large admissible Chamfer distance, allowing for a variety of objects to be the

cause for further computations at finer levels. Therefore the best number of resolution

levels Nl, thresholds (θl, µl) and step size sl is a matter of experimentation.

4.2 Feature Pose Maps

4.2.1 Method Description

Another 2.5 dimensional monocular object recognition and localisation method operates

on so-called Feature Pose Maps [10, 82]. A Feature Pose Map (FPM) is a table in the size

of the image, containing one layer per feature type. Each cell in this three dimensional

table contains a list of the poses that created a feature of this type at this pixel position

(Fig. 4.4).

When an image is to be analysed the features are computed and a vote is counted for each

pose in a cell where there is a feature (Fig. 4.5). The poses with a sufficient number of votes

are considered the recognition results. The integration of new poses and/or new objects

is possible by extending the FPM or the pose lists. Algorithm 4.6 details the matching

procedure.

FPMs can be generated in the same way as ordinary templates can. In fact the respective

data structures of edge templates as defined in this thesis are transferable from FPM to

template and back without loss. This might not be the case for other matching algorithms.

Templates generated with direct pose template association (dPTA, Sec. 4.1.4) can be

matched using the aforementioned simple algorithm, those generated with similarity pose

template association require a more elaborate matching procedure that operates on over-

lapping sub images. For the sake of simplicity we consider dPTA templates only.
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(a) An example object.

1 2 3 4

5 6 7 8

9 10 11 12

(b) The possible poses of the object.

1 2 3 4
1,5 2,6 3,7 4,8

1 2,5,9 1,3,6,10 2,4,7,11 3,8,12 4
1,5 2,6,9 1,3,5,7,10 2,4,6,8,11 3,77,12 4,8
5,9 6,10 5,7,9,11 6,8,10,12 7,11 8,12
9 10 9,11 10,12 11 12

(c) The Feature Pose Map.

Figure 4.4: Construction of a Feature Pose Map. The Feature Pose Map (c) contains in
each cell the identifiers of those poses in (b) that have this pixel set.

FPM matching is a form of generalised Hough transform [24]. It is therefore a bottom-

up method, integrating iconic low-level features to objects. The corresponding top-down

method is of course template matching, as it assumes objects and tries to verify them using

low-level features.

65



4 Appearance Based Methods

(a) A noisy input image.

?
?
?

? ? ? ?
? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
1 2 3 4 5 6 7 8 9 10 11 12

(b) Votes per pose.

Figure 4.5: FPM from Fig. 4.4 matching a noisy image. The histogram (b) is generated
by counting one vote for all entries in those cells of Fig. 4.4(c) that correspond to a black
pixel in (a). Ground truth is pose # 7.

Algorithm 4.6 Feature Pose Map Matching Procedure

Variable Type Description

Np Input Number of poses in hyper grid
np Input Number of features in pose p
Nt Input Number of feature types
F = {(ui, vi, ti ∈ [1, Nt])} Input Features as extracted from image
{p} = M (u, v, t) Input Feature pose map.
θ Parameter Percentage of votes for a successful match.
P = {p} Output Set of matching poses.
Vp State Votes of pose p
f = (fu, fv, ft ∈ [1, Nt]) State Current extracted feature to vote for

1: for all p ∈ [1, Np] do
2: Vp ⇐ 0
3: end for
4: for all f ∈ F do
5: for all p ∈ M (fu, fv, tt) do
6: Vp ⇐ Vp + 1
7: end for
8: end for
9: P =

{
p ∈ [1, Np] |Vp

np
> θ

}
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4.2.2 Distance Voting

Generalised Hough Transform considers the position of a feature to be noise-free. In real-

world applications the feature positions are noisy, because camera images are subject to

quantisation and digitalisation noise in the sensor chip. The feature position noise will

therefore cause noise in the accumulator, leading to less well defined peaks.

The methods [10, 82] suggest a user defined quantisation of the pose and feature spaces to

avoid oversampling or undersampling the feature space. The underlying problem is that

— just like in correlating edge images — the correlation function of the unscaled feature

space is very sensitive to the slightest disturbances.

Therefore we have developed a new voting process such that the number of votes is inversely

proportional to the distance to the nearest feature. More votes would be accumulated for

exact matches while slight disturbances result only in slight changes of the number of votes.

The accumulator content should therefore be more robust to feature position noise and the

size of the pose sampling grid.

This new voting scheme leads to an increase in run-time, but not memory consumption. If

the feature positions to cast votes are limited to strips of a small maximal distance value,

the slow-down is negligible.

4.2.3 Multiocular Extension

The extension to multiocular images proceeds analogous to template matching: Each cam-

era of a tuple has its own feature-pose map, but the pose votes are cast into a single

accumulator. The modification to Algorithm 4.6 are straightforeward and will therefore

not be listed here.

This extension has the favourable properties of a linear increase in both memory and

run-time consumption with a growing number of cameras.
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5.1 Multiocular Active Contours

In this section we describe another object recognition algorithm, based on a well-known

image segmentation method, Active Contours or snakes [12, 45, 68, 83]. Traditionally,

snakes are two-dimensional parametric curves, that deform during the image processing

procedure to approximate the segmentation boundary. The deformation is directed by the

image content such that successive iterations approximate the object boundary better than

the preceding ones.

There are quite a few publications concerning modifications and extension of the original

snake approach. So far the majority of algorithms uses snakes only in the dimension of

the input data, i.e. two-dimensional curves for images and three-dimensional surfaces for

volumetric, e.g. tomography, data.

Only a minority of publications describe three-dimensional curves, that are projected into

two-dimensional images. These algorithms are all limited to stereo images, but have not

been investigated for the general case of multiocular images.

We use snakes for object recognition also by projecting the curve, parametrised by the pose,

to the images of a tuple and improve the match between model curve and image content.

Object classification can only be done by e.g. checking the object pose against a set of

values that distinguish the different classes (e.g. flexible tubes with different diameters).

Most of the work in this section was published in our paper [23], which itself is an excerpt

from a master thesis [22] that was supervised by the author of this doctoral thesis.

5.1.1 Active Contours

Active contours or snakes have been used extensively for segmentation [12, 45, 68, 83] and

tracking [9, 53] purposes. In the Kass approaches [53], the basic snake is a parametric
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function ~p, representing a contour curve or model:

~p = ~v(s),∀s ∈ [0, l] (5.1)

where ~p is a contour point at parameter s. An energy function F is minimised over the

contour ~v(s):

F =

∫ l

0

Esnake(~v(s))ds (5.2)

Esnake can be separated into four terms:

Esnake(~v(s)) = αEcont(~v(s)) + βEcurv(~v(s)) + γEext(~v(s)) + δEcon(~v(s)) (5.3)

The internal energy Eint = αEcont(~v(s))+βEcurv(~v(s)) regularises the problem and favours

a smooth contour.

The external energy Eext, is based on the image at ~v(s) and links the contour with the

image. In this thesis, the gradient magnitude of the image I is used: Eext =
∣∣∣∇~I(~v(s))

∣∣∣.
The term Econ is used by the original snake [53] to introduce constraints, for example linking

of an active contour point to other contours or springs. User interaction can also be cast

into Econ. Later on, balloon snakes have emerged [19], where Econ is used to “inflate” the

active contour, to counteract the shrinking introduced by the original Eint.

The weight factors α, β, γ and δ can be chosen based on the application.

Disadvantages of the parametric model includes it dependence on parametrisation, which

can lead to numerical instabilities and self intersection problems when applied to some

complex segmentation tasks. Implicit active contours models avoid these problems and

can handle topological changes automatically [17]. However, they are not used in this

thesis due to their higher computational complexity.

A contour does not need to be a single curve. Modifications to delineate ribbon structures,

like roads in aerial images [32], or blood vessels in angiographic images [45], have been

proposed in the literature.

5.1.2 Constraints, Optimisation and Prior Information

In our new approach we perform the optimisation of Eq. 5.3 by a greedy algorithm. In

a bounded neighbourhood around the current parameter value all points on a lattice are
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generated, the energy is evaluated, and the point of lowest energy is selected as the new pa-

rameter set. This optimisation scheme has advantages over other optimisation algorithms,

namely the direct inclusion of hard constraints, simplicity and speed.

Soft constraints (e.g. desired object dimensions) are imposed by further energy terms in

Eq. 5.3. These soft constraints reshape the objective function so that the minimum moves

towards the desired position in parameter space. This is very similar to the technique of

Lagrange multipliers, which is extensively used in the classic optimisation literature.

Hard constraints are enforced by limiting the search neighbourhood such that the con-

straints are held. Prior or model information can be integrated in the same way.

5.1.3 Extension to Multiocular Cameras

Assuming that a segmentation boundary is observable in multiple images there exist three

ways to use it: Fusing multiple independently obtained 2D snakes, reconstructing the

spatial position of the segmentation boundary and fitting the 3D snake to it, or projecting

the 3D snake into the images and computing Eint as the sum of the individual energies of

the images in the tuple.

From the fusion of multiple independently obtained 2D snakes arises the correspondence

problem mentioned in Sec. 1.2, e.g. if parts of the segmentation boundary are not detected

in one image. This requires specific efforts to establish the correspondences which in turn

may be used to obtain the spatial coordinates in the known way.

The reconstruction of spatial coordinates of the segmentation boundary and the successive

fitting of the 3D snake to it bears the usual problems of stereo vision. The methods

to follow this approach have been published elsewhere and are not subject of this thesis

anyway.

In this new approach we concentrate on the projection of the 3D snake to the image and

their evaluation in the images of a tuple. To do so we extend Eq. 5.2 to multiple images

in the same way as in template matching:

F =

∫ l

0

[
Eint(~v (s)) +

Nc∑
c=0

Eext

(
~Pc (c

0H~v (s))
)]

ds (5.4)

The internal energy terms are similar to those of the 2D snakes, just in 3D and measured
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in meter, not pixel. The external energy terms are identical to the 2D case as they operate

on the projected spatial curve.

5.2 The Contracting Curve Density Algorithm

The Contracting Curve Density (CCD) algorithm [37, 38, 39], and its real-time variant [40],

fit a parametric curve ~p
(
s, ~Φ

)
to an image ~I. Parameter s ∈ [0, 1] increases monotonically

along the curve, and ~Φ denotes the curve parameters to be optimised. Instead of finding

the most likely value of ~Φ only, the CCD algorithm also obtains a measure of uncertainty.

The density of ~Φ is assumed to be Gaussian and will be denoted by its mean vector ~µ~Φ

and covariance matrix ~Σ~Φ.

Inputs to the CCD algorithm are the image ~I and the Gaussian approximation of the prior

parameter density (~µ0
~Φ
, ~Σ0

~Φ
). Outputs are the estimated density parameters ~̃µ~Φ and ~̃Σ~Φ.

Furthermore a parametric curve ~p
(
s, ~Φ

)
is required that models the position of the relevant

object features in the image. Requirements for ~p are:

– The curve is smooth, continuous and differentiable twice in ~Φ.

– The curve does not have to be smooth, continuous and differentiable in s.

– The normal of the curve must exist.

– The curve’s normal is smooth, continuous and differentiable twice in ~Φ.

It is clear that the set of objects that can be matched by the CCD algorithm is more

limited than that of e.g. template matching. The geometry of these objects should be

simple enough to allow an efficient curve model. They are, however, not limited to 2D

objects. Spheres and cylinders have been used in [37, 38, 39, 40]. The curves even include

the lens distortion of the camera.

In the following we introduce the algorithm and present two different extensions to multiple

cameras, which have been designed, implemented, tested, and evaluated for this thesis.
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5 Segmentation Methods

5.2.1 Monocular Matching Procedure

In this section we introduce the basics of the CCD algorithm, condensed such that sub-

sequent extension and applications become clear, but without the elaboration of [38]. We

repeat here the fundamental operations of the Real-Time CCD algorithm [40] since it is

better understandable and more suited to our applications than the original variant.

The first basic idea of the CCD algorithm is that at the beginning of the matching the

uncertainty of the curve parameters is high. During the matching, this uncertainty reduces

up to a point where the curve is known with sub-pixel accuracy. The second basic idea is

that a matching algorithm should aim to find the most probable value of ~Φ given an image.

The CCD algorithm therefore is a maximum-a-posteriori probability (MAP) algorithm.

The a-posteriori probability is approximated as follows using Bayes’ equation:

p
(
~Φ|~I

)
= p

(
~I|~Φ

)
p
(
~Φ|~µ0

~Φ
, ~Σ0

~Φ

)
(5.5)

p
(
~Φ|~I

)
= p

(
~I|S

(
~µ~Φ, ~Σ~Φ

))
· p

(
~µ~Φ|~µ

0
~Φ
, ~Σ0

~Φ

)
(5.6)

S
(
~µ~Φ, ~Σ~Φ

)
denotes the grey value statistics close to the curve and is used to approximate

p
(
~I|~Φ

)
by p

(
~I|S (µΦ, ΣΦ)

)
.

The maximisation of Eq. 5.6 is performed by iterating the following two steps until the

changes of ~µ~Φ and ~Σ~Φ fall below a threshold or a fixed number of iterations is completed.

The data in Fig. 5.1 illustrates the steps. The procedure starts with a user-supplied starting

density (~µ0
~Φ
, ~Σ0

~Φ
).

1. Compute pixel value statistics S
(
~µ~Φ, ~Σ~Φ

)
, close to both sides of the curve. For grey

scale image this amounts to a mean and a standard deviation of the image content

on either side of the curve.

2. Refine the curve density parameters (~µ~Φ, ~Σ~Φ) towards the maximum of Eq. 5.6 by one

step of the Newton-Raphson optimisation procedure. This step moves the segmen-

tation boundary such that the image content conforms better to the pixel statistics,

i.e. towards an edge.

A numerically favourable form of Eq. 5.6 is obtained by computing the log-likelihood:

χ = −2 ln
[
p
(
~I|S

(
~µ~Φ, ~Σ~Φ

))
· p

(
~µ~Φ|~µ

0
~Φ
, ~Σ0

~Φ

)]
(5.7)
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I I

d d

Iteration 1 Iteration n

Figure 5.1: The principle of the CCD algorithm. Fitting the segmentation boundary
(bold line) to the image content (solid line) by estimating the mean (dashed line) and
standard deviation (dotted line) on either side of the assumed boundary. The boundary
is moved such that the image content has the highest probability according to the means
and standard deviations.

In image processing/optimisation terms this can be seen as follows: The sum of Gaussian

probability densities p
(
~I|S

(
~µ~Φ, ~Σ~Φ

))
is an edge detector along the curve normal, i.e.

if the curve is at the edge, the function value is maximal. In contrast to classical edge

detectors (e.g. Sobel, Prewitt) the kernel size is adaptive and the function is spatially

differentiable. These properties are the main reasons for the robustness and accuracy of the

CCD algorithm. At the beginning of the matching ~Σ~Φ is quite large, providing a wide and

smooth function. During the estimation ~Σ~Φ is gradually reduced to approximate the actual

uncertainty of the parameters and therefore reducing the smoothing effect. The Gaussian

probability density p
(
~µ~Φ|~µ0

~Φ
, ~Σ0

~Φ

)
serves as a regularisation since the edge detection results

are not a smooth function.

In order to improve the performance not all pixels in the vicinity of the curve are used.

For efficiency reasons a set {s} ⊂ [0, 1] with a finite number of members is used. Only at

the points {~ps} =
{

~p
(
s, ~Φ

)}
data for the objective function (Eq. 5.7) is extracted. The

curve normal ~ns is supposed to be perpendicular to the curve at ~ps.
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Along ~ns the weighted mean and standard deviation of the pixel values on either side are

obtained separately, forming S
(
~µ~Φ, ~Σ~Φ

)
.

Please note that our curve definition ~ps = ~p (s, t, Φ) is slightly different to [37, 38, 39, 40]

as we have to handle multiple curves (e.g. the left and the right edge of a tube). Each

curve is identified by a different value of t ∈ Z, e.g. −1 for left and +1 for right edge.

Details — including the complete set derivatives, which are missing in Hanek’s publications

— can be found in [57].

5.2.2 Multiocular Extension of the CCD Algorithm

The simplest way to extend the CCD algorithm to multiple calibrated cameras is to max-

imise the joint probability

p
(
~Φ|~I

)
=

Nc∏
c=1

p
(
~Ic|~Φ

)
· p

(
~Φ|~µ0

~Φ
, ~Σ0

~Φ

)
. (5.8)

The assumption here is that images are independent random variables. This is an ap-

proximation of the true relationship between the images: On pixel level those images are

independent due to independence of the pixel noise, on an object level they are not. Mov-

ing the object in space causes a change of the contents of one or more images. The actual

relationship is hard to compute and is therefore approximated in the aforementioned way.

This extension provides implicit triangulation capabilities as the other methods before. We

will denote this version as MOCCD (Multiocular CCD algorithm).

The major drawback of this approach is the non-linearity of the model due to the projection.

Depending on the curve model, Eq. 5.7 even may be no longer a convex function. In this

case, the Newton-Raphson step may require further measures — such as step size control

— in order to converge correctly. In any case, the Hessian of Eq. 5.7 will be a dense matrix,

leading to an O (n3) complexity of the Newton-Raphson step for n curve parameters.

However, if the model is linear, the Hessian of Eq. 5.7 degenerates to a diagonal matrix.

This leads to an O (n) complexity of the Newton-Raphson step. Suitable curve models

define 2D entities and depend on translation, scaling and shearing only. Although not

linear, planar rotation can be used too.

74



5.2 The Contracting Curve Density Algorithm

In order to express the original model in 3D coordinates and match it in 2D we project the

curve to the images, match them independently in 2D, and perform a 2D-3D pose estima-

tion. The multiocular CCD algorithm with 2D matching (MOCCD2D) is summarised in

the following steps:

1. Project 3D model to 2D representations: cµ = c~p
(

c
0H, ~Φk

)
2. Match 2D representations by planar operations: cµ̃ = CCD1 (cµ)

3. Find 3D model with LMS projection error: ~Φk+1 = argmin
~Φ

(
cµ̃−

c~p
(

c
0H ~Φ

))2

The function CCD1 denotes a single Newton-Raphson step. We operate these three steps

repeatedly until ~Φ doesn’t change any more or a fixed number of iterations is performed.

Clearly, this approach is independent of both the 3D and the 2D representation of the

object model as long as the 3D-2D projections exist.
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6.1 Object Recognition using Characteristic Local Features

In this section we describe a new multiocular object recognition method that performs a

greedy search for the best matching point of a projected feature. In [54] we have shown

the properties of this approach for localising airplanes on the taxiway. In this thesis we

will show how to extend the method to multiple calibrated cameras.

The method improves a set of pose parameters given an image and an object model by

rendering a 2D representation of pose and model. This representation does not have to be

photo-realistic or an image at all, it is to be seen as the viewpoint dependent parameters

of a 2D feature extractor. After projection the optimal position of the feature will be

determined in the vicinity of the projected position by means of a greedy search. After all

features have found their optimal positions, a 2D-3D pose estimation [2, 41, 63] using the

obtained optimal 2D positions and the modelled 3D positions is performed. These steps

are repeated until convergence is reached.

6.1.1 Characteristic Local Features

The central concept for this method is the Characteristic Local Feature (CLF). We assume:

– that the pose to be optimised is close to the pose depicted in the input data

– the input data exhibits salient points

– these points can be modelled in 3D

– the appearance of these points in the image can be computed from the pose and

further data.

If these assumptions are upheld, the projected CLFs are similar to the image. One can

verify this by a slightly changing the pose of a cube and overlaying the camera images.
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6.1 Object Recognition using Characteristic Local Features

The corner positions vary relative to each other, the image content close to the corners,

however, does not change much.

Details on how to generate CLFs from CAD models can be found in [26, 74].

6.1.2 Monocular Matching Procedure

A model consists of several CLFs. Each CLF stores the following elements in a model and

accesses them read-only during matching:

– A set of rules deciding the applicability of the CLF, given the pose and possibly other

data, e.g. temperature if matching far-infrared (thermal) images.

– At least one 3D position in the model coordinate system.

– A projection function to generate the 2D representation.

– A matching function that compares the 2D representation and the input image.

– Further parameters for the projection function and the matching function, e.g. ref-

erence values.

Furthermore, a CLF stores the following elements in the object hypothesis (together with

pose and model reference) for read-write access during matching:

– At least one 2D position (the image coordinates to be optimised).

– A reference to the read-only part of the CLF.

– Further viewpoint dependent parameters for the matching function, e.g. expected

textures.

Algorithm 6.1 details the matching procedure.

The separation of the CLFs and the 2D/3D points is necessary as one CLF may be influ-

enced by more than one point, e.g. a line is one CLF, but requires two points if rotation

and scaling is to be covered.

The details of the procedures used in Algorithm 6.1 are left out for brevity, their semantics

are listed in Table 6.1.
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6 Closest Point Methods

Algorithm 6.1 Monocular Matching using Characteristic Local Features

Variable Type Description

I Input Image to be matched
Nf Input Number of CLFs
Nc Input Number of cameras
~Φ0 Input Start pose
M = {Ci} Input Model as a set of CLFs
Nm Parameter Number of matching iterations
θ~Φ Parameter Pose similarity criterion
∆p Parameter 2D search window around projected position

~̃Φ Output Optimised pose
ci State Projected data of the CLF
P State Set of model point indices to project to 2D
~pi State 2D point coordinates
~Pi State 3D point coordinates
A State Set of CLF indices to use during the matching

1: m ⇐ 0
2: repeat
3: P ⇐ {}
4: A ⇐ {}
5: for all i ∈ [1, Nf ] do

6: if applicable
(
Ci, ~Φ

m, . . .
)

then

7: ci ⇐ projectData (Ci)
8: P ⇐ P ∪ points (Ci)
9: A ⇐ A ∪ {i}

10: end if
11: end for
12: for all i ∈ P do
13: pi ⇐ projectPoint (Pi)
14: end for
15: for all j ∈ P do
16: pj ⇐ argmin

δp∈∆p

∑
i∈A

similarity (I, Ci, ci, p0, . . . , pj + δp, . . .)

17: end for
18: ~Φm+1 ⇐ poseEstimation (P, M)
19: m ⇐ m + 1
20: until ‖~Φm − ~Φm−1‖ < θΦ ∧m > Nm

21: ~̃Φ ⇐ ~Φm
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Table 6.1: Semantics of the procedures used in Algorithm 6.1.

Procedure Description

b = applicable
(
Ci, ~Φ, . . .

)
Check (boolean), whether CLF Ci is applicable

for the current pose ~Φ. Further information may
influence this decision.

ci = projectData (Ci) Compute the 2D representation ci of the CLF
Ci.

P = points (Ci) Obtain the indices of the model points used.
pi = projectPoint (Pi) Project 3D point Pi into the image as 2D point

pi.
s = similarity (I, Ci, ci, p0, . . . , pj, . . .) Compute the similarity s ∈ [0, 1] of a projected

CLF Ci, ci to the image I, if the 2D positions of
the CLFs were at p0, . . . , pj, . . ..

6.1.3 Multiocular Matching Procedure

The extension to multiple calibrated cameras is performed by independently projecting

each CLF to all cameras, optimising the 2D positions, and computing the LMS pose of the

object.

This extension influences three actions in Algorithm 6.1: The applicability check, projec-

tion and the pose estimation. The extension of the applicability check and the projection

are trivial. They have to take into account the different interior and exterior camera

parameters, but work as if there was just a single camera.

The only part that operates on all cameras is the pose estimation. Extending it to mul-

tiple cameras is straightforward, as [2, 63] are Bundle Adjustment methods, which were

described in Sec. 3.2.

Extending [41] to multiple cameras has not been attempted directly on point data, but [75]

show a similar approach, just that 3D surfaces are matched, not 3D points. Due to its

simplicity and stability we use a Bundle Adjustment based method [2].

6.2 Object Recognition using Gradient Sign Tables

The object recognition methods presented before introduced new variants of established

recognition schemes which improve upon the state of the art in various ways. They exhibit,
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Figure 6.1: Gradient Sign Table matching: Principle of operation. For an initial pose ~Φ
(square in pose space. left diagram), the nearest quantised pose b~Φc (circle) is computed.
The quantised pose is attributed with one Gradient Sign Table (GST, right diagram)
per degree of freedom. For all detected features (hatched squares) the respective sign is
obtained and the scaled average value of these signs is used as the update for the pose.

however, a rather conventional approach to object recognition. In this section we will attack

the problem of pose estimation and object classification from a completely different angle.

The objective here is to design an object recognition method which is as simple as possible,

both in regard to the algorithm and the data structures. It would be advantageous if the

new method operates using simple, quickly obtainable features such as edges only, but is

not limited to them.

We will start with an overview of the matching procedure in order to illustrate the under-

lying idea followed by the mathematical background. Refer to Fig. 6.1 for a sketch of the

operation of the matching procedure.

Gradient Sign Table (GST) matching operates on localised features (e.g. grey level edges,

colour edges, corners) that are extracted from the input image. The matching procedure

is a pose refinement hence an initial pose is necessary. The following steps are repeated

until convergence or for a fixed number of iterations. Given the pose the most appropriate

GST is selected from the database, e.g. by finding the GST that was generated from a

pose close to the pose to be refined. The contents of the GST indicate that if a feature is
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Figure 6.2: Gradient Sign Table matching: Principle of operation. Similar to Bundle Ad-
justment (Fig. 3.5), but without explicit correspondences and with precomputed gradients.

found at a certain pixel position in the input image whether an increase or a decrease of

the value of current pose would improve the correspondence between image and model.

This scheme allows us to get rid of the most expensive image processing operation that

e.g. template matching requires: distance image computation. A single distance image

is not computationally expensive, but since each edge direction channel requires one, the

amount of time a program spends in this routine is about 50% of the total running time.

In industrial applications this is not crucial, but some applications (e.g. controlling a robot

using computer vision) require high frame rates.

We get rid of the distance transform of each input image by distance transforming the

model. This idea is not really new [61], but our simplifications of the matching function

are. In fact, the underlying idea could open the door to a new set of optimisation methods

that use a precomputed view of the objective function, stored in an efficient manner.

The underlying idea of our new approach (Fig. 6.2) is to minimise the difference between

image and model using a gradient descent optimisation with precomputed gradient values

that are reduced to their sign only. This is the simplest pose refinement algorithm as it

requires one table look-up per feature position only.
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6.2.1 Gradient Sign Tables

Recall Eq. 3.2, page 30, the optimisation procedure of Bundle Adjustment (using Euclidean

distance) repeated in Eq. 6.1:

~̃Φ = argmin
~Φ

Nf∑
i=1

Fi (6.1)

Fi =
(
~pi − ~̃pi

)2

~pi = P
(
Φ, ~Pi

)
We will assume ~̃pi to be one of the Nf observed image features and ~Φ the pose of the model.

The model points are denoted ~Pi. Eq. 6.1 therefore performs pose estimation of a given

object. Pose estimation is usually performed using explicit one-to-one correspondences

between ~̃pi and ~Pi as we did in Sec. 3.2.

In Sec. 6.1 we searched for the closest best matching feature of a projected image point in

order to establish the correspondences for Araujo’s 2D-3D pose estimation. The latter is

a sub-problem of bundle-adjustment similar to Eq. 6.1. Fitzgibbon’s LMICP method [30]

later used a similar approach using edges alone. This shows that using the nearest feature

during pose estimation yield sufficiently robust and accurate results. We will therefore

retain this method of correspondence generation in this novel method.

Classically the minimisation of Eq. 6.1 (Fig. 3.5) is performed by the Gauss-Newton method

starting at a given pose ~Φ0. If we change the optimisation procedure to gradient descent

the update rule becomes:

~Φ(k+1) = ~Φ(k) −
Nf∑
i

∇Fi (6.2)

∇Fi = αd
∂Fi

∂Φd

∣∣∣∣
~Φ(k)

, d ∈ [1, Nd]

with ∇Fi being the scaled gradient of Fi and α· the step size.

The heart of the novel pose estimation presented here is how to compute the partial

derivatives ∂Fi

∂Φd
efficiently. This involves two steps: finding the model point closest to ~̃p

and computing the derivative. We will replace these steps by a single table lookup as

depicted in Fig. 6.2.
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For the moment we ignore that the probability of a point to belong to the object decreases

with increasing distance to projected pose. This should be respected by different handling

of points with different distances to the curve. We will integrate this individual handling

into the compression as described below.

Let’s assume the pose space is quantised like in Sec. 4.1 and for a pose ~Φ the quantised

pose is b~Φc. In Fig. 6.1 this is indicated by the arrow from the square depicting ~Φ to the

circle depicting b~Φc. The gradient of Fi then becomes

∇Fi = αd
∂Fi

∂Φd

∣∣∣∣
b~Φc(k)

. (6.3)

It is clear that for constant αd the gradient ∇Fi becomes constant for a given feature

position ~̃pi. Assuming pixel accurate feature positions, we could store the images of partial

derivatives instead of the template (cf. Algorithm 4.1).

This would lead to an image-sized matrix per degree of freedom and pose, requiring much

more memory than the template. The matching procedure, however, would be reduced to

a simple table look-up for every observed feature pixel.

In order to reduce the memory requirements of these gradient tables the proper choice of αd

is crucial. Since the poses are quantised to steps of σd, it would be efficient to update the

current pose ~Φ(k) by a value of σd such that the quantised pose b~Φc(k) switches to the next

grid location. If the update is less than σd, we unnecessarily repeat the same calculation

all over again in the next iteration.

The consequence is that we set αd = σd

Nf

˛̨̨̨
∂Fi
∂Φd

˛̨̨
b~Φc(k)

˛̨̨̨ . This gives a gradient of

∇Fi =
σd

Nf

sgn
∂Fi

∂Φd

∣∣∣∣
b~Φc(k)

. (6.4)

We therefore have to store only a single bit per pixel, degree of freedom, and pose: The

sign of the gradient for this pixel and degree of freedom. The resulting image-sized binary

matrices are computed off-line and will be called Gradient Sign Tables, or GST.

6.2.2 Compressing Gradient Sign Tables

In order to reduce the memory consumption further, a compression scheme is necessary.

Looking at a typical GST in Fig. 6.3 we see that the matrix is populated in a regular
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manner. There are large areas of either only ones or only zeros, while other areas consist of

non-random zero-one pattern. This is an indication that the matrices can be compressed

further.

There is a wide choice of lossless com-
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Figure 6.3: A typical Gradient Sign Table

of a rotated cube.

pression algorithms (e.g. [14, 47]), which

can also be combined with spatial access

methods (e.g. [29, 33]). For simplicity and

high access speed we chose run-length en-

coding (RLE, Def. A.10). Additionally we

computed the bounding box of the non-

zero area and stored only its contents.

The interesting point here is that we can

also use the template data and transform

them into GST. This is accomplished by

comparing the distance of pixels at identi-

cal image coordinates for different poses.

If the e.g. left neighbouring pose ~Φ− 1 of

the current pose ~Φ has a smaller distance at a certain point, we store a value of −1 in the

GST of ~Φ.

At his point we will integrate the fact that only pixels near the projected features can be

assumed to be object pixels. This assumption holds if the starting pose is sufficiently close

to the real pose of the object. As explained in Sec. 4.1.5 we should not try to compensate a

pose error that is larger than half of the object size to not to violate the Sampling Theorem.

Otherwise — e.g. in case of non-oriented edges for features as done in this thesis — the

optimisation will converge to a local minimum by e.g. aligning the left side of the model

with the right side of the object’s image. This happens if the start pose is chosen too far

to the right of the actual pose.

In order to define which pixels are to be processed we define a fixed-width corridor around

the projected model curve. Pixels inside the corridor are assumed to be object pixels that

are important for pose estimation, pixels outside the corridor are assumed to be either

caused by background objects or objects that are found from other starting positions. The

width of the corridor can be computed if a probability distribution of the pose is known.

The union of all feature positions generated by all poses above a pre-defined probability
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— with the currently generated pose as the Expectation Value — form the corridor.

If the distribution is assumed to be Gaussian and the object features form a curve with

known normal at each pixel, the standard deviation of the pose can be projected onto the

normal using a linearisation of the projection function at the current pose. A pre-defined

probability can then be turned into a maximal distance using the corresponding quantile

of the Gaussian distribution. This method is employed in the CCD algorithm [38] and can

be easily adapted.

Algorithm 6.2 summarises the generation of compressed GSTs.

Algorithm 6.2 Generation of Gradient Sign Tables

Variable Type Description

Nd Input Number of lattice dimensions
Λd, Λd Input Limits of lattice dimension d
σd Input Step size of lattice dimension d
G~l,d State Gradient sign table for a pose
~l State Index of current pose
C~l,d Output Compressed gradient sign table for a pose

1: for ld ∈
[
Λd : σd : Λd

]∣∣Nd

d=1
do

2: for d ∈ [1, Nd] do
3: Compute distance transformed template D+

d at pose [Φ1 . . . Φd + σd . . . ΦNd
]

4: Compute distance transformed template D−
d at pose [Φ1 . . . Φd − σd . . . ΦNd

]

5: Compute distance transformed template Dd at pose ~Φ

6: for each image pixel ~̃pi with Dd

(
~̃pi

)
< dmax do

7: Update Bounding Box
8: g = 0

9: if D−
d

(
~̃pi

)
< Dd

(
~̃pi

)
then

10: g = −1
11: else
12: if D+

d

(
~̃pi

)
< Dd

(
~̃pi

)
then

13: g = +1
14: end if
15: end if
16: Store g in RLE compressed GST C~l,d

17: end for
18: end for
19: end for
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6 Closest Point Methods

One simple way to ignore these pixels outside corridor is to assign them a gradient sign of

zero. This causes a trinary base (-1, 0, +1), which is not convenient on a binary computer.

We therefore require 3 symbols which are stored in 2 bits. This leaves 6 bits in a byte for

the length per RLE strip.

6.2.3 Matching using Gradient Sign Tables

Eq. 6.2 and 6.4 form a single iteration of the matching procedure. In practice we want

to step from lattice point to lattice point without rounding. Thus we make a majority

decision for each degree of freedom individually whether to change positive, negative, or

not at all.

The matching procedure therefore counts the features in the corridor and if a suitable

number is found it checks whether the majority of these features were at positions labelled

with -1,0, or +1. The labels are read from the compressed GST stored at the current lattice

position. If no DoF collected a sufficient number of votes to justify a move to a different

lattice point, the iteration is stopped. Some precautions are taken as this algorithm tends

to oscillate between two lattice points at the end of the optimisation.

In order to evaluate the quality of a local minimum one classically computes [76] the

Hessian matrix (e.g. using numerical derivatives of the gradient from Eq. 6.4). If the

condition number (ratio of smallest to largest eigenvalue) of the Hessian is close to 1, the

dimension-wise curvatures of parameters of the objective function are uniform.

Therefore, this local minimum can be reached from any direction with approximately the

same number of iterations and is therefore a good indication for a valid object. Smaller

numbers indicate certain directions in pose space are less curved and therefore more prone

to noise-related local minima. We define a “good” match to be a pose that can be reached

from any direction in a stable manner and has to have therefore a high condition number.

This approach seems impractical. Therefore we decided to use a simpler method. We

used the position of a pose in the optimisation sequence as a quality measure. Thus the

pose the iteration stopped was given a quality of 1, the pose the iteration started a 0.

Local maxima in the average sequence position were detected and the values were used to

compute weighted average pose over a fixed neighbourhood if a suitably large quality value

was found.

If a more classical measure of quality — the average distance from observed features to
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6.2 Object Recognition using Gradient Sign Tables

the closest model feature — is required the gradient sign tables for ∂Fi

∂(~̃pi−~pi)
can be used for

numerical integration. We will designate these GST as distance-image coordinate GST, in

contrast to the distance-pose GST explained before.

From Eq. 6.2 follows that an initial pose is required. Object detection, which cannot use

any prior knowledge, is done by performing the pose estimation above from random or

equidistantly spaced starting points. Real objects are more likely to attract poses from

different positions in the vicinity. We therefore accumulate the quality values of the poses

and place detection results at poses that were found from a number of different starting

positions.

The GST matching is easily extended to multiple calibrated cameras by computing a GST

for each camera separately. The total gradient is then computed by voting the individual

gradients from each input image. The complexity therefore grows linear with a growing

number of cameras.

We can safely omit the matching algorithm here due to its simplicity.
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Part III

Experiments and Applications

In the following we will evaluate the methods from Part II using example applications from

industrial environments. This chapter is structured into three sections: camera calibration,

rigid objects, and flexible objects (tubes and cables).

Camera calibration — the foundation of the multiocular methods in this thesis — is evalu-

ated without a specific application in mind. It can be and is used for all other applications.

It establishes a self consistent reference system, in which all units of measurement are de-

fined by the calibration result.

Using two rigid objects — oil caps — the pose estimation methods Template Matching,

Feature Pose Maps, and Gradient Sign Table matching are compared regarding pose es-

timation accuracy and classification performance. As the same object is used in other

publications [79] we can compare the matching results of the methods from this thesis

with them. We will not include the Characteristic Local Feature matching in the investi-

gation as we regard the newly developed Gradient Sign Table matching to supersede the

older method.

Using a set of different cables and tubes with diameters between 6 mm and 12 mm we

solved the “dangling rope problem”: the localisation of the loose end of a cable, tube, or

rope given the position of the fixed end. We can obtain the diameter and the position of

the flexible objects using the multiocular Contracting-Curve-Density Algorithm, the multi-

ocular Active Contours, and the Gradient Sign Tables, but not with any of the monocular

methods. We therefore use a fixed diameter to obtain comparable results.

The purpose of this thesis is to compare the different methods, not to e.g. find a feature

that is robust under all circumstances. For simplicity we use Sobel edges (except for

the Contracting Curve Density algorithm), followed by a non-maximum suppression and

thresholding using a fixed threshold. The cameras are used either in auto-exposure mode

or with a manual shutter setting.
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7 Evaluating the Camera Calibration

7.1 Goal of Investigation

Two different influences on accuracy and repeatability of the calibration result are im-

portant: corner position noise and calibration rig placement. The actual accuracy of a

calibration is very hard to verify since obtaining a suitable ground truth involves a calibra-

tion itself. Even if this calibration is done by a different method, all that is accomplished

doing so is the comparison of the two methods. We therefore concentrate on the repeata-

bility of calibration as a measure of accuracy.

The single source of noise influencing the otherwise deterministic calibration process is the

noise of the sensor chip, assuming illumination remains unchanged. The correlation used

to find corners is offset and gain independent, yet the noise of a camera image increases

with decreasing brightness as the exposure control increases the gain between pixel voltage

and A/D converter. We therefore obtain the image noise induced noise of the calibration

data as a measure of repeatability. The smaller the standard deviation of parameter the

more repeatable is it.

The number of degrees of freedom for the rig placement make it impossible to try out all

combinations. We therefore try to verify the basic rules established in Sec. 3.2.4. To do so

we build image sets of bad positions and include more and more good combinations until

we reach the recommended combination of rig poses.

Additionally we are interested in the different external calibration results for the bundle

adjustment and for the spatial optimisation.

7.2 Experimental Setup

In order to obtain sufficient statistics, we acquire one hundred images per rig position.

The rig is fixed such that it can’t move during image acquisition. Even though the rig is

exposed to sun light it is a valid assumption that the lighting does not change too much
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7 Evaluating the Camera Calibration

during the acquisition period of about twenty seconds. We do not use artifical lighting as

this causes interferences between the power grid frequency and imaging frequency of the

camera.

The images are referred to as Iij with i denoting the pose and j the number of the image in

the sequence. We then obtain a set of calibration parameters Φj given a set of i1, i2, . . . of

rig poses. The standard deviation σΦ is calculated from these one hundred calibrations and

therefore yield a measure of repeatability. We only compute the individual variances not

the covariances as the dependencies of the respective degrees of freedom are not particularly

interesting.

All images have been labelled according to their pose parameters. The distance, for in-

stance, has been divided into four groups (image filling, close, medium and far). Each

group label is intuitively chosen, e.g. distance labels are zero through 3 with growing dis-

tance. The noise measurements are depicted as one bar per pose group. The bars indicate

the square root of the mean square error (RMSE). All experiments are carried out using a

70 degree FoV VGA Digiclops.

The noise of the translation components is measured im meters. The noise of the rota-

tional components cannot be expressed in a unit of measurement directly. Throughout

the experiments the rotation is computed as a Rodrigues vector. Since the length of the

vector gives the angle of rotation, the noise of this length essentially denotes the noise in

the angle of rotation. This implies that the axis of rotation remains constant, which is of

course not the case. However, the axis remains largely constant, which allows the use of

the length noise as an approximation of the noise of the angle of rotation.

7.3 Pose Repeatability

In this investigation the size of the maximal noise event (largest Euklidean distance between

individual pose/corner position and mean pose/corner position) is depicted by a black cross.

Please note that three times the RMSE accounts for 95 % propability if the respective

distribution is Gaussian, and four times account for 99 % percent propability. Both limits

are indicated by black plus signs.

Table 7.1 through 7.5 summarise the noise values obtained from the experiments. The rig

poses have been obtained as if the images had been obtained from individual cameras, i.e.

monocular pose estimation was performed.
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(c) Translational component noise.

Figure 7.1: Noise of the 70 degree VGA digiclops camera. Rig poses are obtained from
individual images (3 x monocular pose estimation). Group codes are: 0=20 cm, 1=40 cm,
2=80 cm, 3=160 cm

The first experiment illustrates the influence of the corner detection noise on the positional

noise. Fig. 7.1 depicts both the corner noise and the noise of the pose parameters rotation

and translation over the various distance groups. It is clearly visible that both the rotation

and translation noise increases with growing distance to the camera. This is to be expected

as the distance in an image of the rig is inversely proportional to the spatial distance.

The performance of the parabolic approximation of the corner correlation peak (in a 5×5

pixel wide window) yields an maximum noise of 0.3 pixels. Assuming a Gaussian distribu-

tion of the noise 95 % of all pixels are closer than 0.05 pixels to the mean position given

the RMSE of 0.018 pixels. The largest maximal noise events happen in images that con-
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7 Evaluating the Camera Calibration

tain saturated areas close to a corner. We therefore recommend to set the lighting during

calibration such that overexposure of the cameras is avoided. Influences of the rig position

in the image, orientation or distance on the corner noise cannot be observed.

From the values of the maximal noise events in the corner detection, rotation, and transla-

tion plots can be seen that single corner noise events do not always lead to similar events in

the estimated poses. In Fig. 7.1 can be seen that the maximal corner noise event is always

larger than 4σ, although in both the rotational and translational plots the maximal noise

events are smaller than 4σ, usually even smaller than 3σ.

The rotation noise of about 0.015 degrees (cf. Sec. 7.2 for limitations of such an approxi-

mation) is nearly constant in all parameter groups. Except for the distance group none of

them shows a clear trend.

The translational noise exhibits excellent behaviour. The largest noise event moves the

pose less than one millimetre from the mean pose. The mean translation noise caused by

the image noise amounts to a negligible 0.14 millimetres at the largest distance. Two slight

trends can be observed: Moving the rig off-centre decreases the translational noise, while

tilting the rig first decreases then increases the noise.

The first effect may have three causes: The aforementioned overexposure, the planarity of

the rig or the fact that pixels at the edge of the image cover a smaller volume than those

at the centre. Since the effect is observable to a similiar extent in the multiocular pose

estimation experiments, we conclude that planarity problems can be ruled out.

The rotation groups show that the noise increases slightly if the rig is strongly tilted. The

reason for this effect, which is visible in the multiocular pose estimation too, is to be found

in the fact that the corner positions are functions of the cosine of the rotation. The corner

noise (which is affected by the slope of the function) is therefore a function of the sine of

the rotation. For near planar rig-camera orientations the orientation is close to 180 degrees

yielding an almost linear scaling of the corner noise. A greater rotation increases the noise

stronger as it operates on the non-linear part of the arcsine function. So the same amount

of corner noise produces a greater rotational noise. This is reflected by the rule of thumb

[66] to present the calibration rig between zero and 30 degrees, where the sine function is

approximately linear.
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7.4 Calibration Repeatability

Table 7.1: Rig distance related noise of the 70 degree VGA digiclops camera. Rig poses
are obtained from individual images (3 x monocular pose estimation). CN: Corner noise.
PR: Pose noise, Rotation. PT: Pose noise, Translation. MSE: Mean Square Error. MN:
Maximal Noise value. Group codes are 0=20cm, 1=40cm, 2=80cm, 3=160cm

Group Code
distance 0 1 2 3

CN MSE [pix] 0.022878 0.017145 0.014784 0.016159
CN MN [pix] 0.121505 0.272766 0.110986 0.190439

PR MSE x 1000 0.090268 0.127054 0.265410 0.580246
PR MN x 1000 0.245372 0.354260 0.842944 2.709669
PT MSE [mm] 0.010135 0.015105 0.033259 0.141063
PT MN [mm] 0.030951 0.053713 0.127694 0.976750

Table 7.2: Horizontal rig position related noise of the 70 degree VGA digiclops camera.
Rig poses are obtained from individual images (3 x monocular pose estimation). CN:
Corner noise. PR: Pose noise, Rotation. PT: Pose noise, Translation. MSE: Mean Square
Error. MN: Maximal Noise value. Group codes are -1=left, 0=centre, 1=right

Group Code
x-position -1 0 1

CN MSE [pix] 0.015359 0.016192 0.018086
CN MN [pix] 0.095578 0.272766 0.114174

PR MSE x 1000 0.309176 0.378643 0.377712
PR MN x 1000 0.797720 2.709669 1.240599
PT MSE [mm] 0.035578 0.092413 0.054311
PT MN [mm] 0.137780 0.976750 0.206290

7.4 Calibration Repeatability

In this section we want to explore the influence of the rig pose selection on the quality of

the calibration. As a ground truth is not available we investigate the influence of the corner

detection noise on the camera parameter noise. If the camera parameter noise of one set of

rig poses is smaller (assuming a constant corner detection noise) than the noise of another

set of poses, the first pose is more stable and will provide us with a more accountable

calibration. The pose sets have been selected to verify the rules of thumb for calibration

rig poses as listed in Sec. 3.2.4.

Please note that calibrations that did not converge were removed from the statistics. Non-

converging calibrations invariably yield infinite results in some or all camera parameters.
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7 Evaluating the Camera Calibration

Table 7.3: Vertical rig position related noise of the 70 degree VGA digiclops camera. Rig
poses are obtained from individual images (3 x monocular pose estimation). CN: Corner
noise. PR: Pose noise, Rotation. PT: Pose noise, Translation. MSE: Mean Square Error.
MN: Maximal Noise value. Larger group values indicate more rotation. Group codes are
-1=top, 0=centre, 1=bottom

Group Code
y-position -1 0 1

CN MSE [pix] 0.017034 0.016192 0.016518
CN MN [pix] 0.114174 0.272766 0.100532

PR MSE x 1000 0.334569 0.378643 0.355415
PR MN x 1000 1.240599 2.709669 0.797720
PT MSE [mm] 0.052380 0.092413 0.038364
PT MN [mm] 0.206290 0.976750 0.127084

Table 7.4: Rig rotation (about vertical axis) related noise of the 70 degree VGA digiclops
camera. Rig poses are obtained from individual images (3 x monocular pose estimation).
CN: Corner noise. PR: Pose noise, Rotation. PT: Pose noise, Translation. MSE: Mean
Square Error. MN: Maximal Noise value. Larger group values indicate more rotation.
Group 0 is planar to camera 0.

Group Code
x-rotation -2 -1 0 1 2

CN MSE [pix] 0.013554 0.011851 0.015991 0.018071 0.023590
CN MN [pix] 0.110767 0.088976 0.189937 0.190439 0.272766

PR MSE x 1000 0.430153 0.275917 0.385048 0.271239 0.292915
PR MN x 1000 1.900671 0.814374 2.709669 0.922019 1.142920
PT MSE [mm] 0.106327 0.049670 0.067220 0.047985 0.195913
PT MN [mm] 0.450244 0.180564 0.368562 0.146918 0.976750

Alternatively the double floating point computations produce the ‘not a number’ result if

the Jacobian cannot be inverted during the Newton optimisation.

At first we want to investigate the importance of the image filling rig poses and the dif-

ferent distances. We therefore selected all images as a reference (label ‘all’), the images of

distance group 1 only (label ‘dist1’) and combinations of different distances (labels ‘dist01’,

‘dist12’, ‘dist012’, ‘dist013’). A calibration using distance group 0 only is not possible be-

cause the optimisation procedure does not converge. Fig. 7.2 and 7.3 display the noise and

difference values of these pose groups sorted by camera parameters. The difference values

are the absolute values of the differences between the reference calibration and the mean
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7.4 Calibration Repeatability

Table 7.5: Rig rotation (about horizonal axis) related noise of the 70 degree VGA digiclops
camera. Rig poses are obtained from individual images (3 x monocular pose estimation).
CN: Corner noise. PR: Pose noise, Rotation. PT: Pose noise, Translation. MSE: Mean
Square Error. MN: Maximal Noise value. Larger group values indicate more rotation.
Group 0 is planar to camera 0.

Group Code
y-rotation -2 -1 0 1 2

CN MSE [pix] 0.015612 0.015693 0.016761 0.013453 0.015938
CN MN [pix] 0.115363 0.189937 0.272766 0.136006 0.112705

PR MSE x 1000 0.253625 0.362478 0.402541 0.282753 0.175790
PR MN x 1000 0.754782 1.196057 2.709669 0.720619 0.451605
PT MSE [mm] 0.101485 0.073741 0.082740 0.050267 0.094232
PT MN [mm] 0.330821 0.282876 0.976750 0.180085 0.368562

of all the calibrations using the respective pose groups. In Fig. 7.2(b) we see that the

images of distance groups 0 and 2 are the most influential determining the focal length.

All calibrations that include either pose group bring the mean calibration close towards

the reference calibration. The calibration containing both groups is almost identical to

the calibration containing all images. The noise levels indicate the same as the calibra-

tions containing distance groups 0 and 2 are almost identical to the reference calibrations.

Distance group 3 increases the noise level and all calibrations that include this pose differ

from the reference calibration more than those that do not include it.

The reason for this effect is that distance group 3 is too far away from the camera for this

size of the calibration rig. A shorter distance or bigger squares may improve the results.

Both the projection centre and the distortion parameters are most sensitive to distance

group 0. All calibrations containing distance group 0 exhibit smaller differences to the

reference calibration and similar noise levels as the reference calibration. The fact that

the calibrations containing distance group 0 exhibit a smaller noise level stems from the

fact that almost all calibrations containing distance group 0 converge to either of two local

minima. Calibrations without distance group 0 exhibit only one minimum.

This was discovered by plotting the projection centre coordinates of all the one hundred

calibrations. The coordinates form two clusters for calibrations including distance group

0 and one cluster between them for all other calibrations. If two images of the sequence

(e.g. index 12 and 13) were used to calibrate the camera, the number of images that end

up in the local minima is reduced.
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Figure 7.2: Internal calibration noise of the 70 degree VGA digiclops camera. The inclu-
ence of different distance pose groups on the different camera parameters is depicted.
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Figure 7.3: External calibration noise of the 70 degree VGA digiclops camera. The
incluence of different distance pose groups on the different camera parameters is depicted.

We therefore recommend to record multiple images per pose during the calibration when-

ever possible. It seems that the corner detection noise serves as a regularisation during the

optimisation.

The external calibration (Fig. 7.3) suffers from this. All calibrations including distance

group 0 exhibit a large noise especially in the x and y rotation components. The difference

of these calibrations to the reference calibration is of course larger as both groups centre

around two different solutions. These solutions differ in the projection centre coordinates

which in turn affect the x and y components stronger because their mean value is much

smaller than the larger z component.

The translation component with the largest noise is the z component. This is caused by

the fact that the distance of planar objects cannot be estimated as accurately as the lateral
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7 Evaluating the Camera Calibration

position. Small changes in the feature positions such as caused by the corner detection

noise lead to much larger changes in the distance.

Fig. 7.4 and 7.5 depict the noise and difference values of the rotation pose groups. The

‘all’ group denotes the reference calibration, the ‘centerPos’ group contains only poses in

the centre of the image (all rotations), the ‘slightRot’ group only small rotation, and the

‘strongRot’ group only large rotations. The two last groups also contain unrotated rigs.

Using these statistics we investigate the influence of the rotation angles and the presence

of the rigs in the corners.

As seen in Fig. 7.4, the focal length noise strongly depends on the amount of rotation as the

‘strongRot’ group exhibits almost the same noise level as the ‘all’ group. This behaviour

is mirrored in the difference to the reference calibration data, where ‘strongRot’ group

is closer to the reference calibration than the ‘slightRot’. Omitting the off-centre images

leads to a magnitude more noise and 2.5–10 times the difference as the ‘centerPos’ group

indicates.

The noise level of the projection centre is almost unchanged by the rotation angle, but

strongly influenced by the missing off-centre images. The difference to the reference calibra-

tion instead favours smaller rotation angles. This is caused by the fact that the derivatives

of the objective function to the centre values is exactly one. In other words the difference

of the points in the image and the projected spatial points directly affects the projection

centre. The spatial points in turn are proportional to the cosine of the rotation angle. If

the angle is small the factor of proportionality is larger than if the angle was larger. It

therefore influences the value of the objective function stronger if the angle is smaller. This

means that for smaller angles the true value is captured better than for larger angles.

The ‘centerPos’ group produces a large noise in the focal length and projection centre

parameters because the extracted coordinates are almost linear dependent, the system of

equations to be solved is close to singularity. The slope of the function is therefore much

higher here, so that the same corner noise level leads to a higher parameter noise level.

The distortion noise values are almost identical to the reference calibration. The distortion

values of the ‘centerPos’ group are a little bit higher than those of the reference values.

This is only naturally as the optimisation is close to a singularity. The distortion values

therefore depend more strongly on the image filling rig positions than on other positions.

The external rotation noise is basically unaffected by both the missing off-centre images as

well as the rotation angle. The rotation difference to the reference calibration is strongest
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(c) Projection centre noise.
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(e) Distortion parameter noise.
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Figure 7.4: Internal calibration noise of the 70 degree VGA digiclops camera. The inclu-
ence of different rotation pose groups on the different camera parameters is depicted.
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(c) External translation noise.
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(d) External translation difference.

Figure 7.5: External calibration noise of the 70 degree VGA digiclops camera. The
incluence of different rotation pose groups on the different camera parameters is depicted.

for the ‘centerPos’ group. The difference of the rotation groups is almost non-existent.

This leads to the conclusion that rotation of the rig does not have a strong influence on the

external rotation. Instead the off-centre images have a big influence on these parameters.

The translation noise and difference values indicate that the relative camera positions,

especially the z positions depend on the rotation angles more than on the off-centre images.

The larger difference of the ‘slightRot’ group compared to the ‘centerPos’ group shows that.

So far we have investigated the influences of the rig positions on the calibration parameters

and found supporting evidence for the rules of thumb. Additionally we found an additional

rule to overcome local minima.
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7.5 Choice of External Calibration Algorithm

7.5 Choice of External Calibration Algorithm

In this section we investigate how well each of the external calibration algorithms performs.

The quality of three external parameter sets are obtained and compared: The initial param-

eters using linear algebraic methods , the parameters after optimising spatially according

to Eq. 3.17, and the parameters after bundle adjustment according to Eq. 3.14.

We use the respective external parameters to project the rig points into the image and

obtain the error using Eq. 3.14. The internal parameters are kept constant and identical

during the evaluation of the two methods.

Fig. 7.6 depicts the actual reprojections. The left column depicts a zoom into camera 1,

the right column into camera 2. Initialisation, spatial optimisation and bundle adjustment

are depicted from top to bottom.

Fig. 7.7 depicts the error distribution over all three cameras and the three image tuples

used for calibration. Each marker denotes the function value according to Eq. 3.14 of a

single rig point. The stroked circle indicates the square root of the mean square error

(MSE) i.e. the square root of the mean of the square length of each vector from origin to

marker. The dashed circle indicates the maximal radius (MR).

The MSE after the initialisation is 2.7 pixels at an MR of 6.1. The spatial optimisation

reduces the MSE to 0.3 pixels with an MR of 1.1 pixel. The bundle adjustment further

reduces the MSE to 0.15 pixel and the MR to 0.6 pixel.

We see that the linear initalisation produces an extremely non-gaussian distribution. This

is to be expected since the parameters are not at an optimum of the objective function

and therefore still contain systematic errors. The spatial optimisation yields a far better

approximation of the external parameters at comparatively small computational costs. The

bundle adjustment as expected removes the remaining systematic errors and yields MSE’s

comparatively to the accuracy of the corner detector.

In this somewhat extreme example (three image tuples are the absolute minimum for a

calibration) we have seen that the linear initialisation is sufficient to get both the spatial

optimisation and the bundle adjustment started. The spatial optimisation is an effective

method to reduce the error at a low problem dimension. Its result is quite close to the

optimimum and can serve as a starting point for the final optimisation using the compu-

tationally more expensive bundle adjustment method.
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(b) Camera 2 After Initialisation.

400 420 440 460 480 500 520 540

230

240

250

260

270

280

290

300

310

320

330

(c) Camera 1 After Spatial Optimisation.
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(d) Camera 2 After Spatial Optimisation.
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(e) Camera 1 After Bundle Adjustment.

170 180 190 200 210 220 230 240 250 260 270 280

320

330

340

350

360

370

380

390

400

(f) Camera 2 After Bundle Adjustment.

Figure 7.6: Back projection of the rig corners using obtained external calibration.
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Figure 7.7: Distribution of the projection errors after external calibrations. Dot marker
indicate the difference between reprojected point and corresponding corner detection.
Stroked circle depicts square root of mean square error (MSE), dashed circle depicts max-
imal error.
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7.6 Summary

The camera calibration and the pose estimation of the calibration rig are characterised by

the following performance numbers:

Feature Performance

Corner detection accuracy (1σ) 0.018 pixel

Corner detection accuracy (worst case) 0.3 pixel

Rotation error 0.015◦

Translation error 0.14 mm at 160 cm distance

Focal length uncertainty 0.1%

Projection centre accuracy 1 pixel

The following non-quantitative insights have been found among other:

– Overexposure leads to inaccurate corner detection, but does not hinder detection.

– The rules of thumb regarding rig placement could be confirmed.

– Images taken beyond a certain distance reduce the accuracy of the focal length esti-

mation. For a camera of 70◦ field of view and VGA resolution this distance is between

120 cm and 160 cm. This fact is not mentioned in the literature.

– All internal camera parameters are subject to local minima during the calibration.

Including additional images at same location alleviates the effect. This is also a new

insight not found in the literature.

– The off-centre images are important for the external rotation parameters. This insight

is not found in the literature.

– In order to speed-up the calibration an optimisation using a metric error function

could be used before the Bundle Adjustment. It can reduce the reprojection error by

about 2
3

at a fraction of the computation effort.
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8 Oil Cap Inspection

8.1 Goal of Investigation

The oil cap of an engine is a real-world example for the necessity of visual inspection during

production. It is rather easy to mount the cap incorrectly such that the oil circulation is

not sealed. This might not be noticed during the subsequent test run, as the loss of oil is

slow. In the long run, the non-sealed oil circulation leads to higher maintenance cost (oil

replacement) or possible engine damages and pollution due to lost oil.

The inspection task is to obtain the pose of the oil cap with respect to the engine. We

assume that the transform from engine to camera is known for each image in a real-world

application and therefore the determined object pose can be compared directly with a

pre-defined reference pose.

Additionally we performed investigations of the methods to determine their classification

capabilities among different types of oil caps. A practical use for the classification is the

check if the correct type of oil cap is used, if there are e.g. different caps for diesel and

gasoline engines using similar sockets.

8.2 Experimental Setup

In our experimental investigations we obtain the ground truth by the use of a goniometer∗.

To determine the absolute pose without a big mechanical effort concerning the mounting of

the oil cap is necessary. For doing so we would need to calibrate the goniometer axes to the

camera coordinate system. This would require a rigid mounting between goniometer and

camera as well as a rigid, precise, and replaceable fasting of oil cap and e.g. a chequerboard

rig. Although not technically impossible, the mechanical effort is very high. Our approach

is to use the high precision of our goniometer (±0.0005◦ repeatability) to provide a ground

truth for pose differences by comparing pose differences only.

∗Provides two orthogonal axes of revolution around a common point.
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8 Oil Cap Inspection

Figure 8.1: Experimental setup and input data. The elongated objects in the lower and
the right parts are the motors of the goniometer. The oil cap is mounted on a plate that
is fastened to the goniometer. The different grey values are compensated in the feature
extraction such that only the shape of the object is used to distinguish them.

For the image recording we placed the camera on a tripod, modified the pose of the object

using the electrical motors of the goniometer, and recorded 100 image tuples for each of

the 35 poses. This will give us sufficient statistics to evaluate the influence of image noise

on the pose estimation accuracy. Fig. 8.1 gives an overview of the setup and the input

data.

Although the two oil caps differ in grey value, only their shape is important in this in-

vestigation. The black oil cap has a round circumference, while the white oil cap has a

hexagonal circumference. The grey value invariance is realised by limiting the edge direc-

tions to a half-circle and mapping opposite gradient directions to the same edge direction

code.

All images were labelled with their respective goniometer angles. For all unique pairs of go-

niometer settings of the per-axis set [± 20◦,± 10◦,± 7.5◦,± 5◦,± 4◦,± 3◦,± 2◦,± 1◦, 0◦]

the rotation matrices were computed using the kinematic model of the goniometer. These

rotation matrices give the orientation of the rotated oil cap coordinate system with respect

to the non-rotated oil cap coordinate system. The largest rotation angle between the cor-

responding axes (e.g. non-rotated Y axis to rotated Y axis) of the two selected goniometer

settings was computed and constitutes the ground truth for the 100 images.
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The poses of two images were obtained and the pose difference (rotational only) was com-

puted in the same way as the pose difference of the goniometer settings. The difference

between these ground truth pose difference and the estimated pose difference was stored

and will be displayed as histograms.

In order to provide a fair comparison of the capabilities of the different methods under

identical conditions in the same task we used the following approach: Since the matching

algorithms can yield multiple detections even if only one object is present, we considered

the pose of the best matching result only. The matching parameters of all methods were

set to identical values (if applicable).

Parameters were set using a small set (< 10) of test images out of the full set. This

corresponds to the set up phase after the deployment of an real world inspection system.

The parameters were chosen such that the smallest number of results — one, whenever

possible — was generated. We have therefore tuned the methods to yield one results

per image. This setting might not provide the smallest pose error. It allows, however,

to compare the methods under defined conditions even if they cannot be compared at

absolutely identical parameter values as different methods have different parameters.

This procedure will eliminate all systematic pose errors from both the ground truth and

the input images. Due to this systematic errors of the pose estimation (e.g. wrong model

size, wrong calibration parameters, etc.) cannot be found. This is not a serious obstacle

as these errors are easily found in practice.

In addition to the pose we recorded detection and uniqueness rate. The detection rate

indicates the number of images (relative to the total number) where any number of results

was generated. The uniqueness rate indicates the number of images where a single result

was generated. Ideally, both rates should be 100% in our experiments, thus exactly one

detection took place, as exactly one object was present. A detection rate lower than 100%

indicates that the parameters are not tuned careful enough. A uniqueness rate less than

100% means that the method yielded multiple results. In our experiments only one object

was present, so this indicates false positive matches.

The recording procedure for the distance estimation experiments was similar. The camera

was placed on a photographic copy stand, looking straight down. The height of the camera

was manually controlled using the ruler of the copy stand. The data analysis was performed

on distance differences.

Furthermore we recorded the number of results per image along with the memory and run-
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8 Oil Cap Inspection

Table 8.1: Investigated methods and their abbreviations in the plots.

Abbreviation Algorithm
direct 3 Trinocular Template Matching using Direct Pose Association, Sec. 4.1
direct-hier 3 Trinocular Template Matching using Direct Pose Association and hier-

archical evaluation, Sec. 4.1
direct 1 Monocular Template Matching using Direct Pose Association, Sec. 4.1
sim 3 Trinocular Template Matching using Similarity Pose Association, Sec. 4.1
fpm 3 Trinocular Feature Pose Maps, Sec. 4.2
fpm-dil 3 Trinocular Feature Pose Maps on dilated edge images, Sec. 4.2
fpm-dst 3 Trinocular Feature Pose Maps using distance voting, Sec. 4.2.2
gst 3 Trinocular Gradient Sign Table matching using distance-image coordi-

nate gradient, Sec. 6.2
gst-ref 3 Trinocular Gradient Sign Table matching using distance-pose gradient,

Sec. 6.2

time requirements of the different methods. The methods in Table 8.1 were investigated.

Their abbreviations for Fig. 8.2 through 8.15 are also given in the table.

The Gradient Sign Tables here encode the gradient of the distance to the nearest feature

over the image coordinates. We therefore performed the distance transform on-the-fly

without additional distance transformed images.

We reduced the number of methods so that all important aspects (trinocular vs. monocular,

top-down vs. bottom-up, etc.) are covered and the number of methods remains small. We

will display the error to the ground truth over a large set of poses using error histograms

and their quantiles. We computed the location accuracy only for the real world oil cap in

order to compare it to the other publications concerning this object.

All methods operate on the same edge images and generate their data from the same

templates. The templates were generated with 8 edge directions from a re-engineered

CAD model. The edge extraction was parametrised so that only the outline of the object

was visible. The white warning label on the black cap was not reproduced in the model

so we over-painted it on the real-world object too. This, too, leaves the outline of the

real-world object only.
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8.3 Pose Estimation Accuracy

8.3.1 Rotational Accuracy

The accuracy of the rotational pose components is crucial for the discrimination between

a correctly and an incorrectly mounted oil cap. Additionally small memory consumption

and short execution times are also important. A high detection rate is of course favourable.

Additionally, a small number of detections per image is desirable in order to reduce the

risk of false positive matches.

We generated the templates with 2 mm spatial resolution and 4◦ angular resolution. The

ranges were selected from example images using manually selected 2D-3D correspondence

points and subsequent 2D-3D pose estimation. In the following we state the observed ef-

fects. As many of these effects share the same reason, we will state this reason in Sec. 8.3.5.

In Fig. 8.2(a) and 8.2(b) the comparison between the trinocular and the monocular tem-

plate matching is made. The monocular matching procedure is actually better at capturing

the appearance differences due to object rotation. This is supported by the smaller values

for the four quantiles and the mean error. Given the same parameters, the detection rate

of the monocular version is strongly reduced while producing a larger number of similar

good results (low uniqueness rate, Fig. 8.5(b)). This indicates that monocoular match-

ing procedure is less robust and fails more often in ambiguous situtations. This is to be

expected as no spatial information is considered in the match.

The mean error of the trinocular matching is less than 50% of the template resolution;

that of the monocular matching less than 30%. The 99% quantile — which corresponds

to 3σ assuming an underlying Gaussian distribution of the errors or the maximal error

discounting outliers — is 1.5 times the template resolution for the trinocular matching

and close to the angular resolution for the monocular matching. Possible reasons for the

smaller errors of the monocular matching are discussed in Sec. 8.3.5

Fig. 8.2(a) and 8.2(c) compare the trinocular Template Matching methods using direct

and similarity pose-template association. The histograms are nearly identical, with the

similarity pose-template association possessing slightly smaller errors (cf. Fig. 8.4 for a

direct comparison of the values). This indicates that the re-use of similar looking templates

does not have a big negative influence on the pose accuracy.

Comparing the trinocular template matching with the classical Feature Pose Maps match-

ing (Fig. 8.2(a) and 8.3(a)) shows that the error of the classical FPM is much larger (2×
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(a) Trinocular Template Matching using Direct
Pose Association
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(b) Monocular Template Matching using Direct
Pose Association
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(c) Template Matching using Similarity Pose As-
sociation

Figure 8.2: Rotation error histograms of pose estimation methods. Solid grey lines:
25% quantile, 50% quantile (median), 75% quantile. Dashed line: mean. Solid black line:
99% quantile.

the template resolution). This is to be expected from the principle and was described in

[10, 82]. Since the templates are quantised, the probability of an image edge pixel leading

to a vote for the correct pose is rather small. This increases the probability of voting for

a wrong pose since all poses are equally bad.

Our proposed modifications (dilatation of the edges, Fig. 8.3(b) and distance voting,

Fig. 8.3(c)) perform very well in terms of accuracy. The distance voting procedure is

subject to more outliers as seen in the 99% quantiles (Fig. 8.4(d)). The FPM matching on

dilated edges has a robust maximal error of about the angular template resolution. The

distance voting yields a similar mean error and similar quantiles, but is more prone to

outliers as the larger 99% quantile of 1.5× the template resolution indicates. Reasons for

these effects are also discussed in Sec. 8.3.5.
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The Gradient Sign Table matching (Fig. 8.3(d)) which performs the distance transform

on the fly performs slightly worse than the trinocular template matching. There are no

peculiarities in the histograms (such as more outliers). This lead to the conclusion that

the error is actually larger over all experiments.

Directly comparing the detection and uniqueness rates (Fig. 8.5) shows that we succeeded

in setting up the methods such that a high detection rate is guaranteed. The disadvantage

of the monocular matching easily seen: The method has the worst detection rate. The

monocular method produces 3.5% false alarms (for missing oil caps) compared to the

trinocular variant that does not increase the false alarm rate in this way.

The similarity pose association is almost as good as the trinocular template matching, but

at the expense of a strongly reduced rate of unique results. This rate is even worse than

those of the feature pose maps and the GST. The FPM and GST matching methods have

also quite high detection and uniqueness rates with the distance voting outperforming the

other two regarding uniqueness.

8.3.2 Influence of Hierarchical Evaluation

The experiments above evaluated all templates. This section investigates how the hier-

archical coarse-to-fine search influences the localisation accuracy. We also compare how

accurate the Gradient Sign Tables are when the distance-pose gradient is tabulated.

We used a spacing of 4/2/1 lattice steps for the Template Matching (every fourth pose

value on the coarsest level for all DoF). The finest resolution used the same thresholds as

the experiments involving all templates.

The Gradient Sign Tables as a pose refinement method were initialised also at every fourth

lattice step and iterated to convergence. Since the method does not compute an absolute

measure of fitness we used the position of a pose in the optimisation sequence as an

interpolation weight. Thus the pose that was computed when the iteration stopped was

given a weight of 1, the initial pose was given a weight of 0. Local minima in the average

sequence position were detected and the values were used to compute weighted average

over a fixed neighbourhood.

Fig. 8.6 through 8.8 give the results of these experiments. The hierarchical evaluation has

an error about 20% larger than that of the full evaluation. The error measures of the GST
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(a) Feature Pose Maps using classical voting
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(b) Trinocular Feature Pose Maps using classical
voting on dilated edge images
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(c) Trinocular Feature Pose Maps using distance
voting

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

14000
Error Histogram, Dataset ’gst3’

Rotation Error [deg]

N
r.

 o
f 

Im
ag

es

(d) Trinocular Gradient Sign Table matching

Figure 8.3: Rotation error histograms of pose estimation methods. Solid lines: 25% quan-
tile, 50% quantile (median), 75% quantile. Dashed line: mean. Dash-dotted line:
99% quantile.

matching are all about twice as high as those of the trinocular Template Matching with

full evaluation.

The maximal error of the GST matching (13◦) slightly exceed 3 lattice positions, in contrast

to 2 lattice positions for the Template Matching. Otherwise the histogram exhibits no

peculiarities which indicates a larger noise in the estimated poses, but no systematic error.

Sec. 8.3.5 also discusses the reason for these results.

8.3.3 Accuracy of the Depth Estimation

The accuracy of the depth (object distance to camera) estimation is crucial for determining

whether the oil cap is only placed on top of its socket or fastened in the socket. The

112



8.3 Pose Estimation Accuracy

direct3 direct1 sim3 fpm3 fpm−dil3fpm−dst3 gst3
0

0.5

1

1.5

2

2.5

3
25 % Quantile of Rotation Error per Method

E
rr

or
 [d

eg
]

(a) 25% quantiles of the rotational errors.
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(b) Medians of the rotational errors.
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(c) 75% quantiles of the rotational errors.
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(d) 99% quantiles of the rotational errors.
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(e) Mean of the rotational errors.

Figure 8.4: Quantiles and mean of the rotational errors for different pose estimation
methods.

2D Template Matching in [79] solved this by looking at the object in an acute angle and

comparing the v-coordinate of the matching template with a fixed value.

The depth estimation is also a weak point of monocular methods, which obtain their size

hints from the scaling of the object alone. Trinocular methods can also use the disparity
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(a) Detection rate.
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(b) Uniqueness rate.

Figure 8.5: Detection and uniqueness rate for rotation angle estimation of different pose
estimation methods. The detection rate indicates the number of images (relative to the
total number) where any number of results was generated. The uniqueness rate indicates
the number of images where a single result was generated.
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(a) Trinocular Template Matching using Hierar-
chical Evaluation

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

14000
Error Histogram, Dataset ’gst−ref 3’

Rotation Error [deg]

N
r.

 o
f I

m
ag

es

(b) Trinocular Gradient Sign Tables (distance-
pose gradient)

Figure 8.6: Rotation error histograms of hierarchical pose estimation methods. Solid lines:
25% quantile, 50% quantile (median), 75% quantile. Dashed line: mean. Dash-dotted line:
99% quantile.

— a much more accurate measure — to estimate the depth of the object.

We generated the templates with 2 mm horizontal and vertical resolution and 1 mm depth

resolution. The rotation angles remained constant. The depth ranges were selected again

from example images using manually selected 2D-3D correspondence points and subsequent

2D-3D pose estimation. Two sectors of templates were generated, one corresponding to

small disparity and one to a larger disparity. Using these sectors different sensitivities of

the non-linear depth-to-disparity function could be evened out.
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(a) 25% quantiles of the rotational errors.
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(b) Medians of the rotational errors.
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(c) 75% quantiles of the rotational errors.
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(d) 99% quantiles of the rotational errors.
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(e) Mean of the rotational errors.

Figure 8.7: Quantiles and mean of the rotational errors for hierarchical pose estimation
methods. Mind the different range.

We will not analyse the run-time and memory consumption in these experiments as they

scale linearly with the number of templates and therefore provide little new insight.

Using Fig. 8.9(a) and 8.9(b) we compare the depth estimation capabilities of trinocular

vs. monocular template matching. As expected, the monocular version performs much
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(a) Detection rate.
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(b) Uniqueness rate.

Figure 8.8: Detection and uniqueness rate for rotation angle estimation of hierarchical
pose estimation methods. The detection rate indicates the number of images (relative
to the total number) where any number of results was generated. The uniqueness rate
indicates the number of images where a single result was generated.

worse than the trinocular version. The multiple peaks of the monocular errors indicate

a multimodal distribution and therefore a higher sensitivity to local minima and outliers.

The trinocular version is subject to outliers: These are caused by two of the 3500 images

where the result is picked from the wrong sector due to similar local minima.

Fig. 8.9(a) and 8.9(c) show — as for the rotation experiments — that the reduction of the

templates according to their similarity does not have a large effect on the quality of the

matching.

Although Fig. 8.10(a) exhibits almost the same quantile and mean errors, one may observe

a stronger trend to larger errors. This trend may worsen if e.g. the horizontal or vertical

translation or the rotation of the object changes and is to be estimated together with the

depth.

The use of dilated edge images (Fig. 8.10(b)) shows nearly identical values for the lower

quantiles compared the trinocular Template Matching, but mean and robust maximum

show a significantly larger number of outliers.

The use of distance voting for the FPM matching (Fig. 8.10(c)) yields excellent results,

about twice as good as the Template Matching in the maximal error. The method is

subject to fewer outliers and can therefore be considered more stable. This is also seen in

much higher uniqueness rate compared to that of the template matching.

The Gradient Sign Table matching (Fig. 8.10(d)) is subject to a bi-modal error distribution
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(a) Trinocular Template Matching using Direct
Pose Association
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(b) Monocular Template Matching using Direct
Pose Association
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(c) Template Matching using Similarity Pose As-
sociation

Figure 8.9: Depth error histograms of pose estimation methods. Solid grey lines:
25% quantile, 50% quantile (median), 75% quantile. Dashed line: mean. Solid black
line: 99% quantile.

and therefore possesses similar lower quantiles and slightly larger mean and robust maximal

values than the Template Matching.

The detection rates (Fig. 8.12(a)) are equally high for all methods, indicating that the

matching parameters are set up correctly. The uniqueness rate (Fig. 8.12(b)) indicate that

the depth estimation is a more complicated problem that the rotation angle determina-

tion (Fig. 8.5(b)). The non-perfect detection rate of the Template Matching results from

matching parameter that are set a little bit too strict. Even at this too strict setting, the

uniqueness rate is about 75%.

The conclusion here is that there are many similar looking templates at different depths.

This is especially evident for the monocular Template Matching and the FPM matching.

The Similarity Pose Association is partially affected by this. One reason here is that we
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(a) Feature Pose Maps using classical voting
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(b) Trinocular Feature Pose Maps using classical
voting on dilated edge images
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(c) Trinocular Feature Pose Maps using distance
voting
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(d) Trinocular Gradient Sign Table matching

Figure 8.10: Depth error histograms of pose estimation methods. Solid lines: 25% quan-
tile, 50% quantile (median), 75% quantile. Dashed line: mean. Dash-dotted line:
99% quantile.

used the same parameters as for the rotation experiments which might have to be set

stricter when depth changes are considered. A detailed investigation of these parameters

was omitted, because they are application dependent and will be determined in the set up

phase after the deployment of an application. Refer to Sec. 8.3.5 for an analysis of these

effects.

8.3.4 Use of Resources

The recognition methods under investigation in this thesis read the template files generated

for Template Matching. In order to speed up loading the internal data structures are cached

in one large file. With the exception of a header of about 100 bytes the file consists of the

118



8.3 Pose Estimation Accuracy

direct3 direct1 sim3 fpm3 fpm−dil3fpm−dst3 gst3
0

1

2

3

4

5

6

7
25 % Quantile of Depth Error per Method

E
rr

or
 [m

m
]

(a) 25% quantiles of the depth errors.
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(b) Medians of the depth errors.
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(c) 75% quantiles of the depth errors.
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(d) 99% quantiles of the depth errors. Mind the
range.
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(e) Mean of the depth errors.

Figure 8.11: Quantiles and mean of the depth errors for different pose estimation methods.
Please note the different scaling of the 99% quantile plot to include the largest value.

model information of the respective method only. Thus we compare the size of these cache

files for the various methods in order to compare the relative memory requirements of the

methods. Dynamic memory such as edge images etc. are not considered as — with the

exception of the distance images for Template Matching and FPM with distance voting —
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(a) Detection rate.
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(b) Uniqueness rate.

Figure 8.12: Detection and uniqueness rate for the depth estimation of different pose
estimation methods. The detection rate indicates the number of images (relative to the
total number) where any number of results was generated. The uniqueness rate indicates
the number of images where a single result was generated.

all methods require the nearly same amount of dynamic memory.

As all methods have been optimised to about the same extent, this comparison is fair, but

does not constitute a lower or upper limit on the memory consumption as there is still

potential for more optimisation in addition to those already made.

Fig. 8.13 depicts the memory consumption of the rotation and distance experiments re-

spectively. The distance accuracy (Fig. 8.13(b)) experiments required far fewer templates

than the rotation experiments (Fig. 8.13(a)), resulting in the noticeable smaller memory

footprint of the model data. Most interesting is that the FPM (which is used in all three

FPM matching methods) requires about the same memory regardless of the number of

templates.

This is caused by the image sized FPM tables per feature (edge direction). For unused

pixel — which constitute the majority — at least a marker for an empty list has to be

stored. In fact, our implementation stores two 32-bit values: Index into the list of tuple

numbers and number of consecutive entries. A possible optimisation would be to store an

RLE compressed bitmap indicating used pixels.

Another reason is the redundancy in the tuple number lists. For quite a number of pixels

large portions of the lists are identical because the template overlap there. Using lists of

list this could be compressed. These measures together will greatly reduce the memory

consumption.
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(a) Absolute memory consumption, rotation ac-
curacy experiments. Mind the range.
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(b) Absolute memory consumption, distance ac-
curacy experiments. Mind the range.
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(c) Memory consumption, rotation accuracy ex-
periments. Relative to trinocular Template
Matching.
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(d) Memory consumption, distance accuracy ex-
periments. Relative to trinocular Template
Matching.
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(e) Memory consumption, rotation accuracy ex-
periments. Relative to trinocular Template
Matching. Template Matching only.
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(f) Memory consumption, distance accuracy ex-
periments. Relative to trinocular Template
Matching. Template Matching only.

Figure 8.13: Memory consumption of various recognition methods. The size of the inter-
nal data structures forming the model information is depicted.
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(b) Methods without GST. Mind the range.

Figure 8.14: Run time of the rotation accuracy experiments. Averaged over 10 images.
Mind the different ranges.

The image coordinate Gradient Sign Tables required about 8× more memory than the

trinocular template Matching for both experiments (Fig. 8.13(c) and 8.13(d)). The simple

RLE compression scheme is obviously not sufficient and has to be replaced by a more

elaborate method.

The pose Gradient Sign Tables required about 16× more memory than the trinocular

template Matching. Here the higher number of 5 DoF vs. 1 DoF (direction) above increases

the memory consumption. The pose GST are implemented using 8 bit (6 bit length) long

record per RLE strip, the image coordinate GST using 16 bit per strip (14 bit length).

Although the number of DoF’s is five times higher, the memory consumption only doubles.

This leads to the conclusion that the 8 bit RLE strips are the more efficient compression

method for this type of data.

Fig. 8.13(e) and 8.13(f) depict the relative memory consumption of the Template Matching

methods. Unsurprisingly the monocular variant requires one third of the memory compared

to the trinocular variant. The similarity compression on the other hand reduces the model

size by an approximate factor of 30. Given the nearly identical matching results and

processing times (see below) this is the most practical method.

Fig. 8.14 depicts the run time each pose estimation method required. Data was obtained

using a commercial profiler. The time each program was actually executed (user time) was

summed over all routines that belong to one group. The three groups with their labels

are: iconic operations (edge extraction, distance transformation, dilatation, label iconic),

matching (label match), and sub-lattice accurate pose computation (pose).
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8.3 Pose Estimation Accuracy

The pose refinement using distance-pose GST requires one order of magnitude more time

than the template matching. This is caused by the multiple traversals of the list of pixels.

One gradient descent step is very fast, the sheer number of steps takes up all the time. One

has to keep in mind that GST was designed as a pose refinement method, but is used as

a detection system here. It is very likely that other pose refinement methods, when used

as detectors, suffer from similar problems.

The distance-image coordinate GST matching is another order of magnitude slower than

that. This is caused by the large number of operations that are performed. Basically the

same distance values are computed over and over, requiring all the time.

Fig. 8.14(b) gives the times of the non-GST methods. The pixel operations of the monoc-

ular Template Matching requires one third of the time of the trinocular variant. About

two thirds of this time is spend computing the distance transforms as e.g. the times of the

FPM matching shows, which does not perform the distance transform. The dilatation in

contrast requires comparatively little time (fpm-dil).

The FPM methods require more time to find the local maxima in the accumulator than

the Template Matching. The template matching reduces the number of potential matching

templates during its operations, whereas the FPM has to sift through all poses at the end.

The simple FPM matching requires more time for doing so, because the thresholds had to

be lowered to get at least one result. This causes a lot of poses to pass the cheapest filter:

suitable number of votes. The later filter criteria are stricter, but require more time.

The matching procedures of the FPM with classical voting require at most a quarter of the

time of Template Matching. The distance voting requires a little less time than Template

Matching. The latter processes a greater number of pixels, thus it requires more time.

8.3.5 Analysis of the Observations

In this section we analyse the observations above and propose further experiments to

investigate the reasons for the effects. These experiments may yield an improvement in

accuracy, but the methods are already accurate enough for the task at hand, thus we do

not perform these experiments in this thesis.

The first point to be addressed is the smaller error of the monocular matching compared to

the trinocular matching in the rotation experiments. The only difference between the two

experiments is the number of cameras. Interpreting template matching as an optimisation
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problem, we have changed the objective function by introducing the two other images. We

sample the function at regular intervals and select the lowest local minimum.

As the histogram is stretched (seen by all quantile and the mean becoming larger) we can

safely assume that the effect is not caused by an increased number of outliers. In terms of

an optimisation problem it means that the additional images cause the objective function

to become flatter (at least along the dimensions of the rotation parameters as the larger

errors in the depth experiments show). This means that at the same amount of noise in

the function values the positions of the local minima are scattered over a wider area.

The most likely explanation is that a parallax effect occurs: The edges of the object are

slightly bevelled. This is considered in the 3D model, rendered and therefore part of the

templates. The problem here is that the templates are only accurate descriptions of the

object’s appearance at the rendering poses. Objects that deviate from the grid poses are

found by searching for the closest image point. This is an efficiency increasing approx-

imation that might associate image pixels to template pixels that are actually different

spatial points. The resulting averaging over the images flattens the objective function as

the function values get larger faster near the local minimum than away from it. A small

increase in Chamfer distances and a small decrease of the overlap (both ∼ 1%) can be

found in the trinocular matching results. The amount of this effect could be verified by

simulating various template spacings and bevel radii.

The performance of the classical FPM matching is — as expected — rather poor due to

inappropriate spacing of the templates with respect to the image resolution. The develop-

ment of the proposed extensions was therefore not only interesting but necessary.

The most surprising outcome of these experiments is that FPM matching on dilated edges

yields the second best results concerning the rotation angles but yields such high number

of outliers in depth. The purpose of the dilatation is to distribute the object contour over

a range of pixels until a sufficient number overlaps with the template. This also makes

the position of the object in the image rather uncertain. If the pixel position of the object

becomes uncertain, its disparity becomes also uncertain. This in turn leads to uncertain

depth values, the effect we observe here in form a larger number of outliers.

For the same reason the rotation angles become more accurate: The dilatation leads basi-

cally eliminates the influence of the translation on the rotation that cause the monocular

matching to be better than the trinocular one. Thus the changes in the value of objective

function due to object rotation are weighted higher relatively to the changes due to trans-
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lation. The overall result is a better estimation of the rotation parameters at the expense

of a much worse estimation of the translational parameters.

This explanation corroborates the parallax theory above: Due to the discrete translations

of the template and the resulting slightly incorrect assignments of image pixels to template

pixels the value of the objective function due to rotation errors competes with the value

due to translation errors. Eliminating the translation dependent term by dilating the edges

makes the matching more sensitive to the rotation deviations.

The newly devised FPM matching using distance voting exhibits a slightly better stability

than the Template Matching for both rotation and depth estimation. This is due to the

similar objective function. The fact that distance voting yields better results is most likely

caused by a better interpolation. The weighting factor of distance voting (proportional to

chamfer distance) is slightly better suited than that of the template matching (proportional

to chamfer distance divided by overlap).

The performance differences between Template Matching and distance-image coordinate

GST — both for rotation and depth estimation — can be explained by the different distance

functions. Template matching computes the distance from the template pixel to the nearest

image pixel, whereas GST computes the distance from an image edge pixel to the nearest

template pixel. The functions have similar — but not identical — recognition capabilities.

The most relevant fact is that unassigned template pixel do not incur a penalty as it

does in Template Matching: Computing the overlap parameter is rather straightforward

in Template Matching, but less so in GST matching. Using the same definition of the

overlap, one might achieve values greater than one. This happens if fuzzy image edges

produce additional edge pixels. Since we cannot know the maximal number of image

pixels (belonging to the object) we normalise by the maximal number of template pixels,

which might be less. This simple procedure increases the overlap allowing more templates

to pass the thresholds, leading to a smaller rate of unique results.

Finally we compare the methods above with the state of the art as given in Sec. 1.2.3 where

the same object is used. There a maximium of 4◦ and median error of about 2◦ is given.

Our worst case errors are 7◦ (trinocular Template Matching) and 5◦ (monocular Template

Matching). The median error of both these methods is about 1◦ and therefore better than

that of the method from the literature.

The reason for the higher rate of outliers in our method at a comparative median error

level is also the aforementioned parallax effect. The method [79] from Sec. 1.2.3 can obtain
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a more accurate position as it tests positions in pixel-wide distances not 2 mm distances as

our methods. At a resolution of about 200 pixel per 60 mm (estimated from illustrations) is

much higher than ours, the effect of compensating translational error with rotation changes

is less strong in [79].

The distance-pose GST has a higher pose noise because the iteration number as a quality

measure for a pose is not as distinctive as the other measures. The fact that the gradient

descent stops at a certain pose does not mean the pose actually fits the model well. It

simply means that this pose is a local minimum if it is reached from many starting positions.

Additionally poses at the edge of the lattice are disadvantaged because they can be reached

from fewer starting poses which — due to the averaging — increases the quantisation noise

as fewer values are integrated to one measure.

Together with the slightly higher error of the hierarchical evaluation of the Template Match-

ing we conclude that the objective function (Chamfer distance) has a number of similar

local minima in the vicinity of the global minimum. In order to improve the matching

results and to achieve the same matching quality using the hierarchical evaluation the

objective function has to be smoothed. In the simplest case this might be achieved by

averaging the matching results of the neighbouring lattice positions. This will surely lead

to higher computation times even if all templates are evaluated anyway.

Alternatively the spacing of the lattice might be chosen too large. Since we identified this

as the cause for the strong parallax effect it is reasonable to assume it to be the reason for

the larger noise of the hierarchical match. As we in fact sub-sample the already too coarse

sampled objective function we increase the parallax effect even more.

Altogether this leads to the conclusion that the equidistant spacing in metric coordinates

is not the optimal implementation, however convenient it might be. Future improvements

should consider this and try to combine pixel accurate translations with metric lattices.

8.4 Object Classification Performance

The classification performance is evaluated by performing the localisation for both the

black and the white oil cap and then deciding for the class by comparing one of various

measures (e.g. chamfer distance) of the best match. Keep in mind that the edges were

extracted contrast invariant, i.e. a left black, right white template edge matches also a left
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(a) Classification rates using Chamfer distance as
a decision value.
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(b) Classification rates using overlap as a decision
value.
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(c) Classification rates using Chamfer distance di-
vided by overlap as a decision value.
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(d) Classification rates using the relative number
of votes as a decision value.

Figure 8.15: Classification performance by decision value.

white, right black image edge. We chose to so because otherwise the discrimination power

regarding objects of similar grey value could not be evaluated.

We generated the templates for both objects over the same pose parameters. The ranges

of the pose parameters were set up by performing pose estimations using manually entered

point correspondences. This was done for the images of both objects (black and white oil

cap) and the slightly different ranges were generated for both objects.

The Template Matching and GST methods were investigated using the measures chamfer

distance (marked cd in the plots), overlap (marked ov), and Chamfer distance divided by

the overlap (marked by cd/ov in the plots). Classification for the FPM methods was done

by comparing the number of votes relative to the number of expected votes as known from

the FPM generation process (marked qual).

This constitutes a Nearest-Neighbour-Classifier with rejection for each method and distance

function. We do not perform elaborate computation for the decision values such as Maha-
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(a) Classification rate of trinocular Template
Matching using the Chamfer distance as a de-
cision value.
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(b) Classification rate of monocular Template
Matching using the Chamfer distance as a de-
cision value.
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(c) Classification rate of trinocular Template
Matching using the overlap as a decision value.
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(d) Classification rate of monocular Template
Matching using the overlap as a decision
value.
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(e) Classification rate of trinocular Template
Matching using the Chamfer distance divided
by overlap as a decision value.
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(f) Classification rate of monocular Template
Matching using the Chamfer distance divided
by overlap as a decision value.

Figure 8.16: Classification performance of the trinocular and the monocular template
matching using various decision values.
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8.4 Object Classification Performance

lanobis Distances or Confidence Mapping.

The recognition thresholds µl and θl of the Template Matching methods were varied over

a range of values. For FPM the size of the structuring element (denoted by dilatation

radius) and the threshold of the number of votes normalised to the expected number of

votes (overlap) were varied. In a similar manner the maximal chamfer distance and overlap

were varied for FPM with distance voting. The GST used the same distance function as

the distance image generation for Template Matching and FPM with distance voting.

The first observation we can make is that GST with Chamfer distance as decision value

achieves a classification rate of 100% (Fig. 8.15). Overlap, Chamfer distance divided by

overlap, and Chamfer distance for the Template Matching methods follow closely. FPM,

regardless of voting scheme yield only a 50% rate. All images of white oil caps are classified

as black oil caps.

The distance-image coordinate GST matching performs an on-line distance transformation

of the template. Thus the distance values is not subject to image noise, missing pixels etc.

The overlap value on the other hand is subjected to all these influences. Therefore the

Chamfer distance is a better decision value, as both objects are subject to these effects.

Since a good part of the template pixels of the white oil cap are shading related and there-

fore depend on the specific lighting conditions the white oil cap has a higher recognition

rate using GST than Template Matching. GST is more robust against missing pixels in

images. We assume that it is more sensitive to extraneous pixels as those increase the

overlap of otherwise not matching templates, leading to false positives.

Additionally influences from outside the corridor (Sec. 6.2) are suppressed. As we have

seen in the accuracy evaluation this is beneficial for simple cases — yielding a better pose

— but leads to a number of outliers (the bimodal error distribution). In the light of this

experiment we can conclude that the distance transformed template is more sensitive to

the shape of the object, thus better at telling apart which object is present, if the Chamfer

distance is used. It might be interesting to see if the pose accuracy of the method increases

if the Chamfer distance is used as a weight instead of the Chamfer distance overlap ratio.

In general the monocular Template Matching had a slightly higher recognition rate than

the trinocular version. This is also caused because the monocular version does not have

to make sure all three images fit optimally, just equally well. As mentioned before this

causes the individual template to fit a little less good in the trinocular case. This in turn

can cause misclassifications in critical cases.
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8 Oil Cap Inspection

Additionally the peak of the classification rate is achieved at a lower Chamfer distance when

classifying using the overlap than the Chamfer distance (e.g. Fig. 8.16(a) and 8.16(c)). This

indicates that a Chamfer distance of three (about 1.5 pixel) is the critical difference between

different objects. Smaller distances probably decrease the classification rate because some

images cannot be classified due to a failure to detect the object. At higher distances the

white oil cap is assigned the label “black”.

This basically means the objects are very similar, otherwise the critical difference would

cover a wider range. For objects with very different appearance e.g. cube and sphere the

noise related difference between images of the same class would be about the same as in this

example. The shape related difference — where the e.g. sphere image-cube template starts

to count template pixels as “matching”, thus where the overlap value starts to increase —

is much higher.

For the same reason the best classifying Chamfer distance threshold is higher when using

the Chamfer distance as the classification value, while at the same time the classification

rate is lower. Only the less critical images can be classified correctly. In order to do so,

greater shape differences have to be assumed.

Furthermore when classifying using the Chamfer distance divided by the overlap, the

trinocular Template reaches its best classification rate at a lower chamfer distance than

the monocular version. The similarity pose associate Template Matching lies in between

the two. The Similarity Pose Association has a slightly worse classification rate than the

Direct Pose Association. As we intentionally use similar, but not identical, templates we

decrease the discrimination capabilities because the template fit slightly less good, even at

the best match position.

It seems advisable to use the Chamfer distance threshold of the best classification rate

as a measure for object similarity. If there is a broad band of thresholds with similar

classification rates the objects can be regarded as easy to classify.

The FPM matching (Fig. 8.17(a) and 8.17(b)) — regardless of the size of the structuring

element for dilatation and also regardless of the voting mechanism — classified all objects

as “black”. There are different reasons depending on the voting scheme.

The classical voting scheme with dilatation evens out the shape differences. Thus both

models fit both images almost equally well. The white templates then fit the images

depicting the white oil cap slightly worse than the shape ambiguous black template does.

Consequentially the image is classified as a black object.
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(a) Classification rate of FPM with various sizes
for structuring element of dilatation using the
relative number of votes as a decision value.
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(b) Classification rate of FPM using distance vot-
ing using the relative number of votes as a
decision value.

Figure 8.17: Classification performance of the FPM matching methods.

It might be advisable to introduce a provision for this case in the classification algorithm:

If both classes fit the image almost equally well, the image is rejected as ambiguous. This

is a different case than a rejection due to a missing object.

We cannot search an explanation in the
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Figure 8.18: Classification performance us-

ing the best measure per method.

template rendering process as the same

templates are used for Template Match-

ing and FPM matching. Together with

the results of the accuracy experiments we

conclude that the bottom-up approach is

less robust than the top-down matching.

The overall classification rate (Fig. 8.18)

exceeds 88% for all three Template Match-

ing procedures, which is a very good result

despite the simple decision strategy. It is

likely that with a finer lattice the classi-

fication rate increases together with the

localisation accuracy.

Again the Similarity Pose Association is the best compromise between speed, memory

consumption, and recognition rate. If memory and run-time are of no concern, the GST

provides an unsurpassed recognition rate. Further development should be directed to

perform the distance transform of the template off-line and store the data in a memory
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8 Oil Cap Inspection

conserving way. Thus the advantages of GST and Template Matching could be combined

in one matching procedure.
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(a) Classification rate of Template Matching with
similarity pose association using the Chamfer
distance as a decision value.
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(b) Classification rate of the image coordinate
GST matching using the Chamfer distance as
a decision value.
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(c) Classification rate of Template Matching with
similarity pose association using the overlap
as a decision value.
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(d) Classification rate of the image coordinate
GST matching using the overlap as a decision
value.
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(e) Classification rate of Template Matching with
similarity pose association using the Chamfer
distance divided by overlap as a decision value.
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(f) Classification rate of the image coordinate
GST matching using the Chamfer distance di-
vided by overlap as a decision value.

Figure 8.19: Classification performance of the Template Matching with similarity pose
association and distance-image coordinate GST matching using various decision values.
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8 Oil Cap Inspection

8.5 Summary

The pose estimation and type classification of the rigid objects (oil caps) are characterised

by the following performance numbers:

Feature Performance

Trinocular orientation estimation 7◦, 1.75 lattice steps (max. error)

Monocular orientation estimation 5◦, 1.25 lattice steps (max. error)

Trinocular depth estimation (FPM, distance vot-

ing)

8 mm (99% quantile)

Trinocular depth estimation (Template Matching,

similarity pose association)

12 mm (99% quantile)

Monocular depth estimation 24 mm (99% quantile)

Memory reduction by similarity pose association 30×
Trinocular Template Matching classification rate 91%

Monocular Template Matching classification rate 92%

Best classification rate 100%

Template Matching time 100 ms per image

FPM matching time 33 ms per image

Ratio preprocessing to matching time > 2 : 1

The following non-quantitative insights have been found among other:

– Trinocular Template Matching with similarity pose association is the best compro-

mise regarding memory consumption, run-time and recognition capabilities.

– The Chamfer distance threshold associated with the highest classification rate can

be used as an indication of similarity between object classes.

– Gradient Sign Tables have a higher error (3 lattice steps vs. 2 lattice steps of the

trinocular Template Matching) and require 16× more memory than trinocular Tem-

plate Matching.

– Gradient Sign Tables achieve a higher recognition rate than due to distance trans-

formed templates.

– Pose refinement methods can be used as object detectors with slightly reduced ac-

curacy, but this constitutes not an appropriate use case due to the vastly increased

run time.
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9 Obtaining the Trajectory of Tubes and Cables

9.1 Goal of Investigation

Determining the 3D trajectory of flexible objects such as cables and tubes is a task of

enormous importance in industrial quality inspection. The application scenario in Fig. 9.1

illustrates this.

An object (c) is to be inspected, but may

a

c

e

d
b

Figure 9.1: Application scenario. a: robot,

b: fixed end of cable, c: inspected object, d:

dangling cable end, e: inspection cameras

be partially occluded by a cable or tube,

fixed only on one side (b). This scenario

occurs quite often in engine production,

where cables or tubes that connect the en-

gine with the remaining car systems are

placed on top of the engine during trans-

port from engine production to car inte-

gration. Human inspectors have to move

the cable aside, perform the check, and

place the cable back.

This task is very hard to automate. A

suitable grasping strategy is to check if

the cable passes through a volume around

the inspected object and to position the

gripper at the highest point within this

volume. The major obstacle is the accurate acquisition of the cable trajectory, such that

a robot (a) may grasp it, hold it aside, and put it back after the camera (e) has recorded

the inspection image. A further complication stems from the fact that the loose end of the

cable (d) may be found at arbitrary places (“dangling rope problem”).

Due to these circumstances solutions to this problems are still subject to research. Car

manufacturers have not yet deployed any computer vision systems coping with this prob-

lem.
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9 Obtaining the Trajectory of Tubes and Cables

In this scenario we follow the tube from its fixed end — which is assumed to be at a known

position and orientation — and follow it to its loose end. We do so by modelling a short

piece of the tube as a straight and rigid object: the tracer. We assume that the positive

x-axis of this simple model points along the tangent of the tube. The following algorithm

is used to obtain the trajectory of the tube:

Algorithm 9.1 Tube tracing from fixed end to loose end.

Initialise pose Φ to the fixed end
Initialise trajectory T0 ⇐ Φ, i ⇐ 1
repeat

Adjust pose Φ of tracer to image tuple starting at Ti−1

Ti ⇐ Φ, i ⇐ i + 1
Move tracer along its rotated x-axis (follow tube)

until Tracer does not match or a fixed length is exceeded

This problem, our solution, and an initial evaluation was published in [58]. The tracer in

[58] has 4 degrees of freedom: Spatial position and rotation around the line of sight. In

some cases this leads to unstable behaviour of the optimisation algorithm as the gradient

along the tube is almost flat and therefore very sensitive to image noise.

In this thesis we reduce the degrees of freedom to three. Given a starting position, the

depth along the line of sight is one degree of freedom as well as the rotation around the line

of sight. Additionally the tracer may be displaced laterally with respect to the assumed

tangent after rotation. This ensures that the tracer does not move along the tube during

the matching of the current tube segment.

9.2 Experimental Setup

We recorded a set of eight image tuples (Table 9.1) depicting tubes and cables with diam-

eters between 7 and 57 mm. We processed each image tuple with the following algorithms

(abbreviations for plots in first column):
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9.2 Experimental Setup

Abbreviation Algorithm

MOCCD Multiocular Contracting Curve Density, Sec. 5.2

CCD Monocular Contracting Curve Density, Sec. 5.2

MO snake Multiocular Active Contour, Sec. 5.1

snake Monocular Active Contour, Sec. 5.1

MOGST Multiocular Gradient Sign Table, Sec. 6.2

GST Monocular Gradient Sign Table, Sec. 6.2

These methods were used for pose adjustment according to Algorithm 9.1. Ground truth

was obtained by illuminating a number of points with a laser pointer and computing the

sub-pixel accurate position of the laser spot using the weighted mean of the pixel values.

The spatial coordinate of the illuminated point was computed by non-linear optimisation

of Eq. 3.2, i.e. Bundle Adjustment. Since this method computes points on the surface of

the tube or cable and our methods above reconstruct the central curve we evaluate the

methods by computing the ground truth-central curve distance reduced by the radius.

The most complicated scenes are Exp. 8 and 5. In Exp. 8 the tube is nearly invisible.

A careful contrast enhancement can make it visible to a human observer. Thus sufficient

information exists to distinguish between tube and table cloth. Exp. 5 exhibits at many

places along the cable no contrast to the background on one side, while the other side is

visible due to shading and shadow. This moves the apparent position of the cable and

increases its apparent depth during monocular evaluation.

We used tracers of correct and constant radius, with a length of 1 cm, except Exp. 7

where a tracer length of 2 cm was necessary due to the large diameter of the tube. The

position was updated in steps half the length of the tracer. The orientation of the last

tracer position was used as the initial value for the next iteration. For the CCD we always

used five perpendiculars on either side. The grey level statistics were computed for each

perpendicular line separately; no merging e.g. of the inner statistics took place.

The experiments using Active Contours were based on the same model as the CCD. The

tracer therefore was not flexible and can be seen as a borderline case of snakes: The

deformation cost was set to infinity. In fact, we optimised the same degrees of freedom as

the CCD experiments, both for comparability as well as stability.

Experiments with classical snakes (e.g. Ziplock-snakes) and modifications thereof (e.g. one-

sided Ziplock-snakes) showed that these methods are too sensitive to work properly even on

the comparatively simple Exp. 1 and 2. Convergence of the classic Ziplock snake depended
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9 Obtaining the Trajectory of Tubes and Cables

Table 9.1: Input data depicting tubes and cables.

Exp. Nr Image Description
1 Diameter: 24 mm, 15 pixel. Reconstruction of right part

only. Maximal contrast.

2 Diameter: 15 mm, 8 pixel. Tube elevating vertically from
table. Maximal contrast.

3 Diameter: 7 mm, 5 pixel. Black power cable. Reconstruc-
tion between connectors. Maximal contrast.

4 Diameter: 7 mm, 5 pixel. Grey power cable. Reconstruc-
tion between connectors. Reduced contrast.

5 Diameter: 7 mm, 5 pixel. White power cable. Recon-
struction between connectors. Largely no contrast.

6 Diameter: 8 mm, 7 pixel. Monitor cable. Reconstruction
between ballasts only. Partially no contrast on one side.

7 Diameter: 57 mm, 34 pixel. Paper tube. Poor contrast on
both sides.

8 Diameter: 24 mm, 15 pixel. Tube from Exp. 1 on dark
blue table cloth. Almost no contrast.
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9.2 Experimental Setup

largely on the similarity between the initial and the real curvature of the tube. The one-

sided Ziplock snake was very sensitive to topological defects as the direct optimisation of

the central points may move it back to the already covered area of the tube.

The ensuing topological defect is turned into a kink orthogonal to the real trajectory. In

order to avoid this behaviour, one has to introduce a hard constraint requesting a fixed

distance and a soft constraint regarding a constant tangent of two adjacent central points

along the snake. Additional constraints were required to couple rotation and lateral dis-

placement of the boundary segment that is to be optimised. Interestingly the combination

of all these constraints leads to exactly the same degrees of freedom as used for the CCD

trace, combined with the tracer movement (fixed distance constraint). We therefore used

the CCD tracer with identical parameters and performed a grid search on the degrees of

freedom, using the image energy (blurred negative gradient image normalized to maximal

gradient in the image) as the sole energy term.

All experiments of the multiocular and the monocular CCD were conducted using identical

parameters. The Active Contour experiments used identical parameters where applicable.

The depth change and lateral displacement were varied by ± one radius at a resolution of

one millimetre, the rotation by ±30◦ at a resolution of 1◦. The sole exception was Exp. 7,

where the lateral displacement and depth were varied by ±5 mm in order to limit the

run-time.

The Gradient Sign Tables were computed on-demand per input pixel using the 2D normals

and points of the projected tracer. Since the gradient signs change massively when the

aperture problem occurs — thus when the tracer runs vertical or horizontal — we disabled

the processing of this image. If e.g. the tracer runs horizontal we use camera 0 and the

vertical camera. We use edge pixels for features, extracted using a Sobel edge extraction

with a fixed threshold. This threshold was chosen manually for each image separately such

that the edge was sufficiently complete with a small number of clutter edge pixels.

We do not compare the run-times of the methods as the implementation was done in

MATLAB and therefore a fair comparison — which includes all factors (e.g. CPU cache)

instead of the raw number of floating point operations only — is neither possible nor

meaningful.
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9 Obtaining the Trajectory of Tubes and Cables

Table 9.2: Accuracy of the various tracers. The distance (error) between estimated tube
surface and ground truth is displayed in mm. Columns: Number of ground truth points
passed (num), minimal error (min), average error (avg), maximal error (max).

MOCCD MO snake MOGST
Exp. num min avg max num min avg max num min avg max
1 12 0.0 1.7 4.7 11 0.3 1.0 2.3 11 0.1 1.9 7.9
2 19 0.0 1.3 4.5 19 0.2 1.3 3.2 19 0.1 1.5 5.2
3 32 0.0 2.5 22.0 32 0.2 22.8 77.5 32 0.0 3.2 23.4
4 36 0.1 3.6 19.3 36 0.0 30.0 95.3 36 0.1 17.0 54.8
5 0 28 0.0 42.8 87.4 28 0.5 18.7 44.2
6 9 0.2 40.2 129.3 30 0.1 18.6 73.2 30 0.2 17.9 84.6
7 7 0.2 2.2 5.7 7 0.0 5.1 18.9 7 1.2 5.3 14.0
8 0 0 13 2.4 13.3 36.2

CCD snake GST
1 13 0.6 17.7 65.8 12 0.3 13.7 64.3 11 0.0 4.9 28.5
2 19 0.0 51.4 121.8 19 0.1 55.6 147.1 19 0.8 23.2 73.6
3 13 0.9 78.3 164.0 32 1.0 204.5 462.1 32 0.1 34.7 141.7
4 5 0.8 25.6 57.5 36 0.1 198.2 436.4 36 0.7 173.2 718.5
5 0 28 0.1 155.9 327.0 13 7.8 185.1 461.2
6 0 30 0.9 202.6 383.9 30 0.2 119.7 484.2
7 8 2.9 59.6 129.2 7 0.7 11.2 23.0 7 1.4 9.8 16.1
8 0 0 10 0.3 127.0 296.0

9.3 Accuracy of Trajectory Estimation

Since we have ground truth for only a few (10–30) points on the tubes, we give the numerical

error of the methods along with our observations of the intermediate matching results. We

made those observations by displaying the re-projected tracer in the images. Thus some

effects (like depth errors) are easily explained.

Table 9.2 summarises the numerical results of the experiments. The maximal, minimal, and

average errors of the ground truth points are displayed per method. A ground truth point

was projected onto the central axis. The distance from this projection to the measured

point was recorded. Only points falling onto a tracer were considered. The computation

correctly considered the topology, i.e. only correctly ordered points were compared. The

number of those points is also displayed. We considered only the trajectory sections from

the start to the loss of track.

Exp. 1 and 2 ran flawlessly for all six algorithms. The tracer follows the tube from the
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9.3 Accuracy of Trajectory Estimation

start for the pre-determined length. The MOCCD is accurate to about 5 mm, while the

monocular variant displayed the typical problems of monocular depth estimation, resulting

in an at least tenfold average error (Exp. 1) over the multiocular variant.

The multiocular snake also follows the image of the tube well. The maximal spatial error of

the multiocular variant is even smaller than that of the MOCCD, caused by the better fit

due to the exhaustive search. The monocular snake performs slighly better in Exp. 1 and

slightly worse in Exp. 2 compared to the monocular CCD. The monocular snake performs

worse than the multiocular version.

The MOGST tracer achieves a slightly higher error, which is due to the edge noise. The

monocular GST is the most accurate of the three monocular methods, due to the suppres-

sion of shading effects by the edge extraction. The errors are still about 10× larger than

those of the multiocular variant.

In Exp. 3, at one trajectory step of the MOCCD, the tracer converged such that in one

image it matched the shading edge. The other images could not compensate due to the

aperture problem, i.e. the tube ran horizontally at that position while the image 0 tracer

was at the shading edge. The monocular tracer yielded a higher error due to the poor

signal-to-noise ratio in the images: the scene contains much more distant cable sections

than any other image, thus the cable is much smaller there. This lead to premature stops

of the optimisation as the perpendiculars became too short (less than 3 pixel on either

side) to compute a stable statistics. The monocular CCD solely computes the depth from

the estimated width of the cable and yields incorrect data in such a case.

Both snake variants followed the shading edge, much like the CCD. The resulting depth

error is much higher due to the fact that the snake usually found its best fit when it was

turned with respect to the tangent. The multiocular snake was barely able to compensate

this, resulting in an error of about 8 cm. The monocular variant could also follow the

complete cable, in contrast to the monocular CCD. The depths as estimated by the snake

are basically meaningless. In order to compensate the missing second edge, the ribbon

snake collapsed to a single line. Since the search range is limited per iteration, the tracer

increased its distance from the camera as it moved along the cable.

The GST tracers could follow the outer edge of the tube well, due to the appropriate edge

extraction threshold. This threshold resulted in edge pixels along the shading edge, which

had no influence on the tracer. At some positions along the cable, one outer edge could

not be extracted, thus the higher maximal error and small average error. Both GST tracer
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9 Obtaining the Trajectory of Tubes and Cables

have similar errors as the CCD tracers.

Exp. 4 exhibits a strong shading edge and a reduced contrast between one side of the

cable and the table. Both CCD variants converged to the shading edge. Despite this, the

MOCCD can estimate the depth fairly well, mostly due to the shading being at similar

position and therefore nearly correct depth. Thus, the average error increases only slightly.

Compared to the MOCCD the monocular variant looses the cable after a short distance.

The multiocular snake exhibited a similar behaviour as the MOCCD, just that different

sides of the snake followed the shading edge. The result is a larger error, mostly due to a

wrong depth estimation. The monocular snake nearly collapsed to a single line by moving

away from the camera.

Similar behaviour is observed for the GST tracers. Both follow the shading edge. Due to

the edge noise and decrease in apparent cable width the signal-to-noise ratio drops farther,

thus the higher error of the monocular variant. Despite this the monocular GST is more

robust than the monocular CCD as it could follow the complete cable, which is due to the

edge threshold.

In Exp. 5 and 6 the almost non-existent contrast on one side combined with a distinct

shadow/shading edge on the other side causes both the CCD and snake algorithms to

place the tracer outside the cable. This only works well on the plain background, a more

structured background would cause the tracer to follow the background structures. We

therefore consider these two experiments beyond the capabilities of the methods and present

no data.

Exp. 5 is challenging for the snake, although both variants followed the shading edge. At

one iteration, the snake projected into one image was completely off the cable. Given a

more structured background this would have caused a loss of track. The monocular variant

collapsed as in the previous experiments.

The multiocular GST tracer handles this image better than the multiocular snake as it

follows the shading edge on the correct side. The monocular GST loses the cable at the

first sharp bend due to the change of sides of the real and the shading edge.

Exp. 6 was handled by both snake variants with a behaviour similar to Exp. 4. In contrast

to the CCD it could follow the complete cable. The same holds for the GST tracers.

Exp. 7 worked well with both CCD variants despite the low contrast, due to the large size

of the object and the longer tracer. Again the monocular variant obtained an incorrect
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9.3 Accuracy of Trajectory Estimation

depth due to an incorrect size estimation. The multiocular variant — which effectively

is a binocular CCD due to the nearly horizontal tube — matched with a slightly higher

error than in Exp. 1 and 2. Both methods traversed the table edge equally well. The

monocular variant yielded a better depth estimation due to the higher contrast to the

black background.

The snakes could also follow the tube, although with a larger error. This is caused by edge

extraction and subsequent blurring using a Gaussian filter with two pixel radius as in the

other experiments. As the shading of this tube is much smoother due to the larger radius,

the maximum of the image energy was less well defined. This lead to a larger error, mostly

in depth.

The GST tracers could also follow the tube for its entire length despite the clutter edges in

the shadow in front of the tube. Even missing edge pixels (about 1 cm near the table’s edge)

could be bridged. Again a higher robustness to smooth shading edges is demonstrated by

the smaller error of the monocular GST tracer. The error of the multiocular GST is higher

than that of the multiocular CCD, which is due to the clutter pixels and the edge position

noise.

The dark blue table cloth in Exp. 8 combined with the black tube reduced the contrast

even further than in Exp. 5 and 6. Both CCD variants diverged from the starting pose in

random directions. Similar behaviour resulted from the application of the snakes.

With careful selection of the edge threshold the tube could be segmented, but a lot of

clutter pixels were present. The multiocular GST could therefore follow the tube for the

complete length, but at a large error. The monocular GST could follow the tube for about

two thirds of its length and then looses it due to a nearly uniform distribution of clutter

edge pixels.

The tracing approach is very suitable to solve the “dangling rope problem”. As mentioned

above, the constraints that are required to make the snakes work properly are identical with

the tracing approach. Since the CCD uses the same tracing approach, but uses a different

optimisation strategy, it might be possible to replace the optimisation of snakes by the

maximum-a-posterior-probability function of the CCD. To do so, the various — usually

ad-hoc defined — energies have to be recast as probabilities in order to be integrated into

the CCD framework. The more challenging task is the integration of hard constraints,

which turn the system of equalities at the heart of the Gauss-Newton step into a system

of inequalities.
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9 Obtaining the Trajectory of Tubes and Cables

The Gradient Sign Tables can also be used as an optimisation procedure for Active Con-

tours. The reformulation of the Gradient Sign in terms of simple decisions is a viable

alternative to the tabulation of those signs. Although no run-time investigation can be

made using the non-optimised MATLAB implementations, the number of operations per

pixel is much smaller for the GST than for e.g. snakes. Both robustness and accuracy of

GST are comparable to the snakes and thus constitute a real alternative.
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9.4 Summary

9.4 Summary

The pose estimation of the flexible objects (tubes and cables) are characterised by the

following performance numbers:

Feature Performance

Minimal average error, multiocular (mm) 1.0

Maximal average error, multiocular (mm) 42.0

Minimal average error, monocular (mm) 4.9

Maximal average error, monocular (mm) 204.5

The following non-quantitative insights have been found among other:

– Classical snake approaches (Ziplock) or modifications thereof (one-sided Ziplock) are

not suitable to solve the “dangling rope problem”.

– The constraints to resolve topological problems of snakes yield the tracing approach.

– The tracing approach is capable of solving the “dangling rope problem”.

– Snakes are more robust with respect to missing edges or small objects, due to the

blurring of the image, which operates on filters of constant size. The CCD is more

accurate due to the adaptive edge filter, which imposes a minimal object size.

– The GST tracer is of comparable accuracy as CCD and snakes. The GST tracer is

more robust to smooth edges, faster, and has a straightforward implementation.

– The CCD is more suitable for larger tubes with two edges. Snakes are more suitable

for objects below the minimal size of the CCD or if only one edge is visible.

– The imaging conditions should be set such that both sides of the tube are visible. If

not possible, an edge due to shading can be used in some cases.

– The monocular variants require two edges, otherwise the depth estimation is wrong.

In that case, one has to revert to a 2D tracing of the tube.
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Part IV

Closing Remarks

10 Summary

10.1 A-Priori Questions Answered

In Sec. 2.1 we layed out the questions this thesis is supposed to answer. In this section

we will summarise the results of the evaluation to give the answers to these questions. We

therefore repeat the questions and provide the respective answers.

Given the same object representation, which is better: a bottom-up or a top-down

approach to object recognition? In Sec. 4.1 we presented Template Matching and in

Sec. 6.2 we introduced a new method: Gradient Sign Tables. Both approaches are top-down

methods. In Sec. 4.2 the corresponding bottom-up method — Feature Pose Maps (FPM)

— was presented. Both methods have been evaluated in Chap. 8 regarding pose estimation

accuracy and classification rate using identical input images and model information.

Template Matching performs better than FPM regarding memory consumption, classifi-

cation rate, and pose accuracy. The FPM using the newly developed distance voting is

slightly better regarding pose accuracy as it is less prone to outliers. The classical FPM

methods have a smaller run time, the FPM with distance voting has nearly identical run

times as Template Matching. Due to the higher memory consumption of FPM and the

nearly identical other features we deem Template Matching, the top-down method

the better matching procedure.
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10.2 Additional Insights

Is it better to perform the distance transform of the model or the current image?

We investigated this question using the newly developed Gradient Sign Table matching.

This method performs an on-line distance transform of the model, saving memory. Even

using Run Length Encoding the memory requirements were ten times higher, the run

times one hundred times. The resulting pose accuracy was slightly worse than that of

e.g. Template Matching. The classification rate was 100% for the GST vs. 91% for the

Template Matching. All in all we conclude due to high run times and memory consumption

the distance transform of the image is the better method.

Does multiocular evaluation always perform better, regardless of the object recogni-

tion method? We investigated this for rigid objects in Chap. 8 and for tubes and cables in

Chap. 9 using Template Matching, the Contracting Curve Density algorithm (Sec. 5.2), and

Active Contours (Sec. 5.1). The depth information obtained by the multiocular variants

was always better than that of the monocular variant, regardless of algorithm. Addition-

ally, the multiocular variant was more robust in detecting the object. Although it is subject

to accuracy reducing parallax effects on bevelled edges, we deem the multiocular variant

better as those effect are easily compensated by better depth values and nearly identical

classification rates.

Can we simplify the Closest-Feature Method, especially regarding the matching pro-

cedure and the model? In Sec. 6.2 we presented Gradient Sign Tables, a newly developed

model and matching procedure. The matching procedure provides a pose refinement al-

gorithm that requires one table look-up per pixel in order to map feature presence to

direction of pose improvement. The resulting algorithm has accuracy properties that are

comparable to the Contracting Curve Density algorithm and Active Contours. Further-

more the approach is easily understood and straightforward to implement.

10.2 Additional Insights

In addition to the questions above we gained the following insights:

Exterior camera parameter require calibration images in the far corners of the calibra-

tion volume for an accurate and stable calibration. In Sec. 7 we evaluated the camera
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10 Summary

calibration we use in this thesis. In addition to the rules of thumb regarding calibration

rig placement as found in the literature, we could identify another rule that is important

for the stability of calibration in multiocular camera systems.

Exterior camera parameters can be optimised on spatial errors. The usual non-linear

minimisation of the reprojection error using Bundle Adjustment can be preceded by a

minimisation of the spatial differences of the rig point coordinates. These coordinates

are required for and obtained during internal calibration anyway. As this optimisation is

subject to very few parameters (it does optimise the camera-to-camera transforms only)

the computation is much faster than the optimisation of the complete problem. It reduces

the reprojection error by about 2
3
.

Overexposure leads to inaccurate corner detection. Thus during calibration one should

reduce the exposure time of the camera.

Images taken beyond a certain distance reduce the accuracy of the focal length

estimation. For a camera of 70◦ field of view and VGA resolution this distance is between

120 cm and 160 cm.

All internal camera parameters are subject to local minima during the calibration.

Including additional images at same location alleviates the effect.

The constraints to resolve topological problems of snakes yield the tracing approach

for computing the trajectory of tubes and cables.

The CCD is more suitable for larger tubes; snakes are more suitable for smaller cables.

The CCD requires a minimal size due to the grey value statistics. Snakes are limited by

the Sampling Theorem only.
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11 Outlook

11.1 Calibration

The calibration system presented in this thesis proved its accuracy and utility in calibra-

tions of many different camera systems, ranging from experimental devices with 64 × 48

pixel over multispectral setups (one near-infrared, one thermal infrared camera) to regular

industrial cameras at Megapixel resolutions.

The chequerboard detector is fast enough to be run in real time, displaying the detection

result as overlay over the video stream. This does not alleviate the user of such a system

to present the calibration rig in appropriate positions such that the ensuing optimisation

is numerically stable and yields meaningful results. An end-user calibration system should

perform a continuous supervision of the incoming rig coordinates and make suggestions on

result improving rig positions.

11.2 Template Matching

The similarity pose association checks the Template with the smallest Euclidean distance

in pose space for similarity. It might be interesting to investigate other distance measures

and/or optimisation procedures. The problem is likely to be NP-complete, so approxima-

tions have to made.

A reduction of the memory consumption of the individual template would be also of great

practical relevance. An approach based on relative pixel offsets instead of the currently

used absolute positions is worth investigating. The relative offsets from one template pixel

to the next might take fewer bits than the absolute coordinates.
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11 Outlook

11.3 Feature Pose Maps

The current implementation uses an input image sized table to store the Feature Pose Map.

It might be beneficial to restrict the table to the used space, e.g. by means of a bounding

box. Additionally, the pose indices could be stored as pose index increments, thus using

fewer bits per vote.

11.4 Gradient Sign Tables

The Gradient Sign Tables (GST) as presented here constitute an extreme: Computation

is replaced by table lookups. This leads to a large memory consumption. As we have seen

the matching results are almost as good as those of the methods with longer development

history. Additionally one iteration of the pose refinement is very fast. It would be inter-

esting, and surely of practical value, if the memory requirements could be reduced while

adhering to the basic principle.

One way to do so would be to replace the pure table lookup with some cheap computations.

Using the tube tracer as an example we will illustrate this. The GST of the tracer for the

lateral displacement is particularly simple: pixels in a corridor close to the border hold the

sign that will move the border closer to the pixel. Given the projection of the tracer in the

image, this sign can be computed using a scalar product and some thresholds.

Given these improvements to the Gradient Sign Table matching and suitable object models

a broader evaluation should be performed on a variety of pose improvement problems.

11.5 Trajectory of Tubes and Cables

Template Matching and Feature Pose Maps can be used to detect tubes in image tuples.

This is done by applying the two methods using all templates not just those around the

current pose along the trajectory. This is likely to reconstruct all tubes within the volume

spanned by the templates. As such it opens a broader space of problems where even the

starting point is unknown, e.g. bin picking of tubes and cables.
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11.6 Other Issues

11.6 Other Issues

So far we have investigated appearance-based object recognition methods. A further inter-

esting area of study are the model-centric object recognition methods. The method in [75]

is an interesting starting point. If its object model can be made more robust and general,

as well as its radius of convergence can be increased, the practical value of this method

might be even greater than that of Template Matching. The reason is the faster model

generation, where the CAD model has to be converted into a similar representation, which

can be done without rendering.
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Part V

Appendix

A Definitions

A.1 Image Tuple

Ordered set of Nc images, recorded synchronously. It is assumed that the number of

cameras remains constant during different phases (cf. Sec. 3.1) of the application, unless

stated otherwise. If the scene remains unchanged, it is possible to move the camera and

regard these sequentially recorded images as a tuple too. Most algorithms allow to skip

cameras during the recognition phase, suffering only from recognition stability so as if the

camera has not been there in the first place.

A.2 Object Recognition Algorithms

2 dimensional object recognition algorithms operate on single grey or colour images

only. All extracted degrees of freedom are limited to the image plane.

3 dimensional object recognition algorithms operate on 3D data such as range data (e.g.

from RADAR or LIDAR) or voxel data (e.g. from tomography). The extracted

degrees of freedom include the distance between object and sensor.

2.5 dimensional object recognition algorithms operate on single images. The extracted

degrees of freedom are confined in 3D space. Only those degrees of freedom that

produce appearance changes in the image can be extracted.

The term 2.5 dimensional is borrowed from machining, where a 2.5 dimensional object

denotes objects that can be machined out of a solid block of material from the top. Only
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A.3 Camera Identifier

material from the top of the block can be removed, thus caverns in the object cannot be

fabricated. This metaphor lends itself very well to object recognition: Only the foremost

surface of the objects is visible in an image.

In this sense range images are 2.5 dimensional too. We, however, count them as 3D data

as they can be transferred directly to three dimensional, even metric, data from a single

sensor only. This allows the direct comparison with the 3D model data, a property that is

not present in 2.5 dimensional algorithms.

A.3 Camera Identifier

Unique integer identifying one physical camera. The first camera has identifier 0. It is

application dependent how the mapping of camera identifier to real camera devices is

implemented.

A.4 Mesh, Facet, Vertex

As in generative computer graphics the object models are called meshes. Each mesh

consists of facets (also called faces), the planar polygons. Each facet consists of three

or more vertices, the corner points of the polygon. It is only a matter of computational

performance whether the facet consists of a list of the point coordinates itself or of a list

of indices into a larger list of the point coordinates. The first version is easier to read and

therefore used in the algorithms descriptions, the second version is faster and therefore

used in the implementations.

A.5 Appearance Based Object Recognition

Object recognition method that is purely based on the image of the object. Usually

one image (appearance) per pose of the object is stored in a database to be recognised.

Template matching and image classification fall into this category.

A.6 Segmentation Based Object Recognition Algorithm

Object recognition based on segmenting the object from the background. Depending on

the actual algorithm it may or may not require a starting pose to be refined. A simple

approach consists of binarising the object by a fixed treshold and computing the pose from
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A Definitions

the outline of the object. The assumed object type is then verified from the similarity

between model and outline. Active Contours (snakes) are segmentation algorithms.

A.7 Constraint, Soft Constraint, Hard Constraint

Requirement imposed on parameters during optimisation procedures. Soft constraints are

meant to shape the objective function such that the desired solution becomes the closest

local or even global solution and may be violated if the objective function requires it. Hard

constraints on the other hand must not be violated. They for instance denote physical

impossibilities, prior knowledge or other limits of the parameter space.

A.8 Distance Transform

The distance transform assigns each image pixel the distance to the closest feature pixel

from the input image. Depending on the distance metric, which usually approximates the

Euklidean distance, the distance transform can be computed with a run-time complexity of

O (n) for n pixel. This is done by using the transitivity property of the minimum relation.

Fig. A.1 illustrates the feature image and its distance transform.

(a) Binary feature image.
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(b) Distance transformed image.

Figure A.1: Distance transform of a binary feature image.

A.9 Epipolar Line

If one camera of a multiocular setup observes a point, the epipolar line allows for a simple

selection of possible matches in a second camera. The point in space and the two pinholes

of the cameras form a plane in space. Projecting this plane into the second camera yields
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A.10 Run Length Encoding

the epipolar line. It may be computed from the external calibration and the 2D coordinates

of the point in the first camera alone. Only points on (or close to, in the presence of noise)

the epipolar line are candidates that have to be matched with the point.

A.10 Run Length Encoding

Replace a sequence of consecutive identical symbols by a tuple of the symbol and the

number of symbols involved: AAAABBB is stored as ((A,4),(B,3)). If the number of

symbols is small (e.g. 4), the symbol and the length can be stored in a byte together.
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